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Preface
You are about to undertake a journey into the mysterious world of cryptography. I’ve just
completed mine—writing this book—and it’s been an amazing experience. Although I’d
been a user of SSL since its beginnings, I developed a deep interest in it around 2004, when I
started to work on my rst book, Apache Security. About ve years later, in 2009, I was look-
ing for something new to do; I decided to spend more time on SSL, and I’ve been focusing
on it ever since. Te result is this book.
My main reason to go back to SSL was the thought that I could improve things. I saw an
important technology hampered by a lack of tools and documentation. Cryptography is a
fascinating subject: it’s a eld in which when you know more, you actually know less. Or, in
other words, the more you know, the more you discover how much you don’t know. I can’t
count how many times I’ve had the experience of reaching a new level of understanding of a
complex topic only to have yet another layer of complexity open up to me; that’s what makes
the subject amazing.
I spent about two years writing this book. At rst, I thought I’d be able to spread the eort
so that I wouldn’t have to dedicate my life to it, but that wouldn’t work. At some point, I
realized that things are changing so quickly that I constantly need to go back and rewrite the
“nished” chapters. Towards the end, about six months ago, I started to spend every spare
moment writing to keep up.
I wrote this book to save you time. I spent the large part of the last ve years learning every-
thing I could about SSL/TLS and PKI, and I knew that only a few can aord to do the same.
I thought that if I put the most important parts of what I know into a book others might be
able to achieve a similar level of understanding in a fraction of the time—and here we are.
Tis book has the word “bulletproof ” in the title, but that doesn’t mean that TLS is unbreak-
able. It does mean that if you follow the advice from this book you’ll be able to get the most
out of TLS and deploy it as securely as anyone else in the world. It’s not always going to be
easy—especially with web applications—but if you persist, you’ll have better security than
99.99% of servers out there. In fact, even with little eort, you can actually have better secu-
rity than 99% of the servers on the Internet.
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Broadly speaking, there are two paths you can take to read this book. One is to take it easy
and start from the beginning. If you have time, this is going to be the more enjoyable ap-
proach. But if you want answers quickly, jump straight to chapters 8 and 9. Tey’re going to
tell you everything you need to know about deploying secure servers while achieving good
performance. Aer that, use chapters 1 through 7 as a reference and chapters 10 through 16
for practical advice as needed.

Scope and Audience
Tis book exists to document everything you need to know about SSL/TLS and PKI for
practical, daily work. I aimed for just the right mix of theory, protocol detail, vulnerability
and weakness information, and deployment advice to help you get your job done.
As I was writing the book, I imagined representatives of three diverse groups looking over
my shoulder and asking me questions:

System administrators
Always pressed for time and forced to deal with an ever-increasing number of securi-
ty issues on their systems, system administrators need reliable advice about TLS so
that they can deal with its conguration quickly and eciently. Turning to the Web
for information on this subject is counterproductive, because there’s so much incor-
rect and obsolete documentation out there.

Developers
Although SSL initially promised to provide security transparently for any TCP-based
protocol, in reality developers play a signicant part in ensuring that applications re-
main secure. Tis is particularly true for web applications, which evolved around SSL
and TLS and incorporated features that can subvert them. In theory, you “just enable
encryption”; in practice, you enable encryption but also pay attention to a dozen or so
issues, ranging from small to big, that can break your security. In this book, I made a
special eort to document every single one of those issues.

Managers
Last but not least, I wrote the book for managers who, even though not necessarily
involved with the implementation, still have to understand what’s going on and make
decisions. Te security space is getting increasingly complicated, so understanding
the attacks and threats is oen a job in itself. Oen, there isn’t any one way to deal
with the situation, and the best way oen depends on the context.

Overall, you will nd very good coverage of HTTP and web applications here but little to no
mention of other protocols. Tis is largely because HTTP is unique in the way it uses en-
cryption, powered by browsers, which have become the most popular application-delivery
platform we’ve ever had. With that power come many problems, which is why there is so
much space dedicated to HTTP.
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But don’t let that deceive you; if you take away the HTTP chapters, the remaining content
(about two-thirds of the book) provides generic advice that can be applied to any protocol
that uses TLS. Te OpenSSL, Java, and Microso chapters provide protocol-generic infor-
mation for their respective platforms.
Tat said, if you’re looking for conguration examples for products other than web servers
you won’t nd them in this book. Te main reason is that—unlike with web servers, for
which the market is largely split among a few major platforms—there are a great many
products of other types. It was quite a challenge to keep the web server advice up-to-date,
being faced with nearly constant changes. I wouldn’t be able to handle a larger scope. Tere-
ore, my intent is to publish additional conguration examples online and hopefully provide
the initial spark for a community to form to keep the advice up-to-date.

Contents
Tis book has 16 chapters, which can be grouped into several parts. Te parts build on one
another to provide a complete picture, starting with theory and ending with practical ad-
vice.
Te rst part, chapters 1 through 3, is the foundation of the book and discusses cryptogra-
phy, SSL, TLS, and PKI:

• Chapter 1, SSL, TLS, and Cryptography, begins with an introduction to SSL and TLS
and discusses where these secure protocols t in the Internet infrastructure. Te re-
mainder of the chapter provides an introduction to cryptography and discusses the
classic threat model of the active network attacker.

• Chapter 2, Protocol, discusses the details of the TLS protocol. I cover TLS 1.2, which is
the most recent version. Information about earlier protocol revisions is provided where
appropriate. An overview of the protocol evolution from SSL 3 onwards is included at
the end for reference.

• Chapter 3, Public-Key Infrastructure, is an introduction to Internet PKI, which is the
predominant trust model used on the Internet today. Te focus is on the standards and
organizations as well as governance, ecosystem weaknesses and possible future im-
provements.

Te second part, chapters 4 through 7, details the various problems with trust infrastruc-
ture, our security protocols, and their implementations in libraries and programs:

• Chapter 4, Attacks against PKI, deals with attacks on the trust ecosystem. It covers all
the major CA compromises, detailing the weaknesses, attacks, and consequences. Tis
chapter gives a thorough historical perspective on the security of the PKI ecosystem,
which is important for understanding its evolution.
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• Chapter 5, HTTP and Browser Issues, is all about the relationship between HTTP and
TLS, the problems arising from the organic growth of the Web, and the messy interac-
tions between dierent pieces of the web ecosystem.

• Chapter 6, Implementation Issues, deals with issues arising from design and program-
ming mistakes related to random number generation, certicate validation, and other
key TLS and PKI functionality. In addition, it discusses voluntary protocol downgrade
and truncation attacks and also covers Heartbleed.

• Chapter 7, Protocol Attacks, is the longest chapter in the book. It covers all the major
protocol aws discovered in recent years: insecure renegotiation, BEAST, CRIME,
Lucky 13, RC4, TIME and BREACH, and Triple Handshake Attack. A brief discussion
of Bullrun and its impact on the security of TLS is also included.

Te third part, chapters 8 through 10, provides comprehensive advice about deploying TLS
in a secure and ecient fashion:

• Chapter 8, Deployment, is the map for the entire book and provides step-by-step in-
structions on how to deploy secure and well-performing TLS servers and web applica-
tions.

• Chapter 9, Performance Optimization, focuses on the speed of TLS, going into great de-
tail about various performance improvement techniques for those who want to squeeze
every bit of speed out of their servers.

• Chapter 10, HSTS, CSP, and Pinning, covers some advanced topics that strengthen web
applications, such as HTTP Strict Transport Security and Content Security Policy. It
also covers pinning, which is an eective way of reducing the large attack surface im-
posed by our current PKI model.

Te fourth and nal part consists of chapters 11 through 16, which give practical advice
about how to use and congure TLS on major deployment platforms and web servers and
how to use OpenSSL to probe server conguration:

• Chapter 11, OpenSSL, describes the most frequently used OpenSSL functionality, with
a focus on installation, conguration, and key and certicate management. Te last
section in this chapter provides instructions on how to construct and manage a private
certication authority.

• Chapter 12, Testing with OpenSSL, continues with OpenSSL and explains how to use its
command-line tools to test server conguration. Even though it’s oen much easier to
use an automated tool for testing, OpenSSL remains the tool you turn to when you
want to be sure about what’s going on.

• Chapter 13, Conguring Apache, discusses the TLS conguration of the popular
Apache httpd web server. Tis is the rst in a series of chapters that provide practical
advice to match the theory from the earlier chapters. Each chapter is dedicated to one
major technology segment.
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• Chapter 14, Conguring Java and Tomcat, covers Java (versions 7 and 8) and the Tom-
cat web server. In addition to conguration information, this chapter includes advice
about securing web applications.

• Chapter 15, Conguring Microso Windows and IIS, discusses the deployment of TLS
on the Microso Windows platform and the Internet Information Server. Tis chapter
also gives advice about the use of TLS in web applications running under ASP.NET.

• Chapter 16, Conguring Nginx, discusses the Nginx web server, covering the features of
the recent stable versions as well as some glimpses into the improvements in the devel-
opment branch.

SSL versus TLS
It is unfortunate that we have two names for essentially the same protocol. In my experi-
ence, most people are familiar with the name SSL and use it in the context of transport layer
encryption. Some people, usually those who spend more time with the protocols, use or try
to make themselves use the correct name, whichever is right in the given context. It’s proba-
bly a lost cause. Despite that, I tried to do the same. It was a bit cumbersome at times, but I
think I managed it by (1) avoiding either name where possible, (2) mentioning both where
advice applies to all versions, and (3) using TLS in all other cases. You probably won’t no-
tice, and that’s ne.

SSL Labs
SSL Labs (www.ssllabs.com) is a research project I started in 2009 to focus on the practical
aspects of SSL/TLS and PKI. I joined Qualys in 2010, taking the project with me. Initially,
my main duties were elsewhere, but, as of 2014, SSL Labs has my full attention.
Te project largely came out of my realization that the lack of good documentation and
tools is a large part of why TLS servers are generally badly congured. (Poor default settings
being the other major reason.) Without visibility—I thought—we can’t begin to work to
solve the problem. Over the years, SSL Labs expanded into four key projects:

Server test
Te main feature of SSL Labs is the server test, which enables site visitors to check the
conguration of any public web server. Te test includes dozens of important checks
not available elsewhere and gives a comprehensive view of server conguration. Te
grading system is easy to understand and helps those who are not security experts
dierentiate between small and big issues. One of the most useful parts of the test is
the handshake simulator, which predicts negotiated protocols and cipher suites with
about 40 of the most widely used programs and devices. Tis feature eectively takes
the guesswork out of TLS conguration. In my opinion, it’s indispensable.
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Client test
As a fairly recent addition, the client test is not as well known, but it’s nevertheless
very useful. Its primary purpose is to help us understand client capabilities across a
large number of devices. Te results obtained in the tests are used to power the hand-
shake simulator in the server test.

Best practices
SSL/TLS Deployment Best Practices is a concise and reasonably comprehensive guide
that gives denitive advice on TLS server conguration. It’s a short document (about
14 pages) that can be absorbed in a small amount of time and used as a server test
companion.

SSL Pulse
Finally, SSL Pulse is designed to monitor the entire ecosystem and keep us informed
about how we’re doing as a whole. It started in 2012 by focusing on a core group of
TLS-enabled sites selected from Alexa’s top 1 million web sites. Since then, SSL Pulse
has been providing a monthly snapshot of key ecosystem statistics.

Tere are also several other smaller projects; you can nd out more about them on the SSL
Labs web site.

Online Resources
Tis book doesn’t have an online companion (although you can think of SSL Labs as one),
but it does have an online le repository that contains the les referenced in the text. Te
repository is available at github.com/ivanr/bulletproof-tls. In time, I hope to expand this
repository to include other useful content that will complement the book.
To be notied of events and news as they happen, follow @ivanristic on Twitter. TLS is all I
do these days, and I try to highlight everything that’s relevant. Tere’s hardly any noise. In
addition, my Twitter account is where I will mention improvements to the book as they
happen.
My blog is available at blog.ivanristic.com. Tis is where I’ll react to important ecosystem
news and discoveries, announce SSL Labs improvements, and publish my research.
If you bought this book in digital form, then you can always log back into your account on
the Feisty Duck web site and download the most recent release. A purchase includes unlim-
ited access to the updates of the same edition. Unless you modied your email subscription
settings, you’ll get an email about book updates whenever there’s something suciently in-
teresting, but I generally try to keep the numbers of emails to a minimum (and never use
the list for any other purpose).
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Feedback
I am fortunate that I can update this book whenever I want to. It’s not a coincidence; I made
it that way. If I make a change today, it will be available to you tomorrow, aer an automated
daily build takes place. It’s a tad more dicult to update paper books, but, with print on
demand, we’re able to publish a revision every quarter or so.
Tereore, unlike with many other books that might never see a new edition, your feedback
matters. If you nd an error, it will be xed in a few days. Te same is true for minor im-
provements, such as language changes or clarications. If one of the platforms changes in
some way or there’s a new development, I can cover it. My aim with this book is to keep it
up-to-date for as long as there’s interest in it.
Please write to me at ivanr@webkreator.com.

About the Author
In this section, I get to write about myself in third person; this is my “ocial” biography:

Ivan Ristić is a security researcher, engineer, and author, known especially for
his contributions to the web application rewall eld and development of
ModSecurity, an open source web application rewall, and for his SSL/TLS
and PKI research, tools, and guides published on the SSL Labs web site.
He is the author of two books, Apache Security and ModSecurity Handbook,
which he publishes via Feisty Duck, his own platform for continuous writing
and publishing. Ivan is an active participant in the security community, and
you’ll oen nd him speaking at security conferences such as Black Hat, RSA,
OWASP AppSec, and others. He’s currently Director of Application Security
Research at Qualys.

I should probably also mention OpenSSL Cookbook, which is a free ebook that combines
chapters 11 and 12 from this book and SSL/TLS Deployment Best Practices in one package.
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1 SSL, TLS, and Cryptography
We live in an increasingly connected world. During the last decade of the 20th century the
Internet rose to popularity and forever changed how we live our lives. Today we rely on our
phones and computers to communicate, buy goods, pay bills, travel, work, and so on. Many
of us, with always-on devices in our pockets, don’t connect to the Internet, we are the Inter-
net. Tere are already more phones than people. Te number of smart phones is measured
in billions and increases at a fast pace. In the meantime, plans are under way to connect all
sorts of devices to the same network. Clearly, we’re just getting started.
All the devices connected to the Internet have one thing in common—they rely on the pro-
tocols called SSL (Secure Socket Layer) and TLS (Transport Layer Security) to protect the in-
formation in transit.

Transport Layer Security 
When the Internet was originally designed, little thought was given to security. As a result,
the core communication protocols are inherently insecure and rely on the honest behavior
of all involved parties. Tat might have worked back in the day, when the Internet consisted
of a small number of nodes—mostly universities—but falls apart completely today when ev-
eryone is online.
SSL and TLS are cryptographic protocols designed to provide secure communication over
insecure infrastructure. What this means is that, if these protocols are properly deployed,
you can open a communication channel to an arbitrary service on the Internet, be reason-
ably sure that you’re talking to the correct server, and exchange information safe in knowing
that your data won’t fall into someone else’s hands and that it will be received intact. Tese
protocols protect the communication link or transport layer, which is where the name TLS
comes from.
Security is not the only goal of TLS. It actually has four main goals, listed here in the order
of priority:
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Cryptographic security
Tis is the main issue: enable secure communication between any two parties who
wish to exchange information.

Interoperability
Independent programmers should be able to develop programs and libraries that are
able to communicate with one another using common cryptographic parameters.

Extensibility
As you will soon see, TLS is eectively a framework for the development and deploy-
ment of cryptographic protocols. Its important goal is to be independent of the actual
cryptographic primitives (e.g., ciphers and hashing functions) used, allowing migra-
tion from one primitive to another without needing to create new protocols.

Eciency
Te nal goal is to achieve all of the previous goals at an acceptable performance cost,
reducing costly cryptographic operations down to the minimum and providing a ses-
sion caching scheme to avoid them on subsequent connections.

Networking Layers
At its core, the Internet is built on top of IP and TCP protocols, which are used to package
data into small packets for transport. As these packets travel thousands of miles across the
world, they cross many computer systems (called hops) in many countries. Because the core
protocols don’t provide any security by themselves, anyone with access to the communica-
tion links can gain full access to the data as well as change the trac without detection.
IP and TCP aren’t the only vulnerable protocols. Tere’s a range of other protocols that are
used for routing—helping computers nd other computers on the network. DNS and BGP
are two such protocols. Tey, too, are insecure and can be hijacked in a variety of ways. If
that happens, a connection intended for one computer might be answered by the attacker
instead.
When encryption is deployed, the attacker might be able to gain access to the encrypted da-
ta, but she wouldn’t be able to decrypt it or modify it. To prevent impersonation attacks, SSL
and TLS rely on another important technology called PKI (public-key infrastructure), which
ensures that the trac is sent to the correct recipient.
To understand where SSL and TLS t, we’re going to take a look at the Open Systems Inter-
connection (OSI) model, which is a conceptional model that can be used to discuss network
communication. In short, all functionality is mapped into seven layers. Te bottom layer is
the closest to the physical communication link; subsequent layers build on top of one anoth-
er and provide higher levels of abstraction. At the top is the application layer, which carries
application data.
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Note
It’s not always possible to neatly organize real-life protocols into the OSI model. For
example, SPDY and HTTP/2 could go into the session layer because they deal with
connection management, but they operate aer encryption. Layers from ve on-
wards are oen fuzzy.

Table 1.1. OSI model layers

# OSI Layer Description Example protocols

7 Application Application data HTTP, SMTP, IMAP

6 Presentation Data representation, conversion, encryption SSL/TLS

5 Session Management of multiple connections -

4 Transport Reliable delivery of packets and streams TCP, UDP

3 Network Routing and delivery of datagrams between network nodes IP, IPSec

2 Data link Reliable local data connection (LAN) Ethernet

1 Physical Direct physical data connection (cables) CAT5

Arranging communication in this way provides clean separation of concerns; protocols
don’t need to worry about the functionality implemented by lower layers. Further, protocols
at dierent layers can be added and removed; a protocol at a lower layer can be used for
many protocols from higher levels.
SSL and TLS are a great example of how this principle works in practice. Tey sit above TCP
but below higher-level protocols such as HTTP. When encryption is not necessary, we can
remove TLS from our model, but that doesn’t aect the higher-level protocols, which con-
tinue to work directly with TCP. When you do want encryption, you can use it to encrypt
HTTP, but also any other TCP protocol, for example SMTP, IMAP and so on.

Protocol History
SSL protocol was developed at Netscape, back when Netscape Navigator ruled the Internet.1
Te rst version of the protocol never saw the light of day, but the next—version 2—was
released in November 1994. Te rst deployment was in Netscape Navigator 1.1, which was
released in March 1995.
Developed with little to no consultation with security experts outside Netscape, SSL 2 ended
up being a poor protocol with serious weaknesses. Tis forced Netscape to work on SSL 3,
which was released in late 1995. Despite sharing the name with earlier protocol versions,
SSL 3 was a brand new protocol design that established the design we know today.

1 For a much more detailed history of the early years of the SSL protocol, I recommend Eric Rescorla’s book SSL and TLS: Designing and Building

Secure Systems (Addison-Wesley, 2001), pages 47–51.
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In May 1996, the TLS working group was formed to migrate SSL from Netscape to IETF.2
Te process was painfully slow because of the political ghts between Microso and
Netscape, a consequence of the larger ght to dominate the Web. TLS 1.0 was nally re-
leased in January 1999, as RFC 2246. Although the dierences from SSL 3 were not big, the
name was changed to please Microso.3

Te next version, TLS 1.1, wasn’t released until April 2006 and contained essentially only
security xes. However, a major change to the protocol was incorporation of TLS extensions,
which were released a couple of years earlier, in June 2003.
TLS 1.2 was released in August 2008. It added support for authenticated encryption and
generally removed all hard-coded security primitives from the specication, making the
protocol fully exible.
Te next protocol version, which is currently in development, is shaping to be a major revi-
sion aimed at simplifying the design, removing many of the weaker and less desirable fea-
tures, and improving performance. You can follow the discussions on the TLS working
group mailing list.4

Cryptography
Cryptography is the science and art of secure communication. Although we associate en-
cryption with the modern age, we’ve actually been using cryptography for thousands of
years. Te rst mention of a scytale, an encryption tool, dates to the seventh century BC.5
Cryptography as we know it today was largely born in the twentieth century and for mili-
tary use. Now it’s part of our everyday lives.
When cryptography is correctly deployed, it addresses the three core requirements of secu-
rity: keeping secrets (condentiality), verifying identities (authenticity), and ensuring safe
transport (integrity).
In the rest of this chapter, I will discuss the basic building blocks of cryptography, with the
goal of showing where additional security comes from. I will also discuss how cryptography
is commonly attacked. Cryptography is a very diverse eld and has a strong basis in mathe-
matics, but I will keep my overview at a high level, with the aim of giving you a foundation
that will enable you to follow the discussion in the rest of the text. Elsewhere in the book,
where the topic demands, I will discuss some parts of cryptography in more detail.

2 TLS Working Group (IETF, retrieved 23 June 2014)
3 Security Standards and Name Changes in the Browser Wars (Tim Dierks, 23 May 2014)
4 TLS working group mailing list archives (IETF, retrieved 19 July 2014)
5 Scytale (Wikipedia, retrieved 5 June 2014)
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Note
If you want to spend more time learning about cryptography, there’s plenty of good
literature available. My favorite book on this topic is Understanding Cryptography,
written by Christof Paar and Jan Pelzl and published by Springer in 2010.

Building Blocks
At the lowest level, cryptography relies on various cryptographic primitives. Each primitive is
designed with a particular useful functionality in mind. For example, we might use one
primitive for encryption and another for integrity checking. Te primitives alone are not
very useful, but we can combine them into schemes and protocols to provide robust security.

Who Are Alice and Bob?
Alice and Bob are names commonly used for convenience when discussing cryptography.6
Tey make the otherwise oen dry subject matter more interesting. Ron Rivest is credited for
the rst use of these names in the 1977 paper that introduced the RSA cryptosystem.7 Since
then, a number of other names have entered cryptographic literature. In this chapter, I use the
name Eve for an attacker with an eavesdropping ability and Mallory for an active attacker who
can interfere with network trac.

Symmetric Encryption
Symmetric encryption (or private-key cryptography) is a method for obfuscation that enables
secure transport of data over insecure communication channels. To communicate securely,
Alice and Bob rst agree on the encryption algorithm and a secret key. Later on, when Alice
wants to send some data to Bob, she uses the secret key to encrypt the data. Bob uses the
same key to decrypt it. Eve, who has access to the communication channel and can see the
encrypted data, doesn’t have the key and thus can’t access the original data. Alice and Bob
can continue to communicate securely for as long as they keep the secret key safe.

6 Alice and Bob (Wikipedia, retrieved 5 June 2014)
7 Security’s inseparable couple (Network World, 2005)
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Figure 1.1. Symmetric encryption

Secret key Secret key

BOB ALICE

DecryptEncrypt

Original 
document

Encrypted
document

Original
document

Note
Tree terms are commonly used when discussing encryption: plaintext is the data
in its original form, cipher is the algorithm used for encryption, and ciphertext is
the data aer encryption.

Symmetric encryption goes back thousands of years. For example, to encrypt with a substi-
tution cipher, you replace each letter in the alphabet with some other letter; to decrypt, you
reverse the process. In this case, there is no key; the security depends on keeping the
method itself secret. Tat was the case with most early ciphers. Over time, we adopted a
dierent approach, following the observation of a nineteenth-century cryptographer named
Auguste Kerckhos:8

A cryptosystem should be secure even if the attacker knows everything about
the system, except the secret key.

Although it might seem strange at rst, Kerckhos’s principle—as it has come to be known
—makes sense if you consider the following:

• For an encryption algorithm to be useful, it must be shared with others. As the number
of people with access to the algorithm increases, the likelihood that the algorithm will
fall into the enemy’s hands increases too.

• A single algorithm without a key is very inconvenient to use in large groups; everyone
can decrypt everyone’s communication.

• It’s very dicult to design good encryption algorithms. Te more exposure and scruti-
ny an algorithm gets, the more secure it can be. Cryptographers recommend a conser-
vative approach when adopting new algorithms; it usually takes years of breaking at-
tempts until a cipher is considered secure.

8 la cryptographie militaire (Fabien Petitcolas, retrieved 1 June 2014)
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A good encryption algorithm is one that produces seemingly random ciphertext, which
can’t be analyzed by the attacker to reveal any information about plaintext. For example, the
substitution cipher is not a good algorithm, because the attacker could determine the fre-
quency of each letter of ciphertext and compare it with the frequency of the letters in the
English language. Because some letters appear more oen than others, the attacker could
use his observations to recover the plaintext. If a cipher is good, the only option for the at-
tacker should be to try all possible decryption keys, otherwise known as an exhaustive key
search.
At this point, the security of ciphertext depends entirely on the key. If the key is selected
from a large keyspace and breaking the encryption requires iterating through a prohibitively
large number of possible keys, then we say that a cipher is computationally secure.

Note
Te common way to measure encryption strength is via key length; the assumption
is that keys are essentially random, which means that the keyspace is dened by the
number of bits in a key. As an example, a 128-bit key (which is considered very se-
cure) is one of 340 billion billion billlion billion possible combinations.

Ciphers can be divided into two groups: stream and block ciphers.

Stream Ciphers

Conceptually, stream ciphers operate in a way that matches how we tend to imagine encryp-
tion. You feed one byte of plaintext to the encryption algorithm, and out comes one byte of
ciphertext. Te reverse happens at the other end. Te process is repeated for as long as there
is data to process.
At its core, a stream cipher produces an innite stream of seemingly random data called a
keystream. To perform encryption, one byte of keystream is combined with one byte of
plaintext using the XOR logical operation. Because XOR is reversible, to decrypt you per-
form XOR of ciphertext with the same keystream byte. Tis process is illustrated in Fig-
ure 1.2, “RC4 encryption”.
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Figure 1.2. RC4 encryption
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An encryption process is considered secure if the attacker can’t predict which keystream
bytes are at which positions. For this reason, it is vital that stream ciphers are never used
with the same key more than once. Tis is because, in practice, attackers know or can pre-
dict plaintext at certain locations (think of HTTP requests being encrypted; things such as
request method, protocol version, and header names are the same across many requests).
When you know the plaintext and can observe the corresponding ciphertext, you uncover
parts of the keystream. You can use that information to uncover the same parts of future
ciphertexts if the same key is used. To work around this problem, stream algorithms are
used with one-time keys derived from long-term keys.
RC4 is the best-known stream cipher.9 It became popular due to its speed and simplicity, but
it’s no longer considered secure. I discuss its weaknesses at some length in the section called
“RC4 Weaknesses”. Other modern and secure stream ciphers are promoted by the ECRYPT
Stream Cipher Project.10

Block Ciphers

Block ciphers encrypt entire blocks of data at a time; modern block ciphers tend to use a
block size of 128 bits (16 bytes). A block cipher is a transformation function: it takes some
input and produces seemingly random output from it. For every possible input combina-
tion, there is exactly one output, as long as the key stays the same. A key property of block
ciphers is that a small variation in input (e.g., a change of one bit anywhere) produces a
large variation in output.
On their own, block ciphers are not very useful because of several limitations. First, you can
only use them to encrypt data lengths equal to the size of the encryption block. To use a
block cipher in practice, you need a scheme to handle data of arbitrary length. Another

9 RC4 (Wikipedia, retrieved 1 June 2014)
10 eSTREAM: the ECRYPT Stream Cipher Project (European Network of Excellence in Cryptology II, retrieved 1 June 2014)
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problem is that block ciphers are deterministic; they always produce the same output for the
same input. Tis property opens up a number of attacks and needs to be dealt with.
In practice, block ciphers are used via encryption schemes called block cipher modes, which
smooth over the limitations and sometimes add authentication to the mix. Block ciphers
can also be used as the basis for other cryptographic primitives, such as hash functions,
message authentication codes, pseudorandom generators, and even stream ciphers.
Te world’s most popular block cipher is AES (short for Advanced Encryption Standard),
which is available in strengths of 128, 192, and 256 bits.11

Padding

One of the challenges with block ciphers is guring out how to handle encryption of data
lengths smaller than the encryption block size. For example, 128-bit AES requires 16 bytes
of input data and produces the same amount as output. Tis is ne if you have all of your
data in 16-byte blocks, but what do you do when you have less than that? One approach is
to append some extra data to the end of your plaintext. Tis extra data is known as padding.
Te padding can’t consist of just any random data. It must follow some format that allows
the receiver to see the padding for what it is and know exactly how many bytes to discard. In
TLS, the last byte of an encryption block contains padding length, which indicates how
many bytes of padding (excluding the padding length byte) there are. All padding bytes are
set to the same value as the padding length byte. Tis approach enables the receiver to check
that the padding is correct.

Figure 1.3. Example of TLS padding
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To discard the padding aer decryption, the receiver examines the last byte in the data
block and removes it. Aer that, he removes the indicated number of bytes while checking
that they all have the same value.

Hash Functions
A hash function is an algorithm that converts input of arbitrary length into xed-size out-
put. Te result of a hash function is oen called simply a hash. Hash functions are common-

11 Advanced Encryption Standard (Wikipedia, retrieved 1 June 2014)
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ly used in programming, but not all hash functions are suitable for use in cryptography.
Cryptographic hash functions are hash functions that have several additional properties:

Preimage resistance
Given a hash, it’s computationally unfeasible to nd or construct a message that pro-
duces it.

Second preimage resistance
Given a message and its hash, it’s computationally unfeasible to nd a dierent mes-
sage with the same hash.

Collision resistance
It’s computationally unfeasible to nd two messages that have the same hash.

Hash functions are most commonly used as a compact way to represent and compare large
amounts of data. For example, rather than compare two les directly (which might be di-
cult, for example, if they are stored in dierent parts of the world), you can compare their
hashes. Hash functions are oen called ngerprints, message digests, or simply digests.
Te most commonly used hash function today is SHA1, which has output of 160 bits. Be-
cause SHA1 is considered weak, upgrading to its stronger variant, SHA256, is recommend-
ed. Unlike with ciphers, the strength of a hash function doesn’t equal the hash length. Be-
cause of the birthday paradox (a well-known problem in probability theory),12 the strength
of a hash function is at most one half of the hash length.

Message Authentication Codes
A hash function could be used to verify data integrity, but only if the hash of the data is
transported separately from the data itself. Otherwise, an attacker could modify both the
message and the hash, easily avoiding detection. A message authentication code (MAC) or a
keyed-hash is a cryptographic function that extends hashing with authentication. Only those
in possession of the hashing key can produce a valid MAC.
MACs are commonly used in combination with encryption. Even though Mallory can’t de-
crypt ciphertext, she can modify it in transit if there is no MAC; encryption provides con-
dentiality but not integrity. If Mallory is smart about how she’s modifying ciphertext, she
could trick Bob into accepting a forged message as authentic. When a MAC is sent along
with ciphertext, Bob (who shares the hashing key with Alice) can be sure that the message
has not been tampered with.
Any hash function can be used as the basis for a MAC using a construction known as
HMAC (short for hash-based message authentication code).13 In essence, HMAC works by
interleaving the hashing key with the message in a secure way.

12 Birthday problem (Wikipedia, retrieved 6 June 2014)
13 RFC 2104: HMAC: Keyed-Hashing for Message Authentication (Krawczyk et al., February 1997)
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Block Cipher Modes
Block cipher modes are cryptographic schemes designed to extend block ciphers to encrypt
data of arbitrary length. All block cipher modes support condentiality, but some combine
it with authentication. Some modes transform block ciphers to produce stream ciphers.
Tere are many output modes, and they are usually referred to by their acronyms: ECB,
CBC, CFB, OFB, CTR, GCM, and so forth. (Don’t worry about what the acronyms stand
for.) I will cover only ECB and CBC here: ECB as an example of how not to design a block
cipher mode and CBC because it’s still the main mode in SSL and TLS. GCM is a relatively
new addition to TLS, available starting with version 1.2; it provides condentiality and in-
tegrity, and it’s currently the best mode available.

Electronic Codebook Mode 

Electronic Codebook (ECB) mode is the simplest possible block cipher mode. It supports on-
ly data lengths that are the exact multiples of the block size; if you have data of dierent
length, then you need to apply padding beforehand. To perform encryption, you split the
data into chunks that match the block size and encrypt each block individually.
Te simplicity of ECB is its downside. Because block ciphers are deterministic (i.e., they al-
ways produce the same result when the input is the same), so is ECB. Tis has serious con-
sequences: (1) patterns in ciphertext will appear that match patterns in plaintext; (2) the at-
tacker can detect when a message is repeated; and (3) an attacker who can observe cipher-
text and submit arbitrary plaintext for encryption (commonly possible with HTTP and in
many other situations) can, given enough attempts, guess the plaintext. Tis is what the
BEAST attack against TLS was about; I discuss it in the section called “BEAST” in Chap-
ter 7.

Cipher Block Chaining Mode 

Cipher Block Chaining (CBC) mode is the next step up from ECB. To address the determin-
istic nature of ECB, CBC introduces the concept of the initialization vector (IV), which
makes output dierent every time, even when input is the same.
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Figure 1.4. CBC mode encryption
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Te process starts by generating a random (and thus unpredictable) IV, which is the same
length as the encryption block size. Before encryption, the rst block of plaintext is com-
bined with the IV using XOR. Tis masks the plaintext and ensures that the ciphertext is
always dierent. For the next encryption block, the ciphertext of the previous block is used
as the IV, and so forth. As a result, all of the individual encryption operations are part of the
same chain, which is where the mode name comes from. Crucially, the IV is transmitted on
the wire to the receiving party, who needs it to perform decryption successfully.

Asymmetric Encryption
Symmetric encryption does a great job at handling large amounts of data at great speeds,
but it leaves a lot to be desired as soon as the number of parties involved increases:

• Members of the same group must share the same key. Te more people join a group,
the more exposed the group becomes to the key compromise.

• For better security, you could use a dierent key for every two people, but this ap-
proach doesn’t scale. Although three people need only three keys, ten people would
need 45 (9 + 8 + . . . + 1) keys. A thousand people would need 499,500 keys!

• Symmetric encryption can’t be used on unattended systems to secure data. Because the
process can be reversed by using the same key, a compromise of such a system leads to
the compromise of all data stored in the system.

Asymmetric encryption (also known as public-key cryptography) is a dierent approach to
encryption that uses two keys instead of one. One of the keys is private; the other is public.
As the names suggest, one of these keys is intended to be private, and the other is intended
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to be shared with everyone. Tere’s a special mathematical relationship between these keys
that enables some useful features. If you encrypt data using someone’s public key, only their
corresponding private key can decrypt it. On the other hand, if data is encrypted with the
private key anyone can use the public key to unlock the message. Te latter operation
doesn’t provide condentiality, but it does function as a digital signature.

Figure 1.5. Asymmetric encryption

Alice’s public key Alice’s private key

BOB ALICE

DecryptEncrypt

Original 
document

Encrypted
document

Original
document

Asymmetric encryption makes secure communication in large groups much easier. Assum-
ing that you can securely share your public key widely (a job for PKI, which I discuss in
Chapter 3, Public-Key Infrastructure), anyone can send you a message that only you can
read. If they also sign that message using their private key, you know exactly whom it is
from.
Despite its interesting properties, public-key cryptography is rather slow and unsuitable for
use with large quantities of data. For this reason, it’s usually deployed for authentication and
negotiation of shared secrets, which are then used for fast symmetric encryption.
RSA (named from the initials of Ron Rivest, Adi Shamir, and Leonard Adleman) is by far
the most popular asymmetric encryption method deployed today.14 Te recommended
strength for RSA today is 2,048 bits, which is equivalent to about 112 symmetric bits. I’ll
discuss the strength of cryptography in more detail later in this chapter.

Digital Signatures
A digital signature is a cryptographic scheme that makes it possible to verify the authenticity
of a digital message or document. Te MAC, which I described earlier, is a type of digital
signature; it can be used to verify authenticity provided that the secret hashing key is se-
curely exchanged ahead of time. Although this type of verication is very useful, it’s limited
because it still relies on a private secret key.

14 RSA (Wikipedia, retrieved 2 June 2014)
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Digital signatures similar to the real-life handwritten ones are possible with the help of pub-
lic-key cryptography; we can exploit its asymmetric nature to devise an algorithm that al-
lows a message signed by a private key to be veried with the corresponding public key.
Te exact approach depends on the selected public-key cryptosystem. For example, RSA can
be used for encryption and decryption. If something is encrypted with a private RSA key,
only the corresponding public key can decrypt it. We can use this property for digital sign-
ing if we combine it with hash functions:

1. Calculate a hash of the document you wish to sign; no matter the size of the input doc-
ument, the output will always be xed, for example, 256 bits for SHA256.

2. Encode the resulting hash and some additional metadata. For example, the receiver
will need to know the hashing algorithm you used before she can process the signa-
ture.

3. Encrypt the encoded hash using the private key; the result will be the signature, which
you can append to the document as proof of authenticity.

To verify the signature, the receiver takes the document and calculates the hash indepen-
dently using the same algorithm. Ten, she uses your public key to decrypt the message and
recover the hash, conrm that the correct algorithms were used, and compare with the de-
crypted hash with the one she calculated. Te strength of this signature scheme depends on
the individual strengths of the encryption, hashing, and encoding components.

Note
Not all digital signature algorithms function in the same way as RSA. In fact, RSA
is an exception, because it can be used for both encryption and digital signing.
Other popular public key algorithms, such as DSA and ECDSA, can’t be used for
encryption and rely on dierent approaches for signing.

Random Number Generation 
In cryptography, all security depends on the quality of random number generation. You’ve
already seen in this chapter that security relies on known encryption algorithms and secret
keys. Tose keys are simply very long random numbers.
Te problem with random numbers is that computers tend to be very predictable. Tey fol-
low instructions to the letter. If you tell them to generate a random number, they probably
won’t do a very good job.15 Tis is because truly random numbers can be obtained only by
observing certain physical processes. In absence of that, computers focus on collecting small

15 Some newer processors have built-in random number generators that are suitable for use in cryptography. There are also specialized external

devices (e.g., in the form of USB sticks) that can be added to feed additional entropy to the operating system.

14 Chapter 1: SSL, TLS, and Cryptography



amounts of entropy. Tis usually means monitoring keystrokes and mouse movement and
the interaction with various peripheral devices, such as hard disks.
Entropy collected in this way is a type of true random number generator (TRNG), but the
approach is not reliable enough to use directly. For example, you might need to generate a
4,096-bit key, but the system might have only a couple of hundreds of bits of entropy avail-
able. If there are no reliable external events to collect enough entropy, the system might stall.
For this reason, in practice we rely on pseudorandom number generators (PRNGs), which
use small amounts of true random data to get them going. Tis process is known as seeding.
From the seed, PRNGs produce unlimited amounts of pseudorandom data on demand.
General-purpose PRNGs are oen used in programming, but they are not appropriate for
cryptography, even if their output is statistically seemingly random. Cryptographic pseudo-
random number generators (CPRNGs) are PRNGs that are also unpredictable. Tis attribute
is crucial for security; an adversary mustn’t be able to reverse-engineer the internal state of a
CPRNG by observing its output.

Protocols
Cryptographic primitives such as encryption and hashing algorithms are seldom useful by
themselves. We combine them into schemes and protocols so that we can satisfy complex se-
curity requirements. To illustrate how we might do that, let’s consider a simplistic crypto-
graphic protocol that allows Alice and Bob to communicate securely. We’ll aim for all three
main requirements: condentiality, integrity, and authentication.
Let’s assume that our protocol allows exchange of an arbitrary number of messages. Because
symmetric encryption is very good at encrypting bulk data, we might select our favorite al-
gorithm to use for this purpose, say, AES. With AES, Alice and Bob can exchange secure
messages, and Mallory won’t be able to recover the contents. But that’s not quite enough,
because Mallory can do other things, for example, modify the messages without being de-
tected. To x this problem, we can calculate a MAC of each message using a hashing key
known only to Alice and Bob. When we send a message, we send along the MAC as well.
Now, Mallory can’t modify the messages any longer. However, she could still drop or replay
arbitrary messages. To deal with this, we extend our protocol to assign a sequence number
to each message; crucially, we make the sequences part of the MAC calculation. If we see a
gap in the sequence numbers, then we know that there’s a message missing. If we see a se-
quence number duplicate, we detect a replay attack. For best results, we should also use a
special message to mark the end of the conversation. Without such a message, Mallory
would be able to end (truncate) the conversation undetected.
With all of these measures in place, the best Mallory can do is prevent Alice and Bob from
talking to one another. Tere’s nothing we can do about that.
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So far, so good, but we’re still missing a big piece: how are Alice and Bob going to negotiate
the two needed keys (one for encryption and the other for integrity validation) in the pres-
ence of Mallory? We can solve this problem by adding two additional steps to the protocol.
First, we use public-key cryptography to authenticate each party at the beginning of the
conversation. For example, Alice could generate a random number and ask Bob to sign it to
prove that it’s really him. Bob could ask Alice to do the same.
With authentication out of the way, we can use a key-exchange scheme to negotiate encryp-
tion keys securely. For example, Alice could generate all the keys and send them to Bob by
encrypting them with his public key; this is how the RSA key exchange works. Alternatively,
we could have also used a protocol known as Die-Hellman (DH) key exchange for this
purpose. Te latter is slower, but it has better security properties.
In the end, we ended up with a protocol that (1) starts with a handshake phase that includes
authentication and key exchange, (2) follows with the data exchange phase with conden-
tiality and integrity, and (3) ends with a shutdown sequence. At a high level, our protocol is
similar to the work done by SSL and TLS.

Attacking Cryptography
Complex systems can usually be attacked in a variety of ways, and cryptography is no ex-
ception. First, you can attack the cryptographic primitives themselves. If a key is small, the
adversary can use brute force to recover it. Such attacks usually require a lot of processing
power as well as time. It’s easier (for the attacker) if the used primitive has known vulnera-
bilities, in which case he can use analytic attacks to achieve the goal faster.
Cryptographic primitives are generally very well understood, because they are relatively
straightforward and do only one thing. Schemes are oen easier to attack because they in-
troduce additional complexity. In some cases, even cryptographers argue about the right
way to perform certain operations. But both are relatively safe compared to protocols,
which tend to introduce far more complexity and have a much larger attack surface.
Ten, there are attacks against protocol implementation; in other words, exploitation of so-
ware bugs. For example, most cryptographic libraries are written in low-level languages
such as C (and even assembly, for performance reasons), which make it very easy to intro-
duce catastrophic programming errors. Even in the absence of bugs, sometimes great skill is
needed to implement the primitives, schemes, and protocols in such a way that they can’t be
abused. For example, naïve implementations of certain algorithms can be exploited in tim-
ing attacks, in which the attacker breaks encryption by observing how long certain opera-
tions take.
It is also common that programmers with little experience in cryptography nevertheless at-
tempt to implement—and even design—cryptographic protocols and schemes, with pre-
dictably insecure results.
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For this reason, it is oen said that cryptography is bypassed, not attacked. What this means
is that the primitives are solid, but the rest of the soware ecosystem isn’t. Further, the keys
are an attractive target: why spend months to brute-force a key when it might be much easi-
er to break into a server to obtain it? Many cryptographic failures can be prevented by fol-
lowing simple rules such as these: (1) use well-established protocols and never design your
own schemes; (2) use high-level libraries and never write code that deals with cryptography
directly; and (3) use well-established primitives with suciently strong key sizes.

Measuring Strength
We measure the strength of cryptography using the number of operations that need to be
performed to break a particular primitive, presented as bits of security. Deploying with
strong key sizes is the easiest thing to get right, and the rules are simple: 128 bits of security
(2128 operations) is sucient for most deployments; use 256 bits if you need very long-term
security or a big safety margin.

Note
Te strength of symmetric cryptographic operations increases exponentially as
more bits are added. Tis means that increasing key size by one bit makes it twice
as strong.

In practice, the situation is somewhat more complicated, because not all operations are
equivalent in terms of security. As a result, dierent bit values are used for symmetric opera-
tions, asymmetric operations, elliptic curve cryptography, and so on. You can use the infor-
mation in Table 1.2, “Security levels and equivalent strength in bits, adapted from ECRYPT2
(2012)” to convert from one size to another.

Table 1.2. Security levels and equivalent strength in bits, adapted from ECRYPT2 (2012)

# Protection Sym-
metric

Asym-
metric

DH Elliptic
Curve

Hash

1 Attacks in real time by individuals 32 - - - -

2 Very short-term protection against small organizations 64 816 816 128 128

3 Short-term protection against medium organizations 72 1,008 1,008 144 144

4 Very short-term protection against agencies 80 1,248 1,248 160 160

5 Short-term protection (10 years) 96 1,776 1,776 192 192

6 Medium-term protection (20 years) 112 2,432 2,432 224 224

7 Long-term protection (30 years) 128 3,248 3,248 256 256

8 Long-term protection and increased defense from quan-
tum computers

256 15,424 15,424 512 512
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Te data, which I adapted from a 2012 report on key and algorithm strength,16 shows rough
mappings from bits of one type to bits of another, but it also denes strength in relation to
attacker capabilities and time. Although we tend to discuss whether an asset is secure (as-
suming now), in reality security is a function of time. Te strength of encryption changes,
because as time goes by computers get faster and cheaper. Security is also a function of re-
sources. A key of a small size might be impossible for an individual to break, but doing so
could be within the reach of an agency. For this reason, when discussing security it’s more
useful to ask questions such as “secure against whom?” and “secure for how long?”

Note
Te strength of cryptography can’t be measured accurately, which is why you will
nd many dierent recommendations. Most of them are very similar, with small
dierences. In my experience, ENISA (the European Union Agency for Network and
Information Security) provides useful high-level documents that oer clear guid-
ance17 at various levels.18 To view and compare other recommendations, visit
keylength.com.19

Although the previous table provides a lot of useful information, you might nd it dicult
to use because the values don’t correspond to commonly used key sizes. In practice, you’ll
nd the following table more useful to convert from one set of bits to another:20

Table 1.3. Encryption strength mapping for commonly used key sizes

Symmetric RSA / DSA / DH Elliptic curve crypto Hash

80 1,024 160 160

112 2,048 224 224

128 3,072 256 256

256 15,360 512 512

Man-in-the-Middle Attack 
Most attacks against transport-layer security come in the form of a man-in-the-middle
(MITM) attack. What this means is that in addition to the two parties involved in a conver-
sation there is a malicious party. If the attacker is just listening in on the conversation, we’re
talking about a passive network attack. If the attacker is actively modifying the trac or in-
uencing the conversation in some other way, we’re talking about an active network attack.

16 ECRYPT2 Yearly Report on Algorithms and Keysizes (European Network of Excellence for Cryptology II, 30 September 2012)
17 Algorithms, Key Sizes and Parameters Report (ENISA, 29 October 2013)
18 Recommended cryptographic measures - Securing personal data (ENISA, 4 November 2013)
19 BlueKrypt: Cryptographic Key Length Recommendation (BlueKrypt, retrieved 4 June 2014)
20 NIST Special Publication 800-57: Recommendation for Key Management – Part 1: General, Revision 3 (NIST, July 2012)
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Figure 1.6. Conceptual SSL/TLS threat model
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Gaining Access
In many cases, attacks require proximity to the victim or the server or access to the commu-
nication infrastructure. Whoever has access to the cables and intermediary communication
nodes (e.g., routers) can see the packets as they travel across the wire and interfere with
them. Access can be obtained by tapping the cables,21 in collaboration with telecoms,22 or
by hacking the equipment.23

Conceptually, the easiest way to execute a MITM attack is by joining a network and rerout-
ing the victims’ trac through a malicious node. Wireless networks without authentication,
which so many people use these days, are particularly vulnerable, because anyone can join.
Other ways to attack include interfering with the routing infrastructure for domain name
resolution, IP address routing, and so on.

ARP spoong
Address Resolution Protocol (ARP) is used on local networks to associate network
MAC addresses24 with IP addresses. An attacker with access to the network can claim
any IP address and eectively reroute trac.

21 The Creepy, Long-Standing Practice of Undersea Cable Tapping (The Atlantic, 16 July 2013)
22 New Details About NSA’s Collaborative Relationships With America’s Biggest Telecom Companies From Snowden Docs (Washington Post, 30

August 2013)
23 Photos of an NSA “upgrade” factory show Cisco router getting implant (Ars Technica, 14 May 2014)
24 In this case, MAC stands for media access control. It’s a unique identier assigned to networking cards during manufacture.
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WPAD hijacking
Web Proxy Auto-Discovery Protocol (WPAD) is used by browsers to automatically re-
trieve HTTP proxy conguration. WPAD uses several methods, including DHCP
and DNS. To attack WPAD, an attacker starts a proxy on the local network and an-
nounces it to the local clients who look for it.

DNS hijacking
By hijacking a domain name with the registrar or changing the DNS conguration,
an attacker can hijack all trac intended for that domain name.

DNS cache poisoning
DNS cache poisoning is a type of attack that exploits weaknesses in caching DNS
servers and enables the attacker to inject invalid domain name information into the
cache. Aer a successful attack, all users of the aected DNS server will be given in-
valid information.

BGP route hijacking
Border Gateway Protocol (BGP) is a routing protocol used by the core internet routers
to discover where exactly IP address blocks are located. If an invalid route is accepted
by one or more routers, all trac for a particular IP address block can be redirected
elsewhere, that is, to the attacker.

Passive Attacks
Passive attacks are most useful against unencrypted trac. During 2013, it became apparent
that government agencies around the world routinely monitor and store large amounts of
internet trac. For example, it is alleged that GCHQ, the British spy agency, records all UK
internet trac and keeps it for three days.25 Your email messages, photos, internet chats,
and other data could be sitting in a database somewhere, waiting to be cross-referenced and
correlated for whatever purpose. If bulk trac is handled like this, it’s reasonable to expect
that specic trac is stored for much longer and perhaps indenitely. In response to this
and similar discoveries, the IETF declared that “pervasive monitoring is an attack” and
should be defended against by using encryption whenever possible.26

Even against encrypted trac, passive attacks can be useful as an element in the overall
strategy. For example, you could store captured encrypted trac until such a time when you
can break the encryption. Just because some things are dicult to do today doesn’t mean
that they’ll be dicult ten years from now, as computers get more powerful and cheaper and
as weaknesses in cryptographic primitives are discovered.
To make things worse, computer systems oen contain a critical conguration weakness
that allows for retroactive decryption of recorded trac. Te most common key-exchange

25 GCHQ taps bre-optic cables for secret access to world’s communications (The Guardian, 21 June 2013)
26 RFC 7258: Pervasive Monitoring Is an Attack (S. Farrell and H. Tschofenig, May 2014)
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mechanism in TLS is based on the RSA algorithm; on the systems that use this approach,
the RSA key used for the key exchange can also be used to decrypt all previous conversa-
tions. Other key-exchange mechanisms don’t suer from this problem and are said to sup-
port forward secrecy. Unfortunately, most stay with the RSA algorithm. For example,
Lavabit, the encrypted email service famously used by Edward Snowden, didn’t support for-
ward secrecy. Using a court order, the FBI compelled Lavabit to disclose their encryption
key.27 With the key in their possession, the FBI could decrypt any recorded trac (if they
had any, of course).
Passive attacks work very well, because there is still so much unencrypted trac and be-
cause when collecting in bulk the process can be fully automated. As an illustration, in July
2014 only 58% of email arriving to Gmail was encrypted.28

Active Attacks
When someone talks about MITM attacks, they most commonly refer to active network at-
tacks in which Mallory interferes with the trac in some way. Traditionally, MITM attacks
target authentication to trick Alice into thinking she’s talking to Bob. If the attack is success-
ful, Mallory receives messages from Alice and forwards them to Bob. Te messages are en-
crypted when Alice sends them, but that’s not a problem, because she’s sending them to
Mallory, who can decrypt them using the keys she negotiated with Alice.
When it comes to TLS, the ideal case for Mallory is when she can present a certicate that
Alice will accept as valid. In that case, the attack is seamless and almost impossible to de-
tect.29 A valid certicate could be obtained by playing the public key infrastructure ecosys-
tem. Tere have been many such attacks over the years; in Chapter 4, Attacks against PKI I
document the ones that are publicly known. A certicate that seems valid could be con-
structed if there are bugs in the validation code that could be exploited. Historically, this is
an area in which bugs are common. I discuss several examples in Chapter 6, Implementation
Issues. Finally, if everything else fails, Mallory could present an invalid certicate and hope
that Alice overrides the certicate warning. Tis happened in Syria a couple of years ago.30

Te rise of browsers as a powerful application-delivery platform created additional attack
vectors that can be exploited in active network attacks. In this case, authentication is not
attacked, but the victims’ browsers are instrumented by the attacker to submit specially
craed requests that are used to subvert encryption. Tese attack vectors have been exploit-
ed in recent years to attack TLS in novel ways; you can nd more information about them
in Chapter 7, Protocol Attacks.

27 Lavabit (Wikipedia, retrieved 4 June 2014)
28 Transparency Report: Email encryption in transit (Google Gmail, retrieved 27 July 2014)
29 Unless you’re very, very paranoid, and keep track of all the certicates previously encountered. There are some browser add-ons that do this

(e.g., Certicate Patrol for Firefox).
30 A Syrian Man-In-The-Middle Attack against Facebook (The Electronic Frontier Foundation, 5 May 2011)
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Active attacks can be very powerful, but they’re more dicult to scale. Whereas passive at-
tacks only need to make copies of observed packets (which is a simple operation), active
attacks require much more processing and eort to track individual connections. As a re-
sult, they require much more soware and hardware. Rerouting large amounts of trac is
dicult to do without being noticed. Similarly, fraudulent certicates are dicult to use
successfully for large-scale attacks because there are so many individuals and organizations
who are keeping track of certicates used by various web sites. Te approach with the best
chance of success is exploitation of implementation bugs that can be used to bypass authen-
tication, but such bugs, devastating as they are, are relatively rare.
For these reasons, active attacks are most likely to be used against individual, high-value tar-
gets. Such attacks can’t be automated, which means that they require extra work, cost a lot,
and are thus more dicult to justify.
Tere are some indications that the NSA deployed extensive infrastructure that enables
them to attack almost arbitrary computers on the Internet, under the program called Quan-
tumInsert.31

Tis program, which is a variation on the MITM theme, doesn’t appear to target encryption;
instead, it’s used to deliver browser exploits against selected individuals. By placing special
packet-injection nodes at important points in the communication infrastructure, the NSA is
able to respond to connection requests faster than the real servers and redirect some trac
to the exploitation servers instead.

31 Attacking Tor: How the NSA Targets Users’ Online Anonymity (Bruce Schneier, 4 October 2013)
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2 Protocol
TLS is a cryptographic protocol designed to secure a conversation that consists of an arbi-
trary number of messages between two parties. In this chapter, I discuss the most recent
protocol version—TLS 1.2—with a brief mention of earlier protocol versions where appro-
priate.
My goal is to give you a high-level overview that will enable you to understand what’s going
on without being distracted by implementation details. Wherever possible, I use message
content examples, rather than denitions, which can sometimes be dry. Te denitions use
the syntax that’s essentially the same as in the TLS specication, albeit with some minor
simplications. For more information on the syntax and the complete protocol reference,
start with RFC 5246, which is where TLS 1.2 lives.1 However, this document doesn’t tell the
whole story. Tere are also many other relevant RFCs, which I reference throughout this
chapter.
Te best way to learn about TLS is to observe real-life trac. My favorite approach is to use
the network-capture tool Wireshark, which comes with a TLS protocol parser: point your
favorite browser at a secure web site, tell Wireshark to monitor the connection (it’s best to
restrict the capture to just one hostname and port 443), and observe the protocol messages.
Aer you’re reasonably happy with your understanding of TLS (don’t try too hard to learn it
all; it’s very hard to understand every feature, because there are so many of them), you’ll be
free to roam the various RFCs and even lurk on the key mailing lists. My two favorite places
are the TLS working group document page,2 where you can nd the list of key documents
and new proposals, and the TLS working group mailing list,3 where you can follow the dis-
cussions about the future direction of TLS.

1 RFC 5246: The Transport Layer Security Protocol Version 1.2 (T. Dierks and E. Rescorla, August 2008)
2 TLS working group documents (IETF, retrieved 19 July 2014)
3 TLS working group mailing list archives (IETF, retrieved 19 July 2014)

23



Record Protocol 
At a high level, TLS is implemented via the record protocol, which is in charge of transport-
ing—and optionally encrypting—all lower-level messages exchanged over a connection.
Each TLS record starts with a short header, which contains information about the record
content type (or subprotocol), protocol version, and length. Message data follows the head-
er.

Figure 2.1. TLS record

Header Data

VersionType Length

TLS Record

More formally, the TLS record elds are dened as follows:

struct {
    uint8 major;
    uint8 minor;
} ProtocolVersion;

enum {
    change_cipher_spec (20),
    alert (21),
    handshake (22),
    application_data (23)
} ContentType;

struct {
    ContentType type;
    ProtocolVersion version;
    uint16 length; /* Maximum length is 2^14 (16,384) bytes. */
    opaque fragment[TLSPlaintext.length];
} TLSPlaintext;

In addition to the visible elds, each TLS record is also assigned a unique 64-bit sequence
number, which is not sent over the wire. Each side has its own sequence number and keeps
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track of the number of records sent by the other side. Tese values are used as part of the
defense against replay attacks. You’ll see how that works later on.
Te record protocol is a useful protocol abstraction that takes care of several important,
high-level aspects of the communication.

Message transport
Te record protocol transports opaque data buers submitted to it by other protocol
layers. If a buer is longer than the record length limit (16,384 bytes), the record pro-
tocol fragments it into smaller chunks. Te opposite is also possible; smaller buers
belonging to the same subprotocol can be combined in a single record.

Encryption and integrity validation
Initially, on a brand new connection, messages are transported without any protec-
tion. (Technically, the TLS_NULL_WITH_NULL_NULL cipher suite is used.) Tis is neces-
sary so that the rst negotiation can take place. However, once the handshake is com-
plete, the record layer starts to apply encryption and integrity validation according to
the negotiated connection parameters.4

Compression
Transparent compression of data prior to encryption sounds nice in theory, but it was
never very common in practice, mainly because everyone was already compressing
their outbound trac at the HTTP level. Tis feature suered a fatal blow in 2012,
when the CRIME attack exposed it as insecure.5 It’s now no longer used.

Extensibility
Te record protocol takes care of data transport and encryption, but delegates all oth-
er features to subprotocols. Tis approach makes TLS extensible, because new sub-
protocols can be added easily. With encryption handled by the record protocol, all
subprotocols are automatically protected using the negotiated connection parame-
ters.

Te main TLS specication denes four core subprotocols: handshake protocol, change ci-
pher spec protocol, application data protocol, and alert protocol.

Handshake Protocol 
Te handshake is the most elaborate part of the TLS protocol, during which the sides nego-
tiate connection parameters and perform authentication. Tis phase usually requires six to
ten messages, depending on which features are used. Tere can be many variations in the

4 In most cases, this means that further trac is encrypted and its integrity validated. But there’s a small number of suites that don’t use

encryption; they use integrity validation only.
5 I discuss the CRIME attack and various other compression-related weaknesses in the section called “Compression Side Channel Attacks ” in

Chapter 7.

Handshake Protocol 25



exchange, depending on the conguration and supported protocol extensions. In practice,
we see three common ows: (1) full handshake with server authentication, (2) abbreviated
handshake that resumes an earlier session, and (3) handshake with client and server authen-
tication.
Handshake protocol messages start with a header that carries the message type (one byte)
and length (three bytes). Te remainder of the message depends on the message type:

struct {
    HandshakeType msg_type;
    uint24 length;
    HandshakeMessage message;
} Handshake;

Full Handshake
Every TLS connection begins with a handshake. If the client hasn’t previously established a
session with the server, the two sides will execute a full handshake in order to negotiate a
TLS session. During this handshake, the client and the server will perform four main activi-
ties:

1. Exchange capabilities and agree on desired connection parameters.
2. Validate the presented certicate(s) or authenticate using other means.
3. Agree on a shared master secret that will be used to protect the session.
4. Verify that the handshake messages haven’t been modied by a third party.

Note
In practice, steps 2 and 3 are part of a single step called key exchange (or, more gen-
erally, key establishment). I prefer to keep them separate in order to emphasize that
the security of the protocol depends on correct authentication, which eectively
sits outside TLS. Without authentication, an active network attacker can interject
herself into the conversation and pose as the other side.

In this section, I discuss the most commonly seen TLS handshake, one between a client
that’s not authenticated and a server that is. Te subsequent sections handle alternative pro-
tocol ows: client authentication and session resumption.
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Figure 2.2. Full handshake with server authentication
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1. Client begins a new handshake and submits its capabilities to the server.

2. Server selects connection parameters.

3. Server sends its certicate chain (only if server authentication is required).

4. Depending on the selected key exchange, the server sends additional information
required to generate the master secret.

5. Server indicates completion of its side of the negotiation.

6. Client sends additional information required to generate the master secret.

7. Client switches to encryption and informs the server.

8. Client sends a MAC of the handshake messages it sent and received.

9. Server switches to encryption and informs the client.

10. Server sends a MAC of the handshake messages it received and sent.
At this point—assuming there were no errors—the connection is established and the parties
can begin to send application data. Now let’s look at the handshake messages in more detail.
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ClientHello
Te ClientHello message is always the rst message sent in a new handshake. It’s used to
communicate client capabilities and preferences to the server. Clients send this message at
the beginning of a new connection, when they wish to renegotiate, or in response to a serv-
er’s renegotiation request (indicated by a HelloRequest message).
In the following example, you can see what a ClientHello message could look like. I re-
duced the amount of information presented for the sake of brevity, but all of the key ele-
ments are included.

Handshake protocol: ClientHello
    Version: TLS 1.2
    Random
        Client time: May 22, 2030 02:43:46 GMT
        Random bytes: b76b0e61829557eb4c611adfd2d36eb232dc1332fe29802e321ee871
    Session ID: (empty)
    Cipher Suites        
        Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
        Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
        Suite: TLS_RSA_WITH_AES_128_GCM_SHA256        
        Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
        Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA
        Suite: TLS_RSA_WITH_AES_128_CBC_SHA
        Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA
        Suite: TLS_RSA_WITH_RC4_128_SHA
    Compression methods
        Method: null
    Extensions
        Extension: server_name
            Hostname: www.feistyduck.com
        Extension: renegotiation_info
        Extension: elliptic_curves
            Named curve: secp256r1
            Named curve: secp384r1
        Extension: signature_algorithms
            Algorithm: sha1/rsa
            Algorithm: sha256/rsa
            Algorithm: sha1/ecdsa
            Algorithm: sha256/ecdsa

As you can see, the structure of this message is easy to understand, with most data elds
easy to understand from the names alone.

Protocol version
Protocol version indicates the best protocol version the client supports.
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Random
Te random eld contains 32 bytes of data. Of those, 28 bytes are randomly generat-
ed. Te remaining four bytes carry additional information inuenced by the client’s
clock. Client time is not actually relevant for the protocol, and the specication is
clear on this (“Clocks are not required to be set correctly by the basic TLS protocol,
higher-level or application protocols may dene additional requirements.”); the eld
was included as a defense against weak random number generators, aer just such a
critical failure was discovered in Netscape Navigator in 1994.6 Although this eld
used to contain the actual time, there are fears that client time could be used for
large-scale browser ngerprinting.7 As a result, some browsers add random clock
skew to their time (as you can see in the example) or simply send four random bytes
instead.
Both client and server contribute random data during the handshake. Te random-
ness makes each handshake unique and plays a key role in authentication by prevent-
ing replay attacks and verifying the integrity of the initial data exchange.

Session ID
On the rst connection, the session ID eld is empty, indicating that the client
doesn’t wish to resume an existing session. On subsequent connections, the ID eld
can contain the session’s unique identier, enabling the server to locate the correct
session state in its cache. Te session ID typically contains 32 bytes of randomly gen-
erated data and isn’t valuable in itself.

Cipher suites
Te cipher suite block is a list of all cipher suites supported by the client in order of
preference.

Compression
Clients can submit one or more supported compression methods. Te default com-
pression method null indicates no compression.

Extensions
Te extension block contains an arbitrary number of extensions that carry additional
data. I discuss the most commonly seen extensions later in this chapter.

ServerHello
Te purpose of the ServerHello message is for the server to communicate the selected con-
nection parameters back to the client. Tis message is similar in structure to ClientHello
but contains only one option per eld:

6 For more information about this problem, refer to the section called “Netscape Navigator (1994)” in Chapter 6.
7 Deprecating gmt_unix_time in TLS (N. Mathewson and B. Laurie, December 2013)
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Handshake protocol: ServerHello
    Version: TLS 1.2
    Random
        Server time: Mar 10, 2059 02:35:57 GMT
        Random bytes: 8469b09b480c1978182ce1b59290487609f41132312ca22aacaf5012
    Session ID: 4cae75c91cf5adf55f93c9fb5dd36d19903b1182029af3d527b7a42ef1c32c80
    Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
    Compression method: null
    Extensions
        Extension: server_name
        Extension: renegotiation_info

Te server isn’t required to support the same best version supported by the client. If it
doesn’t, it oers some other protocol version in the hope that the client will accept it.

Certifcate
Te Certificate message is typically used to carry the server’s X.509 certicate chain. Cer-
ticates are provided one aer another, in ASN.1 DER encoding. Te main certicate must
be sent rst, with all of the intermediary certicates following in the correct order. Te root
can and should be omitted, because it serves no purpose in this context.
Te server must ensure that it sends a certicate appropriate for the selected cipher suite.
For example, the public key algorithm must match that used in the suite. In addition, some
key exchange mechanisms depend upon certain data being embedded in the certicate, and
the certicates must be signed with algorithms supported by the client. All of this implies
that the server could be congured with multiple certicates (each with a potentially dier-
ent chain).
Tis Certificate message is optional, because not all suites use authentication and because
there are some authentication methods that don’t require certicates. Furthermore, al-
though the default is to use X.509 certicates other forms of identication can be carried in
this message; some suites rely on PGP keys.8

ServerKeyExchange
Te purpose of the ServerKeyExchange message is to carry additional data needed for key
exchange. Its contents vary and depend on the negotiated cipher suite. In some cases, the
server is not required to send anything, which means that the ServerKeyExchange message is
not sent at all.

8 RFC 5081: Using OpenPGP Keys for TLS Authentication (N. Mavrogiannopoulos, November 2007)
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ServerHelloDone
ServerHelloDone is a signal that the server has sent all intended handshake messages. Aer
this, the server waits for further messages from the client.

ClientKeyExchange
Te ClientKeyExchange message carries the client’s contribution to the key exchange. It’s a
mandatory message whose contents depend on the negotiated cipher suite.

ChangeCipherSpec 
Te ChangeCipherSpec message is a signal that the sending side obtained enough informa-
tion to manufacture the connection parameters, generated the encryption keys, and is
switching to encryption. Client and server both send this message when the time is right.

Note
ChangeCipherSpec is not a handshake message. Rather, it’s implemented as the only
message in its own subprotocol. One consequence of this decision is that this mes-
sage is not part of the handshake integrity validation mechanism. Tis makes TLS
more dicult to implement correctly; in June 2014 OpenSSL disclosed that it had
been incorrectly handling ChangeCipherSpec messages, leaving it open to active
network attacks.9

Te same problem exists with all other subprotocols. An active network attacker
can send unauthenticated alert messages during the rst handshake and, by ex-
ploiting the buering mechanism, even subvert genuine alerts sent aer encryption
commences.10 To avoid more serious problems, application data protocol messages
aren’t allowed before the rst handshake is complete.

Finished
Te Finished message is the signal that the handshake is complete. Its contents are encrypt-
ed, which allows both sides to securely exchange the data required to verify the integrity of
the entire handshake.
Tis message carries the verify_data eld, which is a hash of all handshake messages as
each side saw them mixed in with the newly negotiated master secret. Tis is done via a
pseudorandom function (PRF), which is designed to produce an arbitrary amount of pseu-
dorandom data. I describe the PRF later in this chapter. Te Hash function is the same as in
the PRF unless the negotiated suite species a dierent algorithm. Te calculations are the

9 You’ll nd more information about this faw in the section called “Library and Platform Validation Failures” in Chapter 6.
10 The Alert attack (miTLS, February 2012)
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same in both cases, although each side uses a dierent label: “client nished” for the client
and “server nished” for the server:

verify_data = PRF(master_secret, finished_label, Hash(handshake_messages))

Because the Finished messages are encrypted and their integrity guaranteed by the negoti-
ated MAC algorithm, an active network attacker can’t change the handshake messages and
then forge the correct verify_data values.
Te attacker could also try to nd a set of forged handshake messages that have exactly the
same verify_data values as the genuine messages. Tat’s not an easy attack in itself, but be-
cause the hashes are mixed in with the master secret (which the attacker doesn’t know) she
can’t even attempt that approach.
In TLS 1.2, the Finished message is 12 bytes (96 bits) long by default, but cipher suites are
allowed to use larger sizes. Earlier protocol versions also use a xed length of 12 bytes, ex-
cept for SSL 3, which uses 36 bytes.

Client Authentication
Although authentication of either side is optional, server authentication is almost universal-
ly required. If the server selects a suite that isn’t anonymous, it’s required to follow up with
its certicate chain in the Certificate message.
In contrast, the server requests client authentication by sending a CertificateRequest mes-
sage that lists acceptable client certicates. In response, the client sends the certicate in its
own Certificate message (in the same format used by the server for its certicates) and
then proves possession of the corresponding private key with a CertificateVerify message.
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Figure 2.3. Full handshake, during which both client and server are authenticated
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Only an authenticated server is allowed to request client authentication. For this reason, this
option is known as mutual authentication.

CertifcateRequest
With the CertificateRequest message, the server requests client authentication and com-
municates acceptable certicate public key and signature algorithms to the client. Optional-
ly, it can also send its list of acceptable issuing certication authorities, indicated by using
their distinguished names:

struct {
    ClientCertificateType certificate_types;
    SignatureAndHashAlgorithm supported_signature_algorithms;
    DistinguishedName certificate_authorities;
} CertificateRequest;
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CertifcateVeriy
Te client uses the CertificateVerify message to prove the possession of the private key
corresponding to the public key in the previously sent client certicate. Tis message con-
tains a signature of all the handshake messages exchanged until this point:

struct {
    Signature handshake_messages_signature;
} CertificateVerify;

Session Resumption
Te full handshake is an elaborate protocol that requires many handshake messages and two
network round-trips before the client can start sending application data. In addition, the
cryptographic operations carried out during the handshake oen require intensive CPU
processing. Authentication, usually in the form of client and server certicate validation
(and revocation checking), requires even more eort. Much of this overhead can be avoided
with an abbreviated handshake.
Te original session resumption mechanism is based on both the client and the server keep-
ing session security parameters for a period of time aer a fully negotiated connection is
terminated. A server that wishes to use session resumption assigns it a unique identier
called the session ID. Te server then sends the session ID back to the client in the
ServerHello message. (You can see this in the example in the previous section.)
A client that wishes to resume an earlier session submits the appropriate session ID in its
ClientHello. If the server is willing to resume that session, it returns the same session ID in
the ServerHello, generates a new set of keys using the previously negotiated master secret,
switches to encryption, and sends its Finished message. Te client, when it sees that the ses-
sion is being resumed, does the same. Te result is a short handshake that requires only one
network round-trip.
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Figure 2.4. Abbreviated handshake—used to resume an already established session
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Te alternative to server-side session caching and resumption is to use session tickets, intro-
duced by RFC 4507 in 2006 and subsequently updated by RFC 5077 in 2008. In this case, all
state is kept by the client (the mechanism is similar to HTTP cookies), but the message ow
is otherwise the same.

Key Exchange 
Te key exchange is easily the most interesting part of the handshake. In TLS, the security of
the session depends on a 48-byte shared key called the master secret. Te goal of key ex-
change is to generate another value, the premaster secret, which is the value from which the
master secret is constructed.
TLS supports many key exchange algorithms in order to support various certicate types,
public key algorithms, and key establishment protocols. Some are dened in the main TLS
protocol specication, but many more are dened elsewhere. You can see the most com-
monly used algorithms in the following table.
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Table 2.1. Overview of the most commonly used key exchange algorithms

Key Exchange Description

dh_anon Die-Hellman (DH) key exchange without authentication

dhe_rsa Ephemeral DH key exchange with RSA authentication

ecdh_anon Ephemeral Elliptic Curve DH (ECDH) key exchange without authentication (RFC 4492)

ecdhe_rsa Ephemeral ECDH key exchange with RSA authentication (RFC 4492)

ecdhe_ecdsa Ephemeral ECDH key exchange with ECDSA authentication (RFC 4492)

krb5 Kerberos key exchange (RFC 2712)

rsa RSA key exchange and authentication

psk Pre-Shared Key (PSK) key exchange and authentication (RFC 4279)

dhe_psk Ephemeral DH key exchange with PSK authentication (RFC 4279)

rsa_psk PSK key exchange and RSA authentication (RFC 4279)

srp Secure Remote Password (SRP) key exchange and authentication (RFC 5054)

Which key exchange is used depends on the negotiated suite. Once the suite is known, both
sides know which algorithm to follow. In practice, there are four main key exchange algo-
rithms:

RSA
RSA is eectively the standard key exchange algorithm. It’s universally supported but
suers from one serious problem: its design allows a passive attacker to decrypt all
encrypted data, provided she has access to the server’s private key. Because of this, the
RSA key exchange is being slowly replaced with other algorithms, those that support
forward secrecy. Te RSA key exchange is a key transport algorithm; the client gener-
ates the premaster secret and transports it to the server, encrypted with the server’s
public key.

DHE_RSA
Ephemeral Die-Hellman (DHE) key exchange is a well-established algorithm. It’s
liked because it provides forward secrecy but disliked because it’s slow. DHE is a key
agreement algorithm; the negotiating parties both contribute to the process and agree
on a common key. In TLS, DHE is commonly used with RSA authentication.

ECDHE_RSA and ECDHE_ECDSA
Ephemeral elliptic curve Die-Hellman (ECDHE) key exchange is based on elliptic
curve cryptography, which is relatively new. It’s liked because it’s fast and provides
forward secrecy. It’s well supported only by modern clients. ECDHE is a key agree-
ment algorithm conceptually similar to DHE. In TLS, ECDHE can be used with ei-
ther RSA or ECDSA authentication.

No matter which key exchange is used, the server has the opportunity to speak rst by send-
ing its ServerKeyExchange message:
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struct {
    select (KeyExchangeAlgorithm) {
        case dh_anon:
            ServerDHParams     params;
        case dhe_rsa:
            ServerDHParams     params;
            Signature          params_signature;
        case ecdh_anon:
            ServerECDHParams   params;
        case ecdhe_rsa:
        case ecdhe_ecdsa:
            ServerECDHParams   params;
            Signature          params_signature;
        case rsa:
        case dh_rsa:
            /* no message */
    };
} ServerKeyExchange;

As you can see in the message denition, there are several algorithms for which there is
nothing for the server to send. Tis will be the case when all the required information is
already available elsewhere. Otherwise, the server sends its key exchange parameters. Cru-
cially, the server also sends a signature of the parameters, which is used for authentication.
Using the signature, the client is able to verify that it’s talking to the party that holds the
private key corresponding to the public key from the certicate.
Te ClientKeyExchange message is always required; the client uses it to sends its key ex-
change parameters:

struct {
    select (KeyExchangeAlgorithm) {
        case rsa:
            EncryptedPreMasterSecret;
        case dhe_dss:
        case dhe_rsa:
        case dh_dss:
        case dh_rsa:
        case dh_anon:
            ClientDiffieHellmanPublic;
        case ecdhe:
            ClientECDiffieHellmanPublic;
    } exchange_keys;
} ClientKeyExchange;
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RSA Key Exchange
Te RSA key exchange is quite straightforward; the client generates a premaster secret (a 46-
byte random number), encrypts it with the server’s public key, and sends it in the
ClientKeyExchange message. To obtain the premaster secret, the server only needs to de-
crypt the message. TLS uses the RSAES-PKCS1-v1_5 encryption scheme, which is dened in
RFC 3447.11

Note
Te RSA key exchange can operate in this way because the RSA algorithm can be
used for encryption and digital signing. Other popular key types, such as DSA
(DSS) and ECDSA, can be used only for signing.

Te simplicity of the RSA key exchange is also its principal weakness. Te premaster secret
is encrypted with the server’s public key, which usually remains in use for several years.
Anyone with access to the corresponding private key can recover the premaster secret and
construct the same master secret, compromising session security.
Te attack doesn’t have to happen in real time. A powerful adversary could establish a long-
term operation to record all encrypted trac and wait patiently until she obtains the key.
For example, advances in computer power could make it possible to brute-force the key. Al-
ternatively, the key could be obtained using legal powers, coercion, bribery, or by breaking
into a server that uses it. Aer the key compromise, it’s possible to decrypt all previously
recorded trac.
Te other common key exchange mechanisms used in TLS don’t suer from this problem
and are said to support forward secrecy. When they are used, each connection uses an inde-
pendent master secret. A compromised server key could be used to impersonate the server
but couldn’t be used to retroactively decrypt any trac.

Dife-Hellman Key Exchange
Te Die-Hellman (DH) key exchange is a key agreement protocol that allows two parties
to establish a shared secret over an insecure communication channel.12

Note
Te shared secret negotiated in this way is safe from passive attacks, but an active
attacker could hijack the communication channel and pretend to be the other par-
ty. Tis is why the DH key exchange is commonly used with authentication.

11 RFC 3447: RSA Cryptography Specications Version 2.1 (Jonsson and Kaliski, February 2003)
12 Die–Hellman key exchange (Wikipedia, retrieved 18 June 2014)
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Without going into the details of the algorithm, the trick is to use a mathematical function
that’s easy to calculate in one direction but very dicult to reverse, even when some of the
aspects of the exchange are known. Te best analogy is that of color mixing: if you have two
colors, you can easily mix them to get a third color, but it’s very dicult to determine the
exact color shades that contributed to the mix.13

Te DH key exchange requires six parameters; two (dh_p and dh_g) are called domain pa-
rameters and are selected by the server. During the negotiation, the client and server each
generate two additional parameters. Each side sends one of its parameters (dh_Ys and dh_Yc)
to the other end, and, with some calculation, they arrive at the shared key.
Ephemeral Die-Hellman (DHE) key exchange takes place when none of the parameters are
reused. In contrast, there are some DH key exchange approaches in which some of the pa-
rameters are static and embedded in the server and client certicates. In this case, the result
of the key exchange is always the same shared key, which means that there is no forward
secrecy.
TLS supports static DH key exchanges, but they’re not used. When a DHE suite is negotiat-
ed, the server sends all of its parameters in the ServerDHParams block:

struct {
    opaque dh_p;
    opaque dh_g;
    opaque dh_Ys;
} ServerDHParams;

Te client, in response, sends its public parameter (dh_Yc):

struct {
    select (PublicValueEncoding) {
        case implicit:
            /* empty; used when the client's public
               parameter is embedded in its certificate */
        case explicit:
            opaque dh_Yc;
    } dh_public;
} ClientDiffieHellmanPublic;

Tere are some practical problems with the DH exchange as it’s currently used:

DH parameter security
Te security of the DH key exchange depends on the quality of the domain parame-
ters. A server could send weak or insecure parameters and compromise the security
of the session. Tis issue was highlighted in the Triple Handshake Attack research pa-
per, which covered weak DH parameters used as one of the attack vectors.14

13 Public Key Cryptography: Die-Hellman Key Exchange (YouTube, retrieved 26 June 2014)
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DH parameter negotiation
TLS doesn’t provide facilities for the client to communicate the strength of DH pa-
rameters it’s willing to use. For example, some clients might want to avoid using weak
parameters, or alternately, they might not be able to support stronger parameters. Be-
cause of this, a server that chooses a DHE suite can eectively only “hope” that the
DH parameters will be acceptable to the client.
Historically speaking, DH parameters have been largely ignored and their security
neglected. Many libraries and servers use weak DH parameters by default and oen
don’t provide a means to congure DH parameter strength. For this reason, it’s not
uncommon to see servers using weak 1,024-bit parameters and insecure 768- and
even 512-bit parameters. More recently, some platforms have started using strong
(2,048 bits and higher) parameters.

Tese problems could be addressed by standardizing a set of domain parameters of varying
strengths and extending TLS to enable clients to communicate their preferences.15

Elliptic Curve Dife-Hellman Key Exchange
Te ephemeral elliptic curve Die-Hellman (ECDH) key exchange is conceptually similar to
DH, but it uses a dierent mathematical foundation at the core. As the name implies, ECD-
HE is based on elliptic curve (EC) cryptography.
An ECDH key exchange takes place over a specic elliptic curve, which is for the server to
dene. Te curve takes the role of domain parameters in DH. In theory, static ECDH key
exchange is supported, but in practice only the ephemeral variant (ECDHE) is used.
Te server starts the key exchange by submitting its selected elliptic curve and public pa-
rameter (EC point):

struct {
    ECParameters curve_params;
    ECPoint public;
} ServerECDHParams;

Te server can specify an arbitrary (explicit) curve for the key exchange, but this facility is
not used in TLS. Instead, the server will specify a named curve, which is a reference to one
of the possible predened parameters:

struct {
    ECCurveType curve_type;
    select (curve_type) {
        case explicit_prime:

14 For more information on the Triple Handshake Attack, head to the section called “Triple Handshake Attack” in Chapter 7.
15 Negotiated Discrete Log Die-Hellman Ephemeral Parameters for TLS (D. Gillmor, April 2014)

40 Chapter 2: Protocol



            /* omitted for clarity */
        case explicit_char2:
            /* omitted for clarity */
        case named_curve:
            NamedCurve namedcurve;
    };
} ECParameters;

Te client then submits its own public parameter. Aer that, the calculations take place to
arrive at the premaster secret:

struct {
    select (PublicValueEncoding) {
        case implicit:
            /* empty */
        case explicit:
            ECPoint ecdh_Yc;
    } ecdh_public;
} ClientECDiffieHellmanPublic;

Te use of predened parameters, along with the elliptic_curve extension that clients can
use to submit supported curves, enables the server to select a curve that both sides support.
You’ll nd more information on the available named curves later in the section called “El-
liptic Curve Capabilities”.

Authentication
In TLS, authentication is tightly coupled with key exchange in order to avoid repetition of
costly cryptographic operations. In most cases, the basis for authentication will be public
key cryptography (most commonly RSA, but sometimes ECDSA) supported by certicates.
Once the certicate is validated, the client has a known public key to work with. Aer that,
it’s down to the particular key exchange method to use the public key in some way to au-
thenticate the other side.
During the RSA key exchange, the client generates a random value as the premaster secret
and sends it encrypted with the server’s public key. Te server, which is in possession of the
corresponding private key, decrypts the message to obtain the premaster secret. Te authen-
tication is implicit: it is assumed that only the server in possession of the corresponding pri-
vate key can retrieve the premaster secret, construct the correct session keys, and produce
the correct Finished message.
During the DHE and ECDHE exchanges, the server contributes to the key exchange with its
parameters. Te parameters are signed with its private key. Te client, which is in possession
of the corresponding public key (obtained from the validated certicate), can verify that the
parameters genuinely arrived from the intended server.
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Note
Server parameters are signed concatenated with client and server random data that
are unique to the handshake. Tus, although the signature is sent in the clear it’s
only valid for the current handshake, which means that the attacker can’t reuse it.

Encryption
TLS can encrypt data in a variety of ways, using ciphers such 3DES, AES, ARIA, CAMEL-
LIA, RC4, and SEED. AES is by far the most popular cipher. Tree types of encryption are
supported: stream, block, and authenticated encryption. In TLS, integrity validation is part
of the encryption process; it’s handled either explicitly at the protocol level or implicitly by
the negotiated cipher.

Stream Encryption
When a stream cipher is used, encryption consists of two steps. In the rst step, a MAC of
the record sequence number, header, and plaintext is calculated. Te inclusion of the header
in the MAC ensures that the unencrypted data in the header can’t be tampered with. Te
inclusion of the sequence number in the MAC ensures that the messages can’t be replayed.
In the second step, the plaintext and the MAC are encrypted to form ciphertext.

Figure 2.5. Stream encryption
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Note
A suite that uses integrity validation but no encryption is implemented in the same
way as encryption using a stream cipher. Te plaintext is simply copied to the TLS
record, but the MAC is calculated as described here.

Block Encryption 
When block ciphers are used, encryption is somewhat more involved, because it’s necessary
to work around the properties of block encryption. Te following steps are required:

1. Calculate a MAC of the sequence number, header, and plaintext.
2. Construct padding to ensure that the length of data prior to encryption is a multiple of

the cipher block size (usually 16 bytes).
3. Generate an unpredictable initialization vector (IV) of the same length as the cipher

block size. Te IV is used to ensure that the encryption is not deterministic.
4. Use the CBC block mode to encrypt plaintext, MAC, and padding.
5. Send the IV and ciphertext together.

Figure 2.6. Block encryption
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Note
You’ll nd further information on the CBC block mode, padding, and initialization
vectors in the section called “Building Blocks” in Chapter 1.

Tis process is known as MAC-then-encrypt, and it has been a source of many problems. In
TLS 1.1 and newer versions, each record includes an explicit IV. TLS 1.0 and older versions
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use implicit IVs (the encrypted block from the previous TLS record is used as the IV for the
next), but that approach was found to be insecure in 2011.16

Te other problem is that the MAC calculation doesn’t include padding, leaving an oppor-
tunity for an active network attacker to attempt padding oracle attacks, which were also suc-
cessfully demonstrated against TLS.17 Te issue here is that the protocol species a block
encryption approach that’s dicult to implement securely in practice. As far as we know,
current implementations are not obviously vulnerable at the moment, but this is a weak spot
that leaves many uneasy.
A proposal for a dierent arrangement called encrypt-then-MAC has recently been submit-
ted for publication.18 In this alternative approach, plaintext and padding are rst encrypted
and then fed to the MAC algorithm. Tis ensures that the active network attacker can’t ma-
nipulate any of the encrypted data.

Authenticated Encryption 
Authenticated ciphers combine encryption and integrity validation in one algorithm. Teir
full name is authenticated encryption with associated data (AEAD). On the surface, they ap-
pear to be a cross between stream ciphers and block ciphers. Tey don’t use padding19 and
initialization vectors, but they do use a special value called nonce, which must be unique.
TLS supports GCM and CCM authenticated ciphers, but only the former are currently used
in practice. Te process is somewhat simpler than with block ciphers:

1. Generate a unique 64-bit nonce.
2. Encrypt plaintext with the authenticated encryption algorithm; at the same time feed

it the sequence number and record header for it to take into account as additional data
for purposes of integrity validation.

3. Send the nonce and ciphertext together.

16 This problem was rst exploited in the so-called BEAST attack, which I discuss in the section called “BEAST” in Chapter 7.
17 I discuss padding oracle attacks in the section called “Lucky 13” in Chapter 7.
18 Encrypt-then-MAC for TLS and DTLS (Peter Gutmann, 6 June 2014)
19 Actually, they might use padding, but if they do, it’s an implementation detail that’s not exposed to the TLS protocol.
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Figure 2.7. Authenticated encryption

Encrypt

Header

Sequence Number Header Plaintext

Nonce Ciphertext

Authenticate

Authenticated encryption is currently favored as the best encryption mode available in TLS,
because it avoids the issues inherent with the MAC-then-encrypt approach.

Renegotiation
Most TLS connections start with a handshake, proceed to exchange application data, and
shutdown the conversation at the end. When renegotiation is requested, a new handshake
takes place to agree on new connection security parameters. Tere are several cases in
which this feature might be useful:

Client certicates
Client certicates are not used oen, but some sites use them because they provide
two-factor authentication. Tere are two ways to deploy client certicates. You can
require them for all connections to a site, but this approach is not very friendly to
those who don’t (yet) have a certicate; without a successful connection, you can’t
send them any information and instructions. Handling error conditions is equally
impossible. For this reason, many operators prefer to allow connections to the root of
the web site without a certicate and designate a subsection in which a client certi-
cate is required. When a user attempts to navigate to the subsection, the server issues
a request to renegotiate and then requests a client certicate.

Information hiding
Such a two-step approach to enabling client certicates has an additional advantage:
the second handshake is encrypted, which means that a passive attacker can’t monitor
the negotiation and, crucially, can’t observe the client certicates. Tis addresses a po-
tentially signicant privacy issue, because client certicates usually contain identify-
ing information. For example, the Tor protocol can use renegotiation in this way.20

20 Tor Protocol Specication (Dingledine and Mathewson, retrieved 30 June 2014)
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Change of encryption strength
Back in the day, when web site encryption was brand new (and very CPU intensive) it
was common to see sites split their encryption conguration into two levels. You
would use weaker encryption by default but require strong encryption in certain ar-
eas.21 As with client certicates, this feature is implemented via renegotiation. When
you attempt to cross into the more secure subsection of the web site, the server re-
quests stronger security.

In addition, there are two situations in which renegotiation is required by the protocol, al-
though neither is likely to occur in practice:

Server-Gated Crypto
Back in the 1990s, when the United States did not allow export of strong cryptogra-
phy, a feature called Server-Gated Crypto (SGC) was used to enable US vendors to
ship strong cryptography worldwide but enable it only for selected (mostly nancial)
US web sites. Browsers would use weak cryptography by default, upgrading to strong
cryptography aer encountering a special certicate. Tis upgrade was entirely client
controlled, and it was implemented via renegotiation. Only a few selected CAs were
allowed to issue the special certicates. Cryptography export restrictions were relaxed
in 2000, making SGC obsolete.

TLS record counter overow
Internally, TLS packages data into records. Each record is assigned a unique 64-bit
sequence number, which grows over time as records are exchanged. Client and server
use one sequence number each for the records they send. Te protocol mandates
renegotiation if a sequence number is close to overowing. However, because the
counter is a very large number, overows are unlikely in practice.

Te protocol allows the client to request renegotiation at any time simply by sending a new
ClientHello message, exactly as when starting a brand-new connection. Tis is known as
client-initiated renegotiation.
If the server wishes to renegotiate, it sends a HelloRequest protocol message to the client;
that’s a signal to the client to stop sending application data and initiate a new handshake.
Tis is known as server-initiated renegotiation.
Renegotiation, as originally designed, is insecure and can be abused by an active network
attacker in many ways. Te weakness was discovered in 200922 and corrected with the intro-
duction of the renegotiation_info extension, which I discuss later in this chapter.

21 This thinking is fawed; your encryption is either suciently secure or it isn’t. If your adversaries can break the weaker conguration, they can

take full control of the victim’s browser. With that, they can trick the victim into revealing all of their secrets (e.g., passwords).
22 For more information, head to the section called “Insecure Renegotiation ” in Chapter 7.
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Application Data Protocol 
Te application data protocol carries application messages, which are just buers of data as
far as TLS is concerned. Tese messages are packaged, fragmented, and encrypted by the
record layer, using the current connection security parameters.

Alert Protocol 
Alerts are intended to use a simple notication mechanism to inform the other side in the
communication of exceptional circumstances. Tey’re generally used for error messages,
with the exception of close_notify, which is used during connection shutdown. Alerts are
very simple and contain only two elds:

struct {
    AlertLevel level;
    AlertDescription description;
} Alert;

Te AlertLevel eld carries the alert severity, which can be either warning or fatal. Te
AlertDescription is simply an alert code; for better or worse, there are no facilities to con-
vey arbitrary information, for example, an actual error message.
Fatal messages result in an immediate termination of the current connection and invalida-
tion of the session (ongoing connections of the same session may continue, but the session
can no longer be resumed). Te side sending a warning notication doesn’t terminate the
connection, but the receiving side is free to react to the warning by sending a fatal alert of its
own.

Connection Closure
Closure alerts are used to shutdown a TLS connection in an orderly fashion. Once one side
decides that it wants to close the connection, it sends a close_notify alert. Te other side,
upon receiving the alert, discards any pending writes and sends a close_notify alert of its
own. If any messages arrive aer the alerts, they are ignored.
Tis simple shutdown protocol is necessary in order to avoid truncation attacks, in which
an active network attacker interrupts a conversation midway and blocks all further mes-
sages. Without the shutdown protocol, the two sides can’t determine if they are under attack
or if the conversation is genuinely over.

Note
Although the protocol itself is not vulnerable to truncation attacks, there are many
implementations that are, because violations of the connection shutdown protocol
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are widespread. I discuss this problem at length in the section called “Truncation
Attacks” in Chapter 6.

Cryptographic Operations
Tis section contains a brief discussion of several important aspects of the protocol: the
pseudorandom function, master secret construction, and the generation of connection keys.

Pseudorandom Function 
In TLS, a pseudorandom function (PRF) is used to generate arbitrary amounts of pseudoran-
dom data. Te PRF takes a secret, a seed, and a unique label. From TLS 1.2 onwards, all
cipher suites are required to explicitly specify their PRF. All TLS 1.2 suites use a PRF based
on HMAC and SHA256; the same PRF is used with older suites when they are negotiated
with TLS 1.2.
TLS 1.2 denes a PRF based on a data expansion function P_hash, which uses HMAC and
any hash function:

P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
                       HMAC_hash(secret, A(2) + seed) +
                       HMAC_hash(secret, A(3) + seed) + ...

Te A(i) function is dened as follows:

A(1) = HMAC_hash(secret, seed)
A(2) = HMAC_hash(secret, A(1))
...
A(i) = HMAC_hash(secret, A(i-1))

Te PRF is a wrapper around P_hash that combines the label with the seed:

PRF(secret, label, seed) = P_hash(secret, label + seed)

Te introduction of a seed and a label allows the same secret to be reused in dierent con-
texts to produce dierent outputs (because the label and the seed are dierent).

Master Secret
As you saw earlier, the output from the key exchange process is the premaster secret. Tis
value is further processed, using the PRF, to produce a 48-byte (384-bit) master secret:

master_secret = PRF(pre_master_secret, "master secret",
                    ClientHello.random + ServerHello.random)
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Te processing occurs because the premaster secret might dier in size depending on the
key exchange method used. Also, because the client and server random elds are used as the
seed, the master secret is also eectively random23 and bound to the negotiated handshake.

Note
Te binding between the master secret and the handshake has been shown to be
insucient because it relies only on the exchanged random values. An attacker can
observe and replicate these values to create multiple sessions that share the same
master key. Tis weakness has been exploited by the Triple Handshake Attack men-
tioned earlier.14

Key Generation
Te key material needed for a connection is generated in a single PRF invocation based on
the master secret and seeded with the client and server random values:

key_block = PRF(SecurityParameters.master_secret,
                "key expansion",
                SecurityParameters.server_random +
                SecurityParameters.client_random)

Te key block, which varies in size depending on the negotiated parameters, is divided into
up to six keys: two MAC keys, two encryption keys, and two initialization vectors (only
when needed; stream ciphers don’t use IV). AEAD suites don’t use MAC keys. Dierent
keys are used for dierent operations, which is recommended to prevent unforeseen inter-
actions between cryptographic primitives when the key is shared. Also, because the client
and the server have their own sets of keys, a message produced by one can’t be interpreted
to have been produced by the other. Tis design decision makes the protocol more robust.

Note
When resuming a session, the same session master key is used during the key block
generation. However, the PRF is seeded with the client and server random values
from the current handshake. Because these random values are dierent in every
handshake, the keys are also dierent every time.

Cipher Suites
As you have seen, TLS allows for a great deal of exibility in implementing the desired secu-
rity properties. It’s eectively a framework for creating actual cryptographic protocols. Al-

23 Although the most commonly used key exchange mechanisms generate a different premaster secret every time, there are some mechanisms

that rely on long-term keys and thus reuse the same premaster secret. Randomization is essential to ensure that the keys are not repeated.
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though previous versions hardcoded some cryptographic primitives into the protocol, TLS
1.2 is fully congurable. A cipher suite is a selection of cryptographic primitives and other
parameters that dene exactly how security will be implemented. A suite is dened roughly
by the following attributes:

• Authentication method

• Key exchange method

• Encryption algorithm

• Encryption key size

• Cipher mode (when applicable)

• MAC algorithm (when applicable)

• PRF (TLS 1.2 only—depends on the protocol otherwise)

• Hash function used for the Finished message (TLS 1.2)

• Length of the verify_data structure (TLS 1.2)
Cipher suite names tend to be long and descriptive and pretty consistent: they are made
from the names of the key exchange method, authentication method, cipher denition, and
optional MAC or PRF algorithm.24

Figure 2.8. Cipher suite name construction

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
Key exchange Cipher MAC or PRF

Authentication Algorithm Strength Mode

Although a suite name is not sucient to convey all security parameters, the most impor-
tant ones are easy to deduce. Te information on the remaining parameters can be found in
the RFC that carries the suite denition. You can see the security properties of a few select-
ed suites in the following table. At the time of writing, there are more than 300 ocial ci-
pher suites, which is too many to list here. For the complete list, head to the ocial TLS
page over at IANA.25

24 TLS suites use the TLS_ prex, SSL 3 suites use the SSL_ prex, and SSL 2 suites use the SSL_CK_ prex. In all cases, the approach to

naming is roughly the same. However, not all vendors use the standard suite names. OpenSSL and GnuTLS use different names. Microsoft large-

ly uses the standard names but sometimes extends them with suxes that are used to indicate the strength of the ECDHE key exchange.
25 TLS Parameters (IANA, retrieved 30 June 2014)
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Table 2.2. Examples of cipher suite names and their security properties

Cipher Suite Name Auth KX Cipher MAC PRF

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 RSA ECDHE AES-128-GCM - SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDSA ECDHE AES-256-GCM - SHA384

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA RSA DHE 3DES-EDE-CBC SHA1 Protocol

TLS_RSA_WITH_AES_128_CBC_SHA RSA RSA AES-128-CBC SHA1 Protocol

TLS_ECDHE_ECDSA_WITH_AES_128_CCM ECDSA ECDHE AES-128-CCM - SHA256

With the introduction of TLS 1.2—which allows for additional custom parameters (e.g.,
PRF)—and authenticated suites, some level of understanding of the implementation is re-
quired to fully decode cipher suite names:

• Authenticated suites combine authentication and encryption in the cipher, which
means that integrity validation need not be performed at the TLS level. GCM suites use
the last segment to indicate the PRF instead of the MAC algorithm. CCM suites omit
this last segment completely.

• TLS 1.2 is the only protocol that allows suites to dene their PRFs. Tis means that for
the suites dened before TLS 1.2 the negotiated protocol version dictates the PRF. For
example, the TLS_RSA_WITH_AES_128_CBC_SHA suite uses a PRF based on HMAC-
SHA256 when negotiated with TLS 1.2 but a PRF based on a HMAC-MD5/HMAC-
SHA1 combination when used with TLS 1.0. On the other hand, SHA384 GCM suites
(which can be used only with TLS 1.2 and newer) will always use HMAC-SHA384 for
the PRF.

Note
Cipher suite names use a shorthand notation to indicate the MAC algorithm that
species only the hashing function. Tis oen leads to confusion when the hashing
functions have weaknesses. For example, although SHA1 is known to be weak to
chosen-prex attacks, it’s not weak in the way it’s used in TLS, which is in an
HMAC construction. Tere are no signicant known attacks against HMAC-
SHA1.

Cipher suites don’t have full control over their security parameters. Crucially, they only
specify the required authentication and key exchange algorithms, but they don’t have con-
trol over their exact parameters (e.g., key and parameter strength).

Note
Cipher suites can be used only with the specic authentication mechanism they are
intended for. For example, suites with ECDSA in the name require ECDSA keys. A
server that has a single RSA key will not show support for any of the ECDSA suites.
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When it comes to authentication, the strength typically depends on the certicate or, more
specically, on the certicate’s key length and the signature algorithm. Te strength of the
RSA key exchange also depends on the certicate. DHE and ECDHE key exchanges can be
congured with varying strengths, and this is usually done at the server level. Some servers
expose this conguration to end users, but others don’t. I discuss these aspects in more de-
tail in Chapter 8, Deployment and in the following technology-specic chapters.

Extensions
TLS extensions are a general-purpose extension mechanism that’s used to add functionality
to the TLS protocol without changing the protocol itself. Tey rst appeared in 2003 as a
separate specication (RFC 3456) but have since been added to TLS 1.2.
Extensions are added in the form of an extension block that’s placed at the end of
ClientHello and ServerHello messages:

Extension extensions;

Te block consists of a desired number of extensions placed one aer another. Each exten-
sion begins with a two-byte extension type (unique identier) and is followed by the exten-
sion data:

struct {
    ExtensionType extension_type;
    opaque extension_data;
} Extension;

It’s up to each extension specication to determine the extension format and the desired be-
havior. In practice, extensions are used to signal support for some new functionality (thus
changing the protocol) and to carry additional data needed during the handshake. Since
their introduction, they have become the main vehicle for protocol evolution.
In this section, I will discuss the most commonly seen TLS extensions. Because IANA keeps
track of extension types, the ocial list of extensions can be obtained from their web site.26

26 TLS Extensions (IANA, retrieved 30 June 2014)
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Table 2.3. A selection of commonly seen TLS extensions

Type Name Description

0 server_name Contains the intended secure virtual host for the connection

5 status_request Indicates support for OCSP stapling

13 (0x0d) signature_algorithms Contains supported signature algorithm/hash function pairs

15 (0x0f) heartbeat Indicates support for the Heartbeat protocol

16 (0x10) application_layer_protocol_
negotiation

Contains supported application-layer protocols that the client
is willing to negotiate

18 (0x12) signed_certificate_timestamp Used by servers to submit the proof that the certicate had
been shared with the public; part of Certicate Transparency

21 (0x15) padding Used as a workaround for certain bugs in the F5 load bal-
ancersa

35 (0x23) session_ticket Indicates support for stateless session resumption

13172 (0x3374) next_protocol_negotiation Indicates support for Next Protocol Negotiation

65281 (0xff01) renegotiation_info Indicates support for secure renegotiation
a A TLS padding extension (Internet-Draft, A. Langley, January 2014)

Application Layer Protocol Negotiation 
Application-Layer Protocol Negotiation (ALPN) is a protocol extension that enables the ne-
gotiation of dierent application-layer protocols over a TLS connection.27 With ALPN, a
server on port 443 could oer HTTP 1.1 by default but allow the negotiation of other proto-
cols, such as SPDY or HTTP 2.0.
A client that supports ALPN uses the application_layer_protocol_negotiation extension
to submit a list of supported application-layer protocols to the server. A compliant server
decides on the protocol and uses the same extension to inform the client of its decision.
ALPN provides the same primary functionality as its older relative, NPN (discussed later on
in this section), but they dier in secondary properties. Whereas NPN prefers to hide proto-
col decisions behind encryption, ALPN carries them in plaintext, allowing intermediary de-
vices to inspect them and route trac based on the observed information.

Certifcate Transparency 
Certicate Transparency28 is a proposal to improve Internet PKI by keeping a record of all
public server certicates. Te basic idea is that the CAs will submit every certicate to a
public log server, and in return they will receive a proof of submission called Signed Certi-

27 RFC 7301: TLS Application-Layer Protocol Negotiation Extension (Friedl et al., July 2014)
28 Certicate Transparency (Google, retrieved 30 June 2014)
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cate Timestamp (SCT), which they can then relay to end users. Tere are several options for
the transport of the SCT, and one of them is the new TLS extension called
signed_certificate_timestamp.

Elliptic Curve Capabilities
RFC 4492 species two extensions that are used to communicate client EC capabilities dur-
ing the handshake. Te elliptic_curves extension is used in ClientHello to list supported
named curves, allowing the server to select one that’s supported by both sides.

struct {
    NamedCurve elliptic_curve_list
} EllipticCurveList;

Te main curves are specied in RFC 449229 based on the parameters dened by standards
bodies, such as NIST:30

enum {
    sect163k1 (1), sect163r1 (2), sect163r2 (3),
    sect193r1 (4), sect193r2 (5), sect233k1 (6),
    sect233r1 (7), sect239k1 (8), sect283k1 (9),
    sect283r1 (10), sect409k1 (11), sect409r1 (12),
    sect571k1 (13), sect571r1 (14), secp160k1 (15),
    secp160r1 (16), secp160r2 (17), secp192k1 (18),
    secp192r1 (19), secp224k1 (20), secp224r1 (21),
    secp256k1 (22), secp256r1 (23), secp384r1 (24),
    secp521r1 (25),
    reserved (0xFE00..0xFEFF),
    arbitrary_explicit_prime_curves(0xFF01),
    arbitrary_explicit_char2_curves(0xFF02)
} NamedCurve;

Brainpool curves were dened later, in RFC 7027.31 At the time of writing, there are eorts
to standardize additional curves, for example, Curve25519.32 You can nd the relevant doc-
ument on the TLS working group document page.
At this time, there is wide support for only two NIST curves: secp256r1 and secp384r1. Ar-
bitrary curves are generally not supported at all.33

29 RFC 4492: ECC Cipher Suites for TLS (S. Blake-Wilson et al., May 2006)
30 FIPS 186-3: Digital Signature Standard (NIST, June 2009)
31 RFC 7027: ECC Brainpool Curves for TLS (J. Merkle and M. Lochter, October 2013)
32 A state-of-the-art Die-Hellman function (D. J. Bernstein, retrieved 30 June 2014)
33 The generation of good, arbitrary elliptic curves is a complex and error-prone task that most developers choose to avoid. In addition, named

curves can be optimized to run much faster.
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NIST Elliptic Curves 
NIST’s elliptic curves are sometimes considered suspicious, because there is no explanation of
how the parameters were selected.34 Especially aer the Dual EC DRBG backdoor came to
light, anything that cannot be explained has been seen by some as suspicious. Te fear is that
those named curves have weaknesses that are known to the designers but not to the general
public. As a result, there are eorts to extend TLS with support for other curves.

Te second dened extension is ec_point_formats, which enables negotiation of optional
elliptic curve point compression. In theory, the use of compressed point formats can save
precious bandwidth in constrained environments. In practice, the savings are small (e.g.,
about 64 bytes for a 256-bit curve) and the compressed formats are generally not used.

Heartbeat 
Heartbeat35 is a protocol extension that adds support for keep-alive functionality (checking
that the other party in the conversation is still available) and path maximum transmission
unit (PMTU)36 discovery to TLS and DTLS. Although TLS is commonly used over TCP,
which does have keep-alive functionality already, Heartbeat is targeted at DTLS, which is
deployed over unreliable protocols, such as UDP.

Note
Some have suggested that zero-length TLS records, which are explicitly allowed by
the protocol, could be used for the keep-alive functionality. In practice, attempts to
mitigate the BEAST attack showed that many applications can’t tolerate records
without any data. In any case, zero-length TLS records wouldn’t help with PMTU
discovery, which needs payloads of varying sizes.

Initially, support for Hearbeat is advertised by both the client and the server via the
heartbeat extension. During the negotiation, parties give each other permission to send
heartbeat requests with the HeartbeatMode parameter:

struct {
    HeartbeatMode mode;
} HeartbeatExtension;

34 SafeCurves: choosing safe curves for elliptic-curve cryptography (D. J. Bernstein, retrieved 21 May 2014)
35 RFC 6520: TLS and DTLS Heartbeat Extension (R. Seggelmann et al., February 2012)
36 Maximum transmission unit (MTU) is the size of the largest data unit that can be sent whole. When two sides communicate directly, they can

exchange their MTUs. However, when communication goes over many hops it is sometimes necessary to discover the effective path MTU by

sending progressively larger packets.
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enum {
    peer_allowed_to_send (1),
    peer_not_allowed_to_send (2)
} HeartbeatMode;

Heartbeat is implemented as a TLS subprotocol, which means that heartbeat messages can
be interleaved with application data and even other protocol messages. According to the
RFC, heartbeat messages are allowed only once the handshake completes, but in practice
OpenSSL allows them as soon as TLS extensions are exchanged.
It is not clear if Heartbeat is used in practice. However, it’s supported by OpenSSL and en-
abled by default. GnuTLS also implements it. Virtually no one knew what Heartbeat was
until April 2014, when it was discovered that the OpenSSL implementation suered from a
fatal aw that allowed the extraction of sensitive data from the server’s process memory. Te
attack that exploits this vulnerability, called Heartbleed, was arguably the worst thing to hap-
pen to TLS. You can read more about it in the section called “Heartbleed” in Chapter 6.

Next Protocol Negotiation 
When Google set out to design SPDY,37 a protocol intended to improve on HTTP, it needed
a reliable protocol negotiation mechanism that would work with strict rewalls and in the
presence of faulty proxies. Because SPDY was intended to always use TLS anyway, they de-
cided to extend TLS with application-layer protocol negotiation. Te result was Next Proto-
col Negotiation (NPN).

Note
If you research NPN, you might come across many dierent specication versions.
Some of those versions were produced for the TLS working group during the stan-
dardization discussions. An older version of the specication is used in produc-
tion.38

A SPDY-enabled client submits a TLS handshake that incorporates an empty
next_protocol_negotiation extension, but only if it also includes a server_name extension
to indicate the desired hostname. In return, a compliant server responds with the
next_protocol_negotiation extension, but one that contains a list of the supported applica-
tion-layer protocols.
Te client indicates the desired application-layer protocol by using a new handshake mes-
sage called NextProtocol:

37 SPDY (Wikipedia, retrieved 12 June 2014)
38 Google Technical Note: TLS Next Protocol Negotiation Extension (Adam Langley, May 2012)
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struct {
  opaque selected_protocol;
  opaque padding;
} NextProtocol;

In order to hide the client’s choice from passive attackers, this message is submitted encrypt-
ed, which means that the client must send it aer the ChangeCipherSpec message but before
Finished. Tis is a deviation from the standard handshake message ow. Te desired proto-
col name can be selected from the list provided by the server, but the client is also free to
submit a protocol that is not advertised. Te padding is used to hide the true length of the
extension so that the adversary can’t guess the selected protocol by looking at the size of the
encrypted message.
NPN was submitted to the TLS working group for standardization39 but, despite wide sup-
port in production (e.g., Chrome, Firefox, and OpenSSL), failed to win acceptance. Te in-
troduction of a new handshake message, which changes the usual handshake ow, was
deemed disruptive and more complex than necessary. Tere were also concerns that the in-
ability of intermediary devices to see what protocol is being negotiated might be problemat-
ic in practice. In the end, the group adopted the competing ALPN proposal.40 Google cur-
rently supports both ALPN and NPN, but will switch to supporting only ALPN aer 2014.41

Secure Renegotiation 
Te renegotiation_info extension improves TLS with verication that renegotiation is be-
ing carried out between the same two parties that negotiated the previous handshake.
Initially (during the rst handshake on a connection), this extension is used by both parties
to inform each other that they support secure renegotiation; for this, they simply send the
extension without any data. To secure SSL 3, which doesn’t support extensions, clients can
instead use a special signaling suite, TLS_EMPTY_RENEGOTIATION_INFO_SCSV (0xff).
On subsequent handshakes, the extension is used to submit proof of knowledge of the previ-
ous handshake. Clients send the verify_data value from their previous Finished message.
Servers send two values: rst the client’s verify_data and then their own. Te attacker
couldn’t have obtained these values, because the Finished message is always encrypted.

Server Name Indication 
Server Name Indication (SNI), implemented using the server_name extension,42 provides a
mechanism for a client to specify the name of the server it wishes to connect to. In other

39 Next Protocol Negotiation 03 (Adam Langley, 24 April 2012)
40 Some missing context (was: Conrming consensus for ALPN) (Yoav Nir, 15 March 2013)
41 NPN and ALPN (Adam Langley, 20 March 2013)
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words, this extension provides support for virtual secure servers, giving servers enough in-
formation to look for a matching certicate among the available virtual secure hosts. With-
out this mechanism, only one certicate can be deployed per IP address.43 Because SNI was
a late addition to TLS (2006), there are still many older products (e.g., Windows XP and
some early Android versions) that don’t support it. For this reason, virtual secure hosting is
still not practical for public sites that want to reach a large audience.

Session Tickets
Session tickets introduce a new session resumption mechanism that doesn’t require any serv-
er-side storage.44 Te idea is that the server can take all of its session data (state), encrypt it,
and send it back to the client in the form of a ticket. On subsequent connections, the client
submits the ticket back to the server; the server checks the ticket integrity, decrypts the con-
tents, and uses the information in it to resume the session. Tis approach potentially makes
it easier to scale web server clusters, which would otherwise need to synchronize session
state among the nodes.

Warning
Session tickets break the TLS security model. Tey expose session state on the wire
encrypted with a ticket key. Depending on the implementation, the ticket key
might be weaker than the cipher used for the connection. For example, OpenSSL
uses 128-bit AES keys for this purpose. Also, the same ticket key is reused across
many sessions. Tis is similar to the situation with the RSA key exchange and
breaks forward secrecy; if the ticket key is compromised it can be used to decrypt
full connection data. For this reason, if session tickets are used, the ticket keys must
be rotated frequently.

Te client indicates support for this resumption mechanism with an empty session_ticket
extension. If it wishes to resume an earlier session, then it should instead place the ticket in
the extension. A compliant server that wishes to issue a new ticket includes an empty
session_ticket extension in its ServerHello. It then waits for the client’s Finished message,
veries it, and sends back the ticket in the NewSessionTicket handshake message. If the
server wishes to resume an earlier session, then it responds with an abbreviated handshake,
as with standard resumption.

42 RFC 6066: TLS Extensions: Extension Denitions (D. Eastlake 3rd, January 2011)
43 Although HTTP has the facility to send host information via the Host request header, this is sent at the application protocol layer, which can

be communicated to the server only after a successful TLS handshake.
44 RFC 5077: TLS Session Resumption without Server-Side State (Salowey et al., January 2008)
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Note
When a server decides to use session tickets for session resumption, it sends back
an empty session ID eld (in its ServerHello message). At this point, the session
does not have a unique identier. However, the ticket specication allows the client
to select and submit a session ID (in its ClientHello) in a subsequent handshake
that uses the ticket. A server that accepts the ticket must also respond with the
same session ID. Tis is why the session ID appears in the TLS web server logs
even when session tickets are used as the session-resumption mechanism.

Signature Algorithms
Te signature_algorithms extension, which is dened in TLS 1.2, enables clients to com-
municate support for various signature and hash algorithms. Te TLS specication lists
RSA, DSA, and ECDSA signature algorithms and MD5, SHA1, SHA224, SHA256, SHA384,
and SHA512 hash functions. By using the signature_algorithm extension, clients submit
the signature–hash algorithm pairs they support.
Tis extension is optional; if it’s not present, the server infers the supported signature algo-
rithms from the client’s oered cipher suites (e.g., RSA suites indicate support for RSA sig-
natures, ECDSA suites indicate support for ECDSA, and so on) and assumes support for
SHA1.

OCSP Stapling 
Te status_request extension42 is used by clients to indicate support for OCSP stapling,
which is a feature that a server can use to send fresh certicate revocation information to
the client. (I discuss revocation at length in the section called “Certicate Revocation” in
Chapter 5.) A server that supports stapling returns an empty status_request extension in
its ServerHello and provides an OCSP response (in DER format) in the CertificateStatus
handshake message immediately aer the Certificate message.
OCSP stapling supports only one OCSP response and can be used to check the revocation
status of the server certicate only. Tis limitation is addressed by RFC 6961,45 which adds
support for multiple OCSP responses (and uses the status_request_v2 extension to indicate
support for it). However, at this time, this improved version is not well supported in either
client or server soware.

45 RFC 6961: TLS Multiple Certicate Status Request Extension (Y. Pettersen, June 2013)
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Protocol Limitations
In addition to unintentional weaknesses, which I will discuss at length in subsequent chap-
ters, TLS is known to currently have several limitations inuenced by its positioning in the
OSI layer and certain design decisions:

• Encryption protects the contents of a TCP connection, but the metadata of TCP and all
other lower layers remains in plaintext. Tus, a passive observer can determine the IP
addresses of the source and the destination. Information leakage of this type isn’t the
fault of TLS but a limitation inherent in our current layered networking model.

• Even at the TLS layer, a lot of the information is exposed as plaintext. Te rst hand-
shake is never encrypted, allowing the passive observer to (1) learn about client capa-
bilities and use them for ngerprinting, (2) examine the SNI information to determine
the intended virtual host, (3) examine the host’s certicate, and, when client certicates
are used, (4) potentially obtain enough information to identify the user. Tere are
workarounds to avoid these issues, but they’re not used by mainstream implementa-
tions.

• Aer encryption is activated, some protocol information remains in the clear: the ob-
server can see the subprotocol and length of each message. Depending on the protocol,
the length might reveal useful clues about the underlying communication. For exam-
ple, there have been several studies that have tried to infer what resources are being
accessed over HTTP based on the indicated request and response sizes. Without length
hiding, it’s not possible to safely use compression before encryption (a common prac-
tice today).

Te leakage of network-layer metadata can be solved only at those levels. Te other limita-
tions could be xed, and, indeed, there are proposals and discussions about addressing
them. You’ll learn more about these problems later in the book.

Differences between Protocol Versions
Tis section describes the major dierences between various SSL and TLS protocol versions.
Tere haven’t been many changes to the core protocol since SSL 3. TLS 1.0 made limited
changes only to justify a dierent name, and TLS 1.1 was primarily released to x a few se-
curity problems. TLS 1.2 introduced authenticated encryption, cleaned up the hashing, and
otherwise made the protocol free of any hardcoded primitives.

SSL 3
SSL 3 was released in late 1995. Starting from scratch to address the many weaknesses of the
previous protocol version, SSL 3 established the design that still remains in the latest ver-
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sions of TLS. If you want to gain a better understanding of what SSL 3 changed and why, I
recommend the protocol analysis paper by Wagner and Schneier.46

TLS 1.0
TLS 1.0 was released in January 1999. It includes the following changes from SSL 3:

• Tis is the rst version to specify a PRF based on the standard HMAC and implement-
ed as a combination (XOR) of HMAC-MD5 and HMAC-SHA.

• Master secret generation now uses the PRF instead of a custom construction.

• Te verify_data value is now based on the PRF instead of a custom construction.

• Integrity validation (MAC) uses the ocial HMAC. SSL 3 used an earlier, obsolete
HMAC version.

• Te format of the padding changed, making it more robust. In October 2014, the so-
called POODLE attack exposed SSL 3 padding as insecure.

• FORTEZZA47 suites were removed.
As a practical matter, the result of the protocol cleanup was that TLS 1.0 was given FIPS
approval, allowing its use by US government agencies.
If you want to study TLS 1.0 and earlier protocol versions, I recommend Eric Rescorla’s
book SSL and TLS: Designing and Building Secure Systems, published by Addison-Wesley in
2001. I have found this book to be invaluable for understanding the reasoning behind cer-
tain decisions as well as to follow the evolution of the designs.

TLS 1.1
TLS 1.1 was released in April 2006. It includes the following major changes from TLS 1.0:

• CBC encryption now uses explicit IVs that are included in every TLS record. Tis ad-
dresses the predictable IV weakness, which was later exploited in the BEAST attack.

• Implementations are now required to use the bad_record_mac alert in response to
padding problems to defend against padding attacks. Te decryption_failed alert is
deprecated.

• Tis version includes TLS extensions (RFC 3546) by reference.

46 Analysis of the SSL 3.0 protocol (David Wagner and Bruce Schneier, Proceedings of the Second USENIX Workshop on Electronic Commerce,

1996)
47 Fortezza (Wikipedia, retrieved 30 June 2014)
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TLS 1.2
TLS 1.2 was released in August 2008. It includes the following major changes from TLS 1.1:

• Support for authenticated encryption was added.
• Support for HMAC-SHA256 cipher suites was added.
• IDEA and DES cipher suites were removed.
• TLS extensions were incorporated in the main protocol specication, although most

actual extensions remain documented elsewhere.
• A new extension, signature_algorithms, can be used by clients to communicate what

hash and signature algorithms they are willing to accept.
• Te MD5/SHA1 combination used in the PRF was replaced with SHA256 for the TLS

1.2 suites and all earlier suites when negotiated with this protocol version.
• Cipher suites are now allowed to specify their own PRFs.
• Te MD5/SHA1 combination used for digital signatures was replaced with a single

hash. By default, SHA256 is used, but cipher suites can specify their own. Before, the
signature hash algorithm was mandated by the protocol; now the hash function is part
of the signature structure, and implementations can choose the best algorithm.

• Te length of the verify_data element in the Finished message can now be explicitly
specied by cipher suites.
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3 Public-Key Infrastructure
Tanks to public-key cryptography, we are able to communicate safely with people whose
public keys we have, but there’s a number of other problems that remain unsolved. For ex-
ample, how can we communicate with people we’ve never met? How do we store public keys
and revoke them? Most importantly, how do we do that at world scale, with millions of
servers and billions of people and devices? It’s a tall order, but it’s what public-key infrastruc-
ture (PKI) was created to solve.

Internet PKI
For most people, PKI is about the public-key infrastructure as used on the Internet. Howev-
er, the real meaning of PKI is much wider, because it had originally been developed for oth-
er uses. Tus, it’s more accurate to talk about Internet PKI, the term that was introduced by
the PKIX working group that adapted PKI for use on the Internet. Another term that’s re-
cently been used is Web PKI, in which the focus is on how browsers consume and validate
certicates. In this book, I’ll generally use the name PKI to refer to Internet PKI, except
maybe in a few cases in which the distinction is important.
Te goal of PKI is to enable secure communication among parties who have never met be-
fore. Te model we use today relies on trusted third parties called certication authorities
(CAs; sometimes also called certicate authorities) to issue certicates that we unreservedly
trust.
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Figure 3.1. Internet PKI certicate lifecycle
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Subscriber
Te subscriber (or end entity) is the party that wishes to provide secure services,
which require a certicate.

Registration authority
Te registration authority (RA) carries out certain management functions related to
certicate issuance. For example, an RA might perform the necessary identity valida-
tion before requesting a CA to issue a certicate. In some cases, RAs are also called
local registration authorities (LRAs), for example, when a CA wants to establish a
branch that is close to its users (such as one in a dierent country). In practice, many
CAs also perform RA duties.

Certication authority
Te certication authority (CA) is a party we trust to issue certicates that conrm
subscriber identities. Tey are also required to provide up-to-date revocation infor-
mation online so that relying parties can verify that certicates are still valid.

Relying party
Te relying party is the certicate consumer. Technically, these are web browsers, oth-
er programs, and operating systems that perform certicate validation. Tey do this
by operating root trust stores that contain the ultimately trusted certicates (trust an-
chors) of some CAs. In a wider sense, relying parties are end users who depend on
certicates for secure communication on the Internet.
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What Is Trust?
Discussions about PKI usually use words such as identity, authority, and trust. Because they
rarely mean what we think they mean, these words oen cause confusion and create a mis-
match between our expectations and what exists in real life.
With most certicates, we get only limited assurances that we’re talking to the right server. On-
ly EV certicates provide a binding with an oine identity, but that doesn’t mean much for
security, which depends on too many other factors.
In PKI, trust is used only in a very technical sense of the word; it means that a certicate can be
validated by a CA we have in the trust store. But it doesn’t mean that we trust the subscriber for
anything. Tink about this: millions of people visit Amazon’s web sites every day and make
purchases, even though the homepage opens without encryption. Why do we do that? Ulti-
mately, because they earned our (real) trust.

Standards
Internet PKI has its roots in X.509, an international standard for public-key infrastructure
that was originally designed to support X.500, a standard for electronic directory services.
X.500 never took o, but X.509 was adapted for use on the Internet by the PKIX working
group.1

From the charter:

Te PKIX Working Group was established in the fall of 1995 with the goal of
developing Internet standards to support X.509-based Public Key Infrastruc-
tures (PKIs). Initially PKIX pursued this goal by proling X.509 standards de-
veloped by the CCITT (later the ITU-T). Later, PKIX initiated the develop-
ment of standards that are not proles of ITU-T work, but rather are inde-
pendent initiatives designed to address X.509-based PKI needs in the Internet.
Over time this latter category of work has become the major focus of PKIX
work, i.e., most PKIX-generated RFCs are no longer proles of ITU-T X.509
documents.

Te main document produced by the PKIX working group is RFC 5280, which documents
the certicate format and trust path building as well as the format of Certicate Revocation
Lists (CRLs).2 Te PKIX working group concluded in October 2013.

1 PKIX Working Group (IETF, retrieved 16 July 2014)
2 RFC 5280: Internet X.509 Public Key Infrastructure Certicate and CRL Prole (Cooper et al., May 2008)
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Note
As is usually the case on the Internet, the reality rarely reects standards. Tis is in
part because standards are oen vague and don’t ulll real-life needs. It’s impossi-
ble to predict how technologies evolve over time, which is why implementers oen
take matters into their hands. In addition, major products and libraries oen make
mistakes and eectively restrict how technologies can be used in practice. You will
nd many such examples in this book.

Te CA/Browser Forum (or CAB Forum) is a voluntary group of CAs, browser vendors, and
other interested parties whose goal is to establish and enforce standards for certicate is-
suance and processing.3 Te CA/Browser Forum was initially created to dene standards for
issuance of extended validation (EV) certicates, which rst came out in 2007.4 Although
initially a loose group of CAs, the CA/Browser Forum changed their focus and restructured
in 2012.5 Te same year, they released Baseline Requirements for the Issuance and Manage-
ment of Publicly-Trusted Certicates, or Baseline Requirements for short.6

Although CAB Forum lists only about 40 CAs as members, Baseline Requirements eec-
tively apply to all CAs; the document is incorporated into the WebTrust audit program for
CAs7 and explicitly required by some root store operators (e.g., Mozilla).
Also relevant is IETF’s Web PKI working group, which was formed in September 2012 to de-
scribe how PKI really works on the Web.8 Tis group is expected to document the Web PKI
trust model and revocation practices and the usage of various elds and extensions in cer-
ticates, CRLs, and OCSP responses.

Certifcates 
A certicate is a digital document that contains a public key, some information about the
entity associated with it, and a digital signature from the certicate issuer. In other words,
it’s a shell that allows us to exchange, store, and use public keys. With that, certicates be-
come the basic building block of PKI.

3 The CA/Browser Forum (retrieved 16 July 2014)
4 EV SSL Certicate Guidelines (The CA/Browser Forum, retrieved 16 July 2014)
5 The change of focus came from the realization that there were many burning security questions that were not being addressed. During 2011,

there were several small and big CA failures, and the general feeling was that the PKI ecosystem was terribly insecure. Some even questioned

the ecosystem’s survival. With Baseline Requirements, the CA/Browser Forum addressed many of these issues.
6 Baseline Requirements (The CA/Browser Forum, retrieved 13 July 2014)
7 WebTrust Program for Certication Authorities (WebTrust, retrieved 25 May 2014)
8 Web PKI OPS (IETF, retrieved 25 May 2014)
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ASN.1, BER, DER, and PEM 
Abstract Syntax Notation One (ASN.1) is a set of rules that support denition, transport, and
exchange of complex data structures and objects. ASN.1 was designed to support network
communication between diverse platforms in a way that’s independent of machine architecture
and implementation language. ASN.1 is a standard originally dened in 1988 in X.208; it was
last updated in 2008 in the X.680 series of documents.
ASN.1 denes data in an abstract way; separate standards exist to specify how data is encoded.
Basic Encoding Rules (BER) is the rst such standard. X.509 relies on Distinguished Encoding
Rules (DER), which are a subset of BER that allow only one way to encode ASN.1 values. Tis
is critical for use in cryptography, especially digital signatures. PEM (short for Privacy-En-
hanced Mail, which has no meaning in this context) is an ASCII encoding of DER using Base64
encoding. ASN.1 is complicated, but, unless you’re a developer dealing with cryptography, you
probably won’t have to work with it directly.
Most certicates are supplied in PEM format (because it’s easy to email, copy, and paste), but
you might sometimes encounter DER, too. If you need to convert from one format to another,
use the OpenSSL x509 command. I’ll talk more about that later in the book.
If you’re curious about what ASN.1 looks like, download any certicate and use the online
ASN.1 decoder to see the ASN.1 structure.9

Certifcate Fields
A certicate consists of elds and—in version 3—a set of extensions. On the surface, the
structure is at and linear, although some elds contain other structures.

Version
Tere are three certicate versions: 1, 2, and 3, encoded as values 0, 1, and 2. Version
1 supports only basic elds; version 2 adds unique identiers (two additional elds);
and version 3 adds extensions. Most certicates are in v3 format.

Serial Number
Initially, serial numbers were specied as positive integers that uniquely identify a
certicate issued by a given CA. Additional requirements were added later as a sec-
ond layer of defense from chosen prex attacks against certicate signatures (nd out
more in the next chapter, in the section called “RapidSSL Rogue CA Certicate”); se-
rial numbers are now required to be nonsequential (unpredictable) and contain at
least 20 bits of entropy.

9 ASN.1 JavaScript decoder (Lapo Luchini, retrieved 24 May 2014)
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Signature Algorithm
Tis eld species the algorithm used for the certicate signature. It’s placed here, in-
side the certicate, so that it can be protected by the signature.

Issuer
Te Issuer eld contains the distinguished name (DN) of the certicate issuer. It’s a
complex eld that can contain many components depending on the represented enti-
ty. Tis, for example, is the DN used for one of VeriSign’s root certicates: /C=US/
O=VeriSign, Inc./OU=Class 3 Public Primary Certification Authority; it con-
tains three components, one each for country, organization, and organizational unit.

Validity
Te certicate validity period is the time interval during which the certicate is valid.
It’s represented with two values: the starting date and the ending date.

Subject
Te subject is the distinguished name of the entity associated with the public key for
which the certicate is issued. Self-signed certicates have the same DN in their Sub-
ject and Issuer elds. Initially, the common name (CN) component of the DN was
used for server hostnames (e.g., /CN=www.example.com would be used for a certicate
valid for www.example.com). Unfortunately, that caused some confusion about how
to issue certicates that are valid for multiple hostnames. Today, the Subject eld is
deprecated in favor of the Subject Alternative Name extension.

Public key
Tis eld contains the public key, represented by the Subject Public-Key Info structure
(essentially algorithm ID, optional parameters, and then the public key itself). Public-
key algorithms are specied in RFC 3279.10

Note
Two additional certicate elds were added in version 2: Issuer Unique ID and Sub-
ject Unique ID. Tey were later deprecated in version 3 in favor of the Authority
Key Identier and Subject Key Identier extensions.

Certifcate Extensions
Certicate extensions were introduced in version 3 in order to add exibility to the previ-
ously rigid certicate format. Each extension consists of a unique object identier (OID),
criticality indicator, and value, which is an ASN.1 structure. An extension marked as critical
must be understood and successfully processed; otherwise the entire certicate must be re-
jected.

10 RFC 3279: Algorithms and Identiers for the Internet X.509 PKI and CRL Prole (Polk et al., April 2002)
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Subject Alternative Name
Traditionally, the Subject certicate eld (more specically, only its CN component)
is used to create a binding between an identity and a public key. In practice, that ap-
proach is not exible enough; it supports only hostnames and does not specify how
multiple identities are handled. Te Subject Alternative Name extension replaces the
Subject eld; it supports bindings to multiple identities specied by a DNS name, IP
address, or URI.

Name Constraints
Te Name Constraints extension can be used to constrain the identities for which a
CA can issue certicates. Identity namespaces can be explicitly excluded or permit-
ted. Tis is a very useful feature that could, for example, allow an organization to ob-
tain a subordinate CA that can issue certicates only for the company-owned domain
names. With the namespaces constrained, such a CA certicate poses no danger to
the entire ecosystem (i.e., a CA can’t issue certicates for arbitrary sites).
RFC 5280 requires this extension to be marked as critical, but noncritical name con-
straints are used in practice and explicitly allowed by Baseline Requirements. Tis is
due to the fact that some products do not understand the Name Constraints extension
and reject certicates that contain it if it’s marked critical.

Basic Constraints
Te Basic Constraints extension is used to indicate a CA certicate and, via the path
length constraint eld, control the depth of the subordinate CA certicate path (i.e.,
whether the CA certicate can issue further nested CA certicates and how deep). In
theory, all CA certicates must include this extension; in practice, some root certi-
cates issued as version 1 certicates are still used despite the fact that they contain no
extensions.

Key Usage
Tis extension denes the possible uses of the key contained in the certicate. Tere
is a xed number of uses, any of which can be set on a particular certicate. For ex-
ample, a CA certicate could have the Certicate Signer and CRL Signer bits set.

Extended Key Usage
For more exibility in determining or restricting public key usage, this extension al-
lows arbitrary additional purposes to be specied, indicated by their OIDs. For exam-
ple, end-entity certicates typically carry the id-kp-serverAuth and id-kp-
clientAuth OIDs; code signing certicates use the id-kp-codeSigning OID, and so
on.
Although RFC 5280 indicates that Extended Key Usage (EKU) should be used only on
end-entity certicates, in practice this extension is used on intermediate CA certi-
cates to constrain the usage of the certicates issued from them.11 Baseline Require-
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ments, in particular, require the use of EKU constraints for an intermediate certicate
to be considered technically constrained using name constraints.

Certicate Policies
Tis extension contains a list of one or more policies. A policy consists of an OID and
an optional qualier. When present, the qualier usually contains the URI at which
the full text of the policy can be obtained. Baseline Requirements establish that an
end-entity certicate must always include at least one policy to indicate the terms un-
der which the certicate was issued. Te extension can be optionally used to indicate
certicate validation type.

CRL Distribution Points
Tis extension is used to determine the location of the Certicate Revocation List
(CRL) information, usually provided as an LDAP or HTTP URI. According to Base-
line Requirements, a certicate must provide either CRL or OCSP revocation infor-
mation.

Authority Information Access
Te Authority Information Access extension indicates how to access certain additional
information and services provided by the issuing CA. One such piece of information
is the location of the OCSP responder, provided as an HTTP URI. Relying parties can
use the responder to check for revocation information in real time. In addition, some
certicates also include the URI at which the issuing certicate can be found. Tat
information is very useful for reconstruction of an incomplete certicate chain.

Subject Key Identier
Tis extension contains a unique value that can be used to identify certicates that
contain a particular public key. It is recommended that the identier be constructed
from the public key itself (e.g., by hashing). All CA certicates must include this ex-
tension and use the same identier in the Authority Key Identier extension of all is-
sued certicates.

Authority Key Identier
Te content of this extension uniquely identies the key that signed the certicate. It
can be used during certicate path building to identify the parent certicate.

RFC 5280 denes several other extensions that are rarely used; they are Delta CRL Distribu-
tion Point, Inhibit anyPolicy, Issuer Alternative Name, Policy Constraints, Policy Mappings,
Subject Directory Attributes, and Subject Information Access.

11 Bug 725451: Support enforcing nested EKU constraints, do so by default (Bugzilla@Mozilla, reported 8 February 2014)
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Certifcate Chains 
In the majority of cases, an end-entity certicate alone is insucient for a successful valida-
tion. In practice, each server must provide a chain of certicates that leads to a trusted root.
Certicate chains are used for security, technical, and administrative reasons.

Figure 3.2. Certicate structure
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Keeping the root safe
Te root CA key is of great importance not only to the organization that owns it but
also to the entire ecosystem. First, it has great nancial value. Older, widely distribut-
ed keys are eectively irreplaceable, because many root stores are not being updated
any more. Second, if the key is compromised it can be used to issue fraudulent certi-
cates for any domain name. If compromised, the key would have to be revoked,
bringing down all the sites that depend on it.
Although there are still some CAs that issue end-entity certicates directly from their
roots, this practice is seen as too dangerous. Baseline Requirements require that the
root key is used only by issuing a direct command (i.e., automation is not allowed),
implying that the root must be kept oine. Issuing subscriber certicates directly
from the root is not allowed, although there is a loophole for legacy systems that are
still in use.

Cross-certication
Cross-certication is the only way for new CAs to start operating today. Because it’s
impossible to distribute young root keys widely and quickly, they must get their root
key signed by some other well-established CA. Over time, as old devices fade away,
the new CA key will eventually become useful on its own.
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Compartmentalization
By splitting its operation across many subordinate CA certicates, a CA can spread
the risk of exposure. For example, dierent subordinate CAs could be used for dier-
ent certicate classes, or for dierent business units. Unlike roots, subordinate CAs
are typically placed online and used in automated systems.

Delegation
In some cases, a CA might want to issue a subordinate CA to another organization
that is not aliated with it. For example, a large company might want to issue their
own certicates for the domain names they control. (Tat is oen cheaper than run-
ning a private CA and ensuring that the root certicate is distributed to all devices.)
Sometimes, organizations might want to have full control, in which case the subordi-
nate CA might be technically constrained to certain namespaces. In other cases, the
CA remains in control over the certicates issued from the subordinate CA.

A server can provide only one certicate chain, but, in practice, there can be many valid
trust paths. For example, in the case of cross-certication, one trust path will lead to the
main CA’s root and another to the alternative root. CAs sometimes issue multiple certi-
cates for the same keys. For example, the major signing algorithm used today is SHA1, but,
for security reasons, everyone is moving to SHA256. Te CA can reuse the same key but
issue a new certicate. If the relying party happens to have both such certicates, then they
will form two dierent trust paths.
Path building generally complicates things a lot and leads to various problems. Servers are
expected to provide complete and valid certicate chains, but that oen doesn’t happen due
to human error and various usability issues (e.g., having to congure the server certicate in
one place and the rest of the chain in another). According to SSL Pulse, there are about 5.9%
of servers with incomplete certicate chains.12

On the other side, path building and validation is a cause of many security issues in client
soware. Tis is not surprising, given vague, incomplete, and competing standards. Histori-
cally, many validation libraries had failed with simple tasks, such as validating that the issu-
ing certicate belongs to a CA. Te most commonly used libraries today are battle tested
and secure only because they patched the worst problems, not because they were secure
from the start. For many examples, refer to the section called “Certicate Validation Flaws”
in Chapter 6.

Relying Parties
For relying parties to be able to validate subscriber certicates, they must keep a collection
of root CA certicates they trust. In most cases, each operating system provides a root store

12 SSL Pulse (SSL Labs, retrieved July 2014)
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in order to bootstrap trust. Virtually all application developers reuse the root stores of the
underlying operating systems. Te only exception to this is Mozilla, who maintain their own
root store for consistent operation across a number of platforms.

Apple
Apple operates a root certicate program that is used on the iOS and OS X plat-
forms.13 To be considered for inclusion, a CA must pass an audit and demonstrate
that it provides broad business value to Apple’s customers.

Chrome
Chrome relies on the store provided by the operating system and on Mozilla’s store
(via their networking library, NSS) when deployed on Linux. However, they have
some additional policies that they apply themselves when the underlying facilities are
not adequate.14 For illustration: (1) there’s a blacklist of roots they won’t trust; (2) an
explicit lists of CAs who can issue EV certicates; and (3) a special requirement that,
starting in February 2015, EV certicates must implement Certicate Transparency.

Microso
Microso operates a root certicate program that is used on the Windows desktop,
server, and mobile phone platforms.15 Broadly, inclusion requires a yearly audit and a
demonstration of business value to the Microso user base.

Mozilla
Mozilla operates a largely transparent root certicate program,16 which they use for
their products. Teir root store is oen used as the basis for the root stores of various
Linux distributions. Heated discussions about policy decisions oen take place on the
mozilla.dev.security.policy list and on Mozilla’s bug tracking system.

All root certicate programs require CAs to undergo independent audits designed for certi-
cation authorities. For DV and OV certicates, one of the following audits is usually re-
quested:

• WebTrust for Certicate Authorities17

• ETSI TS 101 456

• ETSI TS 102 042

• ISO 21188:2006
WebTrust operates the only audit program available for issuance of EV certicates.

13 Apple Root Certicate Program (Apple, retrieved 25 May 2014)
14 Root Certicate Policy (Chrome Security, retrieved 25 May 2014)
15 Introduction to The Microsoft Root Certicate Program (Microsoft, retrieved 25 May 2014)
16 Mozilla CA Certicate Policy (Mozilla, retrieved 25 May 2014)
17 Principles and Criteria for Certication Authorities 2.0 (WebTrust, retrieved 25 May 2014)
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Certifcation Authorities 
Certication authorities (CAs) are the most important part of the current internet trust
model. Tey can issue a certicate for any domain name, which means that anything they
say goes. At the surface, it sounds like easy money, provided you can get your roots into a
wide range of devices. But what exactly do you have to do to become a public CA?

1. Build out a competent CA organization:

a. Establish strong expertise in PKI and CA operations.

b. Design a robust, secure, and compartmentalized network to enable business opera-
tions yet protect the highly sensitive root and subordinate keys.

c. Support the certicate lifecycle workow.

d. Comply with Baseline Requirements.

e. Comply with EV SSL Certicate Guidelines.

f. Provide a global CRL and OCSP infrastructure.

2. Comply with local laws; depending on the jurisdiction, this might mean obtaining a
license.

3. Pass the audits required by the root programs.

4. Place your roots into a wide range of root programs.

5. Cross-certify your roots to bootstrap the operations.
For a long time, selling certicates was a relatively easy job for those who got in early. Tese
days, there is much less money to be made selling DV certicates, given that their price has
been driven down by strong competition. Furthermore, if support for DNSSEC and DANE
becomes widespread it will mark the end of DV certicates. As a result, CAs are moving to
the smaller but potentially more lucrative market for EV certicates and related services.

Certifcate Lifecycle 
Te certicate lifecycle begins when a subscriber prepares a Certicate Signing Request
(CSR) and submits it to the CA of their choice. Te main purpose of the CSR is to carry the
relevant public key as well as demonstrate ownership of the corresponding private key (us-
ing a signature). CSRs are designed to carry additional metadata, but not all of it is used in
practice. CAs will oen override the CSR values and use other sources for the information
they embed in certicates.
Te CA then follows the validation procedure, using a dierent steps depending on the type
of certicate requested:
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Domain validation
Domain validated (DV) certicates are issued based on proof of control over a do-
main name. In most cases, that means sending a conrmation email to one of the ap-
proved email addresses. If the recipient approves (i.e., follows the link in the email),
then the certicate is issued. If conrmation via email is not possible, then any other
means of communication (e.g., phone or snail mail) and practical demonstration of
control are allowed. A similar procedure is followed when issuing certicates for IP
addresses.

Organization validation
Organization validated (OV) certicates require identity and authenticity verication.
It wasn’t until Baseline Requirements were adopted that the procedures for OV cer-
ticates were standardized. As a result, there was (and still is) a lot of inconsistency in
how OV certicates were issued and how the relevant information was encoded in
the certicate.

Extended validation
Extended validation (EV) certicates also require identity and authenticity verica-
tion, but with very strict requirements. Tey were introduced to address the lack of
consistency in OV certicates, so it’s no surprise that the validation procedures are
extensively documented, leaving little room for inconsistencies.

Issuance of DV certicates is fully automated and can be very quick. Te duration depends
largely on how fast the conrmation email is answered. On the other end of the spectrum, it
can take days or even weeks to obtain an EV certicate.

Note
When fraudulent certicate requests are submitted, attackers usually go aer high-
prole domain names. For this reason, CAs tend to maintain a list of such high-
risk names and refuse to issue certicates for them without manual conrmation.
Tis practice is required by Baseline Requirements.

Aer successful validation, the CA issues the certicate. In addition to the certicate itself,
the CA will provide all of the intermediary certicates required to chain to their root. Tey
also usually provide conguration instructions for major platforms.
Te subscriber can now use the certicate in production, where it will hopefully stay until it
expires. If the corresponding private key is compromised, the certicate is revoked. Te pro-
cedure in this case is similar to that used for certicate issuance. Tere is oen talk about
certicate reissuance, but there is no such thing, technically speaking. Aer a certicate is
revoked, an entirely new certicate is issued to replace it.
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Revocation 
Certicates are revoked when the associated private keys are compromised or no longer
needed. In both cases, there is a risk of misuse. Te revocation protocols and procedures are
designed to ensure certicate freshness and otherwise communicate revocation to relying
parties. Tere are two standards for certicate revocation:
Certicate Revocation List

A Certicate Revocation List (CRL) is a list of all serial numbers belonging to revoked
certicates that have not yet expired. CAs maintain one or more such lists. Every cer-
ticate should contain the location of the corresponding CRL in the CRL Distribution
Points certicate extension. Te main problem with CRLs is that they tend to be large,
making real-time lookups slow.

Online Certicate Status Protocol
Online Certicate Status Protocol (OCSP) allows relying parties to obtain the revoca-
tion status of a single certicate. OCSP servers are known as OCSP responders. Te
location of the CA’s OCSP responder is encoded in the Authority Information Access
certicate extension. OCSP allows for real-time lookups and addresses the main CRL
deciency, but it doesn’t solve all revocation problems: the use of OCSP responders
leads to performance and privacy issues and introduces a new point of failure. Some
of these issues can be addressed with a technique called OCSP stapling, which allows
each server to embed an OCSP response directly into the TLS handshake.

Weaknesses
Observed from a strict security perspective, Internet PKI suers from many weaknesses,
some big and some small; I will outline both kinds in this section. However, before we move
to the problems, we must establish the context. In 1995, when the secure Web was just tak-
ing o, the Internet was a much dierent place and much less important than it is now.
Ten, we needed encryption so that we could deploy ecommerce and start making money.
Today, we have ecommerce, and it’s working well—but we want much more. For some
groups, encryption is genuinely a matter of life and death.
But what we have today is a system that does what it was originally designed to do: provide
enough security for ecommerce operations. In a wider sense, the system provides us with
what I like to call commercial security. It’s a sort of security that can be achieved with rela-
tively little money, makes web sites go fast, tolerates insecure practices, and does not annoy
users too much. Te system is controlled by CAs, commercial entities in pursuit of prot,
and browser vendors, who are primarily interested in increasing their market share. Neither
group has strong security as its top priority, but they are not necessarily to blame—at least
not entirely. Tey won’t give us security until we, the end users, start to demand it from
them.
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CAs, in particular, just can’t win. Tere are hundreds of CAs who issue millions of certi-
cates every year and generally make the world go around. Error rates are very small. Cer-
tainly, the security is not as good as it could be, but the whole thing works. Despite that,
there’s a strong resentment from many subscribers because they have to pay for certicates.
Most don’t want to pay. Tose who do pay want to pay as little as possible; at the same time,
they demand awless security.
In truth, anyone looking for real security (for whatever meaning of that word) is ultimately
not going to get it from an ecosystem that’s—for better or worse—afraid to break things for
security. Tat said, problems are being xed, as you will see later on. Now onto the aws.

Permission of domain owners not required for certicate issuance
Te biggest problem we have is conceptual: any CA can issue a certicate for any do-
main name without obtaining permission. Te key issue here is that there are no
technical measures in place to protect us from CA omissions and security lapses. Tis
might not have seemed like a big problem early on, when only a few CAs existed, but
it’s a huge issue today now that there are hundreds. It’s been said many times: the se-
curity of the entire PKI system today is as good as the weakest link, and we have
many potentially weak links. All CAs are required to undergo audits, but the quality
of those audits is uncertain. For example, DigiNotar, the Dutch CA whose security
was completely compromised in 2011, had been audited.
Ten, there is the question of whether CAs themselves can be trusted to do their jobs
well and for the public benet; who are those hundreds of organizations that we allow
to issue certicates with little supervision? Te fear that they might put their com-
mercial interests above our security needs is sometimes justied. For example, in
2012 Trustwave admitted to issuing a subordinate certicate that would be used for
trac inspection, forging certicates for any web site on the y.18 Although Trust-
wave is the only CA to publicly admit to issuing such certicates, there were rumors
that such behavior was not uncommon.
Many fear that governments abuse the system to allow themselves to forge certicates
for arbitrary domain names. Can we really be sure that some of the CAs are not just
fronts for government operations? And, even if they are not, can we be sure that they
can’t be compelled to do whatever their governments tell them to? We can’t. Te only
unknown is the extent to which governments will interfere with the operation of
commercial CAs.

No trust agility
Another conceptual problem is lack of trust agility. Relying parties operate root stores
that contain a number of CA certicates. A CA is thus either trusted or not; there
isn’t any middle ground. In theory, a relying party can remove a CA from the store. In

18 Clarifying The Trustwave CA Policy Update (Trustwave, 4 February 2012)
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practice, that can happen only in cases of gross incompetence or security compro-
mise, or if a CA is small. Once a CA issues a suciently large number of certicates,
they eectively become too big to fail.
Some slaps on the wrist are still possible. For example, in the past we had relying par-
ties revoke EV privileges from some CAs who showed incompetence. Another idea
(never attempted) is to punish a misbehaving CA by revoking trust in future certi-
cates, allowing the existing ones to stay in place.

Weak domain validation
DV certicates are issued based on domain name ownership information retrieved
via the insecure WHOIS protocol. Furthermore, the interaction is most commonly
carried out using email, which in itself can be insecure. It’s easy to obtain a fraudulent
DV certicate if a domain name is hijacked or if access to the key mailbox is ob-
tained. It’s also possible to attack the implementation of the validation process at the
CA by intercepting network trac at their end.

Revocation does not work
It is generally seen that revocation does not work. We saw several CA failures in 2011,
and, in every case, relying parties had to issue patches or use their proprietary black-
listing channels to reliably revoke the compromised certicates.
Tere are two reasons why that was necessary. First, there’s a delay in propagating re-
vocation information to each system. Baseline Requirements allow CRL and OCSP
information to stay valid for up to 10 days (12 months for intermediate certicates).
Tis means that it takes at least 10 days for the revocation information to fully propa-
gate. Te second problem is the so-ail policy implemented in all current browsers;
they will attempt to obtain revocation information but ignore all failures. An active
network attacker can easily suppress OCSP requests, for example, allowing him to use
a fraudulent certicate indenitely.
Because of this, Chrome developers decided to stop checking for revocation except
for EV certicates. For important certicates (e.g., intermediate CAs), they rely on a
proprietary revocation channel (CRLSets) that’s based on CRL information. A possi-
ble solution to this problem is the adoption of so-called must-staple certicates, which
can be used only in combination with a fresh OCSP response.19 You’ll nd more
thorough coverage of this topic in the section called “Certicate Revocation” in
Chapter 5.

Certicate warnings defeat the purpose of encryption
Possibly the biggest failure of Internet PKI (or Web PKI, to be more accurate) is a lax
approach to certicate validation. Many libraries and applications skip validation al-

19 X.509v3 Extension: OCSP Stapling Required (P. Hallam-Baker, October 2012)
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together. Browsers check certicates, but, when an invalid certicate is encountered,
they present their users with warnings that can be bypassed. According to some stud-
ies, from 30% to 70% of users click through these warnings, which completely defeats
the purpose of encryption. Recently, a new standard called HTTP Strict Transport Se-
curity was developed to instruct compliant browsers to replace warnings with errors,
disallowing bypass.

Root Key Compromise
One of the best ways to attack PKI is to go aer the root certicates directly. For govern-
ment agencies, one approach might be to simply request the private keys from the CAs in
their countries. If that’s seen as possibly controversial and dangerous, anyone with a modest
budget (say, a million dollars or so) could start a brand new CA and get their roots embed-
ded in trust stores everywhere. Tey might or might not feel the need to run a proper CA as
a cover; there are many roots that have never been seen issuing end-entity certicates.
Tis approach to attacking Internet PKI would have been viable for many years, but at some
point a couple of years ago people started paying attention to what’s happening in the
ecosystem. Browser plug-ins for certicate tracking were built; they alert users whenever a
new certicate is encountered. Google implemented public key pinning in Chrome, now a
very popular browser. Te Electronic Frontier Foundation extended its browser plug-in
HTTPS Everywhere to monitor root certicate usage.20

A far less messy approach (both then and now) would be to break the existing root and in-
termediate certicates. If you have access to the key belonging to an intermediate certicate,
you can issue arbitrary certicates. For best results (the smallest chance of being discov-
ered), fraudulent certicates should be issued from the same CA as the genuine ones. Many
sites, especially the big ones, operate multiple certicates at the same time. If the issuing CA
is the same, how are you going to dierentiate a fraudulent certicate from a genuine one?
In 2003 (more than ten years ago!), Shamir and Tromer estimated that a $10 million pur-
pose-built machine could break a 1,024-bit key in about a year (plus $20 million for the ini-
tial design and development).21 For state agencies, that’s very cheap, considering the possi-
bilities that rogue certicates open. Tese agencies routinely spend billions of dollars on var-
ious projects of interest. More recently, in 2013, Tromer reduced the estimate to only $1 mil-
lion.22

In that light, it’s reasonable to assume that all 1,024-bit keys of relevance are already broken
by multiple government agencies from countries around the world.

20 HTTPS Everywhere (The Electronic Frontier Foundation, retrieved 3 July 2014)
21 On the Cost of Factoring RSA-1024 (Shamir and Tromer, 2003)
22 Facebook’s outmoded Web crypto opens door to NSA spying (CNET, 28 June 2013)
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Note
For intermediate certicates, another attack vector is the weak SHA1 signatures. At
best, SHA1 provides only 80 bits of security against collision attacks and 160 bits
against preimage attacks. Intermediate certicates are easier to target because, un-
like root certicates, they are not highly visible.

In some cases, it might also be reasonable to expect that end-entity certicates have been
targeted. For example, Google transitioned away from 1,024-bit certicates only in 2013.23

Given the small cost of breaking weak certicates, it’s surprising that we still have weak root
certicates in use. Mozilla planned to remove such certicates by the end of 2013,24 but they
faced delays because of potential breakage. To follow their progress, watch bug #881553.25

Ecosystem Measurements
Before 2010, little was publicly known about the state of the PKI ecosystem. In 2010, the era
of active scanning and monitoring of the PKI ecosystem began. At Black Hat USA in July
that year, I published a survey of about 120 million domain names, with an analysis of the
observed certicates and the security of the TLS servers.26 Just a couple of days later, at DE-
FCON, the Electronic Frontier Foundation (EFF) announced SSL Observatory, a survey of
the entire IPv4 address space.27 Teir focus was on certicates, but their most important
contribution was making all their data available to the public, sparking the imagination of
many and leading to other scanning eorts. Te EFF later announced Distributed SSL Ob-
servatory,28 an eort to collect certicate chains observed by their browser add-on HTTP
Everywhere, but they haven’t published any reports as of yet.
In 2011, Holz et al. published a proper study using a combination of a third-party scan of
the entire IPv4 space, their own scanning of secure servers in the Alexa top one million list,
and passive monitoring of trac on their research network.29 Tey, too, published their da-
ta sets.
In April 2012, SSL Labs started a project called SSL Pulse, which performs monthly scans of
about 150,000 of the most popular secure sites obtained by crawling the Alexa top one mil-
lion list.30

23 Google certicates upgrade in progress (Google Developers Blog, 30 July 2013)
24 Dates for Phasing out MD5-based signatures and 1024-bit moduli (MozillaWiki, retrieved 3 July 2014)
25 Bug #881553: Remove or turn off trust bits for 1024-bit root certs after December 31, 2013 (Bugzilla@Mozilla, reported 10 June 2013)
26 Internet SSL Survey 2010 is here! (Ivan Ristić, 29 July 2010)
27 The EFF SSL Observatory (Electronic Frontier Foundation, retrieved 26 May 2014)
28 HTTPS Everywhere & the Decentralized SSL Observatory (Peter Eckersley, 29 February 2012)
29 The SSL Landscape - A Thorough Analysis of the X.509 PKI Using Active and Passive Measurements (Holz et al., Internet Measurement Confer-

ence, November 2011)
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Also in 2012, the International Computer Science Institute (ICSI) announced their ICSI
Certicate Notary project, which monitors live network trac of 10 partner organizations.31

Teir reports are of particular interest, because they show real-life certicates and encryp-
tion parameters. Tey also maintain a visualization of the entire PKI ecosystem and the re-
lationships among CAs in their Tree of Trust.32

Te most comprehensive study to come out so far was published in 2013 by Durumeric et
al., who performed 110 Internet-wide scans over a period of 14 months.33 To carry out their
project, they developed a specialized tool called ZMap, which is now open source. All of
their data is available online.34 If raw data is what you’re aer, Rapid7 publishes data from
their monthly certicate scans on the same web site.35

None of the surveys uncovered any fatal aws, but they provided great visibility into the PKI
ecosystem and highlighted a number of important problems. For example, the public was
generally unaware that CAs regularly issue certicates for private IP addresses (that anyone
can use on their internal networks) and domain names that are not fully qualied (e.g.,
localhost, mail, intranet, and such). Aer several years, not only is large-scale scanning the
norm, but there are also eorts such as Certicate Transparency (discussed in the next sec-
tion) that rely on the availability of all public certicates. In February 2014, Microso an-
nounced that they are extending the telemetry collected by Internet Explorer 11 to include
certicate data.36 Tey intend to use the information to quickly detect attacks against the
users of this browser.
Tat same month, Delignat-Lavaud et al. published an evaluation of adherence to the CAB
Forum guidelines over time.37 Te results show very good adherence for EV certicates,
which always had the benet of strict requirements, as well as improvements aer the intro-
duction of Baseline Requirements.

30 SSL Pulse (SSL Labs, retrieved 19 July 2014)
31 The ICSI Certicate Notary (ICSI, retrieved 19 July 2014)
32 The ICSI SSL Notary: CA Certicates (ICSI, retrieved 26 May 2014)
33 Analysis of the HTTPS Certicate Ecosystem (Durumeric et al., Internet Measurement Conference, October 2013)
34 University of Michigan · HTTPS Ecosystem Scans (Internet-Wide Scan Data Repository, retrieved 26 May 2014)
35 Rapid7 · SSL Certicates (Internet-Wide Scan Data Repository, retrieved 26 May 2014)
36 A novel method in IE11 for dealing with fraudulent digital certicates (Windows PKI Blog, 21 February 2014)
37 Web PKI: Closing the Gap between Guidelines and Practices (Delignat-Lavaud et al., NDSS, February 2014)
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What Do We Know about Internet PKI?
Certication authorities issue millions of certicates every year. According to the last available
information, there are about four million active certicates. Tere are many more internal and
self-signed certicates, but no one can reliably measure how many, because they tend to be
used on internal networks.
It’s not clear how many CAs there are exactly. Tere are slightly over 100 common roots (across
major root stores), but many CAs use more than one root. Tere are more than a thousand
subordinate CA certicates, but they are oen used for administrative reasons; it’s not clear
how many organizations there are with the power to issue certicates directly. We do know
that the top 10 roots control over 90% of the market. Te big company names are Symantec,
GoDaddy, Comodo, GlobalSign, DigiCert, StartCom, and Entrust.

Improvements
Over the years, we have seen many proposals to improve the state of PKI. Most of them
came out in 2011, aer several CA security compromises made us feel that the Internet was
falling apart. I am going to discuss the proposals here, but I won’t go into much detail, as
most are still works in development. Te others have made little progress since they were
announced. Te only exceptions are pinning and DANE; these techniques are (almost)
practical, which is why I discuss them in more detail in Chapter 10, HSTS, CSP, and Pinning.

Perspectives
Perspectives38 was the rst project to introduce the concept of independent notaries to
assist with TLS authentication. Rather than make a decision about certication au-
thenticity alone, clients consult trusted notaries. Accessing the same server from dif-
ferent vantage points can defeat attacks that take place close to the client. Notaries
can also keep track of a server over a period of time to defeat more advanced attacks.
Perspectives launched in 2008 and continues to operate.

Convergence
Convergence39 is a conceptual fork of Perspectives with some aspects of the imple-
mentation improved. To improve privacy, requests to notaries are proxied through
several servers so that the notary that knows the identity of the client does not know
the contents of the request. To improve performance, site certicates are cached for
extended periods of time. Convergence had momentum when it launched in 2011,
but it hasn’t seen any activity since 2013. Te most likely problem is that browsers
don’t oer adequate APIs to support plugins that want to make trust decisions.

38 Perspectives Project (retrieved 27 May 2014)
39 Convergence (retrieved 27 May 2014)
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Public key pinning
Public key pinning addresses the biggest weakness of the current PKI ecosystem,
which is the fact that any CA can issue a certicate for any domain name without the
owner’s permission. With pinning, site owners can select (pin) one or more CAs that
they trust, eectively carving out their own isolated trust ecosystem, which is much
smaller than the global one. Public key pinning is currently possible via Chrome’s
proprietary mechanism. A standard called Public Key Pinning for HTTP is in develop-
ment.

DANE
DNSSEC is a new set of protocols that extend DNS with integrity checking. With this,
a domain name can be associated with a set of keys that are used to sign the corre-
sponding DNS zone. DANE is a bridge between DNSSEC and TLS authentication.
Although DANE can be used for pinning, its more interesting ability is completely
bypassing public CAs; if you trust the DNS, you can use it for TLS authentication.

Sovereign Keys
Te Sovereign Keys proposal40 extends the existing security infrastructure (either CAs
or DNSSEC) with additional security guarantees. Te main idea is that a domain
name can be claimed using a sovereign key, which is recorded in publicly veriable
logs. Once a name is claimed, its certicates can be valid only if they are signed by the
sovereign key. On the negative side, there seem to be no provisions to recover from
the loss of a sovereign key, which makes this proposal very risky. Sovereign Keys was
announced in 2011, but it hasn’t progressed past the idea stage.

MECAI
MECAI (which stands for Mutually Endorsing CA Infrastructure)41 is a variation of
the notary concept in which the CAs run the infrastructure. Servers do all the hard
work and obtain freshness vouchers to deliver to clients. Te fact that most of the
process happens behind the scenes improves privacy and performance. MECAI was
rst published in 2011, but it hasn’t progressed past the idea stage.

Certicate Transparency
Certicate Transparency (CT)42 is a framework for auditing and monitoring of public
certicates. CAs submit each certicate they issue to a public certicate log and obtain
a cryptographic proof of submission. Anyone can monitor new certicates as they are
issued; for example, domain owners can watch for certicates issued for their domain
names. Te idea is that once this mechanism is in place, fraudulent certicates can be
quickly detected. Te proof of submission, which can be delivered to clients in a vari-
ety of ways (ideally within the certicate itself), can be used to conrm that a certi-

40 The Sovereign Keys Project (The EFF, retrieved 27 May 2014)
41 Mutually Endorsing CA Infrastructure version 2 (Kai Engert, 24 February 2012)
42 Certicate Transparency (Google, retrieved 27 May 2014)

Improvements 83



cate had been made public. Starting in February 2015, Chrome requires CT for EV
certicates issued from January 2015 onwards.43

A whitelist is used to continue to recognize EV certicates that existed before January
2015. If this pilot project proves successful, Chrome developers intend to eventually
require CT for all certicates.

TACK
TACK (which stands for Trust Assurances for Certicate Keys)44 is a pinning variant
that pins to a server-provided signing key. Te introduction of a long-term signing
key means more work but has the benet of being independent from the CA infras-
tructure. Tis proposal is dierent from all others in that it works for any protocol
protected by TLS, not just HTTP. TACK came out in 2012. Te authors provided
proof-of-concept implementations for some popular platforms, but, as of this writing,
there is no ocial support in any client.

Do any of these proposals stand a chance at being implemented? In 2011, when most of
these proposals came out, there was generally a strong momentum to change things. Since
then, the momentum has been replaced with the realization that we’re dealing with a very
dicult problem. It’s easy to design a system that works most of the time, but it’s the edge
cases where most ideas fail.
Te proposals based on notaries face issues with browser APIs just to get o the ground.
Tey aim to solve the problem of local attacks but have too many caveats. By depending on
multiple external systems for trust, they make decision making dicult (e.g., what if there is
a disagreement among notaries or rogue elements are introduced to the system?) and intro-
duce various problems related to performance, availability, and running costs. Large web
sites oen deploy many certicates for the same name, especially when observed from dif-
ferent geographic locations. Tis practice leads to false positives; a view from any one no-
tary might not be the only correct one.
Te pinning proposals show a lot of promise. With pinning, site owners choose whom to
trust and remove the huge attack surface inherent in the current system. Google had pin-
ning deployed in 2011; it’s how the compromise of the DigiNotar CA came to light. Teir
proprietary pinning mechanism has since detected several other failures. Te hope is that in
the near future pinning will be easily accessible to everyone via a standardized mechanism.
DANE is the only proposal that can substantially change how we approach trust, but its suc-
cess depends on having DNSSEC supported by either operating systems or browsers.
Browser vendors haven’t shown much enthusiasm so far, but the operating system vendors
might, eventually. For low-risk properties, DANE is a great solution and can completely dis-

43 Extended Validation in Chrome (Ben Laurie, retrieved 16 March 2015)
44 TACK (retrieved 27 May 2014)
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place DV certicates. On the other hand, for high-risk properties the centralization of trust
in the DNS is potentially problematic; the key issue is the unavoidable inuences of various
governments. Tere is little support for DANE at the moment, but it’s likely that there will
be more over time as DNSSEC continues to be deployed.
Given Google’s leverage, it’s likely that CT will take o, although it might take a few years
before it’s deployed widely enough to achieve its full eect.
Overall, there are two directions that we appear to be taking in parallel that lead to a multi-
tier system with varying levels of security. Te rst direction is to improve the existing sys-
tem. Mozilla, for example, used its root program as leverage to put pressure on CAs to get
their aairs in order. In fact, CAs were under a lot of pressure from everyone, which result-
ed in the reorganization of the CA/Browser Forum and Baseline Requirements in 2012. In-
creased monitoring and auditing activities since 2010 helped uncover many smaller issues
(now largely being addressed) and generally kept the system in check. Eventually, CT might
achieve full transparency of public trust with a repository of all public certicates.
Te second direction is all about enabling high-risk web sites to elect into more security.
Aer all, perhaps the biggest practical problem with Internet PKI is that we expect one sys-
tem to work for everyone. In reality, there is a large number of properties that want easy
security (low cost, low eort) and a small number of properties that want strong security
and are prepared to work for it. New technologies—such as pinning, HTTP Strict Transport
Security, Content Security Policy, and mandatory OCSP stapling—can make that possible.
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4 Attacks against PKI
Tere’s an inherent aw in how Public Key Infrastructure (PKI) operates today: any CA is
able to issue certicates for any name without having to seek approval from the domain
name owner. It seems incredible that this system, which has been in use for about 20 years
now, essentially relies on everyone—hundreds of entities and thousands of people—doing
the right thing.
Tere are several attack vectors that could be exploited. In many cases, it’s the validation
process that’s the target. If you can convince a CA that you are the legitimate owner of a
domain name, they will issue you a certicate. In other cases, the target is the security of the
CAs themselves; if a CA is compromised the attacker can generate certicates for any web
site. And in some cases it has come to light that certain CAs issued subordinate certicates
that were then used to issue certicates representing web sites at large.
Tis chapter documents the most interesting incidents and attacks against PKI, starting
with the rst widely reported incident from 2001 and ending with the last major one at the
end of 2013.

VeriSign Microsoft Code-Signing Certifcate 
In January 2001, VeriSign got tricked into issuing two code-signing certicates to someone
claiming to represent Microso. To pull o something like that, the attacker needed to es-
tablish a false identity, convince one or more people at VeriSign that the request was authen-
tic, and pay the certicate fees of about $400 per certicate. In other words, it required deep
knowledge of the system, skill, and determination. Te problem was uncovered several
weeks later, during a routine audit. Te public found out about the incident in late March,
aer Microso put mitigation measures in place.
Tese fraudulent certicates were not aorded any special level of trust by the operating
system, and the code signed by them wouldn’t run without warning. Still, they were thought
to represent a danger to the users of all Windows operating systems. Because they had been
issued under the name “Microso Corporation,” it was reasonable to believe that most peo-
ple would approve the installation of the code signed by them. In Microso’s own words:1
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Programs signed using these certicates would not be able to run automati-
cally or bypass any normal security restrictions. However, the warning dia-
logue that appears before such programs could run would claim that they had
been digitally signed by Microso. Clearly, this would be a signicant aid in
persuading a user to run the program.

Upon discovering the mistake, VeriSign promptly revoked the certicates, but that was not
enough to protect the users, because the fraudulent certicates had not included any revo-
cation information. Because of that, in late March 2001, Microso was forced to release an
emergency soware update to explicitly blacklist the oending certicates and explain to
users how to spot them.2 Tis apparently caused a lively debate about the implementation of
certicate revocation in Microso Windows.3 One of Microso’s Knowledge Base articles
posted at the time also provided instructions for how to remove a trusted certication au-
thority from one’s system.4

Thawte login.live.com
In the summer of 2008, security researcher Mike Zusman tricked Tawte’s certicate vali-
dation process to obtain a certicate for login.live.com, which was (and still is) Microso’s
single sign-on authentication hub, used by millions.
Mike exploited two facts: rst, that Tawte uses email for domain name authentication and
second, that Microso allows anyone to register @live.com email addresses. Te most obvi-
ous email aliases (e.g., hostmaster or webmaster) were either reserved or already registered,
but as it happened Tawte allowed a particularly wide range of aliases for conrmation pur-
poses. One of the email addresses Tawte accepted for authentication was
sslcertificates@live.com, and that one was available for registration. As soon as Mike ob-
tained access to this email address, obtaining a certicate was trivial.
Although Mike disclosed the problem in August of 2008,5 he revealed the name of the ex-
ploited CA only later in the year.6 Exploit details were revealed the following year, in his
DEFCON 17 talk10.
Seven years later, in 2015, the exact same thing happened to Microso again, but on the
live. domain name.7

1 Erroneous VeriSign-Issued Digital Certicates Pose Spoong Hazard (Microsoft Security Bulletin MS01-017, 22 March 2001)
2 How to Recognize Erroneously Issued VeriSign Code-Signing Certicates (Microsoft, retrieved 3 July 2014)
3 Microsoft, VeriSign, and Certicate Revocation (Gregory L. Guerin, 20 April 2001)
4 How to Remove a Root Certicate from the Trusted Root Store (Microsoft, retrieved 3 July 2014)
5 DNS vuln + SSL cert = FAIL (Intrepidus Group’s blog, 30 July 2008)
6 Mike’s Thawte tweet (31 December 2008)
7 A Finnish man created this simple email account - and received Microsoft’s security certicate (Tivi, 18 March 2015)
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StartCom Breach (2008)
On December 19, 2008, Mike Zusman managed to bypass StartCom’s domain name valida-
tion by exploiting a aw in StartCom’s web site.8 Te aw in the web application that con-
trolled certicate issuance allowed him to obtain validation for any domain name. (Start-
Com operates a two-step process: in the rst step you prove that you have control over a
domain name, and in the second you request a certicate.) Using his discovery, Mike re-
quested and obtained two certicates for domain names he had no authorization for.
His attack was detected very quickly, but only because he proceeded to obtain authorization
and request certicates for paypal.com and verisign.com. As it turned out, StartCom had a
secondary control mechanism in the form of a blacklist of high-prole web sites. Tis de-
fense-in-depth measure agged Mike’s activity and caused all fraudulently issued certicates
to be revoked within minutes.
StartCom published a detailed report documenting the attack and events that took place.9
Mike discussed the events in more detail at his DEFCON 17 talk.10

CertStar (Comodo) Mozilla Certifcate
Only a couple of days aer Mike Zusman’s attack on StartCom, their CTO and COO Eddy
Nigg discovered a similar problem with another CA.11 Following a trail le by some email
spam that was trying to mislead him into “renewing” his certicates with another compa-
ny,12 Eddy Nigg came across CertStar, a Comodo partner based in Denmark who would
happily issue certicates without performing any domain name validation. Eddy rst ob-
tained a certicate for startcom.org and then for mozilla.org. Unsurprisingly, a fraudulent
certicate for Mozilla’s high-prole domain name made a big splash in the press and
prompted a lively discussion on the mozilla.dev.tech.crypto mailing list.13

Aer verifying all 111 certicates issued by CertStar, Comodo revoked 11 (on top of the two
ordered by Eddy Nigg) for which it could not verify authenticity and said that there was no
reason to suspect that any of them actually were fraudulent.14

8 Nobody is perfect (Mike Zusman, 1 January 2009)
9 Full Disclosure (Eddy Nigg, 3 January 2009)
10 Criminal charges are not pursued: Hacking PKI (Mike Zusman, DEFCON 17, 31 July 2009): slides and video.
11 (Un)trusted Certicates (Eddy Nigg, 23 December 2008)
12 SSL Certicate for Mozilla.com Issued Without Validation (SSL Shopper, 23 December 2008)
13 Unbelievable! (mozilla.dev.tech.crypto, 22 December 2008)
14 Re: Unbelievable! (Robin Alden, 25 December 2008)

StartCom Breach (2008) 89



RapidSSL Rogue CA Certifcate
In 2008, a group of researchers led by Alex Sotirov and Marc Stevens carried out a spectacu-
lar proof-of-concept attack against Internet PKI in which they managed to obtain a rogue
CA certicate that could be used to sign a certicate for any web site in the world.15

To fully appreciate this attack, you need to understand the long history of attacks against
MD5, shown in the sidebar ahead. You will nd that this nal blow was the last one in a
long line of improving attacks, which started at some point aer MD5 had been broken in
2004. In other words, a result of a persistent and sustained eort.
Aer releasing their work on colliding certicates for dierent identities in 2006, Marc
Stevens and other researchers from his team continued to improve the chosen-prex colli-
sion technique in 2007. Tey were able to freely generate colliding certicates in a simula-
tion with their own (private) certication authority in an environment they fully controlled.
In real life, however, there were several constraints that were preventing exploitation.

15 MD5 considered harmful today (Sotirov et al., 30 December 2008)
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MD5 and PKI Attacks Timeline
• 1991: Ronald Rivest designs MD5 as a replacement for MD4.
• 1991–1996: MD5 becomes very popular and is deployed in a wide range of applications.

In the meantime, early signs of weaknesses in MD516 lead researchers to start recom-
mending that new applications use other, more secure hash functions.17

• 2004: Wang et al. demonstrate a full collision.18 MD5 is now considered properly broken,
but the attacks are not yet sophisticated enough to use in practice.

• 2005: Lenstra, Wang, and de Weger demonstrate a practical collision,19 showing two dif-
ferent certicates with the same MD5 hash and thus the same signature. Te two certi-
cates dier in the RSA key space, but the remaining information (i.e., the certicate iden-
tity) is the same.

• 2006: Stevens, Lenstra, and de Weger present a new technique,20 initially called target col-
lision but later renamed to chosen prex collision, which allows for creation of two certi-
cates that have the same MD5 hash but dierent identities. MD5 is now fully broken, with
meaningful attacks practical.

• 2008: Despite the fact that MD5 has been considered weak for more than a decade and
the fact that a meaningful attack was demonstrated in 2006, some certication authorities
are still using it to sign new certicates. A group of researchers led by Sotirov and Stevens
use an MD5 collision to carry out an attack against PKI and obtain a “rogue” CA certi-
cate, which they can use to generate a valid certicate for any web site.21

• 2012: A very sophisticated malware nicknamed Flame (also known as Flamer or Sky-
wiper) is discovered infecting networks in the Middle East.22 Te malware, which is
thought to be government sponsored, is later discovered to have used an MD5 collision
against a Microso CA certicate in order to carry out attacks against the Windows Up-
date code-signing mechanism. Aer analyzing the evidence, Marc Stevens concludes that
the attack had been carried out using a previously unknown attack variant.23 No one
knows how long Flame had been operating, but it is thought that it was active for any-
where from two to ve years.

16 Collisions for the compression function of MD5 (B. den Boer and A. Bosselaers, Advances in Cryptology, 1993)
17 Cryptanalysis of MD5 Compress (H. Dobbertin, May 1996)
18 Collisions for hash functions MD4, MD5, HAVAL-128, and RIPEMD (Wang et al., 2004)
19 Colliding X.509 Certicates based on MD5-collisions (Lenstra, Wang, de Weger, 1 March 2005)
20 Colliding X.509 Certicates for Different Identities (Stevens, Lenstra, de Weger, 23 October 2006)
21 MD5 considered harmful today (Sotirov et al., 30 December 2008)
22 What is Flame? (Kaspersky Lab)
23 CWI cryptanalyst discovers new cryptographic attack variant in Flame spy malware (CWI, 7 June 2012)
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Chosen-Prefx Collision Attack
Te goal of the attacker is to create two documents with the same MD5 signature. Most dig-
ital signature techniques sign hashes of data (instead of the data directly). If you can con-
struct two documents that both have the same MD5 hash, then a signature for one is also
valid for the other. All you now need to do is send one of the two documents (the innocent
one) to a trust authority for signing and subsequently copy over the signature to the second
document (the forgery).
When it comes to certicates, there’s another problem: you can’t just send your own certi-
cate to a CA to sign. Instead, you send them some information (e.g., domain name and your
public key), and they generate the certicate. Tis is a signicant constraint, but it can be
overcome.
A collision attack can be carried out using two specially constructed collision blocks that
manipulate the hashing algorithm, with the goal of bringing it to the same state for two
dierent inputs. Taking into account both inputs (one in the innocent document and the
other in the forgery), the collision blocks undo the dierences as far as the hashing algo-
rithm is concerned. Tis means two things: (1) you must know the prex of the innocent
document in advance—this is where the name chosen-prex comes from—and (2) you must
be able to put one of the collision blocks into it.
In practice, it’s not possible to put the collision blocks right at the end, which is why the
resulting les must also have identical suxes. In other words, once you get the collision
right, you don’t want any dierences in the les to make the hash dierent again.

Construction of Colliding Certifcates
To use the chosen-prex technique in real life requires that we carry out the attack under
constraints imposed by the structure of the document we wish to forge and the constraints
imposed by the process in which the document is created and digitally signed.
In the context of digital signatures, those constraints are as follows:

1. Certicates are created by certication authorities, using the information submitted in
a CSR.

2. Te overall structure of a certicate is determined by the X.509 v3 specication. Te
attacker cannot inuence the structure but can predict it.

3. Some information that ends up in the certicate is copied over from the CSR. Te at-
tacker fully controls that part. Crucially, a certicate will always have a public key that
is copied verbatim from the CSR. Te key is “random” by design, which means that a
specially craed random-looking collision block won’t raise any alarms.
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4. Some further information will be added to the certicate by the certication authority.
Te attacker may be able to inuence some parts (e.g., the certicate expiration time),
but in general, the best they can do here is predict what the content will be.

From this information, it’s clear that the collision prex will include all the certicate elds
that appear before the public key (which is where the collision block will be stored). Because
the contents of the collision block depends on the prex, the entire prex must be known
before the collision data can be created and subsequently sent to the certication authority.
Looking at the certicate elds in the prex, most of them are either known (e.g., the issuer
information can be obtained from another certicate issued by the same CA) or provided
by the attacker in the CSR (e.g., common name). However, there are two elds controlled by
the CA and not known in the advance: the certicate serial number and the expiration date.
For the time being, we’ll assume that the attacker will be able to predict the contents of these
two elds; later, we’ll examine how that can be achieved.
We also have to gure out what to do with the part that comes aer the public key (the
sux). As it turns out, this part consists of several X.509 extensions, all of them known in
advance. With proper alignment (MD5 operates on blocks of data), the sux is simply the
same in both certicates.
Tus, the attack process is as follows:

1. Determine what the prex of the CA-generated certicate will look like and determine
what some of the CSR elds need to be.

2. Construct a desired prex for the rogue certicate.
3. Determine the sux.
4. Construct collision blocks using the data from the previous three steps.
5. Build a CSR and submit it to the certication authority.
6. Build a rogue certicate by combining the rogue prex, the second collision block, the

sux, and the signature taken from the real certicate.

Note
Te second collision block and the sux must be part of the forged certicate for
the attack to work, but they must be hidden in some way so as not to create prob-
lems when the certicate is used. In the RapidSSL attack, the so-called tumor was
placed into an unimportant X.509 v3 comment extension, which is ignored during
processing. Someone knowledgeable would be able to spot the anomaly, but virtu-
ally no one examines certicates at this level.
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Predicting the Prefx
Now let’s go back to discuss how the researchers managed to predict the contents of the two
elds (expiration time and serial number) that changed with every certicate. As it turns
out, it was a combination of luck and “help” from the CA. Here’s how it played out:

• RapidSSL’s certicate-issuance process was fully automated, and it always took exactly
six seconds from the time a CSR was submitted until the certicate was generated. Tis
meant that it was possible to reliably predict the certicate expiration time down to a
second, which was sucient.

• Rather than randomize the serial number (which is considered best practice),
RapidSSL’s serial number had been a simple counter incremented by one for every new
certicate. Tis meant that if you obtained two certicates in quick succession you
could predict the serial number of the second certicate.

Tere were six CAs issuing MD5-signed certicates at the time, but it was these two facts
about RapidSSL and lack of any other prevention measures24 that eventually made every-
thing click. However, a big complication was the fact that when using the team’s special
computing cluster consisting of 200 PlayStation 3 consoles they needed about a day to gen-
erate one collision. Tus, they not only had to choose the exact moment in time during
which to submit a CSR but also predict the serial number that would be assigned to the
certicate.

24 PKI is obviously a tricky business to be in, which is why in cryptography there are all sorts of best practices and defense-in-depth measures

designed to kick in when everything else fails. A certicate designed to sign other certicates incorporates a special X.509 v3 extension called

Basic Constraints, with the CA bit set to true. This extension also has a parameter called pathlen, which can be used to restrict the depth of

subsequent CA certicates. If the pathlen parameter in RapidSSL’s CA certicate had been set to zero (which means that no further subordi-

nate CA certicates are allowed), the rogue CA certicate would have been useless.
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Figure 4.1. Comparison of the genuine (left) and collided RapidSSL certicates (right) [Source: Benne de Weger]
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Teir approach was to carry out the attack on Sunday evenings, during the CA’s least busy
period. Tey would obtain the value of the serial number counter on a Friday and aim to
submit a CSR so that the resulting serial number would be higher by 1,000. As the time of
the attack approached, they would push the counter up by requesting new certicates, aim-
ing to get as close to the 1,000 mark as possible. During each weekend, they had enough
time to submit three attempts. Aer three unsuccessful weekends, they succeeded on the
fourth.

What Happened Next
While planning the attack, the researchers took measures to minimize any potential fallout.
For example, the rogue certicate had been created with an expiration date in the past,
which meant that even if the private key behind it was leaked the certicate would have
been useless. Te key parties in charge of browser trust stores (e.g., Microso, Mozilla, etc.)
were contacted prior to the publication of the attack, which allowed them to preemptively
blacklist the rogue CA certicate. RapidSSL had also been given an advance warning,25 and
that caused them to speed up their migration to SHA1. Tey upgraded to SHA1 very quick-
ly, within hours of the public announcement.26 Full details of the chosen-prex collision
technique were released only later, aer the researchers had been satised that it was safe to
do so.
In the end, the attack cost only the $657 in certicate costs,27 but the researchers had access
to a cluster of 200 PS3 computers. Equivalent CPU power on EC2 would have cost about
$20,000. When the attack was announced, the researchers estimated that with an improved
approach they could repeat the attack in a day for only $2,000.

Comodo Resellers Breaches
A series of incidents unfolded in 2011, starting with another Comodo breach in March. Te
rst attack took place on March 15th, when one of Comodo’s registration authorities (RAs)
was “thoroughly compromised” (in the words of Robin Alden, then the CTO of Comodo),
leading to the issuance of nine certicates for seven web sites.28 Te sites in question were:

• addons.mozilla.org

• global trustee

• google.com

25 Verisign and responsible disclosure (Alexander Sotirov, 6 January 2009)
26 This morning’s MD5 attack - resolved (Tim Callan, 30 December 2008)
27 Even though they requested a large number of certicates, most of them were reissued, which RapidSSL allowed for free.
28 Comodo Report of Incident (Comodo, 22 March 2011)
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• login.live.com

• login.skype.com

• login.yahoo.com

• mail.google.com
Clearly, with exception of the “global trustee” certicate whose purpose is unclear, all the
certicates were for key internet web sites that hundreds of millions of users visit every day.
Fortunately, the attack was detected very quickly and all the fraudulent certicates revoked
within hours. It wasn’t even clear if all of these certicates were retrieved by the attacker.
Comodo saw only the Yahoo certicate hit their OCSP responder (and only twice) and none
of the other certicates.29

Te next day, Comodo started to inform various other relevant parties, and the patching
process began.30 Although Comodo didn’t disclose the identity of the compromised RA, it
was later alleged by the attacker that it was an Italian company, Instant SSL. Te attacks
were disclosed to the public on March 22nd by Comodo, Mozilla, Microso, and others.
An interesting fact is that some people learned about the attacks several days earlier from
clues in the Chrome source code (which is publicly available). Jacob Appelbaum wrote
about his discovery on the Tor blog.31

Comodo went on to disclose two further reseller compromises on March 26th, although one
of them later turned out to be a false report. Te other report was genuine but didn’t result
in any fraudulent certicates being issued. Apparently, the security measures introduced af-
ter the March 15th incident were eective and prevented the attacker from issuing further
certicates.32

Also on March 26th, the attacker himself started to communicate with the public,33 and
that’s when we learned about ComodoHacker (the name he chose for himself), which later
turned out to be a much bigger story, spanning months of activity, many CAs, and many
incidents. You can read more about him in the sidebar later in this chapter.
In May, Comodo was again in the news because one of their resellers, ComodoBR, was
found to have an SQL injection vulnerability on their web site.34 Te attacker used the vul-
nerability to retrieve private customer data (including certicate signing requests), but there
were no other PKI-related consequences.

29 Strictly speaking, this is not an entirely reliable indicator of certicate use, because an active man-in-the-middle attacker can suppress all

OCSP trac from the victim.
30 Bug 642395: Deal with bogus certs issued by Comodo partner (Bugzilla@Mozilla, reported 17 March 2011)
31 Detecting Certicate Authority compromises and web browser collusion (Jacob Appelbaum, 22 March 2011)
32 RE: Web Browsers and Comodo Announce A Successful Certicate Authority Attack, Perhaps From Iran (Robin Alden, 29 March 2011)
33 A message from Comodo Hacker (ComodoHacker, 26 March 2011)
34 New hack on Comodo reseller exposes private data (The Register, 24 May 2011)
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In the end, this series of incidents exposed how operating a large network of partners on a
trust basis alone is entirely unfeasible, especially in a complex ecosystem such as PKI. Co-
modo claimed that aer the 2008 incident only 9% of their partners were le with the ability
to fully control certicate issuing, but that was clearly still too many. Aer the rst 2011 in-
cident, no resellers were le able to issue certicates without further validation from Como-
do.
More importantly, these incidents showed how Comodo (and possibly other CAs) had not
been maintaining a realistic threat model. Tis was acknowledged by Robin Alden in a post
on mozilla.dev.security.policy (emphasis mine):

We were dealing with the threat model that the RA could be Underperforming
[sic] with, or trying to avoid doing, their validation duty (neither of which
were the case for this RA), but what we had not done was adequately con-
sider the new (to us) threat model of the RA being the subject of a targeted
attack and entirely compromised.

StartCom Breach (2011) 
In the summer of 2011, StartCom was again targeted, supposedly by the same person who
had previously attacked Comodo.35 Because of the incident, which took place on June 15th,
StartCom stopped issuing new certicates for about a week. Te following message ap-
peared on their web site:

Due to an attack on our systems and a security breach that occurred at the
15th of June, issuance of digital certicates and related services has been sus-
pended. Our services will remain oine until further notice. Subscribers and
holders of valid certicates are not aected in any form. Visitors to web sites
and other parties relying on valid certicates are not aected. We apologize
for the temporary inconvenience and thank you for your understanding.

Apparently, no fraudulent certicates were issued and the attacker—who might have gained
access to some sensitive data and come very close to the company’s precious root key36—did
not cause any signicant long-term damage. Te company never followed up with an o-
cial report about the incident, acknowledging the incident only via a post on Eddy Nigg’s
blog.37

35 Another status update message (ComodoHacker, 6 September 2011)
36 Response to some comments (ComodoHacker, 7 September 2011)
37 Cyber War (Eddy Nigg, 9 September 2011)
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DigiNotar
DigiNotar was a Dutch CA that was in business of issuing certicates to the general public
as well as handling the PKI aspects of the Dutch e-government program PKIoverheid (over-
heid means government in Dutch). In 2011, DigiNotar became the rst CA to be completely
compromised, with fraudulent certicates used in real, and possibly very serious, man-in-
the-middle attacks. Needless to say, DigiNotar’s root certicates were all revoked and the
company went out of business, declaring voluntary bankruptcy in September 2011.

Public Discovery
Te incident came to light on August 27th, when an Iranian Gmail user reported intermit-
tent problems when accessing his email account.38 According to the testimony, there were
daily “downtime” periods of 30 to 60 minutes, during which access was impossible due to an
unusual certicate warning message. As it turned out, the downtime described by the user
was caused by a man-in-the-middle attack that Chrome detected and prevented using its
proprietary public key pinning mechanism.
In the days that followed, we learned that the reported problem was actually part of a very
large attack on a scale previously unheard of, aecting an estimated 300,000 IP addresses.
Virtually all of the IP addresses were in Iran. Te intercepting certicates were all issued by
DigiNotar. But how was that possible?

Fall of a Certifcation Authority
Faced with a huge security incident that aected its digital infrastructure, the Dutch govern-
ment immediately took control of DigiNotar and hired an external security consultancy,
Fox-IT, to investigate. Fox-IT published their initial report39 one week later, on September
5th. Here is the most relevant part of the report:

Te most critical servers contain malicious soware that can normally be de-
tected by anti-virus soware. Te separation of critical components was not
functioning or was not in place. We have strong indications that the CA-
servers, although physically very securely placed in a tempest proof environ-
ment, were accessible over the network from the management LAN.
Te network has been severely breached. All CA servers were members of one
Windows domain, which made it possible to access them all using one ob-

38 Is This MITM Attack to Gmail’s SSL ? (alibo, 27 August 2011)
39 DigiNotar public report version 1 (Fox-IT, 5 September 2011)
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tained user/password combination. Te password was not very strong and
could easily be brute-forced.
Te soware installed on the public web servers was outdated and not
patched.
No antivirus protection was present on the investigated servers.
An intrusion prevention system is operational. It is not clear at the moment
why it didn’t block some of the outside web server attacks. No secure central
network logging is in place.

Te full report was released one year later, in August 2012; at 100 pages, it provides the most
detailed report of a CA breach ever seen.40 From the report, we learned that the initial at-
tack occurred on June 17th, when a public-facing web server running a vulnerable content-
management application was breached. From there, it took the attacker until July 1st to
break into the most secure network segment, where the root material was placed. Tis net-
work segment was not connected to the Internet directly, but the attacker was able to tunnel
into it from less important systems.
Te rst batch of 128 rogue certicates were issued on July 10th, roughly a week from when
the attacker rst had access to the CA servers themselves. Several other batches followed,
arriving at a total of at least 531 certicates for 53 unique identities. Due to the scale of the
breach, the actual number of rogue certicates is not known; the logs were tampered with,
and many of the certicates later discovered in the wild could not be found in the appropri-
ate databases.
As you can see in the following table, the list of names used for the certicates consists
largely of high-prole web sites, certication authorities, and government agencies.

40 Black Tulip Update (Dutch government, 13 August 2012)
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Table 4.1. Common names used in rogue certicates issued by the DigiNotar attacker

*.*.com *.*.org *.10million.org (2)

*.android.com *.aol.com *.azadegi.com (2)

*.balatarin.com (3) *.comodo.com (3) *.digicert.com (2)

*.globalsign.com (7) *.google.com (26) *.JanamFadayeRahbar.com

*.logmein.com *.microsoft.com (3) *.mossad.gov.il (2)

*.mozilla.org *.RamzShekaneBozorg.com *.SahebeDonyayeDigital.com

*.skype.com (22) *.startssl.com *.thawte.com (6)

*.torproject.org (14) *.walla.co.il (2) *.windowsupdate.com (3)

*.wordpress.com (14) addons.mozilla.org (17) azadegi.com (16)

Comodo Root CA (20) CyberTrust Root CA (20) DigiCert Root CA (21)

Equifax Root CA (40) friends.walla.co.il (8) GlobalSign Root CA (20)

login.live.com (17) login.yahoo.com (19) my.screenname.aol.com

secure.logmein.com (17) Thawte Root CA (45) twitter.com (18)

VeriSign Root CA (21) wordpress.com (12) www.10million.org (8)

www.balatarin.com (16) www.cia.gov (25) www.cybertrust.com

www.Equifax.com www.facebook.com (14) www.globalsign.com

www.google.com (12) www.hamdami.com www.mossad.gov.il (5)

www.sis.gov.uk (10) www.update.microsoft.com (4)  

Some of the certicates were not intended for well-known web sites but were used to carry
various messages instead. Te phrases in the following table were seen in various places in
the certicates.

Table 4.2. Messages seen embedded in the rogue certicates (it’s not clear if the translations are accurate)

Original message Translation

Daneshmande Bi nazir Peerless scientist

Hameye Ramzaro Mishkanam Will break all cyphers

Janam Fadaye Rahbar I will sacrice my life for my leader

Ramz Shekane Bozorg Great cryptanalyst

Sahebe Donyaye Possessor of the world (God)

Sare Toro Ham Mishkanam I will break Tor too

Sarbaze Gomnam Unknown soldier

It also transpired that DigiNotar had discovered the intrusion on July 19th and, with the
help of an outside consultancy (not Fox-IT), cleaned up their systems by the end of July.
Unfortunately, the damage had already been done. Presumably under the impression that
the incident had been contained, DigiNotar quietly revoked a small number of fraudulent
certicates (the ones they knew about), and—recklessly—failed to inform anyone.
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Man-in-the-Middle Attacks
Given the scale of the compromise, it is doubtful that a prompt disclosure would have saved
DigiNotar, but it would have denitely stopped the attackers from using the rogue certi-
cates. We know this because the rogue certicates were generated with embedded OCSP in-
formation, and the investigators were able to track the certicate deployment by examining
the logs of DigiNotar’s OCSP responder.41

Initially, aer the certicates were generated the logs showed few requests: most likely a re-
sult of testing by the attacker. Te rst signs of mass deployment were starting to show on
August 4th, with continuous increases in volume until August 29th, which was the day on
which browsers revoked the DigiNotar root certication and killed all rogue certicates. We
know from attacked users that the attack was not constant but occurred in bursts. Perhaps
there was a reason for such behavior, such as limitations of the attack method (DNS cache
poisoning was mentioned as the likely approach42 used) or simply an inability to cope with
a large amount of trac at any one time.

Figure 4.2. DigiNotar OCSP activity in August 2011 [Source: Fox-IT]

Besides, the attackers were likely only interested in collecting Gmail passwords, and—as-
suming their capacity was limited—once they saw a password from one IP address they
could move on to intercept another. With a password cache, they could abuse the accounts
at their leisure (people rarely change their passwords) by connecting to Gmail directly.

41 When a TLS client encounters a certicate that contains OCSP information, it contacts the designated OCSP server to determine if the certi-

cate has been revoked. This method of tracking is not foolproof, because the MITM attacker can suppress all trac to the OCSP server. Browsers

tend to fail quietly when they encounter OCSP communication failures.
42 DNS cache poisoning is an attack against DNS infrastructure in which the attacker exploits weaknesses in the DNS protocol as well as some

implementations. Using clever tricks along with packet fooding, it might be possible to trick a caching DNS server into delegating domain name

decisions from the actual owner to the attacker. If that happens, the attacker determines what IP addresses are returned for domain names in

the attacking space. A successful attack will impact all users connecting to the caching DNS server. During the DigiNotar MITM attacks in Iran,

some users reported that changing their DNS conguration from their ISP’s servers to other servers (e.g., Google’s) stopped the attacks.
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All in all, there were exactly 654,313 OCSP requests to check the revocation status of the
rogue Google certicate, submitted from 298,140 unique IP addresses. About 95% of those
were within Iran, with the remaining IP addresses identied as the Tor exit nodes, proxies,
and virtual private networks from around the world.

ComodoHacker Claims Responsibility
ComodoHacker claimed responsibility for the DigiNotar breach, posting from his Pastebin
account on September 5th.43 He followed up with three further posts, as well as the
calc.exe binary signed with one of the certicates, thus oering denitive proof that he was
involved in the incident. Te posts contain some details about the attacks, which match the
information in the ocial report (which was released to the public only much later).

How I got access to 6 layer network behind internet servers of DigiNotar, how
I found passwords, how I got SYSTEM privilage [sic] in fully patched and up-
to-date system, how I bypassed their nCipher NetHSM, their hardware keys,
their RSA certicate manager, their 6th layer internal “CERT NETWORK”
which have no ANY connection to internet, how I got full remote desktop con-
nection when there was rewalls that blocked all ports except 80 and 443 and
doesn’t allow Reverse or direct VNC connections, more and more and more...

It’s not clear if ComodoHacker was actually involved with the attacks in Iran, however. Al-
though he was happy to claim responsibility for the CA hacks, ComodoHacker distanced
himself from the MITM attacks. His second DigiNotar post contained the following sen-
tence:

I’m single person, do not AGAIN try to make an ARMY out of me in Iran. If
someone in Iran used certs I have generated, I’m not one who should explain.

In a subsequent post, he repeated that statement:

[...] I’m the only hacker, just I have shared some certs with some people in
Iran, that’s all... Hacker is single, just know it

43 Striking Back... (ComodoHacker, 5 September 2011)
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Who Is ComodoHacker?
ComodoHacker made his public appearance in 2011 and le a mark on the PKI with a string
of attacks against several certication authorities. Te rst batch of attacks came in March
2011, when several Comodo partners were breached. Rogue certicates were issued but also
quickly discovered, which prevented their exploitation.
StartCom appears to have been attacked in June, and the attacker appears to have had some
success, but, according to both parties, no fraudulent certicates were issued. StartCom
stopped issuing certicates but never provided any substantial details about the incident.
Ten there was the DigiNotar attack, which resulted in a full compromise of the DigiNotar
certication authority and shook up the entire PKI ecosystem.
Aer being mentioned as a successful target in one of ComodoHacker’s messages, GlobalSign
felt it prudent to halt certicate issuance for a period time and investigate. Tey subsequently
found that their public-facing web server, which is not part of the CA infrastructure, had been
breached.44 Te only casualty was the private key for the www.globalsign.com domain name.
Immediately aer the Comodo incidents, the hacker started communicating with the public
via the ComodoHacker account on Pastebin45 and le 10 messages in total. Aer the DigiNo-
tar incident, he also had a brief period during which he was posting on Twitter, under the
name ich sun and handle ichsunx2.46 Although he appeared to have initially enjoyed the atten-
tion and even gave interviews, his last communication was via Twitter in September 2011.

DigiCert Sdn. Bhd.
In November 2011, a Malaysian certication authority, DigiCert Sdn. Bhd., was found to be
issuing dangerously weak certicates. Tis company, which is not related to the better
known and US-based DigiCert, Inc., was operating as an intermediate certication authori-
ty on a contract with Entrust and, before that, CyberTrust (Verizon). Twenty-two certi-
cates were found to be not only weak but lacking in other critical aspects:

Weak 512-bit keys
A key that is only 512 bits long can be relatively easily refactored using only brute
force.47 With the key in hand, a malicious party can impersonate the victim web site
without triggering certicate warnings.

44 September 2011 Security Incident Report (GlobalSign, 13 December 2011)
45 ComodoHacker’s Pastebin (retrieved 7 August 2014)
46 ich sun on Twitter (retrieved 7 August 2014)
47 But not brute force in the sense that all possible numbers are tried. It’s more ecient to use one of the integer factorization methods, for

example, the general number feld sieve (GNFS).
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Missing usage restrictions
Certicates are expected to carry usage restrictions in the Extended Key Usage (EKU)
extension. Even though DigiCert Sdn. Bhd. had been contractually restricted to issu-
ing only web site certicates, because some of their certicates were missing the usage
restrictions they could be used for any purpose: for example, code signing.

Missing revocation information
None of the 22 certicates contained revocation information. Tis meant that aer
the invalid certicates were discovered there was no way to reliably revoke them.

As it turned out, the problem was discovered only aer one of the public keys was found to
have been broken by brute force and used to sign malware.48 Aer nding out about the
problem, Entrust revoked the intermediate certicate49 and informed the browser vendors.
Within a week, both Entrust and CyberTrust revoked their respective intermediate certi-
cates, Mozilla informed the public via a post on their blog,50 and browser vendors released
updates to explicitly blacklist the intermediate certicates and the known weak server cer-
ticates. In the aermath, DigiCert, Inc. was le having to explain the name confusion to
their customers.51

Flame 
In May, security researchers began analyzing a new strand of malware that was making
rounds chiey in the Middle East. Te malware in question, called Flame22 (also known as
Flamer or Skywiper), turned out to be the most advanced yet: over 20 MB in size, over 20
attack modules (the usual malware stu, such as network sning, microphone activation,
le retrieval, and so on), and built using components such as a lightweight relational
database (SQLite) and a scripting language (Lua). It was all done in such a way that it re-
mained undetected for a very long time (which meant low or undetectable failures; it was
clearly not an average soware development job).
Overall, Flame was discovered on about 1,000 systems in what seemed to be very targeted
attacks. Iranian CERT issued a press release about Flame in May 2012. 52 Soon thereaer,
the creators of the Flame malware issued a suicide command, with the intention that all in-
stances would delete themselves. Still, many instances of the malware and several instances
of the command and control servers were captured and analyzed.53

48 Bug #698753: Entrust SubCA: 512-bit key issuance and other CPS violations; malware in the wild (Bugzilla@Mozilla, 1 November 2011)
49 Entrust Bulletin on Certicates Issued with Weak 512-bit RSA Keys by Digicert Malaysia (Entrust, retrieved 3 July 2014)
50 Revoking Trust in DigiCert Sdn. Bhd Intermediate Certicate Authority (Mozilla Security Blog, 3 November 2011)
51 DigiCert, Inc. Of No Relation to Recent “Digi” Insecure Certicates (DigiCert, Inc., 1 November 2011)
52 Identication of a New Targeted Cyber-Attack (MAHER, 28 May 2012)
53 Flame / Skywiper / Flamer reports (CrySyS Lab, 31 May 2012)
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Figure 4.3. Flame activity [Source: Kaspersky Lab]

Flame against Windows Update
What happened next stunned everyone. It transpired that one of the functions of the Flame
malware was an attack against the Windows Update mechanism, which could be used to
propagate to any Windows installations on the local network. Te surprising part was the
fact that Flame used a cryptographic attack to achieve it.54 On top of that, the specic cryp-
tographic technique wasn’t previously known.
Once on a local network, subverting Windows Update turned out to be simple. Internet Ex-
plorer supports Web Proxy Autodiscovery (WPAD), which is a protocol that programs can
use to nd HTTP proxies on the local network.55 An adversary with access to the local net-
work can advertise as a proxy and gain access to the victim’s HTTP(S) trac. Flame did ex-
actly this and included a simple web server that posed as a Windows Update server to ad-
vertise available “updates” laced with malicious code.56

54 Analyzing the MD5 collision in Flame (Alex Sotirov, 11 June 2012)
55 Web Proxy Autodiscovery Protocol (Wikipedia, retrieved 3 July 2014)
56 Snack Attack: Analyzing Flame’s Replication Pattern (Alexander Gostev, 7 June 2012)
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Windows Update does not appear to use TLS (a simple test on my desktop showed all up-
date trac in plaintext), but Microso does use code signing for their updates, which
means that no one should be able to create binaries that would be accepted as originating
from Microso. Te twist in the story was that Flame was somehow able to sign all its bina-
ries as Microso.

Flame against Windows Terminal Services
When Microso started talking about the weaknesses attacked by Flame, a story of deep in-
competence unfolded. In order to operate Terminal Services licensing, upon activation each
Terminal Server installation would receive a special subordinate CA certicate. Te sub-CA
would then be used to create end-user licenses. Microso made several critical errors when
designing this system:

1. Te main Terminal Services CA certicate (which was used to issue subordinate CAs
allocated to individual customers) was issued from the same trusted root as the Win-
dows Update CA.

2. Te parent Terminal Services CA was allowed to be used for licensing and—for some
unexplained reason—code signing.

3. Subordinate CA certicates had no usage restrictions, which meant that they inherited
the restrictions of the parent certicate.

What this meant was that every single Terminal Server customer was given an unrestricted
subordinate CA certicate they could use to sign Windows Update binaries, with no hacking
required.
Fortunately for Microso, such certicates could “only” be used against Windows XP ma-
chines. Te subordinate CA certicates contained a proprietary X.509 extension called Hy-
dra, and it was marked critical.57

Te Windows XP code for certicate checking ignores critical extensions, but Windows
Vista (released worldwide on 30 January 2007) and subsequent Windows versions under-
stand critical extensions and handle them properly. Tis meant that the Flame authors had
to nd a way to obtain a certicate without the Hydra extension.

Flame against MD5
Te other critical mistake made by Microso when designing the Terminal Server licensing
scheme was using MD5 signatures for the certicates. Te other errors (discussed in the

57 In PKI, when an extension is marked critical, certicate chain validation can be successful only if the client (performing the validation) under-

stands the extension. Otherwise, validation fails. The idea behind this feature is that a critical extension might contain some information of

which understanding is required for robust validation.
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previous section) were relatively subtle and required a good understanding of PKI to detect,
but at the time that Microso’s system was designed, MD5 was widely known to be inse-
cure. Tere had been a very eective demonstration of the insecurity of MD5 in 2008, with
the generation of the rogue CA certicate in the RapidSSL attack. To put it into perspective,
Microso wouldn’t even allow MD5 certicates in their own root certicate program at that
time, but they were used for Terminal Server licensing.
If you’ve read the earlier section describing the RapidSSL attack and the generation of a
rogue CA certicate, you probably know what happened next: Flame used a chosen-prex
collision attack against MD5 in order to generate a rogue CA certicate. Te attack was con-
ceptually the same as the RapidSSL attack described earlier. Here’s what we know:

1. Insecure MD5 signatures were used, which opened up the system to cryptographic at-
tacks.

2. Certicate issuance was automated and the timing controlled by the attacker. All elds
except certicate validity and certicate serial number were known in advance.

3. Certicate validity was predictable, requiring second precision.

4. Serial numbers were not serial as in the RapidSSL case, but they were predictable
(number of milliseconds since boot, followed by two xed bytes, followed by a serial
certicate number) and required millisecond precision.

Te millisecond precision required probably made the task much more dicult and re-
quired a good network connection in order to minimize jitter. Access to a high-powered
computing cluster would have sped up collision search and improved accuracy. We do not
know how many attempts were needed (perhaps Microso knows, if they’re keeping good
records of the licensing activity), but the attackers were obviously successful in the end.
Marc Stevens, the principal force behind the previously published chosen-prex collision at-
tack technique, analyzed the rogue certicate and determined that:58

Flame used a chosen-prex collision attack. [...] Flame used a birthday search
followed by 4 near-collision blocks to obtain a collision.
Tese collision bits were hidden inside the RSA modulus in the original cert
and inside the issuerUniqueID eld in the evil cert. Using my forensic tool I
was able to retrieve the near-collision blocks of the original cert (that is not
available and might never be) and the chaining value before the rst near-col-
lision block. Using this information I was able to reconstruct the 4 dierential
paths. Tese dierential paths clearly show that a new variant chosen-prex
collision attack was used as well as a new dierential path construction algo-
rithm that are not in the literature.

58 Microsoft Sub-CA used in malware signing (Marc Stevens, 12 June 2012)
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Whoever designed Flame and carried out the attacks against Microso obviously had at
their disposal serious hardware, a capable team of developers, and access to world-class
cryptographers.

Counter Cryptanalysis
Collision attacks against hash functions used for signatures are a real danger. Even though
MD5 troubles are largely behind us, SHA1, which is still very widely used, is also known to be
weak. In an ideal world, we would have stopped using it by now. In reality, it will stay in use for
a couple more years, because we have to deal with a massive ecosystem and huge inertia.
In response to this problem, Marc Stevens invented counter-cryptanalysis,59 a system of looking
for traces of successful collision attacks in certicates, as described in the abstract of the re-
search paper:

We introduce counter-cryptanalysis as a new paradigm for strengthening weak
cryptographic primitives against cryptanalytic attacks. Redesigning a weak
primitive to more strongly resist cryptanalytic techniques will unavoidably
break backwards compatibility. Instead, counter-cryptanalysis exploits un-
avoidable anomalies introduced by cryptanalytic attacks to detect and block
cryptanalytic attacks while maintaining full backwards compatibility.

TURKTRUST 
In December 2012, Google uncovered another serious PKI problem thanks to the public key
pinning mechanism supported by the Chrome browser. Pinning is a mechanism that allows
user agents to check that only authorized CAs are issuing certicates for specic web sites.
Chrome ships with a small, hardcoded list of sites, but they are some of the most visible sites
in the world.60

In December 2012, when a Chrome user encountered a certicate that did not match with
the hardcoded built-in list, their browser communicated the entire oending certicate
chain back to Google. With access to the chain, they were able to link the rogue certicate to
TURKTRUST, a Turkish certication authority.61

Te invalid subordinate certicates were promptly revoked by all parties. TURKTRUST
published a detailed report only a couple of days later and continued to provide regular up-
dates.62 We learned that a mistake had been made in August 2011 at TURKTRUST during a

59 Counter-cryptanalysis (Marc Stevens, CRYPTO 2013)
60 I discuss public key pinning in the section called “Pinning ” in Chapter 10.
61 Enhancing digital certicate security (Google Online Security Blog, 3 January 2013)
62 Public Announcements (TURKTRUST, 7 January 2013)
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transition between two system installations, causing two certicates issued on that day to be
marked as CA certicates. Te mistake remained undetected for about 15 months, during
which time the certicates were used as humble server certicates.
At some point in December 2012, a rewall with MITM capabilities was installed at EGO,
one of the two organizations in possession of a misissued subordinate CA certicate. A con-
tractor imported the certicate into the rewall, which started to perform its MITM func-
tion by generating fake web site certicates on demand. In the process, a clone of one of
Google’s certicates was made and used and subsequently detected by Chrome.
It’s not clear if the contractor knew that the certicate in question was a CA certicate. If
you’re troubleshooting a MITM device and you are not familiar with PKI, importing any
valid certicate you have sitting around seems like a thing that you might try.
Te browser root store operators accepted TURKTRUST’s position that the incident was the
result of an administrative error. Tere was no evidence of attack against the CA; fake cer-
ticates were not seen outside EGO’s own network. Mozilla asked TURKTRUST to undergo
an out-of-order audit, and Google and Opera decided to stop recognizing TURKTRUST’s
EV certicates.

ANSSI 
In December 2013, Google announced that Chrome was revoking trust in a subordinate CA
certicate issued by ANSSI (Agence nationale de la sécurité des systèmes d’information), a
French network and information security agency. A few days later, the trust in the parent
ANSSI certication authority was restricted to allow only certicates issued for the domain
names corresponding to French territories (.fr being the main such top-level domain
name).63

Te reason for the revocation was the discovery that the subordinate CA certicate had
been used in a transparent interception (man-in-the-middle) device running on the agen-
cy’s network. As a result, certicates for various domain names were generated, some of
which belonged to Google. Once again, Chrome’s pinning of Google’s certicate detected a
misuse of the PKI.
Mozilla64 and Microso65 also disabled the oending CA certicate. Te agency issued a
brief statement blaming human error for the problem. Tere’s been no evidence that the in-
appropriate certicate was used anywhere outside the network of the French Treasury.66

As is usually the case, a discussion followed on mozilla.dev.security.policy.67

63 Further improving digital certicate security (Google Online Security Blog, 7 December 2013)
64 Revoking Trust in one ANSSI Certicate (Mozilla Security blog, 9 December 2013)
65 Improperly Issued Digital Certicates Could Allow Spoong (Microsoft Security Advisory 2916652, 9 December 2013)
66 Revocation of an IGC/A branch (ANSSI, 7 December 2013)
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In addition to more details of the incident being provided, various other problems with how
ANSSI used the CA certicate were uncovered. For example, many of their certicates did
not include any revocation information. Unusual activity was detected on their CRLs, with
thousands of certicates suddenly appearing on previously empty lists. It’s not clear if and
how the incident concluded. According to their own admission, ANSSI will be unable to
comply with Baseline Requirements until at least December 2015, which is two years aer
Mozilla’s deadline.68

Widespread SSL Interception
Despite many PKI weaknesses, the biggest danger to the ecosystem proved to be widespread
SSL interception carried out by locally-installed soware, employers and network providers.
Over time, such interception become common, even though we usually don’t hear about it.
Tose directly aected are usually not aware of what’s happening, and don’t report the inci-
dents. Once in a while we get lucky, the incidents do get reported, and our awareness of
these problems raises by a bit.

Gogo
In January 2015, Adrienne Porter Felt—member of the Google Chrome security team—re-
ported that in-ight Internet connectivity company Gogo is intercepting all encrypted traf-
fic and serving invalid certicates bearing hostnames of legitimate web sites.69

Gogo didn’t have a way of magically producing valid certicates, which meant that all their
users had to click through certicate warnings in order to reach their desired web sites.
Tat’s why the certicates were invalid. But that doesn’t change the fact that Gogo potential-
ly had unrestricted access to users’ sensitive information.
Adrienne’s tweet hit a nerve with the community. Massively retweeted, the fact that a com-
mercial entity is routinely executing network attacks against their users became widely re-
ported in the media. Gogo subsequently issued a statement “blaming” their actions on their
need to control in-ight bandwidth usage.70 Te claim is bogus, although the company
might have genuinely believed that the interception was necessary. Some days later, they
stopped with the interception altogether.71

67 Revoking Trust in one ANSSI Certicate (mozilla.dev.security.policy, 9 December 2013)
68 Announcing Version 2.1 of Mozilla CA Certicate Policy (Mozilla Security Blog, 15 February 2013)
69 hey @Gogo, why are you issuing *.google.com certicates on your planes? (Adrienne Porter Felt, 2 January 2015)
70 Our Technology Statement from Gogo regarding our streaming video policy (Gogo, 5 January 2015)
71 Gogo no longer issuing fake Google SSL certicates (Runway Girl Network, 13 January 2015)
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Superfsh and Friends
Just one month later, in February 2015, Adrienne sparked another public disclosure, which
was that Lenovo had been shipping ad-injector soware (some would say malware) called
Supersh preinstalled on some of their systems.72 Interesting for us is that this soware per-
formed interception of all user trac, including that destined for secure web sites. To avoid
certicate warnings, they used an unwanted “trusted” root certicate that was added to the
operating system root store without user consent. With the root in place, they redirect all
browser trac to a local proxy process. Tat process, in turn, retrieved from the Internet
whatever content was requested, with whatever modications it wanted to make.
Not only were their actions morally questionable (the ad-injector soware was able to ob-
serve all trac, no matter how private or sensitive it was), they were also deeply incompe-
tent. Te correct way to perform this type of interception is to generate a unique root for
each user. Supersh used one and the same root certicate for all systems, meaning that any
aected Lenovo user could extract the corresponding private root key and use it to attack all
other similarly aected users. Unsurprisingly, the root in question was extracted promptly
aer the public discovery.73 (Perhaps also before, but we don’t have any information about
that.)
Tere were other problems: the proxy soware running on each user’s laptop had weaker
TLS capabilities than the browsers the users would be running; it supported TLS 1.1 but not
the most-recent TLS 1.2. It also oered many weak suites and eectively downgraded the
users’ security. Even worse, it failed to properly validate invalid certicates, eectively legit-
imizing self-signed certicates and MITM attacks equally. Tis is worth saying again: users
with Supersh eectively didn’t see certicate warnings, no matter what sites they were vis-
iting.74

Note
By design, locally-installed roots are allowed to bypass strict security measures
such as pinning. Tis approach allows enterprises to perform (possibly legitimate)
SSL interception. Tat’s why Supersh could even intercept trac to Google, de-
spite their heavy security measures.

Analysis done by Facebook showed that Supersh aected many users across the world. In
Kazakhstan, Supersh accounted for as much as 4.5% of Facebook connections.75

72 #Supersh Round-Up (Chris Palmer, 22 February 2015)
73 Extracting the SuperFish certicate (Robert Graham, 19 February 2015)
74 Komodia/Supersh SSL Validation is broken (Filippo Valsorda, 20 February 2015)
75 Windows SSL Interception Gone Wild (Facebook, 20 February 2015)
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Lenovo initially tried to defend their actions, but eventually accepted the inevitable. Tey
subsequently worked with Microso to remove Supersh and the unwanted roots from the
aected systems. Microso released statistics showing Supersh removed from roughly
250,000 systems in just a couple of days.76

Note
As is usually the case, an online test was produced. Filippo Valsorda published a
test for Supersh, Komodia, and PrivDog.77 Hanno Böck implemented a wider test
for a number of similar products.78

Further research uncovered that Supersh was built using an SSL interception SDK provid-
ed by a company called Komodia. From their web site:

Our advanced SSL hijacker SDK is a brand new technology that allows you to
access data that was encrypted using SSL and perform on the fy SSL decryp-
tion. Te hijacker uses Komodia’s Redirector platform to allow you easy access
to the data and the ability to modify, redirect, block, and record the data with-
out triggering the target browser’s certication warning.

Supersh is not the only SSL interception product, and apparently not the only one with
security aws. Although Comodo’s product PrivDog (in version 3.0.96.0) uses a per-user in-
terception root, it also fails to perform proper certicate validation, eectively facilitating
MITM attacks too.79

Komodia, Supersh, and PrivDog came to our attention rst, but there are many similar
products. As the security researchers started to take notice, dozens of other similar products
surfaced and became publicly known. Among them are some very well known names
among security products.80

76 MSRT March: Supersh cleanup (Microsoft Malware Protection Center, 10 March 2015)
77 Supersh, Komodia, PrivDog vulnerability test (Filippo Valsorda, retrieved 22 March 2015)
78 Check for bad certs from Komodia / Supersh (Hanno Böck, retrieved 22 March 2015)
79 Comodo ships Adware Privdog worse than Supersh (Hanno Böck, 23 February 2015)
80 The Risks of SSL Inspection (Will Dormann, 13 March 2015)
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5 HTTP and Browser Issues
In this chapter, we focus on the relationship between TLS and HTTP. TLS was designed to
secure TCP connections, but there is so much more going on in today’s browsers. In many
cases, the problems that arise come from the browser vendors’ struggle to deal with legacy
web sites; they’re afraid to “break” the Web.

Sidejacking 
Sidejacking is a special case of web application session hijacking in which session tokens1 are
retrieved from an unencrypted trac stream. Tis type of attack is very easy to perform on
a wireless or local network. In the case of a web site that does not use encryption, all the
attacker needs to do is observe the unencrypted trac and extract the session token from it.
If a site uses encryption only partially, two types of mistakes are possible:

Session leakage by design
Some sites use encryption to protect account passwords but revert to plaintext as
soon as authentication is complete. Tis approach does result in a slight improvement
of security, but such sites eectively only end up replacing leakage of one type of cre-
dentials (passwords) with the leakage of another type (session tokens). Session tokens
are indeed somewhat less valuable because they are valid only for a limited period of
time (assuming session management is correctly implemented), but they are much
easier to capture and almost as easy to abuse by a motivated attacker.

Session leakage by mistake
Even when you try very hard to use encryption on an entire site, it is easy to make a
mistake and leave one or more resources to be retrieved over plaintext. Even when
the main page is protected, a single plaintext resource retrieved from the same do-

1 In web applications, as soon as a user connects to a web site a new session is created. Each session is assigned a secret token (also known as

a session ID), which is used to identify ownership. If the attacker nds out the token of an authenticated session, she can gain full access to the

web site under the identity of the victim.
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main name may cause session leakage.2 Tis is known as a mixed content problem,
and I discuss it in detail later in this chapter.

Figure 5.1. Wireshark network capture showing a session cookie in the clear

Sidejacking works well against any type of session token transport, because the attacker has
full access to the communication between a user and the target web site. Tus, this attack
can be used to obtain not only session tokens placed in cookies (the most common trans-
port mechanism) but also those placed in URLs (request path or parameters). Once a ses-
sion token is obtained, the attacker can reuse the captured value to communicate directly
with the web site and assume the identity of the victim.
In the security community, sidejacking became better known in August 2007, when Robert
Graham and David Maynor discussed it at Black Hat USA and released the accompanying
Ferret and Hermit tools3 that automate the attack.

2 This is because session tokens are typically transported using cookies, which are sent on every request to the web site. As you will see later in

this chapter, cookies can be secured, but most sites don’t do so consistently.
3 SideJacking with Hamster (Robert Graham, 5 August 2007)
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A couple of years later, a Firefox add-on called Firesheep,4 written by Eric Butler, made a
much bigger splash because it made sidejacking trivially easy to carry out. Firesheep be-
come very widely known and even caused several high-prole web sites to switch to full en-
cryption. Firesheep was quickly followed by a detection tool called BlackSheep5 and a coun-
terattack tool called FireShepard.6 In addition, a tool called Idiocy7 was released to automat-
ically post warnings to compromised accounts.
Firesheep is no longer maintained. For a more recent tool of this type, consider Cook-
ieCadger,8 a passive tool for HTTP auditing developed by Matthew Sullivan.

Cookie Stealing
Sidejacking, in the form discussed in the previous section, cannot be used against web sites
that use encryption consistently, with 100% coverage. In such cases, the session tokens are
always hidden behind a layer of encryption. You may think that such complete implementa-
tion of TLS also means that sidejacking is not possible, but that’s not the case. A common
mistake made by programmers is to forget to secure their cookies for use with encryption.
When this happens, an attacker can use a clever technique called cookie stealing to obtain
the session tokens aer all.
By default, cookies work across both insecure and secure transports on ports 80 and 443.
When you deploy TLS on a web site, you are also expected to mark all cookies as secure,
letting the browsers know how to handle them. If you don’t do this, at the rst glance it may
not appear that a vulnerability exists, because your users are always fully protected. But this
“works” only because browsers are not submitting any requests to plaintext port 80. If an
attacker can nd a way to get them to do this, the cookies will be revealed.
Conceptually, the attack is simple: the attacker is an active man in the middle (MITM) ob-
serving a victim’s complete network communication. Te attacker cannot attack the en-
crypted trac to the target web site, but he can wait for the victim to submit an unencrypt-
ed HTTP request to any other web site. At that point, the attacker steps in, hijacks the inse-
cure connection, and responds to one of the victim’s plaintext HTTP requests by redirecting
the browser to the target web site on port 80. Because any site can issue a redirection to any
other site, the browser happily follows.
Te end result is a plaintext connection to the target web site, which includes all nonsecure
cookies in the browser’s possession. Against a typical web application that doesn’t mark

4 Firesheep announcement (Eric Butler, 24 October 2010)
5 BlackSheep (Zscaler, retrieved 15 July 2014)
6 FireShepard (Gunnar Atli Sigurdsson, retrieved 15 July 2014)
7 Idiocy (Jonty Wareing, retrieved 15 July 2014)
8 CookieCadger (Matthew Sullivan, retrieved 15 July 2014)
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cookies secure, the attacker now has the victim’s session tokens and can proceed to hijack
the session.
Te attack works even if the target web site is not actually responding on port 80. Because
the attacker is in the middle, he can impersonate any plaintext server on any port.
Another approach that could be used by the attacker is to redirect the victim to the same
hostname and port 443 (which is always open for a secure site) but force plaintext with
http://www.example.com:443. Even though this request fails because the browser is attempt-
ing to speak plaintext HTTP on an encrypted port, the attempted request contains all the
insecure cookies and thus all the information the attacker wants to obtain.

Figure 5.2. Man-in-the-middle attacker stealing unsecured cookies

User establishes a secure 
connection with a web site 
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Mike Perry was the rst to bring up this problem in public, shortly aer sidejacking itself
was publicized. But his email to the Bugtraq mailing list9 went largely unnoticed. He persist-
ed with a talk10 at DEFCON 16 the following year as well as a proof-of-concept tool called
CookieMonster.11

Cookie Manipulation
Cookie manipulation attacks are employed in situations in which the attacker can’t access
the existing cookies because they are properly secured. By exploiting the weaknesses in the

9 Active Gmail “Sidejacking” - https is NOT ENOUGH (Mike Perry, 5 August 2007)
10 HTTPS Cookie Stealing (Mike Perry, 4 August 2008)
11 CookieMonster (Mike Perry, retrieved 15 July 2014)
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cookie specication, he is able to inject new cookies and overwrite and delete existing appli-
cation cookies. Te main message in this section is that the integrity of an application’s
cookies can’t always be guaranteed, even when the application is fully encrypted.

Understanding HTTP Cookies 
HTTP cookies are an extension mechanism designed to enable client-side persistence of
small amounts of data. For each cookie they wish to create, servers specify a name and value
pair along with some metadata to describe the scope and lifetime. Cookies are created using
the Set-Cookie HTTP response header:

Set-Cookie: SID=31d4d96e407aad42; Domain=www.example.com; Path=/; Secure; HttpOnly
Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT

User agents store cookies in so-called cookie jars. On every HTTP transaction, they look in-
to their jars for applicable cookies and submit all of them using the Cookie HTTP request
header:

Cookie: SID=31d4d96e407aad42; lang=en-US

From their initial creation, cookies had been very poorly specied and remained so for a
very long time. As a result, implementations are inconsistent and contain loopholes. As you
will see in this chapter, many of the loopholes can be exploited for attacks. Proper docu-
mentation became available only in 2011, in RFC 6265.12

From the security point of view, the problem with cookies is twofold: (1) they were poorly
designed to begin with, allowing behavior that encourages security weaknesses, and (2) they
are not in sync with the main security mechanism browsers use today, the same-origin policy
(SOP).

Loose hostname scoping
Cookies are designed for sharing among all hostnames of a particular domain name
as well as across protocols and ports. A cookie destined for example.com will work on
all subdomains (e.g., www.example.com and secure.example.com). Similarly, a host-
name such as blog.example.com emits cookies only for blog.example.com by default
(when the Domain parameter is not specied) but can also explicitly expand the scope
to the parent example.com. As a result, a rogue server is able to inject cookies into
other sites and applications installed on hostnames that are sharing the same domain
name. I’ll call them related hostnames or related sites.
Tis loose approach to scoping is in contrast with SOP rules, which generally dene a
security context with an exact match of protocol, hostname, and port. Deploying a

12 RFC 6265: HTTP State Management Mechanism (A. Barth, April 2011)
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secure web site is much more dicult, because cookies can be set from any related
hostname, substantially increasing the attack surface.

Servers do not see metadata
Servers receive only cookie names and values, but not any other information. Cru-
cially, they don’t know the origin of the cookies. If this information were available,
servers would be able to reject cookies that they themselves didn’t issue.

Lack of integrity of security cookies
Te fact that cookies work seamlessly across both HTTP and HTTPS protocols is a
major worry. Although you can use the secure attribute to denote a cookie that is al-
lowed to be submitted only over an encrypted channel, insecure and secure cookies
are stored within the same namespace. What’s even worse, the security ag is not part
of the cookie identity; if the cookie name, domain, and path match, then an insecure
cookie will overwrite a previously set secure one.

In a nutshell, the major aw of HTTP cookies is that their integrity is not guaranteed. In the
remainder of this section, I focus on the security implications of the cookie design on TLS;
for wider coverage of the topic, including coverage of various application security issues, I
recommend Michal Zalewski’s book Te Tangled Web, published by No Starch Press in 2011.

Cookie Manipulation Attacks 
Tere are three types of cookie manipulation attacks. Two of them can result in the creation
of new cookies and so fall under cookie injection. Te third one allows cookies to be deleted.
As is customary in application security, the attacks bear somewhat unusual and dramatic
names.
Various researchers have rediscovered these problems over the years, giving them dierent
names. Although I prefer cookie injection, because it accurately describes what is going on,
other names you might come across are cross-site cooking,13 cookie xation, cookie forcing,14

and cookie tossing.15

Cookie Eviction
Cookie eviction is an attack on the browser’s cookie store. If for some reason the attacker
does not like the cookies that are in the browser’s store, he might attempt to exploit the fact
that cookie stores limit individual cookie size, the number of cookies per domain name, and
the combined cookie size. By submitting a large number of dummy cookies, the attacker

13 Cross-Site Cooking (Michal Zalewski, 29 January 2006)
14 Cookie forcing (Chris Evans, 24 November 2008)
15 New Ways I’m Going to Hack Your Web App (Lundeen et al., August 2011)
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eventually causes the browser to purge all the real cookies, leaving only the forced ones in
the store.
Browser cookie jars are restricted in various ways. Te overall number of cookies is limited,
and so is the storage space. Tere is also a per-host limit (usually of several dozen), which is
imposed in order to prevent a single host from taking over the entire jar. Individual cookies
are usually limited to around four kilobytes. Tus, a cookie eviction attack might require the
use of multiple domain names to fully overow a cookie jar.

Direct Cookie Injection
When performing direct cookie injection, the attacker is faced with a site that uses secure
cookies. Because of that, he is not able to read the cookies (without breaking encryption),
but he can create new cookies or overwrite the existing ones. Tis attack exploits the fact
that insecure and secure cookies live in the same namespace.16

Te attack is conceptually similar to the one used for cookie stealing in the previous section:
the attacker intercepts any plaintext HTTP transaction initiated by the victim and uses it to
force a plaintext HTTP request to the target web site. He then intercepts that request and
replies with an HTTP response that includes arbitrary cookies. Te attack could be as sim-
ple as:

Set-Cookie: JSESSIONID=06D10C8B946311BEE81037A5493574D2

In practice, for the overwriting to work, the forced cookie’s name, domain, and path must
match that of the original. Te attacker must observe what metadata values are used by the
target web site and replicate them in the attack. For example, the session cookies issued by
Tomcat always have the path set to the web site root:

Set-Cookie: JSESSIONID=06D10C8B946311BEE81037A5493574D2; Path=/

Cookie Injection From Related Hostnames
When direct cookie injection is not possible (i.e., it’s not possible to impersonate the target
web site), the attacker might attack the fact that cookies are shared among related host-
names. If the attacker can compromise some other site on a related hostname, he might be
able to inject a cookie from there.17

For example, you might be running a strongly secured www.example.com but also have a
blogging site, installed at blog.example.com and hosted by a third-party with lesser focus on
security. If the attacker can nd a cross-site scripting (XSS) vulnerability in the blogging ap-

16 Multiple Browser Cookie Injection Vulnerabilities (Paul Johnston and Richard Moore, 15 September 2004)
17 Hacking Github with Webkit (Egor Homakov, 8 March 2013)
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plication, he will be able to manipulate the cookies of the main application. Te attack is the
same as in the previous section: the victim is forced to submit an HTTP request to the vul-
nerable site, where arbitrary cookies can be set.

Note
Of course, any situation in which there are sites run by separate entities or depart-
ments should be a cause for caution. Not only are the members of the other groups
a potential weak link, but they can be threats themselves.

If the victim does not already hold any cookies from the target web site, the attacker is in
luck. Whatever cookies he sets will be used by the victim. Assuming XSS, attacking is as
simple as executing the following code (from a page on blog.example.com):

document.cookie = 'JSESSIONID=FORCED_ID; domain=example.com';

Notice how the attacker must use the domain attribute to expand the scope of the cookie
from the default blog.example.com to example.com, which will then be valid for the intended
target, www.example.com.

Getting the First Cookie

More oen than not, the victim will already hold some genuine cookies. If the attacker in-
jects another cookie with the same name (as in the previous example), the browser will ac-
cept both cookies and send them with every request to the target web site:

Cookie: JSESSIONID=REAL_ID; JSESSIONID=FORCED_ID

Tis happens because the browser sees these two values as separate cookies; their name, do-
main, and path attributes do not match exactly. But although the attacker has successfully
injected a cookie, the attack cannot proceed; when there are multiple cookies with the same
name, typically only the rst one is “seen” by web applications.
From here, the attacker can attempt to evict all genuine cookies from the store by using a
large amount of dummy cookies. Tat might work, but it’s tricky to pull o.
Alternatively, he may try to tweak cookie metadata to push the forced cookie into the rst
position. One such trick is to use the path attribute,18 which exploits the fact that browsers
submit more specic cookies rst:

document.cookie = 'JSESSIONID=SECOND_FORCED_ID; domain=example.com; path=/admin';

Assuming the browser is accessing a URL at or below /admin/, it will submit the cookies in
the following order:

18 Understanding Cookie Security (Alex kuza55, 22 February 2008)

122 Chapter 5: HTTP and Browser Issues



Cookie: JSESSIONID=SECOND_FORCED_ID; JSESSIONID=REAL_ID; JSESSIONID=FORCED_ID

If there are multiple sections that need to be targeted, the attacker can issue multiple cook-
ies, one for each path. But there’s still one situation in which forcing a cookie from a related
hostname might overwrite the original cookie: when the target web site explicitly sets the
cookie domain to the root hostname (e.g., example.com).

Overwriting Cookies Using Related Hostnames

Overwriting a cookie from a related hostname does not always work because most sites set
cookies without explicitly specifying the domain. Tese cookies are marked as host-only.
When injecting from a related domain name, you have to specify a domain, which means
that such a cookie will never match the original one even if the hostnames are the same.
Tere is another reason overwriting a cookie from a related hostname sometimes fails: you
are not allowed to issue cookies for a sibling hostname. From blog.example.com, you can is-
sue a cookie for example.com and www.blog.example.com but not for www.example.com.
Tis brings me to two cases in which overwriting is possible:

• For sites that explicitly “upgrade” the cookie domain to their root (e.g., example.com). I
tested this case using Firefox 28, but most other browsers should follow the same be-
havior.

• For Internet Explorer (tested with version 11), which does not make a distinction be-
tween explicitly and implicitly set domains. However, because the names still have to
match, this attack will work only against sites that issue cookies from the root (e.g.,
example.com).

Overwriting Cookies Using Fake Related Hostnames

Tere is one more case in which the attacker will be able to overwrite the original cookie
value: the web site is explicitly setting the cookie domain, but it does not have to be the root
(as in the previous case).
Tat’s because the MITM attacker can choose which related hostnames he attacks. Te core
of the Internet runs on unauthenticated DNS, which means that the attacker can take con-
trol of the DNS and make up arbitrary hostnames. For example, if he needs to attack
www.example.com, he can make up a subdomain, say, www.www.example.com. From that
name, he can then issue a cookie for www.example.com.
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Impact
Anecdotally, many web sites are designed under the assumption that the attacker can’t dis-
cover or inuence what’s in the cookies. Because that’s not true, things can break, but exact-
ly how will depend on the particular application. For example:

XSS
If developers don’t expect cookies to change, they might use them in insecure ways.
For example, they might output them to HTML directly, in which case a compromise
can lead to a XSS vulnerability.

CSRF defense bypass
Some web site designs rely on cross-site request forgery (CSRF) defenses, which re-
quire that a token placed in the page parameters matches that in the cookie. Being
able to force a particular cookie value onto a client defeats this approach.

Application state change
Developers quite oen treat cookies as secure storage resistant to tampering. It might
happen that there is some part of the application that relies on a cookie value for de-
cision making. If the cookie can be manipulated, so can the application. For example,
there might be a cookie named admin set to 1 if the user is an administrator. Clearly,
users can always manipulate their own cookies and thus attack the application, so
this is not necessarily a TLS issue. However, it can still be an attack vector used by a
MITM attacker. Te proposed mitigation techniques (discussed later in this section)
defend against all attacks of this type.

Session xation
Session xation is a reverse session hijacking attack. Rather than obtaining the vic-
tim’s session ID, the attacker connects to the target web site to obtain a session ID of
his own and tricks the victim into adopting it. Tis attack is not as powerful as ses-
sion hijacking, but it could have serious consequences depending on the features of
the target site.

Mitigation
Cookie manipulation attacks can generally be addressed with appropriate mitigation steps
that focus on preventing the attacker from forging cookies and checking that received cook-
ies are genuine:

Deploy HTTP Strict Transport Security with subdomain coverage
HTTP Strict Transport Security (HSTS)19 is a relatively new standard that enforces
encryption on the hostname for which it is enabled. Optionally, it can enforce en-

19 RFC 6797: HTTP Strict Transport Security (Hodges et al., November 2012)
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cryption on all subdomains. With this approach, a MITM attacker cannot inject any
cookies using DNS trickery without breaking encryption.
HSTS signicantly reduces the attack surface, but it is not foolproof. First, it’s not
supported by all browsers. Second, it does not handle cases in which genuine (en-
crypted) related sites are compromised or run by dierent, untrusted entities. I dis-
cuss HSTS at length in the section called “HTTP Strict Transport Security” in Chap-
ter 10.

Validate cookie integrity
Te best defense against cookie injection is integrity validation: ensuring that the
cookie you received from a client originated from your web site. Tis can be achieved
by using a Hash-based Message Authentication Code (better known by its acronym,
HMAC).20

Cookies that don’t need to be accessed from JavaScript can be encrypted for addition-
al protection.
It is critical that the integrity validation scheme is designed in such a way that cookies
issued to one user are not valid for another. Otherwise, the attacker could obtain a
valid cookie from a web site (using his own account) and inject it into the victim’s
account.
Cookie integrity validation and encryption schemes can’t help secure session cookies,
which are eectively a time-limited password-replacement mechanism. Channel ID
is an eort to address this problem by creating a cryptographic binding between a
browser and a site at the TLS level.21 Tis approach, known as channel binding, eec-
tively creates a session that could be used to replace HTTP sessions. In practice, it’s
more likely that the existing cookie-based mechanisms would be kept, but tied to the
provably-secure channel as a defense against session hijacking.

SSL Stripping 
SSL stripping (or, more accurately, HTTPS stripping) attacks exploit the fact that most users
begin their browsing session on a plaintext portion of a web site or type addresses without
explicitly specifying the https:// prex (browsers try plaintext access rst). Because the
plaintext trac of these users is fully visible and vulnerable, it can be modied at will by an
active network attacker.
For example, if a web site normally contains a link to the secure server, the attacker can
rewrite the content to replace the secure link with a plaintext one. Without a secure link to
click on, the victim is forever prevented from entering the secure area. In the meantime, the

20 RFC 2014: HMAC: Keyed-Hashing for Message Authentication (Krawczyk et al., February 1997)
21 TLS Channel IDs (Internet-Draft, D. Balfanz and R. Hamilton, expired 31 December 2013)
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attacker is responding to those plaintext links by proxying the genuine web site content
(possibly obtained over TLS). At this point, the attacker can not only observe sensitive in-
formation but can also modify the requests and responses at will.

Figure 5.3. Man-in-the-middle attack variations
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HTTPS stripping attacks rely on the fact that most users can not tell the dierence between
insecure and secure browsing. Faced with a user who can spot the dierence, the attacker
can attempt a tricky alternative and redirect the user to a secure web site that’s under the
attacker’s full control but the name of which is very similar to that of the target web site.
Common tricks include very long addresses that contain the entire target address within
(e.g., https://victim.com.example.com) or addresses that dier from the real ones only by one
character or that use similar Unicode characters.
Behind the scenes, the attacker may or may not actually be using a secure connection to the
target web site, but that’s little consolation for the attacked user, because the attacker can not
only observe the supposedly secure content but can also modify it at will.
From the attacker’s point of view, HTTPS stripping attacks are very interesting because they
can be easily automated using tools that are readily available. A well-known tool in this cat-
egory is sslstrip.22

22 sslstrip (Moxie Marlinspike, 15 May 2011)
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MITM Certifcates
HTTPS stripping will probably work against most users (assuming incorrectly secured
sites), but there will be situations when it fails. Some users do notice the dierence between
secure and insecure sites and even actively check for the padlock or (rarely) the green glow
of EV certicates. Some users also bookmark secure sites, going straight to the secure area
from their rst request.
Te man in the middle is still able to redirect all trac to go through him, but exploitation
requires much more eort. Here are some possible alternative attack methods:

Exploitation of validation aws
Te security of TLS depends on the client correctly validating the credentials present-
ed to it. If the validation is not implemented correctly, it might be possible to use a
special invalid certicate or a certicate chain that can’t be distinguished from a valid
one.

Rogue certicates
Rogue certicates are fraudulent CA certicates that are accepted by clients as gen-
uine. Tey are dicult to obtain, but they are still a possibility. For example, one such
certicate was forged in an attack on RapidSSL in 2008. You can read more about it in
the section called “RapidSSL Rogue CA Certicate” in Chapter 4. Another possibility
is that a powerful attacker can brute-force the weak 1,024-bit private keys belonging
to some CA certicates. In 2014, there are still many such weak certicates trusted by
major browsers. It is estimated that breaking a 1,024-bit key costs only about $1 mil-
lion, although it might take about a year to execute.23

With a rogue certicate in hand, the attacker will be invisible to everyone except the
most paranoid users. Combined with the fact that the MITM can interfere with OC-
SP revocation checks and that most browsers ignore OCSP failures, if the attacker can
maintain full control over a victim’s Internet connection over an extended period of
time it might also be eectively impossible to revoke a rogue certicate.

Self-signed certicates
If everything else fails, the attacker may try the least sophisticated approach, which is
to present the victim with a self-signed certicate that has most elds copied from the
real one. Such a certicate is bound to generate a warning, but users are generally
known to click through such warnings. More about that in the next section.

Two well-known tools in this category are sslsniff24 and SSLsplit.25

23 Facebook’s outmoded Web crypto opens door to NSA spying (CNET, 28 June 2013)
24 sslsniff (Moxie Marlinspike, 25 July 2011)
25 SSLsplit - transparent and scalable SSL/TLS interception (Daniel Roethlisberger, 19 November 2014)
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Certifcate Warnings
For proper security, cryptography needs authentication. If you can’t tell that you’re talking
to the right party, then all bets are o. Someone could be hijacking the communication
channel to impersonate your intended recipient, and you wouldn’t be able to tell. It’s a situa-
tion similar to picking up the phone and talking to someone on the other end without
knowing if they are who they claim they are.
In the context of TLS, we use certicates for authentication. (TLS supports other authentica-
tion methods, but they are rarely used.) When you connect to a server, you have a particular
hostname in mind, and the expectation is that the server will present a certicate that
proves that they have the right to handle trac for that hostname.
If you receive an invalid certicate, the right thing to do is to abandon the connection at-
tempt. Unfortunately, browsers don’t do that. Because the Web is full of invalid certicates,
it’s almost guaranteed that none of the invalid certicates you encounter will be a result of
an attack. Faced with this problem, browser vendors decided a long time ago not to enforce
strict TLS connection security, instead pushing the problem down to their users in the form
of certicate warnings.
Which brings me to one of the ugliest truths about TLS: its sole purpose is to protect you
from man-in-the-middle attacks, but when the attack comes all you will get is a certicate
warning from your browser. Ten it will be down to you to determine if you are under at-
tack.
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Figure 5.4. Examples of certicate warnings in current browsers

Safari 7

Firefox 28

Internet Explorer 11

Chrome 33

Why So Many Invalid Certifcates?
Tere’s plenty of anecdotal evidence about the prevalence of invalid certicates. It’s hard to
actually nd someone who has not been exposed to them. Here are some of the root causes:
Miscongured virtual hosting

Today, most web sites run only on port 80 and don’t use encryption. A common con-
guration mistake is to put such plaintext sites on the same IP address as some other
site that uses encryption on port 443. As a result, users who attempt to access the
plaintext sites via a https prex end up in the wrong place; the certicate they get
doesn’t match the intended name.
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Part of the problem is that, at the technical level, we don’t have a mechanism for web
sites to state if they support encryption. In that light, the correct way to host plaintext
sites is to put them on an IP address on which port 443 is closed.
In 2010, I scanned about 119 million domain names, searching for secure sites.26 Te
lists included all .com, .net, and .org domain names. I found 22.65 million (19%) se-
cure sites hosted on roughly two million IP addresses. Of the secure sites, only about
720,000 (3.2%) sites had certicates whose names matched the intended hostname.
Having a certicate with the right name is a good start, but not enough. Roughly 30%
of the name-matched certicates in the 2010 survey could not be trusted due to other
problems.

Insucient name coverage
In a small number of cases, certicates are purchased and deployed, but the site oper-
ator fails to specify all required hostnames. For example, if you’re hosting a site at
www.example.com, the certicate should include that name but also the plain
example.com. If you have other domain names pointing to your web site, the certi-
cates should include them, too.

Self-signed certicates and private CAs
Certicates that are self-signed or issued by private CAs are not appropriate for use
with the general public. Such certicates can’t be easily and reliably distinguished
from certicates used in MITM attacks. In my survey, about 48% of the trust failures
fell into this category.
Why are people using these certicates, then? Tere are many reasons, including: (1)
purchasing, conguring, and renewing certicates is additional work and requires
continuous eort; (2) up until a few years ago, certicates used to be expensive; and
(3) some people believe that publicly trusted certicates should be free and refuse to
buy them. However, the simple truth is that only publicly trusted certicates are ap-
propriate for public web sites. We don’t have an alternative at this time.

Certicates used by appliances
Tese days, most appliances have web-based administrative user interfaces and re-
quire secure communication. When these devices are manufactured, the hostname
and IP address they will use is not known, which means that the manufacturers can-
not install valid certicates onto them. In theory, end users could install valid certi-
cates themselves, but many of these appliances are seldom used and are hardly worth
the eort. In addition, many of the user interfaces do not allow user-provided certi-
cates to be used.

26 Internet SSL Survey 2010 is here! (Ivan Ristić, 29 July 2010)
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Expired certicates
Te other substantial reason for invalid certicates is expiration. In my survey, 57% of
the failures fell into this category. In many cases, site owners forget to renew their
certicates. Or, they give up on having valid certicates altogether but don’t take the
old ones down.

Misconguration
Another frequent problem is misconguration. For a certicate to be trusted, each
user agent is required to establish a chain of trust from the server certicate to a
trusted root. Servers are actually required to provide the entire chain, minus the
trusted root. But according to SSL Pulse, about 6% of the servers in their data set has
an incomplete chain.27 In some cases, browsers will be able to work around that, but
oen they won’t.

When it comes to user experiences, one study from 2013 looked at about 3.9 billion public
TLS connections and found that 1.54% of them resulted in certicate warnings.28 But that’s
only on the public Internet, where sites generally try to avoid warnings. In certain environ-
ments (e.g., intranets and internal applications), you might be expected to click through
certicate warnings every single day as you’re accessing web applications required for your
work.

Effectiveness of Certifcate Warnings
Te world would be much better without certicate warnings, but the truth is that browser
vendors are balancing on a ne line between improving security and keeping their users
happy. In 2008, I made a halfearted attempt to convince Mozilla to hide the ability to add
exceptions for invalid certicates in Firefox, in order to make it very dicult to bypass cer-
ticate warnings. Unsurprisingly, my bug submission was rejected.29 Teir response (in the
form of a link to an earlier blog post),30 was that they had tried, but the push-back from
their users had been too strong. Tis is a reection of a wider problem of misaligned priori-
ties; browser vendors want increased market share, but increasing security usually has the
opposite eect. As a result, browser vendors implement as much security as they can while
trying to keep their most vocal users reasonably happy. Very occasionally, users complain
about certicate warnings that come from genuine MITM attacks, and that reminds every-
one what these warnings are for.31 Perhaps the biggest problem with MITM attacks is that
users are not aware of them (aer all, certicate warnings are a “normal” part of life) and do
not report them.

27 SSL Pulse (SSL Labs, July 2014)
28 Here’s My Cert, So Trust Me, Maybe? Understanding TLS Errors on the Web (Akhawe et al., WWW Conference, 2013)
29 Bug 431827: Exceptions for invalid SSL certicates are too easy to add (Bugzilla@Mozilla, reported 2 May 2008)
30 TODO: Break Internet (Johnathan Nightingale, 11 October 2007)
31 Bug 460374: All certicates show not trusted - get error code (MITM in-the-wild) (Bugzilla@Mozilla, reported 16 October 2008)
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Still, the fact remains that the harder you make it for your users to override certicate warn-
ings, the better security you provide. Today, major browsers generally rely on so-called in-
terstitial or interruptive warnings, which take over the entire browser content window. Te
old-style dialog warnings (still used by Safari) are seen as ineective; they look the same as
all other dialogs we get from our machines all the time. Most browsers allow users to click
through the warnings. When only one click is required to get around the obstacle, the harsh
language is all that stands between you and the web site. As it turns out, lots of people de-
cide to go on.
Early studies of certicate warning eectiveness reported high click-through rates. But they
largely relied on controlled environments (research labs), which was considered unreliable
by some:32

Furthermore, our analysis also raised concerns about the limitations of labo-
ratory studies for usable security research on human behaviors when ecologi-
cal validity is important. [...] Te observed reluctance of security concerned
people to take part in our study raises concerns about the ability of such stud-
ies to accurately and reliably draw conclusions about security practices and
user behavior of the general population.

In the meantime, browser vendors started to use telemetry to monitor the usage of their
products. Tat allowed for observation of users’ behavior in their own environments, pro-
viding more accurate results. It turned out that Firefox had the best implementation, with
only 33% of their users proceeding to the sites with invalid certicates. As a comparison,
about 70% of Chrome users clicked through.33 A later study reduced the click-through rate
of Chrome users to 56% by mimicking the design used by Firefox.34

Click-Through Warnings versus Exceptions 
Te success of invalid certicate handling by Firefox could also be explained by the fact that
it’s the only browser that doesn’t use click-through warnings. Instead, it makes you go
through a multistep process to create a certicate exception, aer which the certicate is
considered as good as trusted, even on subsequent visits. It is conceivable that each step in
the process convinces a number of users to give up and heed the warning.
Te argument against exceptions is that you are making the use of self-signed certicates
easier. Tis is certainly true, but that’s not necessarily a bad thing. Self-signed certicates are
not inherently unsafe if used by people who know what they are. For example, I have an
ADSL router in my house that I access over TLS. I am denitely not going to get a valid

32 On the Challenges in Usable Security Lab Studies: Lessons Learned from Replicating a Study on SSL Warnings (Sotirakopoulos et al., Sympo-

sium on Usable Privacy and Security, 2011)
33 Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness (Akhawe and Felt; USENIX Security, 2013)
34 Experimenting At Scale With Google Chrome’s SSL Warning (Felt at al., ACM CHI Conference on Human Factors in Computing Systems, 2014)
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certicate for it, but I don’t need to click through a certicate warning every time I access it.
Further, exceptions are created on a per-certicate basis. Tis means that if someone attacks
me, a certicate warning will show again. Tis approach to security is known as trust on rst
use, and is successfully deployed for the SSH protocol on millions of servers worldwide. An-
other name for this approach is key continuity management.
Certicate exceptions are useful only for individual use and for small groups of technical
users who know to create exceptions only when it’s safe to do so. It’s crucial that exceptions
are created only when the users are not under attack. In my example, I know that the certi-
cate on my ADSL router is not going to change by itself; seeing a warning would be highly
unusual.

Mitigation
If you care about the security of your web site, you are probably going to be very worried
about your users clicking through a genuine MITM attack. Aer all, you’re going through
all the trouble of using valid certicates, conguring your servers, and otherwise making
sure everything is ne on your end for their protection.
Clearly, there’s little you can do about the entire ecosystem, but you can protect your sites by
supporting HSTS, which is a signal to the supporting browsers to adjust their behavior and
adopt a stricter security posture when it comes to encryption. One of the features of HSTS is
the suppression of certicate warnings. If there is an issue with the certicate on an HSTS
site, all failures are fatal and cannot be overridden. With that, you are back in control of
your own security.

Security Indicators
Security indicators are user interface elements that relay additional information about secu-
rity of the current page. Tey typically say one of four things:

• “Tis page uses SSL”

• “We know what legal entity operates this web site”

• “Tis page uses an invalid certicate”

• “Parts of this page are not encrypted”
With exception of extended certicates, which link legal entities to web sites, the other indi-
cators exist largely because web site encryption is optional and because browsers have lax
treatment of security. In a world in which the Web was 100% encrypted and there were no
certicate warnings and no mixed content, you’d care only about the presence of EV certi-
cates.
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Figure 5.5. Examples of security indicators in current browsers

Invalid certificate

Mixed content

Valid certificate

EV certificate

Te biggest problem with security indicators is that most users don’t pay attention to them
and possibly don’t even notice them. We know this from several studies that focused on se-
curity indicators. One study used eye tracking and determined that many users spend little
time looking at browser chrome, focusing on the content instead.35 In the same study, none
of the participants noticed the EV indicators; those that did paid no attention to them. Tis
conrms results of another study, whose authors arrived at the same conclusion.36

35 Exploring User Reactions to New Browser Cues for Extended Validation Certicates (Sobey at al., ESORICS, 2008)
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Perhaps one of the contributing factors to the confusion is the lack of consistency, both
among dierent browsers and in dierent versions of the same browser. User interface
guidelines exist,37 but they are not specic enough.
I remember how in the early days of SSL there was a huge push to educate browser users
about the meaning of the padlock (“If you see a padlock, you’re safe.”). A couple of years
later, browser vendors started playing with the user interface. In some cases (e.g., Firefox),
there were changes made with every new release.
At the same time, web sites started to use the padlock on their web pages, further diluting
the message. Tus we went from having the padlock mean one specic thing (encryption is
present) to using it as a generic security indicator. In many cases, its presence is meaning-
less. For example, there are many sites that prominently feature a padlock but use no en-
cryption.
Today, the only consistency, and only in the broad sense, is the use of green color for EV
certicates. It’s still respected by all major browsers.
When it comes to mobile platforms, the situation seems to be worse. Due to much smaller
screen sizes, browser vendors are trying to remove virtually all user interface elements, af-
fecting security indicators in particular. With many mobile browsers, even security experts
have a hard time distinguishing secure sites from insecure ones.38

Tis has led some researchers to conclude that mobile users are three times more vulnerable
to phishing attacks.39 In addition, the security of mobile (nonbrowser) applications in gen-
eral is dicult to assess. Although all applications should use secure protocols for backend
communication, we don’t know if that’s actually happening, because they provide no indica-
tions. And, even if they did, who is to say that they’re not just displaying an image of a pad-
lock without any security at all?

Mixed Content
Te TLS protocol concerns itself with a single connection and focuses only on keeping the
data secure at the network level. Tis separation of concerns works well for simpler proto-
cols, for example, SMTP. However, some protocols (e.g., FTP and HTTP) have multiple con-
nections associated with the same security context (e.g., web browsing session). TLS doesn’t
provide any guidance for such situations; it’s up to user agent developers to provide a secure
implementation.

36 An Evaluation of Extended Validation and Picture-in-Picture Phishing Attacks (Jackson et al., Proceedings of Usable Security, 2007)
37 Web Security Context: User Interface Guidelines (W3C Recommendation, 12 August 2010)
38 Measuring SSL Indicators on Mobile Browsers: Extended Life, or End of the Road? (Amrutkar et al., Information Security Conference, 2012)
39 Mobile Users Three Times More Vulnerable to Phishing Attacks (Mickey Boodaei, 4 January 2011)
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When it comes to HTTPS, you’d struggle to nd a page that uses only a single connection.
On virtually all sites, HTML markup, images, style sheets, JavaScript, and other page re-
sources arrive not only over multiple connections but possibly from multiple servers and
sites spread across the entire Internet. For a page to be properly encrypted, it’s necessary
that all the content is retrieved over HTTPS. In practice, that’s very oen not the case, lead-
ing to mixed content security problems.

Note
Tis section covers only same-page mixed content, but the same problem exists at
the web site level. Web sites that mix plaintext and secure pages are prone to devel-
opment errors (e.g., use of insecure cookies or sensitive content available without
encryption) and SSL stripping attacks.

Root Causes
To understand why mixed content issues are so pervasive, we have to go back to the origins
of the Web and consider the breakneck pace of its evolution. Te focus has always been on
getting things done and overcoming the limits imposed by costs, technology, and security.

Performance
In the early days of SSL, its performance on the Web was very poor compared to the
performance of plaintext HTTP. Today, servers tend to have fast processors and plen-
ty of RAM, and yet we’re still concerned about the speed of cryptographic operations.
Back in the day, the only way to obtain good SSL performance was to use specialized
hardware accelerators, which were terribly expensive.
Because of the performance problems, everyone tried to stay away from SSL. Tere
was no concept of providing 100% encryption coverage for web sites. You might even
argue that such an approach was justiable and that the choice was mostly between
some security and no security at all.
Today, performance is still a concern, but it’s largely about latency. Because of the ad-
ditional round trips required to establish a secure connection, there’s a slight delay
when accessing a secure web site.

Mashups
At some point, the Web really took o, and the concept of mashups was born. Web
sites no longer provided all of the content themselves. Instead, they mixed and
matched content from various sites and focused on the user experience, hiding away
content origin. In some cases, the content was freely available. In others, mashups op-
erated via commercial deals.
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A special case of a mashup is the use of third-party code for web site analytics, made
extremely popular by Google when it gave its analytics service away for free. Accord-
ing to some estimates, Google Analytics is used on about 50% of the Web.40

Mashups are, generally, a nightmare for security. Tey’re mostly implemented by in-
corporating some JavaScript code from a third-party web site. Unfortunately, al-
though this approach to site building reduces costs dramatically, it also gives the
third-party web sites almost full control over all the sites that rely on them. It also
creates a problem for web site users: with so many entities involved on the same site,
it becomes dicult to understand what entities they’re communicating with and
where their data is stored.
In the context of encryption, the main issue is that in many cases third-party content
and services are not available via a secure server. Sometimes, secure access is avail-
able but costs more. As a result, people simply resorted to including insecure (plain-
text) content from their “secure” web sites.
To illustrate this problem, consider that Google’s ad platform, AdSense, added sup-
port for secure delivery only in September 2013.41

Infrastructure costs
As competition among web sites grew, it became impossible to deliver a web site from
a single geographic location and remain competitive. Content delivery networks
(CDNs) rose in popularity to deliver content to visitors at the best possible perfor-
mance. Te idea is that by spreading a number of servers across the globe, site visitors
can always talk to the fastest one.
Te problem with CDNs is that they are intended to serve huge amounts of (usually
static) data les for many customers. Encryption not only increases CPU and RAM
requirements but also might aect caching and adds the burden of certicate and key
management.
On top of that, there’s the issue of IP addresses. For plaintext HTTP, for which virtual
web site hosting is widely supported, IP addresses don’t matter. Tis makes large-scale
hosting and distribution easy. Virtual hosting of secure web sites is a dierent matter
altogether; it’s still not feasible for public web sites. Tis means that suddenly you
need to track the mapping of web sites to IP addresses and thus servers. You have to
split your infrastructure into groups, which leads to a much more complicated archi-
tecture and increased overhead.

40 Usage statistics and market share of Google Analytics for websites (W3Techs, 15 July 2014)
41 Use AdSense on your HTTPS sites (Sandor Sas, 16 September 2013)
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Plus, there’s a worldwide shortage of IPv4 addresses. Some companies try to work
around this problem by using shared certicates for unrelated sites, but that’s still a
signicant complication.
Te bottom line is that secure CDNs are possible, but they cost much more.

Because of all this history, browsers generally did little to provide encryption integrity at a
page level. Mixed content issues were allowed and became deeply ingrained in the develop-
ment culture.

Impact
Te impact of mixed content issues depends on the nature of the resource that is not being
secured. Over the years, two terms emerged: mixed passive content (or mixed display) for
resources that are lower risk, for example, images, and mixed active content (or mixed script-
ing) for higher-risk content, such as HTML markup and JavaScript.
Mixed active content is the really dangerous category. A single unprotected inclusion of a
JavaScript le can be hijacked by an active attacker and used to obtain full control over the
page and perform arbitrary actions on that web site using the victim’s identity. Te same can
be said for other dangerous resource types, such as HTML markup (included via frames),
style sheets, Flash and Java applications, and so on.
Mixed passive content is not as dangerous, but it still violates the integrity of the page. In the
least dangerous case, the attacker could mess with the victim by sending him messages em-
bedded in images. Tis could lead to phishing. It’s also possible to inject exploits into im-
ages, targeting browsers’ image processing code. Finally, some browsers are known to use 
content sning and might actually process an image as a script; in that case the attacker is
also able to take control over the page.
In addition, any unencrypted resource delivered from the same hostname as the main page
will expose the site’s session cookies over the communication link without encryption. As I
discussed earlier in this chapter, cookies that are not properly secured can be retrieved by an
active attacker, but with mixed content they can be retrieved by a passive attacker, too.

Browser Treatment
Initially, mixed content was allowed by all browsers. Te vendors expected web site design-
ers and programmers to understand the potential security issues and make the right deci-
sions. Over time, this attitude changed and the vendors started to become more interested
in this problem and to restrict what was allowed.
Today, most browsers tend to implement a compromise between breakage and security:
mixed passive content is allowed, and mixed active content is not. Te only catch is that not
all browsers agree with what constitutes active content.
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Android browser
Mixed content is allowed without any restrictions.

Chrome
Chrome changed its handling of mixed active content in version 14,42 but considered
the job done only with version 21.43

Chrome (currently in version 36) allows passive mixed content and blocks active
mixed content but allows insecure XMLHttpRequest connections. By version 38,
Chrome will block all mixed active content.44

Firefox
Firefox has a long history of being able to detect and warn about mixed content but,
due to internal implementation issues, not being able to block it. Te bug for this is-
sue remained open for about 12 years.45 With version 23, Firefox nally started to
block all mixed active content.46

Internet Explorer
Internet Explorer had mixed content detection since at least Internet Explorer 5
(1999). When detecting a combination of encrypted and plaintext resources on the
same page, IE would prompt the user to decide how to handle the problem. Microso
almost switched to blocking insecure content by default (with notication) and even
deployed that behavior in IE 7 beta,47 but backed down due to user pressure. Tey
made the change later, in IE 9.48 At that time, they also started allowing passive
mixed content by default.

Safari
Safari currently does not block any mixed content, making it stand out compared to
other major browsers. In fact, there was recently even a regression in how the issue is
handled. In Safari 6 on OS X, there used to be a checkbox that allowed users to enable
mixed content blocking. In version 7, which shipped with OS X 10.9, the checkbox
disappeared.

Te following table shows the details of mixed content handling in major browsers today.

42 Trying to end mixed scripting vulnerabilities (Google Online Security blog, 16 June 2011)
43 Ending mixed scripting vulnerabilities (Google Online Security blog, 3 August 2012)
44 PSA: Tightening Blink’s mixed content behavior (Mike West, 30 June 2014)
45 Bug 62178: Implement mechanism to prevent sending insecure requests from a secure context (Bugzilla@Mozilla, reported 6 December 2000)
46 Mixed Content Blocking Enabled in Firefox 23! (Tanvi Vyas, 10 April 2013)
47 SSL, TLS and a Little ActiveX: How IE7 Strikes a Balance Between Security and Compatibility (Rob Franco, 18 October 2006)
48 Internet Explorer 9 Security Part 4: Protecting Consumers from Malicious Mixed Content (Eric Lawrence, 23 June 2011)
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Table 5.1. Mixed content handling in major browsers; “yes” means mixed content is allowed [March 2015]

 Images CSS Scripts XHR WebSockets Frames

Andriod Browser 4.4.x Yes Yes Yes Yes Yes Yes

Chrome 41 Yes No No No No No

Firefox 30 Yes No No No No No

Internet Explorer 11 Yes No No No No No

Safari 8 Yes Yes Yes Yes Yes Yes

If you’re curious about the behavior of your favorite browser, SSL Labs provides a test for
user agents and covers mixed content issues.49

Note
Mixed content vulnerabilities can be very deep. In most modern browsers, there
are many ways in which insecure HTTP requests can originate from secure pages.
For example, it is likely that browser plugins can make whatever requests they want
irrespective of the encryption status of the host page. Tis is especially true for
plug-ins such as Flash and Java, which are platforms in their own right. Tere’s
now a W3C eort to standardize browser handling of mixed content, which should
help get a consistent behavior across all products.50

Prevalence of Mixed Content
Anecdotally, mixed content is very common. At Qualys, we investigated this problem in
2011 along with several other application-level issues that result in full breakage of encryp-
tion in web applications.51 We analyzed the homepages of about 250,000 secure web sites
from the Alexa top one million list and determined that 22.41% of them used insecure con-
tent. If images are excluded, the number falls to 18.71%.
A more detailed study of 18,526 sites extracted from Alexa’s top 100,000 took place in
2013.52 For each site, up to 200 secure pages were analyzed, for a total of 481,656 pages. You
can see the results in the following table.

49 SSL/TLS Capabilities of Your Browser (SSL Labs, retrieved 22 March 2015)
50 W3C: Mixed Content (Mike West, retrieved 22 March 2015)
51 A study of what really breaks SSL (Michael Small and Ivan Ristić, May 2011)
52 A Dangerous Mix: Large-scale analysis of mixed-content websites (Chen et al., Information Security Conference, 2013)
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Table 5.2. Mixed content in 481,656 secure pages from Alexa’s top 100,000 sites [Source: Chen et al., 2013]

 # Inclusions % remote # Files # Webpages % Websites

Image 406,932 38% 138,959 45,417 30%

Frame 25,362 90% 15,227 15,419 14%

CSS 35,957 44% 6,680 15,911 12%

JavaScript 150,179 72% 29,952 45,059 26%

Flash 1,721 62% 638 1,474 2%

Total 620,151 47% 191,456 74,946 43%

Note
Even when all third-party links are encrypted, the fact remains that using active
content from other web sites essentially gives those sites full control. Too many
sites today include random widgets without thinking through the security implica-
tions.53

Mitigation
Te good news is that despite browsers’ lax attitude to mixed content issues you are in full
control of this problem. If you implement your sites correctly, you won’t be vulnerable. Of
course, that’s easier said than done, especially with large development teams.
Tere are two technologies that can help you minimize and, possibly, eliminate mixed con-
tent issues, even when it comes to incorrectly implemented applications:

HTTP Strict Transport Security
HSTS is a mechanism that enforces secure resource retrieval, even in the face of user
mistakes (such as attempting to access your web site on port 80) and implementation
errors (such as when your developers place an insecure link on a secure page). HSTS
is one of the best things that happened to TLS recently, but it works only on the host-
names you control.

Content security policy
To block insecure resource retrieval from third-party web sites, use Content Security
Policy (CSP). Tis security feature allows blocking of insecure resources. It also has
many other useful features for application security issues.

HSTS and CSP are both declarative measures, which means that they can be added at a web
server level without having to change applications. In a way, you can think of them as safety
nets, because they can enforce security even for incorrectly implemented web sites.

53 You Are What You Include: Large-scale Evaluation of Remote JavaScript Inclusions (Nikiforakis et al., Computer and Communica-

tions Security, 2012)
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For example, a very frequent problem on secure web sites comes from the fact that many of
them implement automatic redirection from port 80 to port 443. Tat makes sense, because
if some user does arrive to your plaintext web site you want to send him to the right (secure)
place. However, because redirection is automatic it is oen invisible; a plaintext link for an
image will be redirected to a secure one, and the browser will retrieve it without anyone
noticing. Anyone except the attacker, maybe. For this reason, consider always redirecting to
the same entry point on the secure web site. If you do this, any mistakes in referencing re-
sources will be detected and corrected in the development phase.
Of course, sites that deploy HSTS cannot be exploited, because browsers automatically con-
vert insecure links to secure ones. Tat said, you can’t rely on all browsers supporting HSTS
(yet), so it’s best to try to minimize such mistakes.

Extended Validation Certifcates
Extended validation (EV) certicates are a special class of certicates that establish a link
between a domain name and the legal entity behind it. (Individuals can’t get EV certicates.)
In the early days of SSL, all certicates required strict verication, similar to how EV certi-
cates are issued today. Certicate price wars led to the wide adoption of domain-validated
(DV) certicates, which rely on cheap email validation. Tat was possible because there
were no formal regulations of the certicate validation procedures. EV certicates were de-
ned in 2007 by the CA/Browser Forum.54

EV certicates oer two chief advantages: (1) the identity of the domain owner is known
and encoded in the certicate and (2) the manual verication process makes certicate
forgery more dicult. As far as I am aware, there’s never been a fraudulent EV certicate.
On the other hand, it’s questionable if those advantages translate into any practical benets,
at least when the general user population is concerned. As we’ve seen in earlier sections in
this chapter, users rarely notice security indicators, even the prominent ones used for EV
certicates. For this reason, end users are going to miss the link to the domain name owner.
Further, fraudulent DV certicates can be used to attack EV sites. Te only way to prevent
these attacks is for end users to understand what EV certicates mean, remember that a site
uses them, notice the absence of the appropriate security indicators, and decide not to pro-
ceed. Tis seems unlikely, given the percentage of users who proceed to a web site even aer
shown a scary certicate warning.
Still, it’s possible that the treatment of EV certicates will improve in the future. For exam-
ple, user agents might add features to allow site operators to always require EV certicates
on their web sites, similar to how today you can use HTTP Strict Transport Security to al-
ways require encryption.

54 EV SSL Certicate Guidelines (CA/Browser Forum, retrieved 15 July 2014)
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Another problem is that EV certicates are detected and indicated on the page level without
taking into account what type of certicate is used by the resources (e.g., scripts). Given the
high cost of EV certicates, it is not unusual that complex sites oen rely on DV certicates
for the largely invisible subdomains.55

Tis means that a careful network attacker can use a DV certicate against an EV site, po-
tentially without aecting the green security indicators. Zusman and Sotirov demonstrated
several interesting attack vectors:56

Resources delivered from other domain names
In many cases, sites will use an EV certicate on the main domain name but retrieve
resources from many other hostnames, all of which will typically use DV certicates.
Browser connections for these other names can be intercepted with a fraudulent DV
certicate, leading to malware injection.

Cookie the
Because browsers do not enforce certicate continuity, it’s possible to use a DV cer-
ticate to intercept a connection for the main domain name, steal existing or set new
cookies, and redirect back to the real server. Te attack happens quickly and won’t be
noticed by most users.

Persistent malware injection
If caching is enforced (the attacker can essentially say that a resource is never re-
freshed), injected malware can persist in the browser le cache and stay active for
long periods of time, even on subsequent site visits.

Certifcate Revocation
When it comes to the certicate validity period, there is a tension between wanting to re-
duce administrative burden and needing to provide reasonably fresh information during
verication. In theory, the idea is that every certicate should be checked for revocation be-
fore it is trusted. In practice, there are a number of issues that make revocation very di-
cult.

Inadequate Client-Side Support
Arguably the biggest problem with revocation checking is that client-side support is inade-
quate. Making things worse is the fact that revocation is something you never need—until
you need it badly. As such, it’s always something that can be dealt with “later.”
It’s genuinely quite dicult to understand what browsers do, when they do it, and how. Be-
cause there is no documentation, you have to rely on mining mailing lists, bug reports, and

55 Beware of Finer-Grained Origins (Jackson and Barth, Web 2.0 Security and Privacy, 2008)
56 Sub-Prime PKI: Attacking Extended Validation SSL (Zusman and Sotirov, Black Hat USA, 2009)
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source code to understand what is happening. For example, there is anecdotal evidence that
intermediate certicates are not checked. For a long time, it wasn’t clear that CRLs are not
used by many browsers. Support for new features, such as OCSP stapling, is slow to arrive.
Te topic is largely a black box. Testing can provide some answers, but only at a point in
time; there are no guarantees that the next version will continue to behave in the same man-
ner.
Outside the browser world, command-line tools still struggle with certicate validation, let
alone revocation. And because most libraries do not use revocation checks by default, devel-
opers generally don’t bother either.
Te overall conclusion is that revocation does not work as designed, for one reason or an-
other.
Tis became painfully clear during 2011, aer several CAs had been compromised. In each
case, the only way to reliably revoke fraudulent certicates was to use blacklisting, but not
via CRL or OCSP. Instead, all vendors resorted to issuing patch releases, which contained
hardcoded information about the fraudulent certicates. Chrome and Microso built spe-
cial mechanisms to allow them to push new blacklisted certicates to their users without
forcing soware upgrade. Other browsers followed or are planning to follow.

Key Issues with Revocation-Checking Standards
At a high level, there are some design aws in both CRL and OCSP that limit their useful-
ness. Tere are three main problems:

Disconnect between certicates and queries
CRL and OCSP refer to certicates using their serial numbers, which are just arbi-
trary numbers assigned by CAs. Tis is unfortunate, because it’s impossible to be
completely certain that the certicate you have is the same one the CA is referring to.
Tis fact could be exploited during a CA compromise by creating a forged certicate
that reuses a serial number of an existing and valid certicate.

Blacklisting instead of whitelisting
CRL is, by denition, a blacklist, and cannot be anything else. OCSP suered from
coming aer CRLs and was probably designed to be easy to use on top of the existing
CRL infrastructure. In the early days, OCSP responders operated largely by feeding
from the information available in CRLs. Tat was a missed opportunity to change
from blacklisting to whitelisting to make it possible to check that a certicate is valid,
not just that it has not been revoked.
Te focus on blacklisting was amplied by the practice of treating the “good” OCSP
response status as “not revoked,” even when the server actually had no knowledge of
the serial number in question. As of August 2013, the CA/Browser Forum forbids this
practice.
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It sounds like a small dierence, but this design aw came up as a real problem dur-
ing the DigiNotar incident. Because this CA had been completely compromised,
there was no record of what fraudulent certicates had been issued. As a result, they
could not be revoked individually. Although DigiNotar’s root certicates were even-
tually removed from all browsers, as a short-term measure their OCSP responders
were congured to return “revoked” for all their certicates.

Privacy
Both CRL and OCSP suer from privacy issues: when you communicate with a CA
to obtain revocation information, you disclose to it some information about your
browsing habits. Te leakage is smaller in the case of CRLs as they usually cover a
large number of certicates.
With OCSP, the privacy issue is real, making many unhappy. If a powerful adversary
wishes to monitor everyone’s browsing habits, it’s much easier to monitor the trac
owing to a dozen or so major OCSP responders than to eavesdrop on the actual
trac of the entire world.
To address this problem, site operators should deploy OCSP stapling, which is a
mechanism that allows them to deliver OCSP responses directly to their users along
with their certicates. With this change, users no longer need to talk to CAs, and
there is no information leakage.

Certifcate Revocation Lists
Initially, Certicate Revocation Lists (CRLs) were the only mechanism for revocation check-
ing. Te idea was that every CA would make a list of revoked certicates available for down-
load at a location specied in all their certicates. Clients would consult the appropriate list
before trusting a certicate. Tis approach proved dicult to scale, leading to the creation
of OCSP for real-time checks.

Issues with CRL Size
CRLs might have seemed like a good idea initially, when the number of revocations was
small. But when the number of revocations exploded, so did the size of the CRLs. According
to GoDaddy, their revocation information grew from 158 KB in 2007 to 41 MB in 2013.57

According to Netcra, they track 220 public CRLs worldwide, and many of them are quite
long.58 At the top of the list is CAcert (a CA that is not trusted by most browsers) with a list
that’s about 6 MB. Ten there are several other large entries, followed by a long tail of CRLs
of decreasing size. For illustration, you can see the top 10 in the following table.

57 NIST Workshop: Improving Trust in the Online Marketplace (Ryan Koski, 10 April 2013)
58 CRLs tracked by Netcraft (Netcraft, retrieved 15 July 2014)
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Table 5.3. Top 10 CRLs by size [Source: Netcraft, 13 March 2014]

CRL Size (in KB)

CAcert 6,219

TrustCenter (Symantec) 1,583

Entrust 1,460

VeriSign 1 (Symantec) 1,346

VeriSign 2 (Symantec) 744

Comodo 1 450

Comodo 2 366

Thawte (Symantec) 346

GoDaddy 320

Comodo 3 314

GoDaddy might not feature on the list with a CRL of 41 MB, but they dominate the entire
list with many smaller CRLs. Other large CAs also use multiple lists. Tis makes the CRL
size problem less visible; if you’re an active web user you are likely to need many of the
CRLs, which means that you will have to download large quantities of data on an ongoing
basis. It might not be an issue for desktop users, but it’s denitely unacceptable for mobile
users. Even if bandwidth consumption does not worry you, the CPU power required for
processing such large les might be prohibitive.

Note
Te problem with CRL size could have been solved by using delta CRLs, which
contain only the dierences from a previously known full CRL. However, this fea-
ture, even though supported on all Windows platforms, has found little use in In-
ternet PKI.

Client-Side Support for CRLs
CRLs have never been supported particularly well on the client side. Today, in particular,
the situation is pretty dire.

• Chrome does not check CRLs by default, but will use them for EV certicates if
CRLSets (their proprietary mechanism for revocation checking) and OCSP do not pro-
vide a satisfactory answer.

• Firefox never checked CRLs for non-EV certicates. It had a mechanism that allowed
users to manually congure CRLs, aer which they would be downloaded in regular
time intervals. But that feature was eectively killed with Firefox 24.59 As of version 28,
Firefox does not check CRLs, even for EV certicates.60
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• Internet Explorer (and all applications relying on Windows APIs) does everything cor-
rectly and downloads and checks CRL if no better revocation information is available.

• Safari will attempt to chase all available revocation possibilities these days, ignoring
failures. On my OS X 10.9 laptop, both OCSP and CRL conguration is set to “Best
attempt.” Tere are many reports on the internet (mostly from 2011, around the Co-
modo and DigiNotar compromises) that suggest that these settings were previously at
“O” by default.

CRL Freshness
CRL size is not the only problem. Long validity periods pose a signicant problem and re-
duce CRL eectiveness. For example, in May 2013 Netcra reported how a revoked inter-
mediary certicate on a popular web site went unnoticed (until they reported on it).61

Te certicate in question did not have any OCSP information, but the CRL was correct.
What happened? A part of the explanation could be that no client used the CRL to check
the intermediate certicates, which reects the sad state of CRL support. However, even as-
suming that clients use CRLs correctly (e.g., Internet Explorer), the fact remains that the CA
industry currently allows unreasonably long validity periods for intermediate certicates.
Here’s the relevant quote from Baseline Requirements62 (emphasis mine):

Te CA SHALL update and reissue CRLs at least (i) once every twelve months
and (ii) within 24 hours aer revoking a Subordinate CA Certicate, and the
value of the nextUpdate eld MUST NOT be more than twelve months be-
yond the value of the thisUpdate eld; [...]

Tus, a CRL for an intermediate certicate is going to be considered fresh for 12 months,
whereas a critical revocation can be added at any day of the year. Allowing such a long peri-
od was probably partially motivated by the desire to cache the CRLs for as long as possible,
because intermediate certicates are oen used by millions of sites. In addition, CRLs are
signed by root keys, which are kept oine for safety; frequent issuance of CRLs would im-
pact the security. Still, long freshness periods of CRLs negatively impact the eectiveness of
revocation. Tis is especially true for intermediate certicates, which, if compromised,
could be used to impersonate any web site. By comparison, CRLs for server certicates must
be updated at most every 10 days.

59 No CRL UI as of Firefox 24 (Kathleen Wilson, August 2013)
60 As of Firefox 28, Firefox will not fetch CRLs during EV certicate validation (Brian Smith, 13 December 2013)
61 How certicate revocation (doesn’t) work in practice (Netcraft, 13 May 2013)
62 Baseline Requirements (CA/Browser Forum, retrieved 13 July 2014)
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Online Certifcate Status Protocol
Online Certicate Status Protocol (OCSP) came aer CRL to provide real-time access to cer-
ticate revocation information. Te idea was that without the burden of having to down-
load a large CRL you can aord to use OCSP on every visit to a web site.

OCSP Replay Attacks
In cryptography, a well-understood attack against secure communication is the replay at-
tack, in which the attacker captures and reuses a genuine message, possibly in a dierent
context. OCSP, as originally designed,63 is not vulnerable to replay attacks; clients are invit-
ed to submit a one-time token (nonce) with every request, and servers are expected to in-
clude that same value in their signed response. Te attacker cannot replay responses be-
cause the nonce is dierent every time.
Tis secure-by-default approach ended up being dicult to scale and, at some point, gave
way to a lightweight approach that is less secure but easier to support in high-volume envi-
ronments. Te Lightweight OCSP Prole64 introduced a series of recommendations designed
to allow for batch generation of OCSP responses and their caching. In order to support the
caching, the replay protection had to go. Without the nonce, an OCSP response is just a le
that you can generate once, keep for a while, and deliver using a CDN.
As a result, clients generally don’t even try to use nonces with OCSP requests. If they do
(you can try it with the OpenSSL command-line client), servers usually ignore them. Tus,
the only defense against replay attacks is the built-in time limit: attackers can reuse OCSP
responses until they expire. Tat window of opportunity will depend on the CA in question
and on the type of certicate (e.g., responses for EV certicates might have a short life, but
those for DV certicates might have a much longer one), but it ranges from hours to days.
Seeing OCSP responses that are valid for a week is not unusual.
As is the case with CRLs, Baseline Requirements allow OCSP responses that are valid for up
to 10 days; up to 12 months for intermediate certicates.

OCSP Response Suppression
Te OCSP response suppression attack relies on the fact that most browsers that use OCSP
ignore failures; they submit OCSP requests in good faith but carry on when things go
wrong. Tus, an active attacker can suppress revocation checks by forcing all OCSP requests
to fail. Te easiest way to do this is to drop all connections to OCSP responders. It is also
possible to impersonate the responders and return HTTP errors. Adam Langley did this
once and concluded that “revocation doesn’t work.”65

63 RFC 2560: X.509 Internet Public Key Infrastructure Online Certicate Status Protocol - OCSP (Myers et al., June 1999)
64 RFC 5019: The Lightweight OCSP Prole for High-Volume Environments (A. Deacon and R. Hurst, September 2007)
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Prior to Adam’s experiment, in 2009 Moxie Marlinspike highlighted a aw in the OCSP pro-
tocol that allows for suppression without network-level failures. In OCSP, successful re-
sponses are digitally signed, which means that even an active attacker cannot forge them.
However, there are several unauthenticated response types dealing with failures. If all you
need is to make a response fail, you simply return one of the unauthenticated error codes.66

Client-Side OCSP Support
In many cases, there is no need to attack OCSP revocation because user agents ignore it
completely. Older platforms and browsers do not use OCSP or do not use it by default. For
example, Windows XP and OS X before 10.7 fall into this category.
More important, however, is the fact that some modern browsers choose not to use OCSP.
For example, iOS uses OCSP (and, presumably, CRL) only for EV certicates.67 Chrome
largely stopped using OCSP in 2012,68 replacing all standards-based revocation checks with
a lightweight proprietary mechanism called CRLSets.69 CRLSets improve revocation check-
ing performance (all checks are local and thus fast) but decrease security because they cover
only a subset of all revocations, mostly those related to CA certicates. Private CAs are es-
pecially vulnerable, because there is no way for them to be included in the CRLSets. In the
most recent versions, OCSP revocation checking is attempted only for EV certicates and
only if their CRLSets don’t already cover the issuing CA.
Even when OCSP is used, virtually all browsers implement so-ail. Tey attempt OCSP re-
quests and react properly to successful OCSP responses but ignore all failures. In practice,
this provides protection only in a small number of use cases. As you’ve seen in the previous
section, so-ail clearly does not work against an active attacker who can simply suppress all
OCSP trac.
Typically, the worst that can happen when revocation checking fails is that an EV site will
lose its security status, leading to all EV indicators being stripped from the user interface. I
am not sure we can expect anyone to actually notice such an event. And, if they do, how
should they react to it?

Responder Availability and Performance
From the beginning and to this day, OCSP has had a reputation for being unreliable. Te
problems in the early days caused browsers to adopt the inadequate so-ail approach, and
OCSP has never recovered. CAs are much better these days at making their responders

65 Revocation doesn’t work (Adam Langley, 18 March 2011)
66 Defeating OCSP With The Character ’3’ (Moxie Marlinspike, 29 July 2009)
67 CRL and OCSP behavior of iOS / Security.Framework? (Stack Overfow, answered 2 March 2012)
68 Revocation checking and Chrome’s CRL (Adam Langley, 05 February 2012)
69 CRLSets (Chromium Wiki, retrieved 15 July 2014)
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available, but browser vendors still refuse to switch to hard-fail and put their reputation on
the line.

Note
Tanks to Netcra, we now have visibility into the performance of OCSP respon-
ders of various CAs.70

Tere are three separate issues to consider:
Availability

OCSP responder availability is the biggest issue. If you’re running a secure web site
and your CA’s OCSP responder is down, your site will suer. If browsers implement-
ed hard-fail, then your site would be down, too.71

Even with so-ail, it’s likely that you will experience severe performance issues in the
case of the OCSP responder downtime. User agents that use OCSP will attempt to
check for revocation, and they all have a network timeout aer which they give up.
Tis timeout is typically set at several seconds. As an illustration, Firefox uses three
seconds by default and 10 seconds when in hard-fail mode.
Tere is also an additional problem with the so-called captive portals, which arise
when users don’t have full access to the Internet (and thus to various OCSP respon-
ders) but still need to validate certicates in some way. In practice, this happens most
oen when you are required to authenticate on a Wi-Fi network. Although captive
portals could take care to whitelist public OCSP responders, most don’t do that.

Performance
By its nature, OCSP is slow. It requires user agents to rst parse a certicate, then ob-
tain the OCSP URL, open a separate TCP connection to the OCSP responder, wait
for a response, and only then proceed to the original web site. A slow OCSP respon-
der will add hundreds of milliseconds of latency to the rst connection to your web
site.
OCSP responder performance is possibly the single biggest technical dierentiator
among CAs today. You basically want to select a CA that will provide minimal slow-
down to your web site. For that, a fast and globally distributed OCSP responder net-
work is required. Some CAs are using their own infrastructure, while others are opt-
ing for commercial CDNs, such as Akamai and CloudFlare.
Maintaining a robust OCSP responder is not a trivial task. VeriSign (now Symantec)
is known for operating a highly available OCSP responder service. According to their

70 OCSP Uptime (Netcraft, retrieved 15 July 2014)
71 Certicate revocation and the performance of OCSP (Netcraft, 16 April 2013)
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report, during 2012 they were serving over 4.5 billion OCSP responses every day.72 A
more recent article mentions as many as 14 billion transactions per day in 2014.73

Correctness
If an OCSP responder is available and fast, that does not mean that it is actually re-
sponding correctly. Some CAs do not synchronize their OCSP responders with
changes in their main database. For example, some time ago I obtained a certicate
from a public CA, installed it on my web site, and promptly discovered that all OCSP
requests were failing.
Aer contacting the CA, I learned that they allow up to 40 minutes from the creation
of a certicate until they update the OCSP responders. My suggestion to postpone
certicate issuance until their entire infrastructure was ready was dismissed as “too
complicated.”

At this point, it’s unlikely that OCSP revocation will ever be changed to a hard-fail system.
CAs had a slow start initially, and when browsers adopted so-ail they had little incentive
to improve. Today, the likely scenario is that the availability and performance concerns will
be addressed by a wider adoption of OCSP stapling, which allows servers to retrieve OCSP
responses from the CAs once and deliver them directly to end users along with their certi-
cates.

Note
For a period of several years, I had my Firefox browser congured to hard-fail (in
about:config, set security.ocsp.require to true). In all of that time, I had OCSP
responder availability issues only with one CA. Interestingly, it was the same CA
that has the 40-minute delay on their OCSP responders.

72 2013 Internet Security Threat Report, Volume 18 (Symantec, April 2013)
73 Three years after Diginotar closed, hackers still trying to use its digital certicates (CSO, 14 March 2014)

Online Certicate Status Protocol 151



6 Implementation Issues
Te soware we write today is inherently insecure, for several reasons. First, the basic tools
—programming languages and libraries—are not written with security in mind. Languages
such as C and C++ allow us to write code that is fast but fragile. Oen, a single coding mis-
take can crash the entire program. Tat is simply absurd. Libraries and APIs are virtually
never designed to minimize errors and maximize security. Documentation and books are
rife with code and designs that suer from basic security issues. We don’t have to go far to
nd a representative example: OpenSSL itself, the most widely used SSL/TLS library, is no-
torious for being poorly documented and dicult to use.
Te second problem is much deeper and has to do with the economics of writing soware.
In today’s world, emphasis is on getting work “done” by minimizing up-front costs (in both
time and money), without fully considering the long-term eects of insecure code. Security
—or, more generally, code quality—is not valued by end users, which is why companies tend
not to invest in it.
As a result, you will oen hear that cryptography is bypassed, not broken. Te major cryp-
tographic primitives are well understood and, given choice, no one attacks them rst. But
the primitives are seldom useful by themselves; they need to be combined into schemes and
protocols and then implemented in code. Tese additional steps then become the main
point of failure, which is why you will also oen hear that only a fool implements their own
crypto.
Te history is full of major cryptographic protocols with critical design aws, but there are
even more examples of various implementation problems in well-known projects. Te situa-
tion gets much worse when you start looking at projects developed without the necessary
expertise in cryptography.
Tis chapter reviews the major implementation issues, both historical and still relevant
ones.
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Certifcate Validation Flaws
For a TLS connection to be trusted, every client must perform two basic checks: determine
that the certicate applies to the intended hostname and determine that the certicate is
valid and can be trusted. Sounds simple, but the devil is in the details. When certicate-
checking code is developed, developers will test with the certicate chains they nd in real
life, but those will never be malicious and designed to subvert security. As a result, develop-
ers oen miss some critical checks.
For example, the following is a list of some (but not all!) of the things that need to be
checked for each certicate chain.

1. Te end entity (server) certicate is valid for the intended hostname.

2. All chain certicates (including the end-entity one) must be checked to see that:

• Tey have not expired.

• Teir signatures are valid.

3. An intermediate certicate might need to satisfy further requirements:

• Can be used to sign other certicates for the intended purpose (e.g., an intermediate
certicate might be allowed to sign web server certicates, but cannot be used for
code signing).

• Can be used to sign other CA certicates.1

• Can be used to sign the hostname in the leaf certicate.
In addition, a robust implementation will check a number of other things, for example, that
all the keys are strong and that weak signatures (e.g., MD2, MD5, and (soon) SHA1) are not
used.

Library and Platform Validation Failures
Certicate validation aws in libraries are not very common, but their impact is usually
signicant, because all code that relies on them inherits the problems. Well-known valida-
tion aws include the following:

Basic Constraints check failure in Microso CryptoAPI (2002)2

Tis is an early example of validation failure in probably the most widely used code-
base, which aected all Microso platforms as well as some products running on oth-
er operating systems. Because of this aw, any valid server certicate could be used to

1 For security reasons, the CA certicate that issues the end-entity certicate shouldn’t be allowed to issue subordinate CA certicates. All other

intermediate certicates in the chain must have this privilege.
2 Certicate Validation Flaw Could Enable Identity Spoong (Microsoft Security Bulletin MS02-050, 4 September 2002)
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sign a fraudulent certicate that would then be trusted. Te fraudulent certicate
could be then used in active MITM attacks. Konqueror (the default browser of the
KDE desktop) was also found to suer from the same problem. Further variations of
the aw were later discovered in Microso’s code, including some that could be used
for code signing on the Windows platform.
Tis problem was discovered by Moxie Marlinspike in August 2002.3 Moxie went on
to write sslsniff,4 a MITM attack tool, for the sole purpose of demonstrating that
this problem can be exploited. In 2009, Moxie also reported that OpenSSL (around
version 0.9.6) had been vulnerable to the same problem, but no further details are
available.

Chain validation failure in GnuTLS (2008)5

A aw in the certicate chain validation code allowed invalid chains to be recognized
as valid by simply appending any trusted root certicate to the end of any nontrusted
chain. Te error was that the appended certicate, which caused the entire chain to
be trusted, was removed prior to checking that all certicates are part of a single
chain.

DSA and ECDSA signature validation failures in OpenSSL (2009)6

In 2009, the Google Security Team discovered that, due to insucient error checking
in OpenSSL code, DSA and ECDSA signature failures could not be detected. Te
practical impact of this problem was that any MITM attacker could present a fraudu-
lent certicate chain that would be seen as valid.

Basic Constraints check failure in iOS (2011)7

Almost a decade later, Apple was discovered to have made the same mistake in the
chain validation as Microso and others before. Te iOS platforms before 4.2.10 and
4.3.5 were not checking if certicates are allowed to act as subordinate CAs, making it
possible for any leaf certicate to sign any other certicate.

Connection authentication failure in iOS and OS X (2014)
On 21 February 2014, Apple released updates for iOS 6.x and 7.x in order to x a bug
in TLS connection authentication.8 Although Apple didn’t provide any details (they
never do), the description caught everyone’s attention and sparked a large-scale hunt
for the bug. It turned out that a devastating slip in the connection authentication
code allowed any DHE and ECDHE connection to be silently hijacked by an active
MITM.9 Te bug was also found to exist in the latest version of OS X (10.9), which

3 Internet Explorer SSL Vulnerability (Moxie Marlinspike, 8 August 2002)
4 sslsniff (Moxie Marlinspike, retrieved 20 February 2014)
5 Analysis of vulnerability GNUTLS-SA-2008-3 CVE-2008-4989 (Martin von Gagern, 10 November 2008)
6 Incorrect checks for malformed signatures (OpenSSL, 7 January 2009)
7 TWSL2011-007: iOS SSL Implementation Does Not Validate Certicate Chain (Trustwave SpiderLabs, 25 July 2011)
8 About the security content of iOS 7.0.6 (Apple, 21 February 2014)
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had been released in October 2013. Unfortunately, a x was not immediately avail-
able; it’s not clear why Apple would choose not to synchronize releases for such a
signicant security issue. Possibly because of a strong backlash, the x (OS X 10.9.2)
came only a couple of days later, on February 25th.
In the context of TLS authentication, this bug is as bad as they get. Te weakness is in
a transient part of the handshake that is never logged. (If you were to attack certi-
cate authentication, for example, you would need to provide a fraudulent certicate
chain, which might be recorded and reported.) If proper care is taken to use it only
against vulnerable clients (which should be possible, given that the TLS handshake
exposes enough information to allow for pretty reliable ngerprinting), an attack
could be reliable, silent, and eective without leaving any trace.
All applications running on the vulnerable operating systems were exposed to this
problem. Te only exceptions were cross-platform applications (for example, Chrome
and Firefox) that rely on their own TLS stack.

Chain validation failures in GnuTLS (2014)
In early 2014, GnuTLS disclosed two separate vulnerabilities related to certicate
chain validation.10 Te rst bug caused GnuTLS to treat any X.509 certicate in ver-
sion 1 format as an intermediary CA certicate. If someone could obtain a valid serv-
er certicate in v1 format (not very likely, given that this is an obsolete format), they
could use it to impersonate any server when GnuTLS is used for access. Tis vulnera-
bility had been introduced in GnuTLS 2.11.5.
As for the second vulnerability, shortly aer Apple’s TLS authentication bug had been
revealed, GnuTLS disclosed a similar bug of their own: a malformed certicate could
short-circuit the validation process and appear as valid.11 It is probable that the
maintainers, aer learning about Apple’s bug, decided to review their code in search
for similar problems. Although GnuTLS isn’t used by major browsers and isn’t as
popular as OpenSSL on the server side, it still has some major users. For example,
many of the packages shipped by Debian use it. Tus, this vulnerability might have
had a signicant impact. Tis vulnerability had been present in the code for a very
long time, possibly from the very rst versions of GnuTLS.

OpenSSL ChangeCipherSpec Injection (2014)
In June 2014, the OpenSSL project disclosed a long-standing vulnerability that al-
lowed an active network attacker to inject ChangeCipherSpec messages into hand-
shakes between two OpenSSL endpoints and force negotiation of a predictable master
secret.12 Tis problem existed in virtually every version of OpenSSL, but—as far as we

9 Apple’s SSL/TLS bug (Adam Langley, 22 February 2014)
10 Advisories (GnuTLS, retrieved 17 July 2014)
11 Dissecting the GnuTLS Bug (Johanna, 5 March 2014)
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know—it’s not exploitable unless a vulnerable version from the OpenSSL 1.0.1 branch
is running on the server. Te root cause is that, during a TLS handshake, the
ChangeCipherSpec message is used by each side to signal the end of negotiation and a
switch to encryption, but this message is not authenticated because it’s not part of the
handshake protocol. If the attacker sends the message early (which OpenSSL should
have caught), the vulnerable sides construct encryption keys too early and with the
information the attacker knows.13

Tis vulnerability is quite serious and easy to exploit, but its impact is reduced, be-
cause OpenSSL is required on both sides of the communication, and yet OpenSSL is
rarely used on the client side. Te most prominent platform that uses OpenSSL in
this way is Android 4.4 (KitKat), which was subsequently xed. According to SSL
Pulse, immediately aer the vulnerability was released, there were about 14% of
servers running the exploitable versions of OpenSSL.

In 2014, a group of researchers published the results of comprehensive adversarial testing of
certicate validation in several libraries.14 Tey developed a concept of “mutated” certi-
cates, or frankencerts, built from real certicates.15 Although the widely used libraries and
browsers passed the tests, the lesser-used libraries, such as PolarSSL, GnuTLS, CyaSSL, and
MatrixSSL, were all found to have serious aws.

Application Validation Failures
If major platforms and libraries can have serious validation vulnerabilities, we can intuitive-
ly expect that other soware will fare much worse. Aer all, for most developers security is
something that stands in the way between them and shipping their project. Tere’s been
ample anecdotal evidence of certicate validation failures in end-user code, but the scale of
the problem became more clear aer a research paper on the topic was published in 2012.16

From the abstract (emphasis mine):

We demonstrate that SSL certicate validation is completely broken in many
security-critical applications and libraries. Vulnerable soware includes Ama-
zon’s EC2 Java library and all cloud clients based on it; Amazon’s and PayPal’s
merchant SDKs responsible for transmitting payment details from e-com-
merce sites to payment gateways; integrated shopping carts such as osCom-
merce, ZenCart, Ubercart, and PrestaShop; AdMob code used by mobile web-
sites; Chase mobile banking and several other Android apps and libraries; Ja-

12 OpenSSL Security Advisory CVE-2014-0224 (OpenSSL, 5 June 2014)
13 Early ChangeCipherSpec Attack (Adam Langley, 5 June 2014)
14 Using Frankencerts for Automated Adversarial Testing of Certicate Validation in SSL/TLS Implementations (Brubaker et al., S&P, 2014)
15 Frankencert (sumanj, GitHub, retrieved 17 July 2014)
16 The most dangerous code in the world: validating SSL certicates in non-browser software (Georgiev et al., CCS, 2012)
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va Web-services middleware—including Apache Axis, Axis 2, Codehaus
XFire, and Pusher library for Android—and all applications employing this
middleware. Any SSL connection from any of these programs is insecure
against a man-in-the-middle attack.

If this is not cause for alarm, then I don’t know what is. Clearly, there are some major com-
ponents of the Internet infrastructure mentioned in the report. According to the team be-
hind the research, the root cause is the badly designed APIs. Not only are the libraries oen
insecure by default (no certicate validation at all), but they make it dicult to write code
that is secure. Most libraries are simply too low level and expect too much from their users.
For example, OpenSSL expects developers to provide their own code to perform hostname
validation.
Te report very accurately describes a major problem with our entire development stacks,
aecting all code and security, not only SSL and TLS. Yes, there are libraries that are inse-
cure and dicult to use, but the real problem is that we keep on using them. No wonder we
keep on repeating the same mistakes.
To be fair, there are some platforms that behave correctly. Java’s SSL/TLS implementation
(JSSE), for example, performs all necessary validation by default, much to the annoyance of
many developers who don’t want to bother to set up a trusted development infrastructure.
Anecdotal evidence suggests that most developers, in development, disable all validation in
their code. We can only wonder how oen are checks re-enabled in production.

Hostname Validation Issues
Speaking of hostname validation—how dicult can it be to verify if a certicate is valid for
the intended hostname? As it turns out, the verication is oen incorrectly implemented, as
several vulnerabilities show. At Black Hat USA in 2009, Dan Kaminsky17 and Moxie Marlin-
spike18 independently detailed how to perform MITM attacks entirely silently, without any
warnings experienced by the victims.
Several aws were needed to pull the attacks o, but in both cases the key was the NUL
byte, which is used in C and C++ for string termination. In this context, the NUL byte is not
part of the data but only indicates that the data is ending. Tis way of representing textual
data is handy, because you only need to carry a pointer to your data. Ten, as you’re pro-
cessing the text, whenever you see the NUL byte, you know that you’ve reached the end.

17 PKI Layer Cake: New Collision Attacks Against the Global X.509 Infrastructure (Kaminsky et al., Black Hat USA, 2009)
18 More Tricks For Defeating SSL In Practice (Moxie Marlinspike, Black Hat USA, 2009)
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Figure 6.1. Representation of a C string in memory

H e l l o w o r l d ! \0

Certicate structures, which rely on the ASN.1 notation standard, use a dierent approach,
in which all structures are stored with their length. Problems arise when these dierent ap-
proaches to handling strings meet: certicates are encoded in one way (ASN.1) but pro-
cessed in another (C code).
Te attack is this: construct a certicate that has a NUL byte in the hostname, and bet that
(1) most clients will think that that’s where the hostname ends and that (2) the NUL byte
will thwart a CA’s validation process.
Here’s how Moxie executed the attack:

1. Construct a special hostname with a NUL byte in it. Moxie used the following:
www.paypal.com\0.thoughtcrime.org (the NUL byte is indicated with \0, but is normal-
ly “invisible”). Te rules are to:
• Place the hostname you wish to impersonate before the NUL byte.
• Put some domain name you control aer the NUL byte.

2. For CAs, the NUL byte is nothing special.19 Tey issue certicates based on the valida-
tion of the hostname sux, which maps to some top-level domain name. In the previ-
ous attack example, the domain name is thoughtcrime.org, which belongs to Moxie. He
will naturally approve the certicate request.

3. Te resulting certicate can now be used against vulnerable clients with a modied
version of sslsniff.

19 Actually, that’s not strictly true. Some CAs were found to incorrectly process the NUL byte and mistake it for a string terminator. These days,

it’s very likely that CAs perform all sorts of checks on the submitted hostnames.
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Figure 6.2. The domain name used by Moxie Marlinspike in his proof-of-concept attack

w w w . p y p a l . c m . t ha o o u g h

t c r i m . o r ge

\0

Microso’s CryptoAPI, GnuTLS, and NSS libraries were all found to be vulnerable to the
NUL byte attack, aecting Firefox, Internet Explorer, and many other user agents. And
when you add to the mix the PKI feature that allows for wildcards in hostnames you may
end up with a certicate issued to *\0thoughtcrime.org, which worked as a universal inter-
ception certicate.

Random Number Generation
All cryptography relies on random number generation, making this functionality the essen-
tial building block of secure communication.20 For example, you need random numbers
whenever you are generating a new key. Keep in mind that key generation is not something
you do only once in a while (e.g., if you’re installing a new server) but something that proto-
cols (e.g., TLS) do behind the scenes on every single connection.
With a good random number generator (RNG), for example, a 256-bit symmetric key will
provide 256 bits of security (when used with a strong algorithm). But if the RNG is awed,
rather than having a random number from that large 256-bit space you may end up with
one from a much smaller space, say, 32 bits. Te smaller the eective space, the worse the
security. If the eective size of the key is too small, even brute-force attacks against it may be
possible.

Netscape Navigator (1994)
One of the early examples of random number generation failure was in Netscape Navigator,
the agship product of the company that designed SSL itself. Tis browser used a simplistic

20 True random number generation is not possible unless specialized hardware components are used. In practice, we rely on pseudorandom

number generators (PRNGs). Most PRNGs use a small amount of entropy as a seed, after which they can produce a large quantity of pseudoran-

dom numbers. In this section, I use RNG and PRNG interchangeably.
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algorithm for random number generation that relied on the time since boot in microsec-
onds and the IDs of the underlying operating system process and that of its parent. Te
problem was revealed in 1995, when two researchers reverse engineered the code of the
RNG21 and wrote a program that uncovers the master encryption key.22

In the best case for the attacker, having an account on the same Unix machine as the victim
meant that he could determine the process and parent process IDs. Te attacker would then
determine the time in seconds from observing packets as they travel on the network, reduc-
ing the problem to guessing the microseconds value—which is only about 20 bits of security.
To break through that required only 25 seconds on the hardware they had at hand.
In the more realistic case of an attacker with no knowledge of process IDs, the size of the
problem would be reduced to 47 bits—still within reach of brute-force attacks, even at that
time.

Debian (2006)
In May 2008, Luciano Bello discovered23 that a catastrophic programming error concerning
the RNG used in the OpenSSL system libraries had been made by the Debian Project in
September 2006 and that the bug consequently ended up in the project’s stable release (De-
bian etch) in April 2007. Debian is not only a very popular Linux distribution but also a
starting point from which many other distributions are built (most notably, Ubuntu), which
meant that the problem aected a great number of servers in the world.
Te programming error had been the accidental removal (commenting out) of a single line
of code, which fed entropy to the random number generator. With that line removed, the
only entropy le was some auxiliary input from the process ID, which meant that there were
only 16 (!) bits of entropy for all cryptographic operations. With so few bits, all crypto on
the aected installations was eectively nonexistent.
Tis was the aected fragment of the code:24

/*
 * Don't add uninitialised data.
        MD_Update(&m,buf,j);
*/
        MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
        MD_Final(&m,local_md);
        md_c[1]++;

21 Randomness and the Netscape Browser (Ian Goldberg and David Wagner, January 1996)
22 unssl.c (Ian Goldberg and David Wagner, September 1995)
23 DSA-1571-1: openssl — predictable random number generator (Debian, 13 May 2008)
24 Diff of /openssl/trunk/rand/md_rand.c r140:r141 (Debian OpenSSL package, 2 May 2006)
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Te biggest practical problem was weak OpenSSH keys,25 but that was largely mitigated by
the fact that these keys are stored in well-known locations and could be easily checked. Te
Debian project built a blacklist of vulnerable keys as well as tools to look for them.
Replacing vulnerable TLS keys was more dicult, because the process could not be imple-
mented as part of the automated patching process. Scripts were built to scan all les and
detect weak keys. Because the problem can be detected from a server’s public key, remote-
testing tools were made available; for example, I added one to the SSL Labs web site. In ad-
dition, because most server certicates last only for a year or two, CAs were able to apply
tests (against public keys, which are embedded in certicate signing requests) and refuse to
issue certicates for vulnerable private keys. Overall, however, there was a great sense of
confusion, and many people reported that the detection tools were not correctly agging
vulnerable keys even though they had been generated on vulnerable systems.
Te discovery of the Debian RNG issue highlighted the fact that open source projects are
oen touched—for whatever reason—by those who are not very familiar with the code.
Tere is oen very little quality assurance even for critical system components such as
OpenSSL. And yet millions rely on that code aerward.
Tension between project developers and packagers is a well-known problem in open source
circles.26 Distributions oen fork open source projects and change their behavior in signi-
cant ways but keep the names the same. As a result, there is oen confusion regarding
which versions are aected by problems and who is responsible for xing them. Te under-
lying root cause is friction between developers and packagers, which results from dierent
development schedules and dierent priorities and development goals.27

Note
Debian is not the only operating system that has suered problems with random
number generation. In 2007, three researchers published a paper discussing RNG
weaknesses in Windows 2000.28 It was later discovered that Windows XP was also
aected. Ten, as recently as March 2013, the NetBSD project announced that
NetBSD 6.0, rst released in October 2012, had a bug in the kernel RNG that im-
pacted security.29

Insufcient Entropy on Embedded Devices
In February 2012, a group of researchers published the results of an extensive study of the
quality of RSA and DSA keys found on the Internet.30 Te results indicated that at least

25 Working exploit for Debian generated SSH Keys (Markus Müller, 15 May 2008)
26 Vendors Are Bad For Security (Ben Laurie, 13 May 2008)
27 Debian and OpenSSL: The Aftermath (Ben Laurie, 14 May 2008)
28 CryptGenRandom (Wikipedia, retrieved 17 July 2014)
29 RNG Bug May Result in Weak Cryptographic Keys (NetBSD, 29 March 2013)
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0.5% of the seen RSA keys (used for SSL/TLS) were insecure and could easily be compro-
mised. Te results for DSA (used for SSH) were worse, with 1.03% of the keys considered
insecure.
Te large majority of the discovered problems could be attributed to issues with random
number generation. Te study concluded:

Ultimately, the results of our study should serve as a wake-up call that secure
random number generation continues to be an unsolved problem in impor-
tant areas of practice.

On the positive side, virtually all of the discovered problems were on headless and embed-
ded devices, and the study concluded that nearly all keys used on nonembedded servers are
secure. Just a fraction of the discovered certicates were signed by public CAs. Te main
problems identied were the following:

Default keys
Some manufacturers are shipping their products with default encryption keys. Clear-
ly, this practice defeats the purpose, because all product users end up using the same
keys and can compromise one another aer extracting the private keys (from the
hardware or soware). Furthermore, those keys will inevitably be shared with the
world.31

Repeated keys due to low entropy
Some devices generate keys on rst boot, when there is little entropy available. Such
keys are generally predictable. Te paper describes the experiment of a simulated
headless rst boot running Linux, which clearly demonstrates the weaknesses of the
Linux entropy-gathering code in the rst seconds aer rst boot.

Factorable keys
Most interestingly, for RSA keys it was discovered that many share one of the two
primes that make the modulus, a condition that allows the keys to be compromised.
Given that the primes should be randomly generated, the same primes should not oc-
cur. According to the research, the root cause is a particular pattern in the OpenSSL
code that generates RSA keys coupled with low-entropy conditions.

Te summary of the TLS-related ndings can be seen in the following table.

30 Widespread Weak Keys in Network Devices (factorable.net, retrieved 17 July 2014)
31 LittleBlackBox (Database of private SSL/SSH keys of embedded devices, retrieved 17 July 2014)
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Table 6.1. Summary of vulnerable private keys [Source: factorable.net]

Number of live hosts 12,828,613 (100.00%)

    . . . using repeated keys 7,770,232 (60.50%)

            . . . using vulnerable repeated keys 714,243 (5.57%)

                    . . . using default certicates or default keys 670,391 (5.23%)

                    . . . using low-entropy repeated keys 43,852 (0.34%)

    . . . using RSA keys we could factor 64,081 (0.50%)

    . . . using Debian weak keys 4,147 (0.03%)

    . . . using 512-bit RSA keys 123,038 (0.96%)

    . . . identied as a vulnerable device model 985,031 (7.68%)

    . . . using low-entropy repeated keys 314,640 (2.45%)

Clearly, there are failures at every level (e.g., manufacturers could have checked for these
issues and worked around them), but ultimately the study uncovered what is really a usabili-
ty problem: cryptographic applications rely on the underlying operating system to provide
them with enough randomness, but that oen does not happen. And when it does not, there
is no way to detect failures directly (e.g., Linux will never block on /dev/urandom reads).
Few applications use defense-in-depth measures and use statistical tests to verify that their
random data is indeed random.
Tis inability to rely on system-provided randomness may force some developers to take
matters into their own hands and use their own RNGs instead. Tis approach is unlikely to
be successful, however, because random number generation is a dicult task that’s easy to
get wrong.
If you have an embedded device and wish to check the quality of its keys, the authors be-
hind this study provide an online tool that can check any server on the Internet.32

Heartbleed
Heartbleed,33 a devastating vulnerability in OpenSSL, was disclosed to the public in April
2014. Te attack exploits the implementation of the Heartbeat protocol, a little-used TLS
protocol extension (more about it in the section called “Heartbeat ” in Chapter 2).
Heartbleed is arguably the worst thing to happen to TLS, which is ironic, given that it’s not a
cryptographic failure. Rather, it’s a testament to the poor state of soware development and
quality of open source in general.
In the fallout aer Heartbleed, everyone’s eyes were on OpenSSL. Although the lack of fund-
ing for the project and its poor code quality had been known for a very long time, it took a

32 Check Your Key (factorable.net, retrieved 17 July 2014)
33 Heartbleed (Wikipedia, retrieved 19 May 2014)
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massive vulnerability for the community to take action. Te results were good and bad, de-
pending on your point of view. Te Linux Foundation announced a three-year project called
Core Infrastructure Initiative, which aims to distribute $3.9 million to underfunded open
source projects,34 OpenSSL published a roadmap to identify and x the problems with the
project,35 and, in the meantime, the OpenBSD Project forked OpenSSL into a new project
called LibreSSL and started to make rapid changes with a goal to improve the code quality.36

Impact
Because of a missing check for the read length in the code, successful exploitation enables
the remote attacker to retrieve up to 64 KB of server process memory in a single heartbeat
request. By submitting multiple requests, the attacker can retrieve an unlimited number of
memory snapshots. If there is any sensitive data in the server memory—and there always is
—the attacker can probably retrieve it. Because OpenSSL deals with encryption, the most
likely extraction target is the server’s private key, but there are many other interesting assets:
session ticket keys, TLS session keys, and passwords come to mind.
Heartbleed aects OpenSSL versions 1.0.1 through 1.0.1f. Versions from the earlier branch-
es, 0.9.x and 1.0.0, are not vulnerable. Unsurprisingly, vast numbers of servers were impact-
ed. Netcra estimated that 17% of the servers (or about half a million) worldwide were sus-
ceptible.37

Remarkably, most of the servers have been patched already. Te combination of the serious-
ness of the problem, freely available testing tools, and media attention resulted in the fastest
patching rate TLS has ever seen. One Internet-wide scan suggests that about 1.36% of de-
vices listening on port 443 remain vulnerable one month later.38 At about the same time, the
SSL Pulse dataset (popular web sites, according to the Alexa list) shows only 0.8% of sites
vulnerable.
Immediately aer the disclosure, most commentators recommended changing private keys
as a precaution, but there was no proof that private key extraction was possible. It’s likely
that everyone was initially too busy testing for the vulnerability and patching. Later, when
the attention turned back to exploitation, retrieving server private keys turned out to be
straightforward.39 In some cases, the keys would fall aer many requests—in others, aer
few. More advanced exploitation techniques were subsequently developed.40

34 Tech giants, chastened by Heartbleed, nally agree to fund OpenSSL (Jon Brodkin, Ars Technica, 24 April 2014)
35 OpenSSL Project Roadmap (OpenSSL, retrieved 17 July 2014)
36 LibreSSL (OpenBSD, retrieved 17 July 2014)
37 Half a million widely trusted websites vulnerable to Heartbleed bug (Netcraft, 8 April 2014)
38 300k servers vulnerable to Heartbleed one month later (Robert Graham, 8 May 2014)
39 The Results of the CloudFlare Challenge (Nick Sullivan, 11 April 2014)
40 Searching for The Prime Suspect: How Heartbleed Leaked Private Keys (John Graham-Cumming, 28 April 2014)
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In the days immediately aer the disclosure, exploitation of vulnerable sites was rampant.
Private keys were not the only target. For example, Mandiant reported detecting a successful
attack on a VPN server that resulted in a bypass of multifactor authentication. Te attackers
extracted TLS session keys from server memory.41

Social insurance numbers were stolen from the Canadian tax authority and passwords ex-
tracted from the Mumsnet web site (a popular site for parents in the UK).42

Heartbleed was easy to exploit to begin with, but now, with so many tools publicly available,
anyone can exploit a vulnerable server in minutes. Some tools are quite advanced and pro-
vide full automation of private key discovery.

Note
If you’d like to learn more about the bug itself and how to test for vulnerable
servers, head to the section called “Testing for Heartbleed” in Chapter 12, Testing
with OpenSSL.

Mitigation
Patching is the best way to start to address Heartbleed. If you’re relying on a system-provid-
ed version of OpenSSL, your vendor will have hopefully provided the patches by now. If
you’re compiling from source, use the most recent OpenSSL 1.0.1 version available. In that
case, you can also congure OpenSSL to remove support for the Heartbeat protocol, using
the OPENSSL_NO_HEARTBEATS ag. For example:

$ ./config -DOPENSSL_NO_HEARTBEATS
$ make

Aer this you’ll probably need to recompile all other soware packages that depend on your
version of OpenSSL.
Many products (e.g., appliances) embed OpenSSL and might be vulnerable. Because they
had no advanced warning about Heartbleed, none of them were ready with patches on the
day of the disclosure. Vendors with many products probably struggled to issue patches for
all of them.
Aer the vulnerability is xed, turn your attention to the sensitive data that might have
leaked from the server. At the very least, you’ll need to replace the server private keys, ob-
tain new certicates, and revoke the old certicates. According to Netcra, which is moni-
toring the status of Heartbleed remediation activities worldwide, sites oen omit perform-
ing one or more of these steps.43

41 Attackers Exploit the Heartbleed OpenSSL Vulnerability to Circumvent Multi-factor Authentication on VPNs (Christopher Glyer, 18 April 2014)
42 Heartbleed hacks hit Mumsnet and Canada’s tax agency (BBC, 14 April 2014)
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Aer the private keys and certicates are dealt with, focus on what else might have been in
the server memory. Session ticket keys are the obvious next target. Replace them. Aer that,
consider other secrets, for example, user passwords. Depending on your risk prole, it
might be necessary to advise or ask your users to change their passwords, as some web sites
have done.
Heartbleed could not be used to gain access to your data stores, at least not directly. Indi-
rectly, it could have been possible to obtain some information that is as useful. For example,
on a database-driven web site, the database password is used on every request and thus re-
sides in memory. Replacing all internal passwords is the best way to remain safe.
Sites who had forward secrecy deployed before the attack are in the best situation: their past
communication can’t be decrypted following a compromise of the server private key. If
you’re in the other group, consider deploying forward secrecy now. Tis is exactly why this
feature is so important.

Warning
Although we focus on servers, clients using vulnerable versions of OpenSSL are
vulnerable too. Heartbeat is a two-way protocol. If a vulnerable client connects to a
rogue server, the server can extract the client’s process memory.44

FREAK
In January 2015, a low-severity advisory was published by the OpenSSL project, warning
that its clients happily accepted a weak export RSA key from a server during a full-strength
RSA handshake. Crucially, the vulnerability existed even if the client didn’t oer to use any
export-grade RSA suites. Te issue was classied as CVE-2015-0204 and didn’t initially at-
tract a lot of attention.
Some researchers had grasped the potential of the original disclosure and started to work on
a powerful proof of concept attack. In early March they announced that they had successful-
ly exploited CVE-2015-0204 to attack (their own) communication with the www.nsa.gov
web site with a MITM attack. Tey also gave the attack a name: FREAK, which is short for
Factoring RSA Export Keys.
Te point of the exercise was to show that a large number of servers on the Internet are vul-
nerable to practical MITM attacks. As a result of the researchers’ work, the original discov-
ery was reclassied under highseverity.

43 Keys left unchanged in many Heartbleed replacement certicates! (Netcraft, 9 May 2014)
44 Pacemaker (Heartbleed client exploit, retrieved 19 May 2014)
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Export Cryptography
To properly discuss FREAK we need to go back in time, to late 90s, and understand export-
strength suites. Before September 1998, the United States used to restrict export of strong
encryption, limiting cipher strength to 40 bits and key exchange strength to 512 bits. Export
suites were designed specically to stay under these limits.
However, it wasn’t enough to just dene weaker cipher suites: for better performance, pure
RSA suites combine authentication and key exchange. Although strong authentication was
generally allowed, with RSA suites you couldn’t separate it from key exchange. Te solution
was to extend the protocol to produce intentionally weak RSA keys to use in concert with
export cipher suites. Tus, a server with a strong RSA can continue to use it for authentica-
tion. For the key exchange, it would generate a weak 512-bit key whenever it wants to nego-
tiate an export suite.45

Export cipher suites went into obsolescence aer the US relaxed export control of cryptog-
raphy in January 2000, but the code remained in many (most?) SSL/TLS libraries. And, as it
happens, some of that old code could be triggered by manipulation of protocol messages.

Attack
During the normal RSA key exchange, a client generates a random premaster secret and
sends it to the server encrypted with the server’s public RSA key. If the RSA key is strong,
the key exchange is also strong. When an export suite is negotiated, the server generates a
weak RSA key, signs it with its strong key, and sends the weak key to the client in the
ServerKeyExchange message. Te client then uses that weak key to encrypt premaster secret
in order to comply with export regulations. Even though the key is weak, a network attacker
can’t abuse it for an active attack because the signature is still strong (assuming strong server
key, of course).

Note
To fully follow the discussion in this section, you need to have an understanding of
some protocol details. If you haven’t already, before proceeding further read about
the protocol and the handshake in Chapter 2, Protocol.

Today, export cipher suites are hopelessly weak. If negotiated, a weak key is used for the key
exchange. Although the network attacker can’t interfere with the handshake itself, she can
record the entire conversation, then later brute-force the weak key, recover premaster secret

45 Another feature called Server-Gated Cryptography (SGC) was added in order to allow only selected servers to enable strong encryption with

clients that would use weak cryptography with everyone else. The idea was to embed special signals in certicates issued only to U.S. compa-

nies. After noticing the signal, a client would transparently renegotiate to upgrade to stronger encryption.
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and decrypt everything. A powerful attacker can do in minutes or maybe even faster; virtu-
ally anyone can do it in hours.
Fortunately, modern clients (e.g., recent browsers) don’t support export suites any more, but
FREAK is powerful because it doesn’t need them. During the normal RSA key exchange, the
ServerKeyExchange message is not allowed. Unexpectedly, vulnerable libraries still process
this message and subsequently use the supplied weak RSA key for the key exchange.46

To exploit FREAK, the attacker must somehow force the ServerKeyExchange onto the vic-
tim. Doing this will have downgraded the strength of the connection to only 512-bits. But,
there are two obstacles: (1) the injected signature must still be signed by the strong RSA key
used on the target server and (2) having interfered with the TLS handshake, the attacker
must nd a way to also forge the correct Finished message to legitimize the changes, even
though that’s something only the real server should be able to do.
Because of the rst obstacle, the attack works only against servers that support export suites.
Te attacker connects to the server directly, oering only export suites herself. Tis triggers
an export suite negotiation, during which the server sends a ServerKeyExchange message.
Te trick here is to reuse this message against the victim. Although TLS does defend against
signature replay attacks, the defense relies on the client and server random numbers, sent in
ClientHello and ServerHello respectively. But an active network attacker can wait for the
client to connect rst, then copy the original random numbers in a separate connection to
the target server. Te end result is a ServerKeyExchange message that passes the victim’s val-
idation.
Te bigger problem is producing the correct Finished message. If you recall, this message is
encrypted and eectively contains a hash of all handshake messages. Both sides in a conver-
sation verify that the contents of this message matches their own calculation. Te attacker
can’t just change these messages because of the encryption and integrity validation. Howev-
er, by now, the attacker succeeded in reducing the strength of the key exchange to 512 bits. If
she has access to powerful computational capacities, she can brute-force this weak key in
real time, decrypt premaster secret sent by the client, and gain full control of the connec-
tion. Tat also means being able to send the correct Finished messages.
Now, 512-bit keys are weak, but they’re not that weak. Certainly, we should expect that
some organizations are capable of breaking such keys in real-time, but it’s not something
everyone would need to worry about. But it gets worse. For performance reasons, rather

46 Ironically, OpenSSL implemented this behavior as a feature. (For reference, look for the documentation for the SSL_OP_EPHEMERAL_RSA

conguration option.) The RSA key exchange doesn’t provide forward secrecy because the server key is used to protect all premaster secrets.

Because the key stays the same for a long time, whoever gets it can decrypt all previously recorded conversations. But if you generate a fresh

RSA key during every handshake, the contents of each connection is encrypted using a different (albeit weaker) key. Back then, using 512-bit

keys for this purpose probably didn’t seem as bad as it does today. Or perhaps they didn’t expect that some implementations would reuse such

weak keys.
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than generate weak keys for every new connection, some servers generate only one weak
key and reuse it over a period of time. Sometimes, a long time, enough for even a modestly-
equipped attacker to break it. And that’s what the researchers did. Tey identied a server
that reused keys, spent about $100 on cloud computing resources (EC2) and broke the key
in about 7 hours.47 With the key, they could trivially execute MITM attacks against all vul-
nerable clients for as long as the key stayed the same. Brilliant!

Impact and Mitigation
Initially, it was thought that only OpenSSL had been vulnerable to the FREAK attack. Al-
though not many browsers use OpenSSL for client operations, one big user is the Android
platform, which meant that billions of phones were potentially vulnerable. Tis problem is
not aecting just browsers, but probably all applications running on the vulnerable plat-
forms.48

But the attack surface exploded when it was discovered that Secure Transport (Apple’s
SSL/TLS library) and Schannel (Microso’s) are vulnerable to the same problem.49 Other
less widely used platforms were also aected. Of the major browsers, only Firefox was not
impacted.
Secure Transport50 and Schannel51 were xed soon aer the discovery, but, because there is
such a diversity of deployments, it’s dicult to say exactly which products are not vulnera-
ble any more. For example, at the time of writing the Secure Transport x is available only
for OS X v10.8.x and newer and iOS 8.2; earlier versions remain vulnerable.52 For best re-
sults, test your devices with a client test, for example the one oered by SSL Labs.53

Note
Te FREAK attack is an excellent reminder how it is prudent to remove old and
otherwise unneeded functionality. Doing so reduces the attack surface and there-
fore reduce the risk.

Te advice for server operators is to remove export cipher suites because they are necessary
to carry out the attack. No servers should have been running these weak sites in the rst
place, but many operators are carelessly conservative when removing older protocol fea-
tures. According to the web site setup to track the FREAK vulnerability, before the disclo-

47 Attack of the week: FREAK (or ’factoring the NSA for fun and prot’) (Matthew Green, 3 March 2015)
48 HTTPS-crippling FREAK exploit affects thousands of Android and iOS apps (Ars Technica, 17 March 2015)
49 Stop the presses: HTTPS-crippling “FREAK” bug affects Windows after all (Ars Technica, 6 March 2015)
50 About Security Update 2015-002 (Apple, 9 March 2015)
51 Security Advisory 3046015: Vulnerability in Schannel Could Allow Security Feature Bypass (Microsoft, 5 March 2015)
52 About the security content of iOS 8.2 (Apple, 9 March 2015)
53 SSL Labs Client Test (Qualys, retrieved 21 March 2015)
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sure about a quarter of secure servers on the Internet oered weak suites and were poten-
tially vulnerable.54

Not all of those servers were equally vulnerable. It is estimated that about two-thirds of
those reused weak keys, whereas the reminder would generate a new key for every connec-
tion.55

State Machine Attacks against SSL and TLS
FREAK is one of the problems identied by miTLS, a project run by Microso Research-Inria
Joint Centre.56 miTLS is a veried reference implementation of the TLS protocol.57 In develop-
ing miTLS, its authors are researching and improving TLS security. FREAK was included in
their larger work that covers attacks against the TLS state machine, which found many imple-
mentations vulnerable to one attack or the other.58 You can nd more information on their
web site www.smacktls.com.

Protocol Downgrade Attacks
Protocol downgrade attacks occur when an active MITM attempts to interfere with the TLS
handshake in order to inuence connection parameters; the idea is that he might want to
force an inferior protocol or a weak cipher suite. In SSL 2, such attacks are easy, because this
protocol doesn’t provide handshake integrity. Subsequent protocol versions do provide
handshake integrity as well as additional mechanisms to detect similar attacks.
However, what the protocol designers failed to anticipate is interoperability issues related to
protocol evolution. Browsers try very hard to communicate successfully with every server.
Unfortunately, when it comes to TLS, such attempts oen result in security compromises
because browsers will voluntarily downgrade their security capabilities, thus sacricing se-
curity for interoperability.

Rollback Protection in SSL 3
In SSL 2, there was no mechanism to ensure the integrity of the handshake, thus making
that protocol version vulnerable to downgrade attacks. As a result, a MITM could always

54 Tracking the FREAK Attack (University of Michigan, retrieved 21 March 2015)
55 GitHub Gist: Temporary RSA 512 Bit Keylife for FREAK attack (ValdikSS, retrieved 21 March 2015)
56 It’s a collaboration between Microsoft Research and Inria, a public research organization dedicated to computational sciences. You can

nd out more about it at www.msr-inria.fr.
57 miTLS (Microsoft Research-Inria Joint Centre, retrieved 21 March 2015)
58 A Messy State of the Union: Taming the Composite State Machines of TLS (Beurdouche at al., March 2015)
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force a handshake to use the least secure parameters available. Handshake integrity valida-
tion was added in SSL 3, as part of a major protocol cleanup.
But in order to provide handshake integrity (as well as other improvements) SSL 3 had to
change the format of the initial handshake request (ClientHello). Additionally, it was
agreed that the servers that understood the new protocol would automatically upgrade to
the new format with compatible clients. But several problems remained:

1. Te SSL 3 handshake provides integrity protection, but you can’t use that handshake
format because most servers understand only SSL 2.

2. Even with an SSL 3 server, if there is an active MITM, he can always intercept the con-
nection and pretend to be an SSL 2–only server that does not understand anything
better.

3. If you subsequently attempt to use an SSL 2 handshake, there is no handshake integri-
ty, and the MITM can interfere with the negotiation.

To address these loopholes, SSL 3 incorporates protocol rollback protection59 that enables
SSL 3–aware clients and servers to detect when they are under attack. When an SSL 3 client
falls back to SSL 2 for compatibility reasons, it formats the PKCS#1 block of the RSA key
exchange in a special way.60 In SSL 2, the end of the block must contain at least eight bytes
of random data; an SSL 3 client instead lls those eight bytes with 0x03. Tus, if an SSL 3
client is forced down to SSL 2 by a MITM attack, the SSL 3 server will notice the special
formatting, detect the attack, and abort the handshake. A genuine SSL 2 server will not in-
spect the padding, and the handshake will proceed normally.
However, there is one loophole that can break the rollback protection.61 In SSL 2, the length
of the master key mirrors the length of the negotiated cipher suite; in the worst case, it’s only
40 bits long. Furthermore, it’s the client that selects the cipher suite from those supported by
the server, generates the master key, and sends it to the server using public key encryption.
Te server decrypts the message using its private RSA key, obtains the master key, and
proves ownership to the client.
For a MITM, brute-forcing the RSA key might be too much work, but he can attack the
weak master key. He could pose as a server and oer only one 40-bit suite, uncover the mas-
ter key by brute force, and complete the handshake successfully. Tis attack is easy to carry
out given the computational power available today. Tis attack vector is largely obsolete by
now, given that few clients continue to support SSL 2. Still, the conclusion is that SSL 2 does
not provide more than 40 bits of security. Attackers who can execute brute-force attacks of
that strength in real time can consistently break all SSL 2 connections.

59 RFC 6101: The SSL Protocol Version 3.0, Section E.2. (Freier et al., August 2011)
60 In SSL 2, RSA was the only authentication and key exchange mechanism. Thus, rollback protection implemented as a hack of this key ex-

change was sucient to fully address the issue.
61 SSL and TLS: Designing and Building Secure Systems, page 137 (Eric Rescorla, Addison-Wesley, October 2000)
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Interoperability Problems
With the release of the rst follow-up version (SSL 3), interoperability problems started to
appear. In this section, I will enumerate the most common problems.

Version Intolerance
Te rst problem encountered was version intolerance. SSL 2 did not consider protocol evo-
lution and didn’t provide instructions for how to handle unknown protocol versions. Tis
excerpt from Eric Rescorla’s SSL book illustrates the situation:61

Unfortunately, the SSLv2 specication wasn’t very clear on how servers should
handle CLIENT-HELLO messages with version numbers higher than they
support. Tis problem was made worse by the fact that Netscape’s SSLREF ref-
erence implementation simply rejected connections with higher version num-
bers. Tus, it’s not guaranteed that all SSLv2 servers will respond correctly to
the backward-compatible handshake, although the vast majority will.

SSL 3 did not greatly improve in this respect, mentioning client version handling only in
one sentence of the specication:

server_version: Tis eld will contain the lower of that suggested by the
client in the client hello and the highest supported by the server.

Starting with TLS 1.0, there is more text to handle backward compatibility, but only TLS 1.2
provides clear guidance:

A TLS 1.2 client who wishes to negotiate with such older servers will send a
normal TLS 1.2 ClientHello, containing {3,3} (TLS 1.2) in
ClientHello.client_version. If the server does not support this version, it
will respond with a ServerHello containing an older version number. If the
client agrees to use this version, the negotiation will proceed as appropriate for
the negotiated protocol.

As a result of these specication ambiguities, many servers refused handshakes if the oered
protocol version was not to their liking. Te result was a serious interoperability issue when
browsers began to support TLS 1.2. For this reason, Internet Explorer, the rst browser to
implement TLS 1.2, launched with both TLS 1.1 and TLS 1.2 disabled by default.
Te Renegotiation Indication Extension specication (released in 2010, two years aer TLS
1.2) made an attempt to solve the problem, in the hope that developers will, while imple-
menting the new renegotiation mechanism, also address version and extension intolerance.
In Section 3.6., it says:

Interoperability Problems 173



TLS servers implementing this specication MUST ignore any unknown ex-
tensions oered by the client and they MUST accept version numbers higher
than their highest version number and negotiate the highest common version.
Tese two requirements reiterate preexisting requirements in RFC 5246 and
are merely stated here in the interest of forward compatibility.

Extension Intolerance
Early versions of the protocol (SSL 3 and TLS 1.0) had no explicit mechanism for adding
new functionality without introducing new protocol revisions. Te only thing resembling
forward compatibility is a provision that allows the ClientHello message to include extra
data at the end. Implementations were instructed to ignore this extra data if they could not
understand it. Tis vague extension mechanism was later replaced with TLS Extensions,62

which added a generic extension mechanism to both ClientHello and ServerHello mes-
sages. In TLS 1.2, extensions were merged with the main protocol specication.
Given the vagueness of the early specications, it’s not surprising that a substantial number
of SSL 3 and TLS 1.0 servers refuse handshakes with clients that specify extra data.

Other Interoperability Problems
Tere are other interoperability problems, mostly arising due to a combination of specica-
tion vagueness and sloppy programming:

Long handshake intolerance
Te size of the ClientHello message is not limited, but in the early days clients tend-
ed to support only a small number of cipher suites, which kept the length low. Tat
changed with the OpenSSL 1.0.1 branch, which added support for a wide range of
cipher suites. Tat, combined with the use of extensions to specify additional infor-
mation (e.g., desired hostname and elliptic curve capabilities), caused the size of
ClientHello to grow substantially. It then transpired that one product—F5’s BIG IP
load balancer—could not handle handshake messages over 255 bytes and under 512
bytes. Because of the popularity of BIG IP (especially among some of the largest web
sites), this issue had a negative impact on the speed of TLS 1.2 adoption.

Arbitrary extension intolerance
Sometimes servers that understand TLS extensions fail, for no apparent reason, to
negotiate connections that include extensions unknown to them. Tis usually hap-
pens with the Server Name Indication and Status Request (OCSP stapling) extensions.

62 RFC 3546: TLS Extensions (Blake-Wilson et al., June 2003)

174 Chapter 6: Implementation Issues



Failure to correctly handle fragmentation
Historically, there were many issues related to message fragmentation. SSL and TLS
protocols allow all higher-level messages to be fragmented and delivered via several
(lower-level) record protocol messages. Most implementations handle fragmentation
of application data messages (which are expected to be long) but fail when faced with
fragmented messages of other types simply because such fragmentation almost never
occurs in practice. Similarly, some products would fail when faced with zero-size
records—which derailed initial attempts to mitigate the predictable IV problem in
TLS 1.0 and earlier protocols. Early attempts to address the same problem using the
1/n-1 split (sending two records instead of just one, with the rst record containing
only one byte) were equally derailed, because some products could not handle an
HTTP request split across two TLS messages.

Voluntary Protocol Downgrade
When the interoperability issues started to appear, browsers responded by implementing
voluntary protocol downgrade. Te idea is that you rst try your best version of TLS, with all
options enabled, but if that fails you try again with fewer options and lower protocol ver-
sions; you continue in this manner until (hopefully) a connection is successful. When TLS
1.0 was the best supported protocol, voluntary protocol downgrade meant at least two con-
nection attempts. Now that browsers support TLS 1.2, three or four attempts are used.

Note
Interoperability issues are not the only problem causing TLS handshakes to fail.
Tere is ample anecdotal evidence that proxies, rewalls, and antivirus soware
oen intercept and lter connections based on protocol version numbers and other
handshake attributes.

To understand this behavior, I surveyed various versions of popular desktop browsers. I
used a custom TCP proxy designed to allow only SSL 3 connections. Everything else was
rejected with a handshake_failure TLS alert. You can see the results in the following table.
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Table 6.2. Voluntary protocol downgrade behavior of major browsers in July 2014

Browser First attempt Second attempt Third attempt Fourth attempt

Chrome 33 TLS 1.2 TLS 1.1 TLS 1.0 SSL 3

Firefox 27 TLS 1.2 TLS 1.1 TLS 1.0 SSL 3

IE 6 SSL 3 SSL 2   

IE 7 (Vista) TLS 1.0 SSL 3   

IE 8 (XP) TLS 1.0 (no ext.) SSL 3   

IE 8-10 (Win 7) TLS 1.0 SSL 3   

IE 11 TLS 1.2 TLS 1.0 SSL 3  

Safari 7 TLS 1.2 TLS 1.0 SSL 3  

My test results show that, in July 2014, you can downgrade all major browsers to SSL 3.63

And in the case of Internet Explorer 6 you can actually go as low as SSL 2. Given that SSL 2
is vulnerable to brute-forcing of the master key, Internet Explorer 6 can expect a maximum
40 bits of security.
As for SSL 3, this version was shown to be unambiguously insecure in October 2014 by the
POODLE attack. A successful attack can exploit the weaknesses to retrieve small pieces of
encrypted data (e.g., cookies). Even if you ignore the vulnerabilities, this old protocol ver-
sion is signicantly inferior to the latest TLS 1.2:

• No support for the GCM, SHA256 and SHA384 suites.
• No elliptic curve cryptography. When it comes to forward secrecy, very few sites sup-

port ephemeral Die-Hellman (DH) key exchange to use in absence of EC. Without
EC, those sites lose forward secrecy.

• SSL 3 is vulnerable to the BEAST attack, but modern browsers implement countermea-
sures for it. However, some sites prefer to use RC4 with TLS 1.0 and earlier protocols.
For such sites, the attacker can force the inferior RC4.

• Microso’s SSL 3 stack does not support AES, which means that IE will oer only RC4
and 3DES suites.

From this list, I’d say the biggest problem is the loss of forward secrecy. A serious attack
could downgrade someone’s connections to force a RSA key exchange and then later recover
the server’s private key to recover the encrypted conversation.

Note
Depending on the exact nature of the communication failure, the fallback mecha-
nism can be triggered even with servers that are not intolerant. For example, there

63 Even Opera, which had previously implemented protocol downgrade protection, lost that capability when its team abandoned their own engine

and switched to Chrome’s Blink for version 15.
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are reports that Firefox sometimes, over unreliable connections, falls back to SSL 3,
breaking sites that use virtual secure hosting. (Tat’s because virtual secure hosting
relies on TLS extensions, which are not supported in SSL 3.)64

Rollback Protection in TLS 1.0 and Better
Because SSL 3 and newer protocol versions provide handshake integrity, rollback attacks
against parties that support only SSL 3 and better do not work.65

In case you’re wondering, brute-forcing the master key, which was possible against SSL 2, no
longer works either, because the master key is now xed at 384 bits.
TLS 1.0 (and all subsequent protocol revisions) also continued with the SSL 3 tradition and
included rollback protection in the RSA key exchange, using an additional version number
sent by the client and protected with the server’s private key. From section 7.4.7.1 of the TLS
1.2 specication:

Te version number in the PreMasterSecret is the version oered by the
client in the ClientHello.client_version, not the version negotiated for the
connection. Tis feature is designed to prevent rollback attacks.

Tis protection mechanism can be used only if RSA is used for authentication and key ex-
change, but it doesn’t apply to other key-exchange algorithms (even when RSA is used for
authentication).
In addition, it appears that protocol implementers have struggled to use correct version
numbers in the right places. Yngve Pettersen, who used to maintained the SSL/TLS stack for
Opera (while they were using a separate stack), had this to say on the topic (emphasis
mine):66

Second, the RSA-based method for agreeing on the TLS encryption key is de-
ned in such a way that the client also sends a copy of the version number it
sent to the server and against which the server is then to check against the ver-
sion number it received. Tis would protect the protocol version selection,
even if the hash function security for a version is broken. Unfortunately, a
number of clients and servers have implemented this incorrectly, meaning
that this method is not efective.

Tere’s a statement to the same eect in the TLS 1.2 specication:

64 Bug #450280: PSM sometimes falls back from TLS to SSL3 when holding F5 (which causes SNI to be disabled) (Bugzilla@Mozil-

la, reported on 12 August 2008)
65 The protection is provided by the Finished message, which is sent at the end of the handshake to verify its integrity. In SSL 3, this message

is 388 bits long. Curiously, TLS 1.0 reduced the size of this message to only 96 bits. In TLS 1.2, the Finished message still uses only 96 bits by

default, but the specication now allows cipher suites to increase its strength. Despite that, all cipher suites continue to use only 96 bits.
66 Standards work update (Yngve Nysæter Pettersen, 2 November 2012)
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Unfortunately, some old implementations use the negotiated version instead,
and therefore checking the version number may lead to failure to interoperate
with such incorrect client implementations.

Te same specication subsequently advises implementers to enforce rollback protection
only with newer clients:

If ClientHello.client_version is TLS 1.1 or higher, server implementations
MUST check the version number as described in the note below.

But despite having two defense mechanisms rollback attacks are still possible, because of the
voluntary protocol downgrade behavior discussed earlier.

Attacking Voluntary Protocol Downgrade
Te built-in protocol defenses against rollback attacks are eective at preventing an attacker
from interfering with a single connection. However, when voluntary protocol downgrade is
taken into account, rollback attacks are still possible. Tis is because the MITM doesn’t ac-
tually need to change any handshake data. Rather, he can block attempts to negotiate any
protocol version greater than SSL 3, simply by closing such connections as they are attempt-
ed. To defend against this type of attack, a dierent defense is needed.

Modern Rollback Defenses
Voluntary protocol downgrade behavior is a gaping hole in TLS security. Despite everyone’s
eorts to upgrade the infrastructure to TLS 1.2, an active attacker can still downgrade com-
munication to TLS 1.0 or, sometimes, even SSL 3. Tis subject has been discussed on the
TLS WG mailing list many times, but consensus has been dicult to achieve so far. I have
collected a series of links and pointers to mailing discussions, which are of interest not only
to see how the thoughts about this problem evolved but also to observe the complexities in-
volved with the working group operation.
Te topic was rst brought up in 2011,67 when Eric Rescorla proposed to use special signal-
ing cipher suite values (or SCSVs) to enable clients to communicate their best supported
protocol version even when trying to negotiate a lower version. A server that detects version
number discrepancy is required to terminate the connection. Te assumption is that a serv-
er that supports this defense also won’t be prone to any of the intolerance issues. Te SCSV
approach was chosen because it had been successfully deployed to signal support for secure
renegotiation in combination with SSL 3 protocol.68

In 2012, Adam Langley proposed a system also based on signaling suites and keeping the
attack detection on the server side.69

67 One approach to rollback protection (Eric Rescorla, 26 September 2011)
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Aer the discussion that followed, Yngve Pettersen submitted a alternative proposal,70 pre-
ferring to implement detection in the client.71 (Tat would make deployment much easier;
rather than upgrading lots of servers, which would inevitably take a very long time, only the
handful of user agents need to be upgraded.) His proposal built on RFC 5746 (Renegotia-
tion Indication Extension), which specically forbids compliant servers to be intolerant to
future protocol version numbers. According to Yngve’s measurements, only 0.14% of the
servers implementing RFC 5746 showed signs of intolerance. He subsequently implemented
this rollback protection in Opera 10.50.72

Another discussion followed in April 2013.73 Finally, in September 2013, Bodo Moeller sub-
mitted a dra74 that was subsequently rened75 and is currently being considered for the
working group’s acceptance.76 Bodo’s proposal is to use a single signaling suite to indicate
voluntary fallback activity. A server that understands the signal and supports a newer proto-
col version than the one client is attempting to negotiate is required to abort the negotia-
tion. Chrome 33 was the rst browser to implement this feature.77

How can we explain the lack of interest in Yngve’s proposal? Probably because no matter
how rare, there are still servers that implement secure renegotiation but are intolerant to
higher protocol version numbers. I think that browser vendors simply don’t want to go into
a direction that would inevitably result in a backlash against them. On the other hand, a
SCSV solution would be enforced server-side and trigger only on genuine attacks.
Te problem with the SCSV solution is that it will take many years to spread widely. Te few
sites that care about their security very much could deploy it quickly, but for the rest doing
so would be too costly to justify. Google started using the fallback defense in February 2014,
implementing support for it in Chrome and their web sites at the same time. OpenSSL
1.0.1j, released in October 2014, includes server-side support for this new standard. Mozilla
pledged to support it in Firefox 35, which is expected in early 2015.

68 With modern protocol versions, clients can use TLS extensions to signal their capabilities. But because SSL 3 does not support extensions,

another mechanism was needed. The solution was to use signaling suites, which cannot be negotiated but can be used to pass small bits of

information from clients to servers.
69 Cipher suite values to indicate TLS capability (Adam Langley, 5 June 2012)
70 Fwd: New Version Notication for draft-pettersen-tls-version-rollback-removal-00.txt (Yngve Pettersen, 3 July 2012)
71 Managing and removing automatic version rollback in TLS Clients (Yngve Pettersen, February 2014)
72 Starting with version 15, Opera switched to the Blink browser engine (Google’s fork of WebKit), abandoning its own engine and the SSL/TLS

stack. That probably meant also abandoning the rollback implementation as proposed by Yngve.
73 SCSVs and SSLv3 fallback (Trevor Perrin, 4 April 2013)
74 TLS Fallback SCSV for Preventing Protocol Downgrade Attacks (Bodo Moeller and Adam Langley, June 2014)
75 An SCSV to stop TLS fallback. (Adam Langley, 25 November 2013)
76 Call for acceptance of draft-moeller-tls-downgrade-scsv (Eric Rescorla, 23 January 2014)
77 TLS Symmetric Crypto (Adam Langley, 27 February 2014)
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Truncation Attacks
In a truncation attack, an attacker is able to prematurely terminate a secure conversation,
preventing one or more messages from being delivered. Normally, a secure protocol is ex-
pected to detect such attacks. SSL 2 is vulnerable to truncation attacks, but SSL 3 addressed
the issue with the addition of the close_notify message. Subsequent protocol revisions kept
the protection. For example, the following text is included in TLS 1.2 (Section 7.2.1):

Unless some other fatal alert has been transmitted, each party is required to
send a close_notify alert before closing the write side of the connection. Te
other party MUST respond with a close_notify alert of its own and close
down the connection immediately, discarding any pending writes.

Tis works because close_notify is authenticated. If any of the preceding messages are
missing, the integrity verication mechanisms built into TLS detect the problem.
Unfortunately, connection closure violations have always been widespread. Many clients
and servers abruptly close connections and omit the shutdown procedure mandated by the
standard. Internet Explorer is one such client, but there are many more.
Drowning in bogus warning messages about truncation attacks, well-behaved applications
started to ignore this problem, eectively opening themselves up to real attacks.
Actually, the standards themselves encouraged such behavior by not actually requiring reli-
able connection termination. Te following text appears in the SSL 3 specication:

It is not required for the initiator of the close to wait for the responding
close_notify alert before closing the read side of the connection.

In other words, don’t bother conrming that the other side received all of the sent data. TLS,
in version 1.1, made things worse by relaxing the rules about session resumption. Before,
errors of any kind required TLS sessions to be dropped. In practice, this meant that the
client would have to perform a full (CPU-intensive) handshake on the following connec-
tion. But TLS 1.1 removed this requirement for incorrectly terminated connections. From
Section 7.2.1 (emphasis mine):

Note that as of TLS 1.1, failure to properly close a connection no longer re-
quires that a session not be resumed. Tis is a change from TLS 1.0 to con-
form with widespread implementation practice.

Tat’s a shame, because the change removed the only real incentive to get the misbehaving
user agents to improve. As a result, we are eectively without defense against truncation at-
tacks.
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Truncation Attack History
Truncation attacks against SSL 3 and TLS were rst discussed in 2007,78 when Berbecaru
and Lioy demonstrated these attacks against a variety of browsers. Tey focused on truncat-
ing responses. For example, the browser would show only a partial page or image delivered
over TLS without any indication that the documents were incomplete.
Te topic was revisited in 2013,79 this time in more detail. In particular, Smyth and Pironti
were able to show several compelling attacks, ranging from attacks against electronic voting
systems (Helios) to attacks against web-based email accounts (Microso and Google) in
public computer environments. In all cases, the trick was to prevent the user from logging
out without him noticing. To do this, they exploited applications that told their users that
they had logged o before they actually did. By using TLS truncation against HTTP re-
quests, the researchers were able to keep the users logged in. Aer that, if the attacker could
access the same computer he could assume the victim’s application session and thus the us-
er’s identity.

Note
It is particularly interesting that truncation attacks work against HTTP, even
though HTTP messages tend to include length information. Tis is another exam-
ple of cutting corners just to make the Web “work.”

Cookie Cutting
In 2014, new and more eective techniques to perform truncation attacks came to light.80

Researchers applied the ideas from earlier attacks on TLS (such as the BEAST attack), in
which the attacker is able to control TLS record length by injecting data of arbitrary length
into HTTP requests and responses. If you control TLS record length, then you can control
the point at which records are split (due to size limits and other constraints). Combined
with a truncation attack, you can split HTTP request or response headers, which has some
interesting consequences.
One application of HTTP response header truncation is now known as a cookie cutter at-
tack; it can be used to downgrade secure cookies into plain, insecure ones. Let’s examine a
set of HTTP response headers in which secure cookies are used:

HTTP/1.1 302 Moved Temporarily
Date: Fri, 28 Mar 2014 10:49:56 GMT

78 On the Robustness of Applications Based on the SSL and TLS Security Protocols (Diana Berbecaru and Antonio Lioy, Public Key Infrastructure,

Lecture Notes in Computer Science, volume 4582, pages 248–264; 2007)
79 Truncating TLS Connections to Violate Beliefs in Web Applications (Ben Smyth and Alfredo Pironti, Black Hat USA, 2013)
80 Triple Handshakes and Cookie Cutters (Bhargavan et al., March 2014)
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Server: Apache
Strict-Transport-Security: max-age=31536000; includeSubDomains
Cache-Control: no-cache, must-revalidate
Location: /account/login.html?redirected_from=/admin/
Content-Length: 0
Set-Cookie: JSESSIONID=9A83C2D6CCC2392D4C1A6C12FFFA4072; Path=/; Secure; HttpOnly
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive

To make a cookie secure, you append the Secure attribute to the header line. But, because
this attribute comes aer the name and value, if you can truncate the HTTP response im-
mediately aer the Path attribute an insecure cookie will be created.
Clearly, if you truncate the response headers they become incomplete and thus invalid; the
truncated header line will not be terminated with a newline (CRLF), and there won’t be an
empty line at the end. However, it turns out that some browsers ignore even such obviously
malformed HTTP messages and process the headers anyway. Most browsers were vulnera-
ble to one type of truncation attack or another, as the following table illustrates.

Table 6.3. TLS truncation in browsers [Source: Bhargavan et al.]

 In-header truncation Content-Length ignored Missing terminating
chunk ignored

Android browser 4.2.2 Yes Yes Yes

Android Chrome 27 Yes Yes Yes

Android Chrome 28 No No Yes

Android Firefox 24 No Yes Yes

Safari Mobile 7.0.2 Yes Yes Yes

Opera Classic 12.1 Yes Yes Yes

Internet Explorer 10 No Yes Yes

Te attack is quite elaborate, but if automated it seems reasonably practical. Here’s how to
do it:

1. Attack a user that does not yet have an established session with the target web site.
Te web site will not set a new cookie if an old one exists. Tis can be achieved with
some social engineering or, from an active network attacker perspective, by redirecting
a plaintext request.

2. Find an entry point that allows you to inject arbitrary data into the HTTP re-
sponse. Tis is key to the attack; it allows you to position the truncation location at the
TLS record boundary. For example, on many web sites when you attempt to access a
resource that requires authentication, the redirection includes the resource address.
You can see this in the earlier example, which uses the redirected_from parameter for
this purpose.
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Redirection responses are the ideal entry point because they don’t have any content
(response body). If you attempt to truncate any other response, the absence of content
might make the user suspicious.

3. Submit padding that splits response headers into two TLS records. Normally, the
entire HTTP redirection response is small and ts in a single TLS record. Your goal is
to split this record into two. Because TLS records are limited to 16,384 bytes, if you
submit a very long payload and push the size past this limit, the TLS stack will split the
response into two records.

4. Close the secure connection aer the rst TLS record. Tis part of the attack is
straightforward: observe the TLS communication and drop the connection (e.g., by
sending an RST signal) immediately aer the rst TLS record.

5. Extract the insecure cookie. At this point, the partial cookie will have been consumed
and all that remains is to extract it from the user agent. Tis is a cookie stealing attack.

Another target for the cookie cutter attack is the Strict-Transport-Security response
header. If you truncate the header immediately aer the rst digit of the max-age parameter,
the HSTS entry will expire aer nine seconds at most. Additionally, the includeSubDomains
parameter, if present, will be neutralized, too. With HSTS out of the way, you can proceed
with an HTTPS stripping attack or manipulate the cookies in some other way, as discussed
in Chapter 5, HTTP and Browser Issues.
It is expected that the cookie cutter attack will be addressed by implementing stricter checks
and parsers at the browser level. Some vendors have already implemented xes, but for most
the current status is unknown.

Deployment Weaknesses
Sometimes, weakness arise in deployment, when commonly used practices lead to ex-
ploitable weaknesses. Te problems described in this section arise from the secure protocols
dened in abstract, without clear guidance as to how they should be implemented by
servers. As a result, subtle problems arise.

Virtual Host Confusion
Certicate sharing is generally not recommended, unless it’s used by closely related web
sites. At one level, there’s the issue that all sites that share the certicate must also share the
private key. Te sharing weakens security and reduces it to the strength of the weakest link.
Also, you don’t want multiple independent teams to all have access to the same private key.
However, all sites that share a certicate are also bound at the application level; if one site is
compromised or otherwise exploited in some way, other sites that share the same certicate

Deployment Weaknesses 183



can also be attacked if the circumstances are right. Te other sites could be running on a
dierent port or IP address and be located anywhere on the Internet.
For example, let’s suppose that an attacker gains control of a weak site that uses a multido-
main certicate. Operating from an active network attack perspective, she observes users
connecting to other sites congured with the same certicate. (I’ll call them secure sites.)
She then hijacks a TLS connection intended for one such secure site and sends it to the weak
site under her control. Because the certicate is the same, the victim’s browser won’t detect
anything unusual and the HTTP request will be processed by the web server. Because the
attacker controls that web server, she can record the cookies included in the hijacked con-
nection and use them to hijack the victim’s application session. She can also respond with
arbitrary JavaScript code that will be executed in the context of the secure site.
Tere’s a catch: the web server on the weak site must ignore the fact that the HTTP Host
headers reference a site that isn’t hosted there. Depending on the level of control, the attack-
er might be able to recongure the server to ensure that’s the case. However, it’s also com-
mon that servers ignore invalid host information and always respond with a default site.
Robert Hansen was the rst to highlight this problem when he successfully transferred a
XSS vulnerability from mxr.mozilla.org to addons.mozilla.org because both used the same
certicate.81 In 2014, Delignat-Lavaud and Bhargavan highlighted this problem in a re-
search paper and gave it the name virtual host confusion.82 Tey also showed how to exploit
the problem in several real-life scenarios and even uncovered a long-standing problem that
could have been used to impersonate some of the most popular web sites in the world.

Note
Te same attack can be applied to other protocols. Take SMTP servers, for exam-
ple. Using the same trac redirection trick, the attacker can break into one weak
SMTP server and later redirect TLS connections to it. If the certicate is shared,
email for some other secure sites will be eectively delivered to the attacker.

TLS Session Cache Sharing
Another problem highlighted by Delignat-Lavaud and Bhargavan is that TLS session cache
sharing among unrelated servers and web sites, which is common, can be abused to bypass
certicate authentication.82 Once a TLS session is established, the client can resume it not
only with the original server but also with any other server that shares the same session
cache, even if it isn’t intended to respond to the requested web site and doesn’t have the cor-
rect certicate.

81 MitM DNS Rebinding SSL/TLS Wildcards and XSS (Robert Hansen, 22 August 2010)
82 Virtual Host Confusion: Weaknesses and Exploits (Antoine Delignat-Lavaud and Karthikeyan Bhargavan, 6 August 2014)
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Tis weakness eectively creates a bond among all sites that share the cache (either via serv-
er session caching or session tickets) and allows the attacker who compromises one site to
escalate access to the other sites. rac redirection, the same trick as discussed in the previ-
ous section, is the primary attack technique.
For server-side session caching, the aw is in server applications that don’t check that a ses-
sion is resumed with the same host with which it was originally established. It’s a similar
situation with session tickets. However, in the latter case there is usually a workaround, be-
cause servers allow per-host ticket key conguration. It’s best practice to have each host use
its own ticket key.
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7 Protocol Attacks
Over the years, the security of SSL and TLS protocols has been going in and out of the focus
of researchers. Te early beginnings were very shaky. At Netscape, SSL version 1 was appar-
ently considered to be so insecure that they scrapped it and released version 2 instead. Tat
was in late 1994. Tat version did well enough to kick o the e-commerce boom, but it
didn’t do very well as far as security is concerned. Te next version, SSL 3, had to be released
in 1996 to address the many security problems.
A long, quiet period followed. In 1999, SSL 3 was standardized as TLS 1.0, with almost no
changes. TLS 1.1 and TLS 1.2 were released in 2006 and 2008, respectively, but virtually ev-
eryone stayed with TLS 1.0. At some point around 2008, we started to focus on security
again. Ever since, there’s been a constant pressure on TLS, scrutinizing every little feature
and use case.
In this chapter, I document the attacks that broke aspects of TLS in recent years; the focus is
on the problems that you might encounter in practice. In chronological order, they are: inse-
cure renegotiation in 2009, BEAST in 2011, CRIME in 2012, Lucky 13, RC4 biases, TIME,
and BREACH in 2013, and Triple Handshake and POODLE in 2014. I conclude the chapter
with a brief discussion of the possibility that some of the standards and cryptographic algo-
rithms are being subverted by government agencies.

Insecure Renegotiation 
Insecure renegotiation (also known as TLS Authentication Gap) is a protocol issue rst dis-
covered by Marsh Ray and Steve Dispensa in August 2009. Aer the discovery, they initiat-
ed an industry-wide eort to x the protocol and coordinate public disclosure. Before the
process was complete, the issue was independently discovered by Martin Rex (in November
of the same year).1 At that point, the information became public, prematurely.2

1 MITM attack on delayed TLS-client auth through renegotiation (Martin Rex, 4 November 2009)
2 Renegotiating TLS (Marsh Ray and Steve Dispensa, 4 November 2009)
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Why Was Renegotiation Insecure?
Te renegotiation vulnerability existed because there was no continuity between the old and
new TLS streams even though both take place over the same TCP connection. In other
words, the server does not verify that the same party is behind both conversations. As far as
integrity is concerned, it is entirely possible that aer each renegotiation a dierent client is
talking to the server.
Application code typically has little interaction with the encryption layer. For example, if
renegotiation occurs in the middle of an HTTP request, the application is not notied. Fur-
thermore, web servers will sometimes buer data that was received prior to renegotiation
and forward it to the application together with the data received aer renegotiation. Con-
nection parameters may also change; for example, a dierent client certicate might be used
aer renegotiation. Te end result is that there is a mismatch between what is happening at
the TLS layer and what applications see.
A man-in-the-middle (MITM) attacker can exploit this problem in three steps:

1. Intercept a TCP connection request from the victim (client) to the target server.
2. Open a new TLS connection to the server and send the attack payload.
3. From then on, continue to operate as a transparent proxy between the victim and the

server. For the client, the connection has just begun; it will submit a new TLS hand-
shake. Te server, which has already seen a valid TLS connection (and the attack pay-
load), will interpret the client’s handshake as renegotiation. Once the renegotiation is
complete, the client and the server will continue to exchange application data. Te at-
tacker’s payload and the client’s data will both be seen as part of the same data stream
by the server, and the attack will have been successful.
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Figure 7.1. Man-in-the-middle attack against insecure renegotiation
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HTTP request (attack payload)
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Pass-through client’s original 
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Dummy: GET /index.jsp HTTP/1.0
Cookie: cookie=Token 

GET /attacked.jsp HTTP/1.0

Tis scenario shows the attacker violating the integrity of application data, which TLS was
designed to protect. Te attacker was able to inject arbitrary plaintext into the beginning of
the connection. Te impact of the attack depends on the underlying protocol and server im-
plementation and will be discussed in the following sections.

Triggering the Weakness
Before he can exploit the insecure renegotiation vulnerability, the attacker needs to nd a
way to trigger renegotiation. Before this vulnerability was discovered, most servers were al-
lowing client-initiated renegotiation, which meant that most were easy targets. A rare ex-
ception was Microso IIS, which, starting with version 6, would not accept client-initiated
renegotiation at all.
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But even without client-initiated renegotiation, sites using client certicates or supporting
SGC might be equally easy to exploit. Te attacker just needs to examine the web site to
determine under what conditions renegotiation is required. If such a condition is easily trig-
gered, the attacker may use it for the attack. Depending on the exact conguration of the
server, the resulting attack vector may be as useful as client-initiated renegotiation.

Attacks against HTTP
When it comes to insecure renegotiation, attacks against HTTP are the best understood.
Many variants exist, with their feasibility depending on the design of the target web site and
on the technical prowess (and the browser used) by the victim. Initially, only one attack was
discussed, but the security community collaborated to come up with other possibilities.
Tierry Zoller, in particular, spent considerable eort tracking down and documenting the
attack vectors as well as designing proof-of-concept attacks.3

Execution of Arbitrary GET Requests
Te easiest attack to carry out is to perform arbitrary GET requests using the credentials of
the victim. Te eective request consisting of the attack payload (in bold) and the victim’s
request might look something like this:

GET /path/to/resource.jsp HTTP/1.0
X-Ignore: GET /index.jsp HTTP/1.0
Cookie: JSESSIONID=B3DF4B07AE33CA7DF207651CDB42136A

We already know that the attacker can prepend arbitrary plaintext to the victim’s request.
Te attacker’s challenge is to use this ability to control the attack vector, neutralize the parts
of the genuine request that would break the attack (that’s the victim’s request line), and use
the parts that contain key information (e.g., session cookies or HTTP Basic Authentication)
to successfully authenticate.
Te attacker can do that by starting the attack payload with a complete HTTP request line—
thereby choosing the entry point of the attack—and then following with a partial header
line; this header, which is purposefully le incomplete (no newline at the end), will neutral-
ize the rst line of the victim’s request. All subsequent request headers submitted by the vic-
tim will become part of the request.
So what do we get with this? Te attacker can choose where the request goes, and the vic-
tim’s credentials are used. But the attacker cannot actually retrieve the credentials, and the
HTTP response will go back to the victim. It appears that the eect of this attack is similar
to that of a cross-site request forgery (abbreviated to CSRF or, sometimes, XSRF). Most sites

3 TLS/SSLv3 renegotiation vulnerability explained (Thierry Zoller, 23 December 2011)
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that care about security will have already addressed this well-known web application securi-
ty problem. Tose sites that did not address CSRF are probably easier to attack in other
ways.
Tis was the attack vector that was initially presented and, because of the similarity to CSRF,
caused many to dismiss the insecure vulnerability as unimportant.

Credentials Theft
In the days following the public disclosure, improved attacks started to appear. Just a couple
of days later, Anil Kurmus improved the attack to retrieve encrypted data.4

In researching the possible attack vectors, most focused on trying to use the credentials in-
cluded with hijacked requests (i.e., session cookies or Basic Authentication credentials).
Anil realized that although he was not able to retrieve any data directly he was still able to
submit it to the web site using a dierent identity, one that was under his control. (Reverse
session hijacking, if you will.) From there, the challenge was to get the data back from the
web site somehow.
His proof-of-concept attack was against Twitter. He managed to post the victim’s credentials
(which were in the headers of the victim’s HTTP request) as a tweet of his own. Tis was the
request (the attacker’s payload in bold):

POST /statuses/update.xml HTTP/1.0
Authorization: Basic [attacker's credentials]
Content-Type: application/x-www-form-urlencoded
Content-Length: [estimated body length]

status=POST /statuses/update.xml HTTP/1.1
Authorization: Basic [victim's credentials]

In the improved version of the attack, the entire victim’s request is submitted in the request
body as the contents of the status parameter. As a result, Twitter treats it as the text of a
tweet and publishes it in the attacker’s tweet stream. On other sites, the attacker might post
a new message on the forum, send an email message to himself, and so forth.
Te only challenge here is getting the Content-Length header right. Te attacker does not
know the size of the request in advance, which is why he cannot use the correct length. But
to succeed with the attack he only needs to use a large enough value to cover the part of the
victim’s request that contains sensitive data. Once the web server hits the limit specied in
the Content-Length header, it will consider the request complete and process it. Te rest of
the data will be treated as another HTTP request on the same connection (and probably
ignored, given that it’s unlikely that it would be well formed).

4 TLS renegotiation vulnerability: denitely not a full blown MITM, yet more than just a simple CSRF (Anil Kurmus, 11 November 2009)
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User Redirection
If the attacker can nd a resource on the target web site that responds with a redirection, he
might be able to perform one of the following attacks:

Send the user to a malicious web site
An open redirection point on the web site could be used to send the victim to the
destination of the attacker’s choice. Tis is ideal for phishing, because the attacker can
build a replica of the target web site, possibly using a similar domain name to make
the deception more eective. It’s very easy to make up a name that feels related and
“ocial” (e.g., www.myfeistyduck.com, when the real domain name is
www.feistyduck.com). To nalize the deception, the attacker can get a proper certi-
cate for the malicious web site.

Downgrade connection to plaintext HTTP
If the attacker can nd a redirection on the target web site that will send the user to
(any) plaintext web site, then the TLS connection is eectively downgraded. From
there, the attacker can use a tool such as sslstrip and establish full control over the
victim’s browsing.

Capture credentials via redirected POST
If the site contains a redirection that uses the 307 status code—which requires that
the redirection is carried out without changing the original request method—it may
be possible to redirect the entire request (POST body included) to the location of the
attacker’s choice. All browsers support this, although some require user conrma-
tion.5 Tis attack is quite dangerous, because it allows the attacker to retrieve en-
crypted data without having to rely on the site’s own functionality. In other words, it
may not be necessary to have an account on the target web site. Tis is a big deal,
because the really juicy targets make that step dicult (think banks and similar -
nancial institutions).

A good discussion of the use of redirection to exploit insecure renegotiation is available in
the research paper from Leviathan Security Group.6

5 The last time I tested this feature, in July 2013, the latest versions of Chrome, Internet Explorer, and Safari were happy to redirect the request

to an entirely different web site without any warning. Firefox and Opera asked for conrmation, but the prompts used by both could be improved.

For example, Firefox provided no information about where the new request would be going. Opera provided the most information (the current

address as well as the intended destination) along with options to cancel, proceed with the POST method, or convert to a GET method. Still, all

that would probably be too confusing for the average user.
6 Generalization of the TLS Renegotiation Flaw Using HTTP 300 Redirection to Effect Cryptographic Downgrade Attacks (Frank Heidt and Mikhail

Davidov, December 2009)

192 Chapter 7: Protocol Attacks



Cross-Site Scripting
In some rare cases, the attacker might be able to inject HTML and JavaScript into the vic-
tim’s browser and take full control of it via XSS. Tis could be done using the TRACE HTTP
method, which requires servers to mirror the request in the response. Under attack, the re-
ected content would contain the attacker’s payload.
Tis attack will not work against the major browsers, because TRACE responses usually use
the message/http content type. But, according to Tierry Zoller3, there are some less used
Windows browsers that always handle responses as HTML; those are vulnerable. In addi-
tion, custom scripts rarely check response content types, and they might be vulnerable, too.

Attacks against Other Protocols
Although HTTP received most of the attention, we should assume that all protocols (that
rely on TLS) are vulnerable to insecure renegotiation unless the opposite can be proven.
Any protocol that does not reset state between renegotiations will be vulnerable.

SMTP
Wietse Venema, a member of the ostx project, published an analysis of the inse-
cure renegotiation impact on SMTP and the ostx mail server.7 According to the
report, SMTP is vulnerable, but the exploitation might be tricky, because, unlike
HTTP, one SMTP transaction consists of many commands and responses. He con-
cluded that ostx was not vulnerable—but only by luck, because of certain imple-
mentation decisions. Te report suggested several client- and server-side improve-
ments to defend against this problem.
Insecure renegotiation did not pose a signicant threat to SMTP because, unfortu-
nately, most SMTP servers do not use valid certicates and (possibly as a result) most
SMTP clients do not actually validate certicates. In other words, man-in-the-middle
attacks against SMTP are already easy to execute; no further tricks are required.

FTPS
Alun Jones, author of the WFTPD Server, published an analysis of the impact of the
insecure renegotiation vulnerability on FTPS.8 Te main conclusion is that due to the
way le transfer is implemented in some FTP servers, a MITM attacker could use the
renegotiation issue to tell the server to disable encryption of the command channel.
As a result, the integrity of the transferred les could be compromised.

7 Redirecting and modifying SMTP mail with TLS session renegotiation attacks (Wietse Venema, 8 November 2009)
8 My take on the SSL MITM Attacks – part 3 – the FTPS attacks (Alun Jones, Tales from the Crypto, 18 November 2009)
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Insecure Renegotiation Issues Introduced by Architecture
System design and architecture decisions can sometimes introduce insecure renegotiation
where it otherwise doesn’t exist. Take SSL ooading, for example. Tis practice is oen used
to add encryption to services that otherwise do not support it or to improve the perfor-
mance of a system by moving TLS handling away from the main service point. If insecure
renegotiation is supported at the point of TLS termination, the system as a whole will be
vulnerable even if the actual web servers are not.

Impact
Insecure renegotiation is a serious vulnerability because it completely breaks the security
guarantees promised by TLS. Not only is communication integrity compromised, but the at-
tacker might also be able to retrieve the communicated data itself. Tere’s a variety of at-
tacks that can take place, ranging from CSRF to the of credentials to sophisticated phish-
ing. Because a good technical background and per-site research is required, this is a type of
attack that requires a motivated attacker, likely against higher-value targets.
Te ideal case for the attacker is one in which there are automated systems involved, be-
cause automated systems rarely scrutinize failures, have poor logging facilities, and retry re-
quests indenitely until they are successful. Tis scenario thus creates a large attack surface
that is much easier to exploit than attacking end users (browsers) directly.
Te attack against insecure renegotiation is well understood, and the tools needed to carry it
out are widely available. Te proof of concept for the Twitter attack can be found on the
Internet, and only a slight modication to any of the widely available MITM tools would be
needed to extend them to exploit the vulnerability.
Te compromise of integrity has another side eect, which stems from the fact that the at-
tacker can submit arbitrary requests under the identity of the victim. Even if the attacker is
not able to retrieve any data or trick the victim, he can always forge his attack payloads to
make it seem as if the victim was attacking the server. Because of inadequate logging facili-
ties at most web sites, this type of attack (executed under the identity of the victim) would
be extremely dicult to dispute, and yet it could have devastating consequences for the vic-
tim. For this reason alone, end users should congure their browsers to accept communica-
tion only with servers that support secure renegotiation.9

Mitigation
Tere are several ways in which insecure renegotiation can be addressed, but some are bet-
ter than others.

9 For example, in Firefox, on the about:config page, change the security.ssl.require_safe_negotiation setting to true.
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Upgrade to support secure renegotiation
In early 2010, the Renegotiation Indication extension was released to address the
problem with renegotiation at the protocol level.10 Today, several years later, you
should expect that all products can be upgraded to support secure renegotiation. If
you’re dealing with products that cannot be upgraded, it’s probably an opportunity to
consider if they’re still worth using.

Disable renegotiation
In the rst several months aer the discovery, disabling renegotiation was the only
mitigation option.
Tis approach is inferior to supporting secure renegotiation. First, some deployments
actually need renegotiation (typically when deploying client certicate authentica-
tion). Second, not supporting secure renegotiation promotes renegotiation uncertain-
ty on the Web, eectively preventing users from protecting themselves.

Disabling SSL Renegotiation Is a Crutch, Not a Fix
We should all make an eort to upgrade our systems to support secure renegotiation. If, in
2009 or 2010, you patched your systems to disable renegotiation, you might feel that you are
safe and that no further action is required. From a very narrow perspective, you’d be right.
However, not supporting secure renegotiation is actually holding the entire world back, be-
cause it’s preventing browser vendors from adopting strict renegotiation policies.
Unlike servers, which either ask for renegotiation or receive unsolicited renegotiation requests,
when under attack, browsers can’t tell that renegotiation is taking place. Aer all, they are not
the ones renegotiating.
Te only way for browsers to protect themselves is to refuse to connect to servers that do not
support secure renegotiation. And therein lies the problem: there are still many such servers on
the Web, and the browser vendors don’t want to be the ones breaking web sites. A server that
disables renegotiation might be safe to talk to, but it’s prolonging the transition period by in-
creasing the overall number of servers that are not veriably secure.

Discovery and Remediation Timeline
Te insecure renegotiation issue gave us a rare opportunity to examine and assess our col-
lective ability to x a vulnerable protocol. Clearly, in an ecosystem as complex as TLS, xing
any problem will require extensive collaboration and take years; but how many years, exact-
ly? Te following chart will give us a good idea.

10 RFC 5746: TLS Renegotiation Indication Extension (Rescorla et al., February 2010)
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Figure 7.2. Insecure renegotiation remediation timeline
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Roughly, what the timeline shows is that we need:
1. About six months to x the protocol.
2. A further 12 months for libraries and operating systems to be xed and patches issued.
3. A further 24 months for the majority to apply the patches (or recycle those old sys-

tems).
According to the measurements done by Opera, 50% of the servers they tracked had been
patched to support secure renegotiation within one year of the ocial RFC release.11

Te same data set, in February 2014, reported 83.3% patched servers.12 Te conclusion is
that we need about four years to address aws of this type.
As I am writing this, in July 2014, 88.4% of the servers in the SSL Pulse data set support
secure renegotiation.13 About 6.1% support insecure renegotiation, and 6.8% don’t support

11 Secure browsing like it’s 1995 (Audun Mathias Øygard, 17 March 2011)
12 Re: Call for acceptance of draft-moeller-tls-downgrade-scsv (Yngve N. Pettersen, 9 February 2014)
13 SSL Pulse (SSL Labs, retrieved 15 July 2014)
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renegotiation at all. Te numbers add up to more than 100%, because there’s about 1.3% of
servers that accept both secure and insecure renegotiation.

BEAST
In the summer of 2011, Duong and Rizzo announced a new attack technique that could be
used against TLS 1.0 and earlier protocols to extract small pieces of encrypted data.14 Teir
work built on previously known weakness in the predictable initialization vector (IV) con-
struction as used in TLS 1.0. Te weakness, which was thought to be impractical to exploit,
had been xed in TLS 1.1, but at the time of discovery there was eectively no browser sup-
port for newer TLS versions.
In many ways, the so-called BEAST attack was a wake-up call for the ecosystem. First, it
emphasized (again) that attacks only get better. As you will learn later in this section, this
was a weakness that had been known for almost a decade and dismissed, but all it took was
two motivated researchers to make it practical. Duong and Rizzo showed that we must not
ignore small problems, because they eventually grow big.
Second, the disclosure and the surrounding fuss made it painfully clear how little attention
browser vendors paid to the TLS protocol. Tey, along with most of the soware industry,
became too focused on exploitability. Tey didn’t take into account that protocol issues, and
other problems that require interoperability of large numbers of clients and servers, take
years to address. Tey are much dierent from buer overows and similar aws, which
can be xed relatively quickly.
Tai gave a candid account of how BEAST came together in his blog post,15 and you can
almost feel his frustration when he realizes that he is losing the attention of browser vendors
because, even though he can demonstrate the attack in a simulation, he is unable to demon-
strate it in a practical environment. But they persisted, managed to build a working proof of
concept, demonstrated it, and nally got the attention they deserved.

How the Attack Works
Te BEAST attack is an exploit targeted at the Cipher Block Chaining (CBC) encryption as
implemented in TLS 1.0 and earlier protocol versions. As mentioned earlier, the issue is that
IVs are predictable, which allows the attacker to eectively reduce the CBC mode to Elec-
tronic Code Book (ECB) mode, which is inherently insecure.

14 Here come the ⊕ Ninjas (Duong and Rizzo, incomplete version, 21 June 2011)
15 BEAST (Thai Duong, 5 September 2011)
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ECB Oracle
ECB is the simplest mode of operation: you split input data into blocks and encrypt each
block individually. Tere are several security issues with this approach, but the one we’re in-
terested in here is that ECB does not hide the deterministic nature of block cipher encryp-
tion. What this means is that every time you encrypt the same piece of data the output is
also the same. Tis is a very useful property for the attacker; if he is able to submit arbitrary
data for encryption, he can use that to recover earlier encrypted data by guessing. It goes
like this:

1. Observe a block of encrypted data that contains some secret. Te size of the block will
depend on the encryption algorithm, for example, 16 bytes for AES-128.

2. Submit 16 bytes of plaintext for encryption. Because of how block ciphers work (one
bit of dierence anywhere in input aects all output bytes), the attacker is only able to
guess the entire block at once.

3. Observe the encrypted block and compare it to the ciphertext observed in step 1. If
they are the same, the guess is correct. If the guess is incorrect, go back to step 2.

Because the attacker can only guess the entire block at a time, this is not a great attack. To
guess 16 bytes, the attacker would need to make 2128 guesses, or 2127 on average. But, as we
shall see later, there are ways in which the attack can be improved.

CBC with Predictable IV
Te key dierence between CBC and ECB is that CBC uses an IV to mask each message
before encryption. Te goal is to hide patterns in ciphertext. With proper masking in place,
the ciphertext is always dierent even if the input is the same. As a result, CBC is not vul-
nerable to plaintext guessing in the way ECB is.
For the IV to be eective, it must be unpredictable for each message. One way to achieve
this is to generate one block of random data for every block that we wish to encrypt. But
that wouldn’t be very practical, because it would double the size of output. In practice, CBC
in SSL 3 and TLS 1.0 uses only one block of random data at the beginning. From there on,
the encrypted version of the current block is used as the IV for the next block, hence the
word chaining in the name.
Te chaining approach is safe, but only if the attacker is not able to observe encrypted data
and inuence what will be encrypted in the immediately following block. Otherwise, simply
by seeing one encrypted block he will know the IV used for the next. Unfortunately, TLS 1.0
and earlier treat the entire connection as a single message and use a random IV only for the
rst TLS record. All subsequent records use the last encryption block as their IV. Because
the attacker can see all the encrypted data, he knows the IVs for all records from the second
one onwards. TLS 1.1 and 1.2 use per-record IVs and thus don’t have the same weakness.
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Te TLS 1.0 approach fails catastrophically when faced with an active attacker who can sub-
mit arbitrary plaintext for encryption, observe the corresponding ciphertexts, and adapt the
attacks based on the observations. In other words, the protocol is vulnerable to a blockwise
chosen-plaintext attack. When the IV is predictable, CBC eectively downgrades to ECB.
Figure 7.3, “BEAST attack against CBC with predictable IV” illustrates the attack against
CBC with predictable IV showing three encryption blocks: two blocks sent by the browser
and one block sent (via the browser) by the attacker. For simplicity, I made it so that each
message consumes exactly one encryption block; I also removed padding, which TLS would
normally use.
Te attacker’s goal is to reveal the contents of the second block. He can’t target the rst
block, because its IV value is never seen on the network. But aer seeing the rst block he
knows the IV of the second (IV2), and aer seeing the second block he knows the IV of the
third block (IV3). He also knows the encrypted version of the second block (C2).
Aer seeing the rst two blocks, the attacker takes over and instruments the victim’s brows-
er to submit plaintext for encryption. For every guess, he can observe the encrypted version
on the wire. Because he knows all the IVs, he can cra his guesses in such a way that the
eects of IV are eliminated. When a guess is successful, the encrypted version of the guess
(C3) will be the same as the encrypted version of the secret (C2).

Figure 7.3. BEAST attack against CBC with predictable IV
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To understand how the IVs can be eectively eliminated, we have to look at some of the
math involved. Let’s examine the encryption of M2, which contains some secret, and M3,
which is controlled by the attacker:

C2 = E(M2 ⊕ IV2) = E(M2 ⊕ C1)
C3 = E(M3 ⊕ IV3) = E(M3 ⊕ C2)

Messages are rst XORed with their IV, then encrypted. Because dierent IVs are used each
time, even if M2 is the same as M3 the corresponding encryptions, C2 and C3, will be dier-
ent. However, because we know both IVs (C1 and C2), we can cra M3 in such a way as to
neutralize the masking. Assuming Mg is the guess we wish to make:

M3 = Mg ⊕ C1 ⊕ C2

Te encryption of M3 will thus be:
C3 = E(M3 ⊕ C2) = E(Mg ⊕ C1 ⊕ C2 ⊕ C2) = E(Mg ⊕ C1)

And if our guess is correct (Mg = M2), then the encryption of our block will be the same as
the encryption of the second block:

C3 = E(Mg ⊕ C1) = E(M2 ⊕ C1) = C2

Practical Attack
We now understand the weakness of predictable IVs, but exploiting it is still dicult due to
the fact that we have to guess the entire block (typically 16 bytes) at a time. However, when
applied to HTTP, there are some optimizations we can make.

• HTTP messages oen contain small fragments of sensitive data, for example, pass-
words and session tokens. Sometimes guessing only 16 bytes is all we need.

• Te sensitive data typically uses a restricted character set; for example, session tokens
are oen encoded as hexadecimal digits, which can have only 16 dierent values.

• Te structure of HTTP messages is very predictable, which means that our sensitive
data will oen be mixed with some other content we know. For example, the string
Cookie: will always be placed before the name of the rst cookie in a HTTP request.

When all these factors are taken into account, the required number of guesses can be much
lower, although still not low enough for practical use.
BEAST became possible when Duong and Rizzo realized that modern browsers can be al-
most fully instrumented by a skillful attacker, giving him an unprecedented level of control.
Crucially, the attacker needs to be able to (1) inuence the position of the secret in the re-
quest and (2) have full control over what is being encrypted and when it is sent.
Te rst condition is not dicult to ulll; for example, to push a cookie value around you
only need to add extra characters to the request URI. Te second condition is problematic;
that level of control is not available from JavaScript. However, Duong and Rizzo determined
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that they could use Java applets. Tey also needed to exploit a separate bug in order to get
Java to send trac to arbitrary web sites.16 Tey needed to do this to make BEAST universal
and able to attack any web site. Exploitation of this additional problem in Java is not always
necessary. Web sites that allow user-uploaded content can be tricked into accepting Java ap-
plets. Tey then run in the context of the target web site and can send trac to it.17

Tere is another condition, mentioned earlier, and that is to be able to observe encrypted
network trac, which is necessary in order to determine the next IV values. Further, the
IVs need to be communicated to the code running in the browsers.
In practice, BEAST is an active network attack. Although social engineering could be used
to send the victim to the web site that contains the rogue JavaScript code, it’s much simpler
to inject the code into any plaintext web site visited by the victim at the time of attack.
If you can manage all of that, then implementing BEAST is easy. By changing the position of
the secret within the HTTP request, you can align it with encryption blocks in such a way
that a single block contains 15 bytes of known plaintext and only one byte of the secret.
Guessing that one byte is much easier; you need 28 (256) guesses in the worst case, and 27

(128) guesses on average. Assuming low-entropy data (e.g., hexadecimal digits), you can get
as low as eight (average) guesses per character. When time is of the essence, you can also
submit multiple guesses in parallel.

JavaScript Malware
JavaScript Malware is a generic term used for malicious code running in a victim’s browser.
Most malware is designed to attack the browser itself, impersonate the user, or attack other
web sites, oen without being noticed. BEAST was the rst exploit to use JavaScript malware to
break cryptography, but many others followed. You’ll nd their details later in the chapter.
Te use of JavaScript malware is a good example of the changing threat model. When SSL was
rst designed in 1994, browsers were only simple tools designed for HTML rendering. Today,
they are powerful application-delivery platforms.

Client-Side Mitigation
BEAST is a client-side vulnerability and requires that countermeasures are deployed at the
user-agent level. In 2004, when the problem was originally discovered, OpenSSL tried to ad-
dress it by injecting an empty (no data) TLS record before each real TLS record. With this

16 Without permission, Java applets can only communicate with their parent web site. This restriction is known as the same-origin policy (SOP).

Duong and Rizzo discovered a way to bypass that restriction. It’s not entirely clear if the Java SOP bypass remains: when I reviewed the updated

Java release in 2013, it was possible to exploit it with additional effort.
17 The pitfalls of allowing le uploads on your website (Mathias Karlsson and Frans Rosén, 20 May 2014)
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change, even though the attacker can predict the next IV, that value is used for the zero-
length TLS record that has no value. Te application data follows in the next record, but it
uses an IV that the attacker does not know in advance (at the time the attack payload is
constructed), which means that there is no opportunity to execute an attack.
Unfortunately, this approach did not work, because some TLS clients (most notably, Inter-
net Explorer) were found to react badly to zero-sized TLS records. Given that at the time
there was no practical attack to worry about, OpenSSL dropped the mitigation technique.
As far as we know, no other library tried to address the issue.
In 2011, browsers mitigated BEAST by using a variation of the empty fragment technique.
Te so-called 1/n-1 split, proposed by Xuelei Fan,18 still sends two records instead of one but
places one byte of application data in the rst record and everything else in the second. Tis
approach achieves an eectively random IV for the bulk of the data: whatever is in the sec-
ond record is safe. One byte of the data is still exposed to the predictable IV, but because it
sits in an encryption block with at least seven (more likely 15) other bytes that are eectively
random and dierent for every record (the MAC) the attacker cannot guess that byte easily.
Te 1/n-1 split fared much better than the original approach, but the adoption still did not
go smoothly. Chrome enabled the countermeasures rst but had to revert the change be-
cause too many (big) sites broke.19 Te Chrome developers persisted, and soon other brows-
er vendors joined, making the change inevitable.
Te cost of the 1/n-1 split is an additional 37 bytes that need to be sent with every burst of
client application data.20

You can see the status of BEAST mitigations in the major platforms in the following table.

18 Bug #665814, comment #59: Rizzo/Duong chosen plaintext attack (BEAST) on SSL/TLS 1.0 (Xuelei Fan, 20 July 2011)
19 BEAST followup (Adam Langley, 15 January 2012)
20 Some user agents (e.g., Java and OS X) do not use BEAST countermeasures for the rst burst; they deploy it only from the second burst

onwards. This saves on bandwidth but provides less security. Application data is probably still safe, because to make a guess you need to see

something encrypted rst. However, before any application data is sent, TLS uses encryption for its own needs. In most cases, this will be the

Finished message, which is not very interesting because it changes on every connection. However, as TLS is evolving, other bits and pieces are

being encrypted in the rst message. In theory, a future change might make TLS vulnerable again. In practice, because BEAST was xed in TLS

1.1 it’s very unlikely that TLS 1.0 servers will support these new features.

In TLS 1.1, the cost is equal to the size of the encryption block, which is typically 16 bytes.
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Table 7.1. BEAST mitigation status of major libraries, platforms, and browsers

Product Version (Date) Comments

Apple OS X v10.9 Mavericks (22 Octo-
ber 2013) and v10.8.5 Mountain
Lion (25 February 2014)

The 1/n-1 split shipped in Mountain Lion (OS X v10.8), but it was dis-
abled by default. The mitigation is supposed to be congurable, but
there’s a bug that prevents the defaults from being changed.a

Chrome v16 (16 December 2011) Initially enabled in v15, but backed off due to too many big sites not
working.

Firefox v10 (31 January 2012) Almost made it to Firefox v9, but Mozilla changed their minds at the
last moment to give the incompatible sites more time to upgrade.b

Microsoft MS12-006c (10 January 2012) The mitigation is enabled in Internet Explorer, but disabled by default
for all other Schannel (Microsoft’s TLS library) users. Microsoft rec-
ommended deployment of TLS 1.1 as a way of addressing BEAST for
nonbrowser scenarios. The knowledge base article 2643584 discuss-
es the various settings in detail.d

NSS v3.13e (14 October 2011) Enabled by default for all programs.

OpenSSL Not mitigated yet The issue is tracked under bug #2635.

Opera v11.60f (6 December 2011) The comment “Fixed a low severity issue, as reported by Thai Duong
and Juliano Rizzo; details will be disclosed at a later date” was in the
release notes of v11.51 but was subsequently removed.

Oracle JDK 6u28 and 7u1 (18 October
2011)g

 

a Apple enabled BEAST mitigations in OS X 10.9 Mavericks (Ivan Ristić, 31 October 2013)
b Bug #702111: Servers intolerant to 1/n-1 record splitting. “The connection was reset” (Bugzilla@Mozilla, 13 November 2011)
c Microsoft Security Bulletin MS12-006 (10 January 2012)
d Microsoft Knowledge Base Article 2643584 (10 January 2012)
e NSS 3.13 Release Notes (14 October 2011)
f Opera 11.60 for Windows changelog (6 December 2012)
g Oracle Java SE Critical Patch Update Advisory - October 2011 (Oracle’s web site)

Many client-side tools (e.g., libraries and command-line applications) continue to lack the
1/n-1 split and are thus technically vulnerable, but they are not likely to be exploitable.
Without the ability to inject arbitrary plaintext into the communication, there is nothing the
attacker can do to exploit the weakness.

Server-Side Mitigation
Even though BEAST has been addressed client-side, we don’t control the upgrade cycle of
the millions of browsers that are out there. Tings have gotten a lot better with the rise of
Chrome and its automated updates. Firefox now uses the same approach, and it’s possible
that Microso will, too. Still, a potentially large number of users with vulnerable browsers
remain.
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Up until 2013, the recommended approach for BEAST mitigation server-side was to ensure
RC4 suites are used by default. With CBC suites out of the picture, there is nothing for
BEAST to exploit. But in early 2013 we learned about two new attacks, one against RC4 and
another against the CBC construction in TLS. (Both are discussed in detail later in this
chapter.) Te RC4 weaknesses broke the only server-side mitigation strategy available to us.
We are now forced to choose between having some of our users vulnerable to either the
BEAST attack or the RC4 weaknesses. With neither attack particularly practical, the choice
is somewhat dicult. In this situation, it is helpful to think not only about the impact of
these attacks today but also the future trends. BEAST can be executed successfully if you can
nd a victim–site combination that satises the requirements. Making it work at scale is im-
possible. Te technique might be useful for targeted attacks, provided the victim is using
unpatched soware and has Java enabled. But overall the chances of successful attacks are
small. More importantly, the likelihood is going to continue to decrease over time.

History
Te insecurity of predictable IVs has been known since at least 1995, when Phil Rogaway
published a critique of cryptographic constructions in the IPsec standard dras.21 He said
that:

[...] it is essential that the IV be unpredictable by the adversary.

Clearly, this problem had not been widely understood, because predictable IVs made it into
SSL 3 (1996) and later TLS 1.0 (1999).
In 2002, the problem was rediscovered in the SSH protocol22 and was also found to apply to
TLS.23 Empty TLS record countermeasures were added to OpenSSL in May 2002, but dis-
abled only two months later because of interoperability issues; they broke Internet Explorer
and possibly other clients.24

Apparently no one thought this attack was worth pursuing further, and thus no one tried to
nd a mitigation technique that worked. It was a missed opportunity to address the problem
almost a decade before the practical attack came to light. Still, two papers were published
that year: one to discuss how to x the SSH protocol25 and the other to discuss blockwise-
adaptive attacks against several encryption approaches, including CBC.26

21 Problems with Proposed IP Cryptography (Phil Rogaway, 3 April 1995)
22 An Attack Against SSH2 Protocol (Wei Dai, 6 February 2002)
23 Re: an attack against SSH2 protocol (Bodo Moeller, 8 February 2002)
24 But even if the countermeasures stayed enabled they wouldn’t have addressed the BEAST attack. TLS is a duplex protocol, with two separate

streams of data, one sent by the client and the other sent by the server, each using separate IVs. An empty fragment mitigation technique

implemented on the server wouldn’t have xed the same vulnerability in the client stream, which is where BEAST attacked. TLS stacks used by

browsers (e.g, NSS and Schannel) had no countermeasures for predictable IVs.
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In 2004, Gregory Bard showed how predictable IVs in TLS can be exploited to reveal frag-
ments of sensitive information.27 He spelled out the problem inherent in the CBC encryp-
tion as implemented in SSL 3.0 and TLS 1.0:

We show that this introduces a vulnerability in SSL which (potentially) en-
ables easy recovery of low-entropy strings such as passwords or PINs that have
been encrypted. Moreover, we argue that the open nature of web browsers
provides a feasible “point of entry” for this attack via a corrupted plug-in [...]

Bard didn’t nd a way to exploit the weakness, but later published another paper, this one
describing a blockwise-adaptive chosen-plaintext attack on SSL, showing how the position of
sensitive data within block boundaries signicantly impacts the number of guesses required
to recover it.28

Te protocol weakness was nally resolved in TLS 1.1 (2006) by using a random IV for each
TLS record. However, xing the protocol didn’t really achieve anything, because few
browsers bothered to implement it. Only aer BEAST made a big splash in 2011 did brows-
er vendors start to think about supporting newer protocols.
In 2011, most libraries and browser vendors implemented the 1/n-1 split mitigation tech-
nique. Aer all the time spent researching the problem, the x was almost trivial; for NSS, it
took only about 30 lines of code.29

Apple waited until late 2013 to implement BEAST mitigations in their TLS stack (and thus
Safari). As for protocol support, it wasn’t until late 2013 that major browsers started to sup-
port TLS 1.2 by default.

Impact
If a BEAST attack is successful, the attacker will obtain the victim’s session token, which will
give him access to the entire web application session. He will be able to perform arbitrary
actions on the web site, using the identity of the victim. Under the right conditions, BEAST
is easy to execute; however, getting everything aligned (especially today) is dicult.
Because the vulnerability exploited by the BEAST attack is in the protocols, at the time of
the announcement virtually all SSL and TLS clients were vulnerable. BEAST is a client-only
vulnerability. TLS operates two data streams, one sent from the client to the server and the

25 Breaking and Provably Repairing the SSH Authenticated Encryption Scheme: A Case Study of the Encode-then-Encrypt-and-MAC Paradigm

(Bellare, Kohno, and Namprempre, Ninth ACM Conference on Computer and Communication Security, 18 November 2002)
26 Blockwise-Adaptive Attackers: Revisiting the (In)Security of Some Provably Secure Encryption Modes: CBC, GEM, IACBC (Joux, Martinet, and

Valette, pages 17–30, CRYPTO 2002)
27 Vulnerability of SSL to Chosen-Plaintext Attack (Gregory V. Bard, ESORICS, 2004)
28 A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext Attack on SSL (Gregory Bard, SECRYPT, 2006)
29 cbcrandomiv.patch (NSS 1/n-1 patch in Chromium, 18 August 2011)
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other sent from the server to the client. Te BEAST attack targets the client data stream and
requires the attacker to be able to control exactly what is sent to the target web server. Te
interactivity is key; without it, the attack cannot succeed. Tus, even though the server data
stream suers from the same problem of predictable IVs it is impossible to exploit it in
practice because the attacker cannot have sucient control of the server-sent data.
In addition to the interactivity requirement, two further server-controlled conditions are re-
quired:

CBC suites have priority
Because only CBC suites are vulnerable, those servers that prefer RC4 suites over
CBC (or don’t support CBC at all) are not vulnerable to the BEAST attack. Even if
both sides support CBC suites, the attacker cannot inuence the suite selection.

TLS compression is disabled
TLS has the ability to compress content prior to encryption. Compression does not
protect against the BEAST attack, but it does make it more dicult. Normally, the
bytes sent by the attacker are encrypted and sent over the wire. With compression en-
abled, the bytes are rst compressed, which means that the attacker no longer knows
what exactly is encrypted. To make the attack work, the attacker would also have to
guess the compressed bytes, which may be very dicult. For this reason, the original
BEAST exploit implemented by Duong and Rizzo could not attack compressed TLS
connections. In my estimates, compression was enabled on about half of all web
servers at the time BEAST was announced. However, client-side support for com-
pression was very weak then and is nonexistent today.

Going back to the interactivity, native browser capabilities were not sucient to carry out
the attack, which is why the authors resorted to using third-party plug-ins. Te nal exploit
was implemented in Java and used a previously unknown weakness in the Java plug-in. Tis
meant that the presence of Java was yet another requirement for a successful attack.
To sum up:

1. Te attacker must be able to execute a MITM attack from a location close to the vic-
tim. For example, any Wi-Fi network or a LAN would probably do. Strong cryptogra-
phy and programming skills are required to implement the exploit.

2. Te victim must have the Java plug-in installed. Java was in those days virtually uni-
versally available (now not as much), so there wouldn’t have been a shortage of candi-
dates.

3. In addition to being authenticated to the target web site, the victim must also be
browsing some other site controlled by the attacker. Tis could be achieved with social
engineering, for example. Alternatively, the attacker can hijack any other plaintext
HTTP web site. Because the majority of web sites are still not encrypted, this con-
straint was also easy to satisfy.
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4. Te server must use CBC suites by default and have compression disabled. Anecdotal-
ly, a large number of servers t these criteria.

To conclude, at the time it was announced, the BEAST attack was relatively easy to carry out
by a determined attacker despite the long list of constraints.
Today the situation is dierent, mostly because all modern browsers (as well as Java, which
was used for the exploit) have implemented BEAST countermeasures. Furthermore, there
has been a clampdown on the insecurity of in-browser Java, making it much more dicult
to run applets. Tat’s assuming your user base has been updating their soware; some users
running older soware might still be vulnerable.
Te ecosystem is slowly moving towards supporting TLS 1.2 throughout, although it’s going
to be some time before that happens. Still, the pool of users and servers susceptible to the
BEAST attack is continuously getting smaller, and the risk is fairly low by now.

Compression Side Channel Attacks 
Compression side channel attacks are a special case of message length side channel attacks.
Let’s assume that you can observe someone’s encrypted communication while they are using
their online banking application. To obtain the current balance of a savings account, the ap-
plication might invoke a particular API call. Just seeing the size of that one response might
be sucient to approximate the value: the balance of a particularly wealthy victim will have
many digits, making the response longer.
It turns out that when you add compression to the mix, and the attacker is able to submit his
own data for compression, a compression oracle is created. In this section, I discuss a series
of compression-related attacks on TLS, including CRIME, TIME, and BREACH.

How the Compression Oracle Works
Compression is very interesting in this context because it changes the size of data, and the
dierences depend on the nature of the data itself. If all you can do is observe compression
ratios, your attacks might not amount to much; there is only so much you can deduce from
knowing if something compresses well. At best, you might be able to distinguish one type of
trac from another. For example, text usually compresses very well, but images not so
much.
Tis attack gets far more interesting if you are able to submit your own data for compression
and mix it with some other secret data (that you don’t know but want to recover) while ob-
serving the results. In this case, your data inuences the compression process; by varying
your data you discover things about what else is compressed at the same time.
To understand why this attack is so powerful, we need to look at how compression works. In
essence, all lossless compression algorithms work by eliminating redundancy. If a series of
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characters is repeated two or more times in input, the output will contain only one copy of
such data along with instructions for where to place copies. For example, consider how a
very popular LZ77 algorithm would compress a piece of text (see the following gure).

Figure 7.4. Compression reduces data size by identifying and removing redundancies.

If you can’t forgive yourself,

how can you forgive someone else?

An oracle is said to exist if you can have your arbitrary data (guesses) compressed in the
same context as some secret. By observing the size of the compressed output, you are able to
tell if your guesses are correct. How? If you guess correctly, compression kicks in and re-
duces the size of the output, and you know that you are right. If you submit random con-
tent, there’s no compression, and the size increases.

Figure 7.5. Illustration of a compression oracle: one correct and one incorrect guess

GET /JSESSIONID=X HTTP/1.1
Host: www.example.com
Cookie: JSESSIONID=B3DF4B07AE33CA

Incorrect guess:
73 bytes compressed

Correct guess:
72 bytes compressed

GET /JSESSIONID=B HTTP/1.1
Host: www.example.com
Cookie: JSESSIONID=B3DF4B07AE33CA

As you shall see in the following sections, there are many obstacles to deal with in order to
make the attack practical, but conceptually it really is that simple.
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Is Information Leakage a Flaw in the TLS protocol?
It might seem that information leakage is a aw in the SSL and TLS protocols, but it’s actually a
documented limitation. Here’s the relevant part of TLS 1.2 (Section 6):

Any protocol designed for use over TLS must be carefully designed to deal with
all possible attacks against it. As a practical matter, this means that the protocol
designer must be aware of what security properties TLS does and does not pro-
vide and cannot safely rely on the latter.
Note in particular that type and length of a record are not protected by encryp-
tion. If this information is itself sensitive, application designers may wish to
take steps (padding, cover trac) to minimize information leakage.

Some might say that the real aw is the fact that browsers allow adversaries unprecedented lev-
el of control of their victims’ browsers—and that might be true. Adaptive plaintext attacks are a
big deal in cryptography, but here we have TLS, designed with one set of capabilities in mind
and used in scenarios that were outside the scope of the original design.
All browser-based attacks against encryption rely on the fact that the attacker can submit re-
quests in the context of a genuine user session, which results in attacker-supplied data trans-
ported in the same request as the victim’s condential data. Few will argue that this is natural.
If we accept that a random web page should be allowed to submit requests to arbitrary web
sites, we should at least ensure that they do so from their own separate environment (i.e., a
sandbox).
Sadly, the Web has evolved in such a way that everything is entangled, which means that en-
forcing strict separation in this way would break far too many web sites. In time, the solution
will probably come in the form of elective separation, which will allow a site to declare its own
security space.
As for length hiding, even if such a feature is ever implemented, there is always the question of
its eectiveness. It most certainly won’t work in all situations. Some highly secure systems ad-
dress this problem by always communicating at a constant rate, using the full bandwidth pro-
vided by the underlying channel. However, that approach is prohibitively expensive for most
deployments.

History of Attacks
Compression as a side channel mechanism was rst introduced by John Kelsey. In his 2002
paper,30 he presented a series of attack scenarios, each varying in eectiveness. Among
them was the extraction of fragments of sensitive data, the attack that was later going to be
improved in the browser context. Te world was a much dierent place in 2002, and the
best attack was dicult to utilize in real life. Hence, the author concluded that:

30 Compression and Information Leakage of Plaintext (John Kelsey, FSE, 2002)

History of Attacks 209



Te string-extraction attacks are not likely to be practical against many sys-
tems, since they require such a specialized kind of partial chosen-plaintext ac-
cess.

Compression side channel attacks were again in the news a couple of years later, although
not against TLS. In 2007, a team of researchers rst developed algorithms to identify the
spoken language of an encrypted internet call31 and later managed to identify spoken En-
glish phrases with an average accuracy of 50%, rising to 90% for some phrases.32

In the following years, browsers continued to evolve, making adaptive chosen-plaintext at-
tacks not only possible but also practical against virtually everyone. In 2011, the BEAST at-
tack showed how the attacker can take control of a victim’s browser in order to execute a
blended attack against encryption.
In August 2011, privacy issues stemming from compression side channel attacks were dis-
cussed on the SPDY33 development mailing list.34 In particular, this quote from Adam Lan-
gley describes how a compression side channel attack might work against browsers:

Te attacker is running script in evil.com. Concurrently, the same client has a
compressed connection open to victim.com and is logged in, with a secret
cookie. evil.com can induce requests to victim.com by, say, adding <img> tags
with a src pointing to victim.com. [...] Te attacker can watch the wire and
measure the size of the requests that are sent. By altering the URL, the attack-
er could attempt to minimise the request size: i.e. when the URL matches the
cookie.
I’ve just tried this with an HTTP request for fun and it’s pretty easy to get the
rst 5 characters in a base64 encoded cookie. [...] Tat’s a practical attack
and would make a great paper if someone has the time.

CRIME
A practical compression side channel exploit came in 2012, under the name CRIME, devel-
oped by Duong and Rizzo, the authors behind BEAST. CRIME exploits the TLS compres-
sion side channel by using JavaScript malware to extract client cookies in an active MITM
attack. It was ocially presented at the Ekoparty conference in September 2012.35 Uno-

31 Language identication of encrypted VoIP trac: Alejandra y Roberto or Alice and Bob? (Wright et al., USENIX Security, 2007)
32 Uncovering Spoken Phrases in Encrypted Voice over IP Conversations (Wright et al., ACM Transactions on Information and System Security, Vol.

13, No. 4, Article 35, December 2010)
33 SPDY is a relatively new protocol designed by Google to speed up web browsing.
34 Compression contexts and privacy considerations (Adam Langley, 11 August 2011)
35 The CRIME attack (Duong and Rizzo, Ekoparty Security Conference 9° edición, 2012)
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cially, early press briengs36 leaked enough information to enable experts to correctly guess
what the attack was about.37

A proof of concept, the collaboration of several speculators, was published.38 With the cat
out of the bag, further information and a video demonstration were revealed days before the
conference.39 Te CRIME authors never released their code, but they claimed that their ex-
ploit was able to uncover one cookie character using only six requests.
Te mechanics of the CRIME attack are the same as for BEAST: the attacker must instru-
ment the victim’s browser to submit many requests to the target server, while observing net-
work packets as they travel on the wire. Each request is a guess, exactly as discussed in the
earlier compression oracle section. Unlike BEAST, CRIME requires less control over request
content and timing, making exploitation much easier and using only native browser func-
tionality.

TIME
Aer CRIME, we didn’t have to wait long for the attacks to improve. In March 2013, Tal
Be’ery presented TIME at Black Hat Europe 2013.40 A signicant constraint on CRIME is
the fact that the attacker must have access to the local network in order to observe the net-
work packets. Although TIME still uses compression as its principal weapon, the improved
attack extends the JavaScript component to use I/O timing dierences to measure the size of
compressed records. Te approach is straightforward, with <img> tags used to initiate re-
quests from the victim’s browser and onLoad and onReadyStateChange event handlers to take
measurements. Te entire attack takes place in the browser itself.
With this change, the attack can now be executed against anyone on the Internet, provided
you can get them to run your JavaScript malware. In practice, this will require some form of
social engineering.
One problem still remains, though. CRIME works by observing one-byte dierences in
compressed output; is it really possible to use timing to detect dierences that small? As it
turns out, it’s possible, by playing tricks at the network layer.
In TCP, great care is taken not to overwhelm the other party by sending too much data. Te
problem is this: there’s usually a signicant distance between two sides engaged in a conver-
sation. For example, it takes about 45 ms for a packet to travel between London and New
York. If you send only one packet at a time and wait for a conrmation, you can send only
one packet of data every 90 ms. To speed up the communication, TCP allows both sides to

36 New Attack Uses SSL/TLS Information Leak to Hijack HTTPS Sessions (Threatpost, 5 September 2012)
37 CRIME - How to beat the BEAST successor? (Thomas Pornin, 8 September 2012)
38 It’s not a crime to build a CRIME (Krzysztof Kotowicz, 11 September 2012)
39 Crack in Internet’s foundation of trust allows HTTPS session hijacking (Ars Technica, 13 September 2012)
40 A Perfect CRIME? TIME Will Tell (Tal Be’ery and Amichai Shulman, March 2013)
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send many packets at once. However, to ensure that the other party is not overwhelmed,
they have to stay within a prescribed limit, or the congestion window. Te congestion win-
dow starts small and grows over time, an approach otherwise known as slow start.
Initial congestion window sizes vary. Older TCP stacks will use smaller windows of 5 to 6
KB, but there was recently a push to increase this to about 15 KB. Te attack works equally
well for all sizes. In the following example, I assume the client uses an initial congestion
window of 5 KB (three packets).

Figure 7.6. Using the TCP initial congestion window size as a timing oracle

Client Server

Client sends the first part of 
the request, up  to the size of 
the initial congestion window

Client waits for 
acknowledgement 

Client sends the 
reminder of the request
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SYN ACK

Data

Data
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2
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At the beginning of a connection, if the data you want to send ts into the congestion win-
dow, then you can send it all at once. But if you have too much data you will rst have to
send as much as you can, then wait for the server to conrm receipt, then send what you
have remaining. Tat wait will add one round-trip time (RTT) to the operation. For the Lon-
don–New York connection, that comes to about 90 ms of extra time. To use this behavior as
a timing oracle, you increase the size of the data until you completely ll the initial conges-
tion window. If you add just one more byte, the request will take one RTT longer, which is a
delay you can measure from JavaScript. At this point you can start playing with compres-
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sion; if you manipulate the data so that compression reduces the size by one byte, the re-
quest will take one RTT less. From here, exploitation continues as discussed in earlier sec-
tions.
Attacks against HTTP requests are easier because you have direct control over what is sent.
Tey allow you to extract secrets that browsers have, for example, session cookies. If you
want to extract secrets transported in HTTP responses, things get more complicated:

• Response compression takes place on the server, which means that you need to observe
the server’s initial congestion window, not the client’s (as with HTTP requests).

• You must be able to inject your data into the page that contains the secret you wish to
contain. In practice, this means that the application must mirror some data you send to
it.

• When timing responses, you must take into account that both the client’s and the serv-
er’s windows are likely to overow, making it more dicult to know what caused a de-
lay.

On the other hand, unlike TLS compression, HTTP-level response compression is very
common. Compression side channel attacks work equally well against both.
As far as we know, TIME has not progressed beyond a proof of concept. In practice, there
might be many obstacles to overcome in order to make the attack work in real life. For ex-
ample, the authors mention that due to network jitter they need to repeat the same request
several times to reliably detect boundaries. Furthermore, the congestion window size grows
over the time of the connection, which means that you need to take your measurements
with a fresh connection every time. However, most servers use persistent connections for
performance reasons, and you don’t have control over this from JavaScript. As a result, the
attack might need to operate slowly, using one connection, then waiting for the browser to
close it, then trying again. Overall, it might take quite a while for successful extraction of,
say, a 16-character secret.

BREACH
Another compression side channel attack focused on HTTP responses, called BREACH, fol-
lowed in August 2013.41 Te authors focused on demonstrating that CRIME works equally
well on HTTP response compression. Tey used the same attack position—that of an active
man in the middle—and developed a working exploit. Teir main contribution is in the
analysis and the practical demonstration. For example, they used their exploit to attack Out-
look Web Access (OWA), showing that they can retrieve CSRF tokens with 95% reliability
and oen in under 30 seconds.42

41 BREACH: Reviving the CRIME Attack (Gluck et al., August 2013)
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Te BREACH authors put together a web site to publicize their work,43 and the proof-of-
concept source code is available at GitHub.44

Attack Details
BREACH is conceptually identical to CRIME, requiring that the attacker has access to the
victim’s network trac and ability to run JavaScript code in the victim’s browser. Te attack
surface is dierent. HTTP response compression applies only to response bodies, which
means that no secrets can be extracted from the response headers. However, response bod-
ies oen have interesting sensitive data. Te authors focused on extracting CSRF tokens
(their example is shown ahead), which would allow them to impersonate the victim in the
attacked web application.
To bootstrap the attack, an injection point into the response body is needed. In OWA, the id
parameter is reected in output. Tus, if the attacker submits the following request with the
attack payload:

GET /owa/?ae=Item&t=IPM.Note&a=New&id=INJECTED-VALUE

Te response body will contain the injected value:

<span id=requestUrl>https://malbot.net:443/owa/forms/
basic/BasicEditMessage.aspx?ae=Item&amp;t=IPM.Note&
amp;a=New&amp;id=INJECTED-VALUE</span>

Tis is sucient to begin to extract any secret placed elsewhere in the body, for example, a
CSRF token:

<td nowrap id="tdErrLgf"><a href="logoff.owa?
canary=d634cda866f14c73ac135ae858c0d894">Log
Off</a></td>

To establish the baseline, the attacker submits canary= as the rst payload. Because of the
duplication, the compressed response body will be smaller, which can be detected on the
network. From here, the attack continues as in CRIME.
Although the attack seems simple at rst, in practice there are further issues that need to be
dealt with:
Human encoding

Most of the Internet runs on DEFLATE compression, which is actually a combination
of two algorithms: LZ77 and Human encoding. Te former is what we use for the

42 The authors presented BREACH at Black Hat USA 2013, in a session titled “SSL, Gone in 30 seconds.”
43 BREACH web site (retrieved 16 July 2014)
44 BREACH repository (Neal Harris, retrieved 16 July 2014)
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attacks, but the latter actually makes us work harder. Human encoding is a variable-
length encoding that exploits the fact that, usually, some characters appear more of-
ten than others. Normally, we always use one byte to represent one character. To save
space, we can represent more frequent characters with shorter symbols (fewer bits
than in a byte) and less frequent characters with longer symbols (more bits than in a
byte).
Human encoding can skew the resulting lengths of both successful and unsuccessful
guesses. To deal with this problem, it’s necessary to double the number of requests,
using two for each guess.

Block ciphers
Te conceptual attack works great against encryption, but expects streaming ciphers,
for which the size of data is directly reected in ciphertext. When block ciphers are
used, ciphertext grows only one block at a time, for example, 16 bytes for 128-bit
AES. In such a case, further padding is needed to bring ciphertext to the edge of
growing by another block. For this, several requests might be needed. Once you de-
termine the size of the padding, you can make as many guesses as there are padding
bytes. For every new guess, you remove one byte of the padding.

Response content diversity
For the attacks that work against HTTP responses (TIME and BREACH), the “di-
verse” nature of markup formatting, coding practices, and encodings tends to make
the attacks more dicult. For example, the attacks require a known prex to boot-
strap the attack, but the secret values are sometimes prexed with characters that
cannot be injected (e.g., quotes). Or, there might be variations in response size (in
absence of attacks), which make guessing more dicult.

Te CRIME authors used an interesting technique variation when attacking TLS compres-
sion. TLS record sizes are limited to 16 KB (16,384 bytes), which also means that this is the
largest block on which compression can operate. Tis is interesting because the attacker is
able to fully control the rst 16 KB. It goes something like this:

1. For a GET request, the rst 5 bytes are always going to be the same: the request method
(GET) followed by a space and the rst character in the URL (/). If you then add 16,379
bytes of random data to the URL, you ll the entire TLS record. You can submit this
request and observe its compressed size.

2. You can now start reducing the amount of random data in the URL, one byte at a time,
allowing bytes from the request back in the block. Some of the bytes will be predictable
(e.g., HTTP/1.1, the protocol information that always follows the URL), but at some
point you will encounter the rst unknown byte.

3. Now you have a block of 16,383 bytes you know and one byte you don’t. You submit
that as a request. Ten, without making further requests, you build a list of candidates
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for the unknown byte, simulate the rst 16 KB as a request and compress it using the
same compression method, and compare the compressed size to that of the size of the
actual request. In the ideal case, there will be only one match, and it will disclose the
unknown byte.

Tis technique is quite neat, because it requires a smaller number of requests. On the other
hand, the compression library used by the attacker needs to produce the same output for the
same input. In practice, dierent compression settings and dierent library versions might
introduce variations.

Impact against TLS Compression and SPDY
In this section, I discuss the various prerequisites necessary for a successful exploitation of a
compression side channel attack against either TLS compression or SPDY. In both cases,
CRIME attacks header compression, which makes session cookies the best target.

Active MITM attack
CRIME requires access to the victim’s network trac. It’s a local attack, which can be
performed with little eort against someone on the same LAN or Wi-Fi network. Te
attack can be either passive or active, but the latter gives the attacker more exibility.

Client-side control
Te attacker must also be able to assert enough control over the victim’s browser to
submit arbitrary requests to the target web site. You could do this with JavaScript
malware, but it can be done much more simply with a series of <img> tags with spe-
cially craed source URLs.
Tis could be achieved with social engineering or, more likely, by injecting HTML
markup into any plaintext web site that the victim is interacting with at the time of
attack.

Vulnerable protocols
As the authors of CRIME themselves said, compression is everywhere. Tey detailed
attacks against TLS compression and the SPDY protocol. At the time of the an-
nouncement, I was able to use the SSL Pulse statistics and some of the other metrics
obtained via the SSL Labs web site to estimate support for compression on both the
client and server sides. For TLS compression, about 42% of the servers in the SSL
Pulse data set supported it. Only about 2% of the servers supported SPDY, but those
were some of the biggest sites (e.g., Google, Twitter, etc.).
Tat said, two sides are required to enable compression, and this is where the situa-
tion got better. Because TLS compression was never a high priority for browser ven-
dors,45 Chrome was the only browser that supported compression then. Firefox had
compression implemented, but to my knowledge the code never went into a produc-
tion release. Because both browser vendors had advance knowledge of the problem,
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they made sure that compression was disabled ahead of time. My measurements
(from observing the visits to the SSL Labs web site) showed only 7% client-side sup-
port for compression.
In response to CRIME, most vendors patched their products and libraries to disable
TLS compression altogether.

Preparation
Tis is not an attack that can be blindly executed against just any web site. For exam-
ple, to start the attack it’s necessary to use a known prex as a starting point. Because
these things dier from site to site, some amount of research is necessary, but it’s not
a lot of eort for the attack against TLS compression.

Outcome
In the best case, the attacker is able to obtain the password used for HTTP Basic Au-
thentication. In practice, this authentication method is not oen used, making ses-
sion cookies the next best thing. A successful attack results in the attacker obtaining
full control over the victim’s session and everything that comes with it.

Impact against HTTP Response Compression
Against HTTP compression, the impact of compression side channels is very dierent: (1)
the attack surface is much larger and there is little chance that it will be reduced and (2)
successful exploitation requires the attacker to do much more work upfront and their re-
ward is smaller.
Te prerequisites for attacks against HTTP compressions are the same as in the previous
case; the attacker must be able to take control over the network communication and have
limited control over the victim’s browser. But there are dierences when it comes to other
factors:

Attack surface
HTTP compression is also vulnerable to compression side attacks. (Te CRIME au-
thors did not spend much time on it, but others have since worked in this area.) Un-
like TLS compression, HTTP compression exposes a huge attack surface and cannot
be simply turned o. Many sites depend on it so heavily that they might not be able
to operate (cost eciently) without it.
Tere is also an additional requirement that the attacker is able to inject arbitrary text
into the HTTP response body, at the desired attack point. Tat’s usually possible to
achieve.

45 Sites that care about performance will already compress HTTP responses, which is where the bulk of the bandwidth is. Trying to compress

already compressed trac increases CPU and RAM consumption but yields little improvement. It might be possible to move compression entirely

to the TLS layer, but then it would try to compress images, which are not likely to compress well.
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Preparation
On the other side, much more work is needed to exploit HTTP compression. In fact,
you could say that an intimate understanding of the target web site is required. Ses-
sion cookies are generally not available in HTTP response bodies, which means that
the attackers must look for some other secret information. And that information
might be much more dicult to nd.

Outcome
Te exact outcome will depend on the nature of the secret information. Any secret
information can be extracted, provided the attacker knows it’s there. For most appli-
cations, the most interesting target will be the CSRF protection tokens. If one such
token is uncovered, the attacker might be able to carry out an arbitrary command on
the target web site under the identity of the victim. Tere are some sites that use their
session tokens for CSRF protection. In such cases, the outcome will be session hijack-
ing.

Mitigation of Attacks against TLS and SPDY
TLS compression is dead, and CRIME killed it. Before the disclosure a good chunk of the
user base—all Chrome users—supported compression; it’s dicult to say what Chrome’s
market share was in September 2012, but let’s say it was about 30%.46 Tanks to its autoup-
date feature, however, once Chrome disabled compression the support quickly disappeared.
OpenSSL had support for compression, so it’s possible to nd old installations and user
agents that still support it, but they are not likely to be attacked because they are not
browsers (i.e., malware injection is not likely).
Still, it is prudent to disable compression on the server side. In most cases, just patching
your servers should work. At the time of writing (July 2014), about 10% of the servers from
the SSL Pulse data set still support compression. Given that Microso’s TLS stack never
supported compression and that Nginx disabled it a long time ago, most of those are proba-
bly older versions of Apache.
It’s unlikely that compression will be making a comeback at the TLS layer. As I mentioned
before, people didn’t really use it much. (And if they did it was probably because it was en-
abled by default.) Even without compression as an oracle, the fact that data length is re-
vealed in TLS is not a positive feature. Tere are currently eorts to implement a length-
hiding extension.47

As for SPDY, header compression had been disabled in both Chrome and Firefox. Now that
the problem is known, we can assume that the future versions of this protocol will not be
vulnerable.

46 Usage share of web browsers (Wikipedia, retrieved 20 February 2014)
47 Length Hiding Padding for the Transport Layer Security Protocol (Pironti et al., September 2013)
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Mitigation of Attacks against HTTP Compression
Addressing the compression side channel inherent in HTTP compression is a much more
dicult problem, even if the attack is not exactly easy to execute. Te diculty is twofold:
(1) you probably can’t aord to disable compression and (2) mitigation requires application
changes, which are cost-prohibitive. Still, there are some hacks that just might work well
enough. Here’s a quick overview of the possibilities:

Request rate control
Both the authors of TIME and BREACH have commented on sometimes getting
caught due to the excessive number of requests they had to submit. (Te BREACH
authors cited thousands of requests against OWA.) Enforcing a reasonable rate of re-
quests for user sessions could detect similar attacks or, in the worst case, slow down
the attacker signicantly. Tis mitigation could be implemented at a web server, load-
balancer, or web application rewall (WAF) layer, which means that it does not need
to be very costly.

Length hiding
One possible defense measure is to hide the real response length. For example, we
could deploy a response body lter to analyze HTML markup and inject random
padding. Whitespace is largely ignored in HTML, yet variations in response size
would make the attackers’ job more dicult. According to the BREACH authors,
random padding can be defeated using statistical analysis at the cost of a signicant
increase in the number of requests.
Te best aspect of this approach is that it can be applied at the web server level, with
no changes to deployed applications. For example, Paul Querna proposed to use vari-
ations in chunked HTTP encoding at a web server level for length hiding.48 Tis ap-
proach does not change the markup at all, yet it changes the size of the packets on the
wire.

Token masking
Treats against CRSF tokens can be mitigated by the use of masking, ensuring that
the characters that appear in HTML markup are never the same. Here’s how: (1) for
every byte in the token, generate one random byte; (2) XOR the token byte with the
random byte; and (3) include all the random bytes in the output. Tis process is re-
versible; by repeating the XOR operations on the server, you recover the original to-
ken value. Tis measure is ideally suited for implementation at framework level.

Partial compression disabling
When I rst thought about attacks against HTTP response bodies, my thoughts were
to focus on the fact that the Referer header will never contain the name of the target

48 breach attack (Paul Querna, 6 August 2013)
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web site. (If the attacker can do that, then she already has enough access to the site via
XSS.) Initially, I proposed to drop cookies on such requests. Without the cookies,
there is no user session, and no attack surface. Someone from the community had a
better idea: for requests with the incorrect referrer information, simply disable re-
sponse compression.49 Tere would be a small performance penalty but only for the
small number of users who don’t supply any referrer information. More importantly,
there wouldn’t be any breakage, unlike with the cookie approach.

Lucky 13
In February 2013, AlFardan and Paterson released a paper detailing a variety of attacks that
can be used to recover small portions of plaintext provided that a CBC suite is used.50 Teir
work is commonly known as the Lucky 13 attack. As with BEAST and CRIME, in the web
context small portions of plaintext virtually always refer to browser cookies or HTTP Basic
Authentication. Outside HTTP, any protocol that uses password authentication is probably
vulnerable.
Te root cause of the problem is in the fact that the padding, which is used in the CBC
mode, is not protected by the integrity validation mechanisms of TLS. Tis allows the at-
tacker to modify the padding in transit and observe how the server behaves. If the attacker
is able to detect the server reacting to the modied padding, information leaks out and leads
to plaintext discovery.
Tis is one of the best attacks against TLS we saw in recent years. Using JavaScript malware
injected into a victim’s browser, the attack needs about 8,192 HTTP requests to discover one
byte of plaintext (e.g., from a cookie or password).

What Is a Padding Oracle?
Tere is a special class of attack that can be mounted against the receiving party if the
padding can be manipulated. Tis might be possible if the encryption scheme does not au-
thenticate ciphertext; for example, TLS doesn’t in CBC mode. Te attacker can’t manipulate
the padding directly, because it’s encrypted. But she can make arbitrary changes to the ci-
phertext, where she thinks the padding might be. An oracle is said to exist if the attacker is
able to tell which manipulations result in a correct padding aer decryption and which do
not.
But how do you get from there to plaintext recovery? At the end of the day, encryption is all
about hiding (masking) plaintext using some secret seemingly random data. If the attacker

49 BREACH mitigation (manu, 14 October 2013)
50 Lucky Thirteen: Breaking the TLS and DTLS Record Protocols (AlFardan and Paterson, 4 February 2013)
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can reveal the mask, she can eectively reverse the encryption process and reveal the plain-
text, too.
Going back to the padding oracle, every time the attacker submits a guess that results in
correct padding aer decryption she discovers one byte of the mask that is used for decryp-
tion. She can now use that byte to decrypt one byte of plaintext. From here, she can contin-
ue to recover the next byte, and so on, until the entire plaintext is revealed.
Te key to successful padding oracle exploitation is to (1) submit a lot of guesses and (2)
nd a way to determine if a guess was successful. Some badly designed protocols might fail
to hide padding errors. More likely, the attacker will need to deduce the outcome by observ-
ing server behavior. For example, timing oracles observe the response latency, watching for
timing dierences when padding is correct and when it is not.
If you care to learn about the details behind padding oracle attacks, you can head to one of
the tutorials available online51 or review an online simulation that shows the process in de-
tail.52

Padding oracle issues are best avoided by verifying the integrity of data before any of it is
processed. Such checks prevent ciphertext manipulation and preempt all padding oracle at-
tacks.

Attacks against TLS
Te padding oracle attack (against TLS and other protocols) was rst identied by Serge
Vaudenay in 2001 (formally published in 2002).53 TLS 1.0 uses the decryption_failed alert
for padding errors and bad_record_mac for MAC failures. Tis design, although insecure,
was not practically exploitable because alerts are encrypted and the network attacker can’t
dierentiate between the two types of failure.
In 2003, Canvel et al.54 improved the attack to use a timing padding oracle and demonstrat-
ed a successful attack against OpenSSL. Tey exploited the fact that OpenSSL skipped the
MAC calculation and responded slightly faster when the padding was incorrect. Te re-
searcher’s proof-of-concept attack was against an IMAP server; situated close to the target,
they could obtain the IMAP password in about one hour.
Padding oracles are exploited by repeatedly making guesses about which combinations of
bytes might decrypt to valid padding. Te attacker starts with some intercepted ciphertext,
modies it, and submits it to the server. Most guesses will naturally be incorrect. In TLS,
every failed guess terminates the entire TLS session, which means that the same encrypted

51 Automated Padding Oracle Attacks with PadBuster (Brian Holyeld, 14 September 2010)
52 Padding oracle attack simulation (Erlend Oftedal, retrieved 28 February 2014)
53 Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC, WTLS... (Serge Vaudenay, pages 534–546, EUROCRYPT 2002)
54 Password Interception in a SSL/TLS Channel (Canvel et al., CRYPTO 2003)
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block cannot be modied and attempted again. For her next guess, the attacker needs to in-
tercept another valid encrypted block. Tat is why Canvel et al. attacked IMAP; automated
services that automatically retry aer failure are the ideal case for this attack.
In order to improve the security of CBC, OpenSSL (and other TLS implementations) modi-
ed its code to minimize the information leakage.55 TLS 1.1 deprecated the
decryption_failed alert and added the following warning (emphasis mine):

Canvel et al. [CBCTIME] have demonstrated a timing attack on CBC
padding based on the time required to compute the MAC. In order to defend
against this attack, implementations MUST ensure that record processing time
is essentially the same whether or not the padding is correct. In general, the
best way to do this is to compute the MAC even if the padding is incorrect,
and only then reject the packet. For instance, if the pad appears to be incor-
rect, the implementation might assume a zero-length pad and then compute
the MAC. Tis leaves a small timing channel, since MAC performance de-
pends to some extent on the size of the data fragment, but it is not believed
to be large enough to be exploitable, due to the large block size of existing
MACs and the small size of the timing signal.

In February 2013, AlFardan and Paterson demonstrated that the remaining side channel is,
in fact, exploitable, using new techniques to realize Vaudenay’s padding oracle. Tey named
their new attack Lucky 13 and showed that CBC—as implemented in TLS and DTLS—is
too fragile and that it should have been abandoned a long time ago. Tey also showed that
small problems, le unattended, can escalate again if and when the technologies evolve in
unpredictable ways.

Impact
For the padding oracle to be exploited, the adversary must be able to mount an active attack,
which means that he must be able to intercept and modify encrypted trac. Additionally,
because the timing dierences are subtle the attacker must be very close to the target server
in order to detect them. Te researchers performed their experiments when the attacker and
the server were both on the same local network. Remote attacks do not appear to be feasible
for TLS, although they are for DTLS, when used with timing amplication techniques de-
veloped by AlFardan and Paterson in 2012.56

Attacks against automated systems
Te classic full plaintext recovery padding oracle attack is carried out against auto-
mated systems, which are likely to communicate with the server oen and have built-

55 Security of CBC Ciphersuites in SSL/TLS: Problems and Countermeasures (Moeller et al., last updated on 20 May 2004)
56 Plaintext-Recovery Attacks Against Datagram TLS (AlFardan and Paterson, NDSS, February 2012)
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in resiliency mechanisms that makes them try again on failed connections. Because
the attack is spanning many connections, it works only with protocols that always
place sensitive data (e.g., passwords) in the same location. IMAP is a good candidate.
Tis attack requires roughly 8.4 million connections to recover 16 bytes of data. Be-
cause each incorrect guess results in a TLS error and because TLS is designed to de-
stroy sessions in such situations, every new connection is forced to use a full hand-
shake with the server. As an eect, this attack is slow. Still, it’s not far from being fea-
sible under certain circumstances if the attacker has months of time available and is
able to inuence the automated process to open connections at a faster rate.

Attacks when some of the plaintext is known
A partial plaintext recovery attack, which can be performed if one byte at one of the
last two positions in a block is known, allows each of the remaining bytes to be recov-
ered with roughly 65,536 attempts.

Attacks against browsers using JavaScript malware
AlFardan and Paterson’s best attack uses JavaScript malware against the victim’s
browser, targeting HTTP cookies. Because the malware can inuence the position of
the cookie in a request, it is possible to arrange the encryption blocks in such a way
that only one byte of the cookie is unknown. Because of the limited character range
used by cookies, the researchers estimate that only 8,192 requests are needed to un-
cover one byte of plaintext. Te best aspect of this attack is the fact that the malware
is submitting all the requests and that, even though they all fail, all the connection
failures are invisible to the victim. Furthermore, no special plug-ins or cross-origin
privileges are required.

Mitigation
AlFardan and Paterson identied problems in a number of implementations, reported the
problems to the developers, and coordinated the disclosure so that all libraries were already
xed at the time of announcement. Tus, patching your libraries should be sucient for the
mitigation, at least in the rst instance.
Given the fragility of the CBC implementation in TLS, it’s best to avoid CBC suites whenev-
er possible. But this is easier said than done; in many cases there are no safe alternatives.
Streaming ciphers do not use padding, and so they are not vulnerable to this problem, but
the only streaming cipher in TLS is RC4; it suers from other problems (described in the
next section) and should not be used. Other streaming ciphers will be added to TLS, but
that will take time.57 Tis leaves us only with authenticated GCM suites, which require TLS
1.2. As of September 2014, there is a TLS protocol extension that changes how CBC suites

57 ChaCha20 and Poly1305 based Cipher Suites for TLS (Langley and Chang, November 2013)
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work to authenticate ciphertext instead of plaintext,58 but we have to wait to see if it will be
supported widely enough to be useful.

RC4 Weaknesses
RC4, designed by Ron Rivest in 1987, is one of the oldest ciphers still in use and, despite all
its many aws, still one of the most popular. Its popularity comes from the fact that it’s been
around for a very long time but also because it’s simple to implement and runs very fast in
soware and hardware.
Today, we know that RC4 is broken, but attacks have not yet suciently improved to be-
come practical. For this reason, and also for the fact that there are environments in which
alternatives are even less desirable, RC4 is still being used. (Of course, a much bigger reason
is inertia and the fact that most people don’t know that they need to abandon RC4.)
If possible, it’s best to avoid RC4 completely. For example, the TLS 1.2 environment oers
safe alternatives, which means that RC4 should not be used. In practice, however, you might
have good reasons to keep it around, as I will discuss in this section.

Key Scheduling Weaknesses
For a very long time, the biggest known problem with RC4 was the weakness in the key
scheduling algorithm, published in a paper by Fluhrer, Mantin, and Shamir in 2001.59 Te
authors discovered that there are large classes of keys that have a weakness where a small
part of the key determines a large number of initial outputs. In practice, this means that if
even a part of a key is reused over a period of time the attacker could (1) uncover parts of
the keystream (e.g., from known plaintext at certain locations) and then (2) uncover un-
known plaintext bytes at those positions in all other streams. Tis discovery was used to
break the WEP protocol.60 Te initial attack implemented against WEP required 10 million
message for the key recovery. Te technique was later improved to require only under
100,000 messages.
TLS is not vulnerable to this problem, because every connection uses a substantially dier-
ent key. Tus, RC4 remained in wide use, because the known issues didn’t apply to the way
it was used in TLS.61 Despite its known aws, RC4 remained the most popular cipher used
with TLS. My 2010 large-scale survey of SSL usage found that RC4 was the preferred ci-
pher62 and supported by about 98% of surveyed servers.63 People who understood the key

58 RFC 7366: Encrypt-then-MAC for TLS and DTLS (Peter Gutmann, September 2014)
59 Weaknesses in the Key Scheduling Algorithm of RC4 (Fluhrer, Mantin, and Shamir, 2001)
60 WEP didn’t quite reuse its keys but derived new keys from a master key using concatenation, a method that resulted in the session keys that

are similar to the master key. TLS, for example, uses hashing, which means that connection keys cannot be traced back to the master key.
61 RSA Security Response to Weaknesses in Key Scheduling Algorithm of RC4 (RSA Laboratories Technical Note, 1 September 2001)
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scheduling weakness disliked RC4 because it was easy to misuse and, as a result, recom-
mended against it for new systems.64

When the BEAST attack was announced in 2011, it instantly made all block cipher suites
unsafe. (Even though BEAST works only against TLS 1.0 and earlier protocol versions, sup-
port for TLS 1.1 or better was nonexistent at the time.) Because RC4—a streaming cipher—
is not vulnerable to BEAST, it suddenly became the only secure algorithm to use in TLS. In
March 2013, when new devastating aws in RC4 were announced, the ICSI Certicate No-
tary project showed RC4 usage at about 50% of all trac. At the time of writing, in July
2014, the RC4 market share is about 26%.65

Early Single-Byte Biases
Encryption biases were another reason cryptographers were worried about RC4. As early as
2001, it was known that some values appear in the keystream more oen than others.66 In
particular, the second keystream byte was known to be biased toward zero with a probabili-
ty of 1/128 (twice as much as the expected 1/256).
To understand how biases can lead to the compromise of plaintext, we need to go back to
how RC4 works. Tis cipher operates in a streaming fashion; aer the initial setup phase, it
produces an endless stream of data. Tis data, which was supposed to be eectively random
looking from the outside, is then mixed with the plaintext, using a XOR operation against
one byte at a time. Te XOR operation, when used with a suciently random data stream,
changes plaintext into something that’s eectively gibberish for everyone except those who
know the RC4 key.
When we say that a bias exists, that means that some values appear more oen than others.
Te worst case is the already mentioned bias toward zero. Why? Because a value XORed
with a zero remains unchanged. Tus, because we know that the second byte of every RC4
data stream leans toward zero we also know that the second byte of encrypted output will
lean to be the same as the original text!
To exploit this problem you need to obtain the same text encrypted with many dierent en-
cryption keys. Against TLS, this means attacking many connections.67 Ten you look at all
the bytes at position 2; the value that appears most oen is most likely to be the same as in

62 Anecdotally, only about a half of TLS servers on the Internet enforce suite preference. The other half uses the rst supported suite from the list

submitted by browsers.
63 Internet SSL Survey 2010 is here! (Ivan Ristić, 29 July 2010)
64 What’s the deal with RC4? (Matthew Green, 15 December 2011)
65 The ICSI Certicate Notary (International Computer Science Institute, retrieved 16 July 2014)
66 A Practical Attack on Broadcast RC4 (Mantin and Shamir, 2011)
67 In cryptography, this is known as a multisession attack. The name might be confusing in the context of TLS, because a TLS session is a set of

cryptographic parameters that are used across multiple connections via the session reuse mechanism. Even with session reuse, TLS generates

new encryption keys for every connection.
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plaintext. Some amount of guessing is involved, but, the more dierent encryptions you ob-
tain, the higher the chances that you will guess correctly.

Figure 7.7. The bias in the second byte of the RC4 keystream [Source: AlFardan et al., 2013]

What can be achieved using these individual biases varies and depends on protocol design.
Te rst requirement is that useful data actually exists at the given location. For example, in
TLS the rst 36 bytes are most commonly used by the Finished protocol message that
changes with every connection and has no long-term value.68 For TLS, the second-byte bias
is not going to be useful.
Te second requirement is to get the same application data in the same location every time
across a great number of connections. For some protocols, this is not a problem. In HTTP,
for example, cookies and passwords are in the same place on every request.

Biases across the First 256 Bytes
In March 2013, AlFardan et al. published a paper describing newly discovered weaknesses
in RC4 and two strong attacks against its use in TLS.69

68 Some protocol extensions add additional messages that are also encrypted. For example, this is the case with the Next Protocol Negotiation

(NPN) extension, which is used to negotiate SPDY. Unlike the Finished message, whose contents are effectively random, those other messages

could be attacked using the RC4 biases.
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One of the attacks was based on the fact that RC4 biases were not limited to a few bytes here
and there. By producing and analyzing keystreams of 244 dierent RC4 keys, the researchers
uncovered multiple biases at every one of the rst 256 positions. Tey further improved the
recovery algorithms to deal with multiple biases at individual positions (e.g., a certain byte
is more likely to have values 10 and 23, with all other values equally likely). Te resulting
attack requires 232 data samples to recover all 256 bytes with a success rate close to 100%.
With optimization that can be applied when the attacked data uses a reduced character set
(e.g., passwords and HTTP cookies), the number of data samples can be reduced to about
228. Tis is a far cry from the 2128 bits of security promised by RC4.

Note
How is it possible that the full scope of the bias issues remained undiscovered for
so long aer so many early warning signs? One theory I heard was that most cryp-
tographers thought that RC4 had already been demonstrated to be insecure and
that no further work was needed. In fact, many cryptographers were very surprised
to learn how popular it was. It’s likely that the lack of a strong attack against RC4 as
used in TLS contributed to its continued use.

Despite the seriousness of the attack, it remains largely theoretical due to many constraints:
Number of connections

In the best case, this attack requires 228 samples of encrypted plaintext. Put another
way, that’s 268,435,456 connections. Clearly, obtaining all those samples is going to
take a lot of time and potentially utilize a lot of network trac. Under controlled con-
ditions, with two sides designed to produce as many RC4 connections as possible,
and with session resumption enabled, the authors cite an experiment of about 16
hours using over 500 connections per second for a total of 225 connections.
In a scenario closer to real life, a purely passive attack would take much longer. For
example, assuming one connection per second (86,400 connections per day), it would
take over eight years to obtain all the required samples.
Te connection rate might be increased by controlling a victim’s browser (using in-
jected JavaScript), forcing it to submit many connections at the same time. Tis is the
same approach taken by the BEAST exploit. In this case, additional eort is needed to
defeat persistent connections (keep-alives) and prevent multiple requests over the
same connection (the attack can use only the rst 256 bytes of each connection). To
do this, the MITM could reset every connection at the TCP level aer the rst re-
sponse is observed. Because TLS is designed to throw away sessions that encounter
errors, in this scenario every connection would require a full handshake. Tat would
make the attack much slower.70

69 On the Security of RC4 in TLS and WPA (AlFardan et al., 13 March 2013)
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Positioning
Tis is a man-in-the-middle attack. Per the previous discussion, a pure passive attack
is very unlikely to produce results within a reasonable amount of time. An active at-
tack would require a combination of JavaScript malware and MITM ability.

Scope
Tis attack works only against the rst 256 bytes of plaintext. Because such a large
number of samples is required, it’s unlikely that the same meaningful secret data will
be present throughout. Tis restricts the attack to protocols that use password au-
thentication or, for HTTP, cookies. As it turns out, the HTTP use case is not very
likely because all major browsers place cookies past the 220-byte boundary. (If you
recall, the rst 36 bytes are of little interest because they are always used by the TLS
protocol.) HTTP Basic Authentication is vulnerable in Chrome, which places the
password at around the 100-byte mark. All other browsers place passwords out of the
reach of this attack.

Double-Byte Biases
In addition to having single-byte biases, RC4 was known to also have biases involving con-
secutive bytes. Tese do not exist at only one position in the encrypted stream but show up
continuously in the output at regular intervals.71

In their second attack, AlFardan et al. showed how to use the double-byte biases for plain-
text recovery. Te double-byte attack has an advantage in that it does not require samples to
be obtained using dierent RC4 keys. Tis makes the attack much more ecient, because
multiple samples can be obtained over the same connection. On the other hand, because it’s
still the case that the same plaintext needs to be encrypted over and over, the attacker must
have near-complete control over the trac. Passive attacks are not possible.
Te double-byte bias attack can recover 16 bytes of plaintext from 13 x 230 samples of en-
crypted plaintext. To collect one sample, a POST request of exactly 512 bytes is used. Assum-
ing a response of similar size, the attack would consume about 3.25 TB of trac in both
directions. Under controlled conditions, that many samples would take about 2,000 hours
(or 83 days) to collect at a speed of six million samples per hour.
Although much more practical than the rst attack, this version is equally unlikely to be
useful in practice.

70 In theory. In practice, applications tend to be very tolerant of connections that are not properly shutdown, a fact that can be exploited for

truncation attacks. You can nd out more about this topic in the section called “Truncation Attacks” in Chapter 6.
71 Statistical Analysis of the Alleged RC4 Keystream Generator (Fluhrer and McGrew, 2001)
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Improved Attacks against Passwords
In March 2015, Garman et al., released details of their improved attacks on RC4, designed
specically for the case when this cipher is used to protect passwords.72 According to the
authors, their attacks achieves good success rates with around 226 encryptions, compared to
the previous-best similar attacks that required 234 encryptions to retrieve the contents of a
HTTP session cookie.

Mitigation: RC4 versus BEAST, Lucky 13 and POODLE 
Te attacks against RC4 are serious and allow for plaintext recovery in controlled environ-
ments, but they are still not very practical for use against real systems. But given that the
safety margin of RC4 has become very small, the best approach is to stop using it as soon as
possible.
Te problem is that this might not be the best decision given that there are situations in
which a secure alternative is not available. Tere are two aspects to consider:

Interoperability
RC4 has long been one of the most popular ciphers, “guaranteed” to always be there.
As a result, there are some clients that do not support anything else. However,
chances are that there is only a very small number of them.73 If you have a truly di-
verse client base and you think that RC4-only clients might cause substantial break-
age, consider keeping RC4 around—but at the bottom of your list of prioritized
suites. Because most clients will negotiate something else, you will have reduced your
attack surface while minimizing disruption.

Security
If you disable RC4, then you might need to worry about using CBC suites in combi-
nation with TLS 1.0 or earlier protocol versions. In this case, the BEAST and POO-
DLE attack might apply. For one thing, your servers might still be at TLS 1.0. (If they
are, you should stop worrying about RC4 and upgrade your infrastructure to TLS 1.2
as soon as possible.) You also might not be able to disable SSL 3 just yet. If your
servers are up to date, your user base might consist of clients that are not. Some of
them might genuinely be vulnerable to the BEAST attack.
Tere is little real data from which to decide which attacks (BEAST and POODLE, or
RC4) are more likely. Tey’re al dicult to carry out. Te RC4 attack is possible with
any protocol version but requires a willing browser and a large amount of time and
network trac. Tere is no known defense against POODLE, although attacking SSL
3 does require some considerable eort. BEAST is dicult to exploit but can be done

72 Attacks Only Get Better: Password Recovery Attacks Against RC4 in TLS (Garman et al., March 2015)
73 The Web is World-Wide, or who still needs RC4? (John Graham-Cumming, 19 May 2014)
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quickly when everything is just right. Te biggest thing going against BEAST is that
the major platforms have been patched, and the number of vulnerable users is falling
all the time. Te real question is this: are there any better attacks against these aws
that might currently be unknown to us? Many are asking this question—especially
for RC4, which has always been excluded from the FIPS-approved algorithms. Could
it be that the weaknesses have always been known to the NSA? What other problems
do they know about?
Lucky 13 is also a concern. Even though the immediate dangers have been addressed
with patches, the CBC construction in TLS is inherently unsafe. On the positive side,
TLS 1.2 clients and servers tend to support authenticated GCM suites, which use nei-
ther RC4 nor CBC. Tey are currently the best way to avoid all known TLS cipher
suite weaknesses.

We can’t make decisions based on speculation and paranoia. Besides, there might not be any
one correct decision anyway. Mitigating BEAST and POODLE might be appropriate in
some cases; removing RC4 might be best in others. In situations such as this, it’s always
helpful to see what others are doing; at the time of writing, Google still allows RC4 but uses
it only with clients that do not support modern protocols (TLS 1.0 and earlier versions).
On the other hand, Microso boldly deprecated RC4 in Windows 8.1 and, in some cases,
even Windows 7. Schannel will still use RC4 in client mode, but only if no other cipher suite
is available on the server. Firefox adopted the same approach in January 2015.74 Some
would say that such a fallback is necessary because there are still servers out there that sup-
port only RC4 cipher suites. According to SSL Pulse, in March 2015 there were 1,973 (1.3%)
such servers.
In February 2015, RFC 7465 was published to forbid further usage of RC4 in TLS.75

Triple Handshake Attack
In 2009, when the TLS renegotiation mechanism had been found to be insecure, the proto-
cols were xed by creating a new method for secure renegotiation. (If you haven’t already,
read about insecure renegotiation earlier in this chapter, in the section called “Insecure
Renegotiation ”.) But that eort hadn’t been quite successful. In 2014, a group of researchers
showed their Triple Handshake Attack, which combines two separate TLS weaknesses to
break renegotiation one more time.76

74 Bug 1088915 - Stop offering RC4 in the rst handshakes (Bugzilla@Mozilla, retrieved 22 March 2015)
75 RFC 7465: Prohibiting RC4 Cipher Suites (Andrei Popov,, February 2015)
76 Triple Handshakes Considered Harmful: Breaking and Fixing Authentication over TLS (Bhargavan et al., March 2014)
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The Attack
To understand how the attack works, you rst need to know how renegotiation is secured.
When renegotiation takes place, the server expects the client to supply its previous
verify_data value (from the encrypted Finished message in the previous handshake). Be-
cause only the client can know that value, the server can be sure that it’s the same client.
It might seem impossible for the attacker to know the correct value, given that it is always
transmitted encrypted. And yet it was possible to uncover the “secret” value and break rene-
gotiation; the attack works in three steps and exploits two weaknesses in TLS.

Step 1: Unknown Key-Share Weakness
Te rst exploited weakness is in the RSA key exchange. Te generation of the master se-
cret, which is the cornerstone of TLS session security, is chiey driven by the client:

1. Client generates a premaster key and a random value and sends them to the server
2. Server generates its own random value and sends it to the client
3. Client and server calculate the master secret from these three values

Both random values are transported in the clear, but to prevent just anyone from perform-
ing MITM attacks on TLS, the premaster secret is protected; the client encrypts it with the
server’s public key, which means that the attacker can’t get to it. Unless she has access to the
server’s private key, that is; therein lies the rst twist.
Te triple handshake attack relies on a malicious server. In this variant, you somehow con-
vince the victim to visit a seemingly innocent web site under your control. (Te usual ap-
proach is to use social engineering.) On that web site, you have your own valid certicate.
Tis is where the fun begins. Te client generates a premaster key and a random value and
sends them to the malicious server.77 Te premaster secret is encrypted, but the malicious
server is the intended recipient and has no trouble decrypting it. Before the handshake with
the client is complete, the malicious server opens a separate connection to the target server
and mirrors the premaster key and the client’s random value. Te malicious server then
takes the target server’s random value and forwards it to the client. When this exchange is
complete, there are two separate TLS connections and three parties involved in the commu-
nication, but they all share the same connection parameters and thus also the same master
key.

77 Because the malicious server is in the middle, it can always force the use of a suite that relies on the RSA key exchange for as long as there is

one such suite supported by both sides that are being attacked. In TLS, servers choose suites. When opening a handshake to the target server,

the malicious server offers only suites that use the RSA key exchange.
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Figure 7.8. Triple handshake: unknown key-share
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Tis weakness is called an unknown key-share,78 and you can probably guess that it is not
desirable. However, on its own it does not seem exploitable. Te malicious server cannot re-
ally achieve anything sinister at this point. It has the same master key and can thus see all
the communication, but it could do that anyway and without involving the other server. If
the attacker attempted to do anything at this point, she would be performing a phishing at-
tack; it’s a real problem, but not one TLS can solve.

78 Unknown key-share attacks on the station-to-station (STS) protocol (S. Blake-Wilson and A. Menezes, pages 154–170, in Public Key Cryptog-

raphy, 1999)
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Note
Te RSA key exchange is almost universally supported, but there is also an attack
variant that works against the ephemeral Die-Hellman (DHE) key exchange. Te
researchers discovered that the mainstream TLS implementations accept insecure
DH parameters that are not prime numbers. In the TLS protocol, it is the server
that chooses DH parameters. Tus, a malicious server can choose them in such a
way that the DHE key exchange can be easily broken. Te ECDHE key exchange,
an elliptic curve variant of DHE, cannot be broken because no TLS implementa-
tion supports arbitrary DH parameters (as is the case with DHE). Instead, ECDHE
relies on named curves, which are known good sets of parameters.

Step 2: Full Synchronization
Te attacker can’t attack renegotiation just yet because each connection has a dierent client
verify_data value. Why? Because the server certicates dier: the rst connection sees that
attacking hostname’s certicate, whereas the second connection sees the certicate of the
target web server.
Tere’s nothing the attacker can do for that rst connection, but in the next step she can
take advantage of the session resumption mechanism and its abbreviated handshake. When
a session is resumed, there is no authentication; the assumption is that the knowledge of the
master key is sucient to authenticate the two parties.
But, when the session resumes, the only elements that were dierent in the rst connection
(the certicates) are not required any more. Tus, when the handshake completes, the
Finished messages on both connections will be the same!
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Figure 7.9. Triple handshake attack: full TLS connection synchronization
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Step 3: Impersonation
Te attacker can now proceed to trigger renegotiation in order to force the use of the vic-
tim’s client certicate, leading to impersonation. She is in full control of both connections
and can send arbitrary application data either way. On the target web server, she navigates
to a resource that requires authentication. In response, the target server requests renegotia-
tion and a client certicate during the subsequent handshake. Because the security parame-
ters are now identical on both connections, the attacker can just mirror the protocol mes-
sages, leaving the victim and the target server to negotiate new connection parameters. Ex-
cept that this time the client will authenticate with a client certicate. At that point, the at-
tack is successful.

Figure 7.10. Triple handshake: impersonation

Aer renegotiation, the malicious server loses trac visibility, although it still stays in the
middle and continues to mirror encrypted data until either side terminates the connection.

Impact
Te triple handshake attack demonstrates how a supposedly secure TLS connection can be
compromised. Application data sent to the target server before renegotiation comes from
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the attacker, the data sent aer renegotiation comes from the authenticated user, and yet for
the server there is no dierence. Te exploitation opportunities are similar to those of the
original insecure renegotiation vulnerability (described at the beginning of this chapter in
the section called “Insecure Renegotiation ”). Te easiest exploit is to execute a request on
the target web server under the identity of the victim. Tink money transfers, for example.
However, this attack vector is not very easy to use. First, the attacker has to nd suitable
entry points in the application and design specic payloads for each. Second, aer renegoti-
ation she loses trac visibility and thus can’t see the results of the attack or perform further
attacks on the same connection. She can perform another attack, but doing so at the TLS
level is going to be frustrating and slow.
Tere is another, potentially more dangerous, attack vector. Because the attacker can send
arbitrary data to either connection before renegotiation, she has full control over the vic-
tim’s browser. Te victim is on her web site, aer all. Tis allows the attacker to inject
JavaScript malware into the browser. Aer renegotiation and authentication, the malware
can submit unlimited background HTTP requests to the target server—all under the identi-
ty of the victim—and freely observe the responses.
Normally, browsers do not allow one web site to submit arbitrary requests to other sites. In
this case, all communication is carried out in the context of the attacker’s site. Behind the
scenes they are routed to the target web site, but, as far as the browser is concerned, it’s all
one web site.
Tis second attack vector is eectively a form of phishing, with the triple handshake compo-
nent required in order to subvert client certicate authentication. It’s a much more powerful
form of attack, limited only by the programming skills of the attacker and her ability to keep
the victim on the web site for as long as possible.

Prerequisites
Te triple handshake attack is quite complex and works only under some very specic cir-
cumstances. Two aspects need to align before the weaknesses can be exploited.
Te rst is that it can be used only against sites that use client certicates. Take away that
and there can be no impersonation. Te second aspect is more intriguing. Te attack is a
form of phishing; the victims must be willing to use their client certicates on a site where
they are not normally used. I would love to say that this is unlikely to happen, but the oppo-
site is probably true.
When it comes to getting the victim to the rogue web server, it’s always possible to use social
engineering or email, like all other phishing attacks. Given the attacker’s position (MITM),
he can also redirect any plaintext HTTP request to the site. However, that might create sus-
picions from the user, who will unexpectedly arrive at an unknown web site.
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Given that few sites use client certicates, the applicability of the triple handshake attack is
not massive, unlike with the original insecure renegotiation problem. On the other hand,
the sites that use client certicates are usually the more sensitive ones. Tis attack was never
going to be used by petty criminals.

Mitigation
Te core vulnerabilities exploited by the triple handshake attack are in the protocol, and that
makes TLS the best place to address the issue. Work is currently under way to tweak the
protocol so that there is a stronger binding between a handshake and the master secret,79 as
well as a stronger binding on session resumption.80

In the short term, browser vendors reacted by tweaking their soware to abort connections
when they see a dierent certicate aer renegotiation. Similarly, degenerate DH public
keys are no longer accepted. Of course, these mitigations are generally available only in the
more recent browser versions; older Internet Explorer versions should be safe too, because
Microso patches the system-wide libraries, not just their browser.
Despite the browser improvements, there are several remaining attack vectors that are ex-
ploitable under specic circumstances (when certicates are not used): SASL, PEAP, and
Channel ID. Tese can’t be addressed in any other way except with protocol changes.
If possible, I recommend that you undertake some server-side measures to further mini-
mize the risk. Te most recent browsers might not be exploitable, but there’s always a long
tail of users running old soware, which could be attacked. Consider the following mea-
sures:

Require client certicates for all access
If a client certicate is required for all TLS connections to a site, then the attacker will
need a certicate of her own to carry out the rst part of the attack. Depending on
how easy it is to obtain a client certicate, this fact alone might be sucient to reduce
the risk of the attack.

Disable renegotiation
A strong constraint on the attack is the fact that it requires renegotiation. However,
renegotiation is oen used only in combination with client certicates. For example,
a site might allow anyone access to the homepage but use renegotiation to request a
client certicate in a subdirectory. If this arrangement is changed so that renegotia-
tion never takes place, there can be no attack.

79 TLS Session Hash and Extended Master Secret Extension (Bhargavan et al., April 2014)
80 TLS Resumption Indication Extension (Bhargavan et al., April 2014)
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Enable only ECDHE suites
ECDHE suites are not vulnerable to this attack. Given that all modern browsers sup-
port ECDHE suites, if the user base is small and does not use very old browsers
(chiey Android 2.x and IE on Windows XP) disabling the vulnerable key exchange
methods (DHE and RSA) might be another good defense method. But this approach
won’t work with a diverse user base.

POODLE
In October 2014, Google Security Team announced POODLE (Padding Oracle On Down-
graded Legacy Encryption), a vulnerability in SSL 3 that allows network attackers to retrieve
small portions of encrypted text.81

Te root cause that makes this vulnerability possible is the awed design of the CBC con-
struction, which authenticates plaintext but leaves padding unprotected. Tis enables net-
work attackers to make changes to the padding in transit and exploit padding oracles to re-
veal encrypted content. I already discussed this type of attack earlier in this chapter. If you
haven’t already, I recommend that you read the section called “Lucky 13” before continuing
to learn more about POODLE.
What makes POODLE possible is the loose padding construction and checking rules that
exist in SSL 3, but which have been xed in TLS 1.0 and later protocol versions. You can see
the dierences between the two approaches in the following illustration:

Figure 7.11. Padding in SSL 3 and TLS 1.0+ side by side
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SSL 3 padding reserves the last byte in an encrypted block to hold padding length, but
doesn’t have any rules about what the actual padding bytes should contain. Crucially, there’s

81 This POODLE bites: exploiting the SSL 3.0 fallback (Google Security Team, 14 October 2014)
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no check to ensure that the padding bytes have not been tampered with. In other words, SSL
3 padding is not deterministic. In TLS 1.0 and better, the sender must set all padding bytes to
the same value as the padding length byte. Te recipient checks the padding immediately
aer decryption. If the padding length and all padding bytes are not the same, the entire
encrypted block is rejected as invalid.
Attacking the POODLE vulnerability requires that the attacker is able to change the
padding without aecting the MAC or any of the plaintext. Tis means arranging plaintext
in such a way that the entire last block of encryption is used for the padding alone. Tis is
necessary because the attacker can’t modify the padding directly, because she has access on-
ly the encrypted version. Because of how block encryption works, even a single bit changed
anywhere in ciphertext changes roughly half of the bits aer decryption. But if the entire last
block is taken up by the padding, the attacker can make whatever changes she likes without
triggering a failure in MAC validation.
Let’s suppose the attacker does make a small change. Because that will trigger many changes
aer decryption, decrypted content will eectively be random. But, thanks to the loose
padding specication in SSL 3, changes in the padding bytes won’t be detected: the padding
length is the only value that needs to be correct for the entire encryption block to be accept-
ed. In practice this means that one in every 256 changes (randomly) will be accepted with-
out detection, no matter what is submitted.
What can the attacker do with this? She can’t recover any plaintext directly, but she does
know that, when her modication is accepted, the last byte aer decryption has the correct
padding length value. Tat value is equal to the maximum padding length, which is 15 for
16-byte blocks (e.g., AES) and 7 for 8-byte blocks (e.g. 3DES). Tus she has an oracle; she
just has to gure out how to exploit it. For that, she can examine the CBC construction in
detail.
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Figure 7.12. CBC encryption and decryption process
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Before encryption takes place, a block of plaintext is XORed with a block of IV, which is
essentially some random data. But even though it’s random, the IV is known to the attacker
from the second block onwards.82

For simplicity, I’ll focus only on the plaintext byte that the attacker is targeting.
E(Pi[15] ⊕ Ci-1[15]) = Ci[15]

Even though both encrypted bytes are known, she can’t uncover the plaintext byte because
she doesn’t have the encryption key.
Now, consider the reverse process. Decryption takes place rst, aer which the result is
XORed with the correct IV block (the previous block of ciphertext). Again, she knows both
ciphertext bytes because she saw them on the wire. Because of the SSL 3 aw, she also
knows that they last byte in the block aer the XOR operation is 15. Tat is sucient for the
attack:

D(Ci[15]) ⊕ Cn-1[15] = 15
D(Ci[15]) = 15 ⊕ Cn-1[15]
Pi[15] ⊕ Ci-1[15] = 15 ⊕ Cn-1[15]
Pi[15] = 15 ⊕ Cn-1[15] ⊕ Ci-1[15]

82 In SSL 3, the rst IV block on a connection is derived from the master secret; the attacker doesn’t know it. However, all subsequent IV blocks

are known because of the chaining in CBC: the IV for the current block is the same as the previous encrypted block.
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Tus, when a guess is correct, the attacker needs only two XOR operations to retrieve one
byte of plaintext.

Practical Attack
As is the case with other similar recent attacks against SSL and TLS, POODLE exploitation
requires a complex setup: the attacker must be able to have enough control of the victim’s
browsers to submit arbitrary requests to the target server. Additionally, she must control the
network and coordinate her activity with the in-browser component. Tis technique was pi-
oneered by BEAST and used in other cryptographic attacks since.
Each attempt consists of the browser initiating a request and the attacker replacing the last
encrypted block with one of her choosing. Te process is repeated until a guess is correct
and one byte of plaintext is recovered. Te attacker then moves onto the next byte.
Within each request, the attacker must inuence the position of the secret bytes she wishes
to recover, as well as control the padding so that it consumes the entire last encrypted block.
Tis typically means being able to inject something before the secret and something aer it.
In practice, this can be achieved using the POST request method and controlling the sub-
mitted URL and the request body.
Te following example shows contents of a TLS record just before encryption: application
data is at the beginning, followed by the MAC (M), the padding (P), and padding length.
Te secret is the session identier transported in the cookie JSESSIONID. As required for the
attack, the rst byte of the cookie value is the last byte in its block.

00000000  50 4f 53 54 20 2f 61 61  61 61 20 48 54 54 50 2f  |POST /aaaa HTTP/|
00000010  31 2e 30 0d 0a 48 6f 73  74 3a 20 65 78 61 6d 70  |1.0..Host: examp|
00000020  6c 65 2e 63 6f 6d 0d 0a  43 6f 6e 74 65 6e 74 2d  |le.com..Content-|
00000030  4c 65 6e 67 74 68 3a 20  31 32 0d 0a 43 6f 6f 6b  |Length: 12..Cook|
00000040  69 65 3a 20 4a 53 45 53  53 49 4f 4e 49 44 3d 42  |ie: JSESSIONID=B|
00000050  33 44 46 34 42 30 37 41  45 33 33 43 41 0d 0a 0d  |3DF4B07AE33CA...|
00000060  0a 30 31 32 33 34 35 36  37 38 39 41 4d 4d 4d 4d  |.0123456789AMMMM|
00000070  4d 4d 4d 4d 4d 4d 4d 4d  4d 4d 4d 4d 4d 4d 4d 4d  |MMMMMMMMMMMMMMMM|
00000080  50 50 50 50 50 50 50 50  50 50 50 50 50 50 50 0f  |PPPPPPPPPPPPPPP.|

Arriving at the correct URL and request body lengths for the rst attempt requires some
work, because padding hides the exact length of plaintext. Tis can be done by changing the
payload length by one character and observing changes to the encrypted version. For exam-
ple, assuming the submission as shown in the previous example, removing one byte from
the URL would change padding length from 15 to zero, decreasing the overall ciphertext
length by an entire block length of 16 bytes. Once this happens, the attacker knows the exact
padding length.
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From here, it gets easier. Aer a successful guess, decreasing the length of the URL by one
and increasing the length of the request body by one will advance to the next cookie charac-
ter while still satisfying the attack requirements.
Tus, the entire attack goes like this: (1) the attacker starts with a large URL and minimal
request body; (2) she shortens the URL, one byte at a time, until she nds the correct
padding length; (3) she submits enough guesses to uncover one encrypted byte; and (4) she
iterates over the remaining secret bytes by changing the URL and request body lengths in
sync.
A typical session identier might consist of 16-32 characters, but let’s assume that the at-
tacker needs to guess between 100-200 characters because she doesn’t know exactly where
the cookie value begins. At 256 requests per character, this is one of the more ecient cryp-
tographic attacks discussed in this chapter.

Impact
Given that SSL 3 is roughly 20 years old, and that virtually all servers support TLS 1.0 and
better, you wouldn’t expect POODLE to have a serious impact on security. Aer all, SSL 3
and newer protocol revisions have built-in defense against protocol downgrade attacks.
Surely, everyone will almost always negotiate a better protocol version? Unfortunately, that’s
only in theory. In practice, all major browsers have been designed to downgrade their cryp-
tographic abilities when faced with connection and TLS handshake failure. As a result,
when POODLE was announced, it was possible to get most browsers to use SSL 3, even with
sites that support better versions. I wrote more about this problem in the section called
“Protocol Downgrade Attacks”.
Protocol downgrade aside, POODLE is a relatively easy attack to execute, but requires a so-
phisticated attacker positioned close to the victim. As with other attacks using the same
combination of in-browser and network capabilities, the goal is to retrieve something small
yet valuable; typically a cookie value or password. Tis high barrier to entry ensures that
POODLE, if attacked, is generally feasible only against high-value targets. A successful re-
trieval of a session cookie will enable the attacker to assume the victim’s identity on the web
site in question and get everything else that follows from it.
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POODLE TLS
Although TLS 1.0 improved how padding is constructed, in December 2014 it was revealed
that POODLE aected some applications and devices when they were using TLS.83 Te aw
was not in the protocol, but in the implementations. It appears that some developers missed
the change to the padding construction when transitioning from SSL 3 to TLS, leaving their
implementations vulnerable to the same attacks. In at least some of the cases, the vulnerability
was discovered in a hardware acceleration card used by many appliance vendors.
According to SSL Pulse, about 10% of the monitored servers were vulnerable to POODLE TLS
in December 2014. Months aer the discovery of this attack variant, it’s still not clear if we’ve
learned about all the vulnerable products. For best results, it’s recommended that you check
your own infrastructure using one of the SSL/TLS server tests.

Mitigation
Faced with a serious vulnerability in an older protocol versions, browser vendors decided
not to implement any mitigation measures and instead use the opportunity to speed up the
deprecation of SSL 3. Te initial measure was to minimize the attack surface. Chrome, Fire-
fox, and Internet Explorer disabled fallback to SSL 3. Safari kept the fallback, but instead
disabled all CBC suites in that situation. Since then, Chrome and Firefox both disabled SSL
3 by default (in versions 40 and 34, respectively), and Internet Explorer is expected to follow
in April 2015.

Note
A new protocol downgrade defense is currently being standardized. Using a special
signaling suite value TLS_FALLBACK_SCSV, a browser can signal to the server that it
has downgraded. A server that understands this feature should then reject the con-
nection, thus preventing the attack. Google has been using this defense in Chrome
since version 33.84 Firefox implemented it in version 35.85 Tis defense is a long-
term measure against protocol downgrade attacks, but doesn’t help much with
POODLE. Browsers that support the defense already disabled SSL 3 by default, and
hose older browsers that continue to use SSL 3 don’t support the defense. Also, the
Internet Explorer team has indicated that they don’t intend to support this fea-
ture.86

83 Poodle Bites TLS (Ivan Ristić, 8 December 2014)
84 TLS Symmetric Crypto (Adam Langley, 27 February 2014)
85 The POODLE Attack and the End of SSL 3.0 (Mozilla Security Blog, 14 October 2014)
86 Internet Explorer should send TLS_FALLBACK_SCSV (IE Feedback Home, retrieved 16 March 2015)
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Te best defense against this attack is of course to disable SSL 3 entirely. Many companies,
even some very large ones (e.g., Amazon) have already done that. In some cases, this might
aect your users’ ability to connect to your servers. For example, Internet Explorer 6 on
Windows XP by default doesn’t use TLS 1.0, even though it supports it. If you feel that you
can’t disable SSL 3, you can mitigate POODLE by only enabling RC4 with this protocol ver-
sion, but such an activity opens another can of worms because RC4 is long overdue for re-
tirement.
It should be noted that, even though all servers that support SSL 3 are vulnerable to POO-
DLE, successful exploitation requires interactive attacks, which generally means that only
browsers are vulnerable. Other clients and non-HTTP protocols might not be exploitable.
But you shouldn’t let that possibility slow down your transition away from SSL 3. Tere’s a
strong movement to fully deprecate SSL 3. For example, the PCI Council is planning to for-
bid it outright in PCI DSS v3.1.87 A new RFC that forbids SSL3 has been submitted for pub-
lication.88

Bullrun 
Bullrun (or BULLRUN) is the codename for a classied program run by the United States
National Security Agency (NSA). Its purpose is to break encrypted communication by any
means possible. Probably the most successful approach taken is, simply, computer hacking.
If you can obtain a server’s private key by hacking into it, there is no reason to attack en-
cryption. More interesting for us, however, is that one of the means is weakening of prod-
ucts and security standards. Tis is a statement from a budget proposal from a leaked con-
dential document:89

Infuence policies, standards and specication for commercial public key tech-
nologies.

According to Te New York Times, the NSA has about $250 million a year to spend on
these activities. British GCHQ apparently has its own program for similar activities, code-
named Edgehill.90

TLS, one of the major security protocols, is an obvious target of this program. Te public
disclosure of Bullrun has caused many to view standards development in a completely dif-
ferent light. How can we trust the standards if we don’t trust the people who design them?

87 PCI SSC bulletin on impending revisions to PCI DSS, PA-DSS (PCI Council, 13 February 2015)
88 Deprecating Secure Sockets Layer Version 3.0 (Barnes et al., March 2015)
89 Secret Documents Reveal N.S.A. Campaign Against Encryption (The New York Times, 5 September 2013)
90 Revealed: how US and UK spy agencies defeat internet privacy and security (The Guardian, 6 September 2013)
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Dual Elliptic Curve Deterministic Random Bit Generator 
Dual Elliptic Curve Deterministic Random Bit Generator (Dual EC DRBG) is a pseudoran-
dom number generator (PRNG) algorithm standardized by the International Organization
for Standardization (ISO) in ISO 18031 in 2005 and the United States National Institute of
Standards and Technology (NIST) in 2006.91

In 2007, two researchers discussed a possible backdoor in this algorithm,92 but their discov-
ery received little attention.
When the Bullrun program came to light in September 2013, Dual EC DRBG was implicat-
ed as an NSA backdoor. In the same month, NIST issued a bulletin denouncing their own
algorithm:93

NIST strongly recommends that, pending the resolution of the security con-
cerns and the re-issuance of SP 800-90A, the Dual_EC_DRBG, as specied in
the January 2012 version of SP 800-90A, no longer be used.

In 2013, Reuters wrote about a $10 million payment from the NSA to RSA Security, Inc.,
leading to the RSA adopting Dual EC DRBG as the default PRNG in their TLS implementa-
tion, BSAFE.94 Many other TLS implementations oered Dual EC DRBG as an option
(most likely because it was required for the FIPS 140-2 validation), but as far as we know
none used it by default. Te implementation in OpenSSL was found to be faulty and thus
unusable.95

How does this aect TLS, you may ask? In cryptography, all security depends on the quality
of the data produced by the PRNG in use. Historically, we’ve seen many implementations
fail at this point, as discussed in the section called “Random Number Generation” in Chap-
ter 6. If you can break someone’s PRNG, chances are you can break everything else. Te TLS
protocol requires client and server to send 28 bytes of random data each as part of the hand-
shake; this data is used to generate the master secret, which is used to protect the entire TLS
session. If you can backdoor the PRNG implementation, those 28 bytes might be enough to
reveal the internal state of the generator and thus help substantially with breaking the TLS
session.
In 2014, researchers demonstrated that Dual EC DRBG could, indeed, be backdoored,96 al-
though they couldn’t oer proof that a backdoor existed. At the same time, they discovered

91 Dual_EC_DRBG (Wikipedia, retrieved 3 April 2014)
92 On the Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng (Shumow and Ferguson, August 2007)
93 SUPPLEMENTAL ITL BULLETIN FOR SEPTEMBER 2013 (NIST, September 2013)
94 Exclusive: Secret contract tied NSA and security industry pioneer (Reuters, 20 December 2013)
95 Flaw in Dual EC DRBG (no, not that one) (Steve Marquess, 19 December 2013)
96 On the Practical Exploitability of Dual EC in TLS Implementations (Checkoway et al., 2014)
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that a nonstandard TLS extension, written at the request of the NSA, had been implemented
in BSAFE to expose more data from the PRNG on a TLS connection.97

With more random data exposed to the attacker, it becomes up to 65,000 times easier to
break TLS connections.

97 Extended Random (projectbullrun.org, retrieved 16 July 2014)
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8 Deployment
Aer several chapters of theory and background information, this chapter is where it all
comes together; it gives you advice—everything you should know, at a high level—for de-
ploying TLS servers securely. In many ways, this chapter is the map for the entire book. As
you read through each section, refer to earlier chapters for more information on a particular
topic. Aer you’re satised that you have all the information you need, refer to the later
chapters for practical conguration advice for your platform of choice.
Tis chapter is best read along with the next one about performance. Although the advice
here takes performance into consideration, the next chapter provides a much greater level of
detail, as well as further advice that could be used by those sites that want to be as fast as
possible.

Key
Private keys are the cornerstone of TLS security. With appropriately selected key algorithm
and size, TLS will provide strong authentication over a period of many years. But, despite
our focus on the numbers (“the bigger the better”), the weakest link is key management, or
the job of keeping the private keys private.

Key Algorithm
Tere are three key algorithms supported for use in TLS today, but only one of them—RSA
—is practical. DSA has been long abandoned, and ECDSA is the algorithm that we will be
deploying more widely in the following years.

DSA
DSA is easy to rule out: due to the fact that DSA keys are limited to 1,024 bits (Inter-
net Explorer does not support anything stronger), they’re impossible to deploy se-
curely. On top of that, no one uses DSA keys for TLS anyway; going against everyone
could potentially expose you to unforeseen interoperability issues.
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RSA
Te easy choice is to use RSA keys because they are universally supported and cur-
rently used by virtually all TLS deployments. But, at 2,048 bits, which is the current
minimum, RSA keys oer less security and worse performance than ECDSA keys.
Tere is also the issue that RSA keys don’t scale well with size increase. If you decide
that 2,048-bit RSA keys are not suciently strong, moving to, say, 3,072-bit RSA keys
would result in a substantial performance degradation.

ECDSA
ECDSA is the algorithm of the future. A 256-bit ECDSA key provides 128 bits of se-
curity versus only 112 bits of a 2,048-bit RSA key. At these sizes, in addition to pro-
viding better security, ECDSA is also 2x faster. Compared at equivalent security,
against a 3,072-bit RSA key, ECDSA is over 6x faster.
Because elliptic curve (EC) cryptography is a relatively recent addition to the TLS
ecosystem, ECDSA is at a disadvantage because not all user agents support this algo-
rithm. Modern browsers support it, but older user agents don’t. You can work around
this by deploying RSA and ECDSA keys simultaneously, except that not all server
platforms support this option. Additionally, it’s more work to maintain two sets of
keys and certicates. For this reason, ECDSA keys are today best used if you want to
squeeze the best possible performance out of your TLS servers. In the future, as we
require more security, ECDSA will become more relevant.

Key Size
When it comes to key size, most deployments will be satised with 2,048-bit RSA keys or
256-bit ECDSA keys. Tey provide security of 112 and 128 bits, respectively. Tat said, most
deployments can aord to stay at the lower end of key sizes because even the weaker keys
are sucient for their needs.
If you require long-term protection, you should use keys that provide at least 128 bits of se-
curity. At that level, 256-bit ECDSA keys t the bill and perform well. With RSA, you’d have
to use 3,072-bit keys, which are much slower. If the performance degradation is not accept-
able, dual-key deployment might be a good compromise: use stronger ECDSA keys with
modern browsers (and hopefully the majority of your user base) and weaker RSA keys with
everyone else. Otherwise, accept the performance penalty.

Warning
If you are currently using keys that provide less than 112 bits of security (e.g. 1,024-
bit RSA keys or weaker), replace them as a matter of urgency. Tey are insecure.
Tis is especially true for 512- and 768-bit RSA keys, which can be broken with ac-
cess to modest resources. It is estimated that breaking 1,024-bit RSA keys costs on-
ly $1m.
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Consider the following when selecting key sizes: (1) is your choice secure today, (2) will it
be secure when the key is retired, and (3) how long do you want your secrets to stay private
aer you retire the keys.

Key Management
While we spend most time obsessing about key size, issues surrounding key management
are more likely to have a real impact on your security. Tere is ample evidence to suggest
that the most successful attacks bypass encryption rather than break it. If someone can
break into your server and steal the private key, or otherwise compel you to disclose the key,
why would they bother with brute-force attacks against cryptography?

Keep your private keys private
Treat your private keys as an important asset, restricting access to the smallest possi-
ble group of employees while still keeping the arrangements practical. Some CAs of-
fer to generate private keys for you, but they should know better. Te hint is in the
name—private keys should stay private, without exception.

Tink about random number generation
Te security of encryption keys depends on the quality of the random number gener-
ator (RNG) of the computer on which the keys are generated. Keys are oen created
on servers right aer installation and rebooting, but, at that point, the server might
not have sucient entropy to generate a strong key. It’s better to generate all your
keys in one (o-line) location, where you can ensure that a strong RNG is in place.

Password-protect the keys
Your keys should have a passphrase on them from the moment they are created. Tis
helps reduce the attack surface if your backup system is compromised. It also helps
prevent leakage of the key material when copying keys from one computer to another
(directly or using USB sticks); it’s getting increasingly dicult to safely delete data
from modern le systems.

Don’t share keys among unrelated servers
Sharing keys is dangerous; if one system is broken into, its compromised key could be
used to attack other systems that use the same key, even if they use dierent certi-
cates. Dierent keys allow you to establish strong internal access controls, giving ac-
cess to the keys only to those who need them.

Change keys frequently
Treat private keys as a liability. Keep track of when the keys were created to ensure
they don’t remain in use for too long. You must change them aer a security incident
and when a key member of your sta leaves, and should change them when obtaining
a new certicate. When you generate a new key, you wipe the slate clean. Tis is espe-
cially true for systems that do not use or support forward secrecy. In this case, your
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key can be used to decrypt all previous communication, if your adversary has it
recorded. By deleting the key safely, you ensure that it can’t be used against you. Your
default should be to change keys yearly. Systems with valuable assets that do not use
forward secrecy (which is not advisable) should have their keys changed more oen,
for example quarterly.

Store keys safely
Keep a copy of your keys in a safe location. Losing a server key is usually not a big
deal because you can always generate a new one, but it’s a dierent story altogether
with keys used for intermediate and private CAs, and keys that are used for pinning.
Generating and keeping private keys in tamper-resistant hardware is the safest ap-
proach you can take, if you can aord it. Such devices are known as Hardware Securi-
ty Modules, or HSMs. If you use one of those, private keys never leave the HSM and,
in fact, can’t be extracted from the device. Tese days, HSMs are even available as a
service.1 If you care about your security enough to think about an HSM, the idea of
using one in the cloud might seem unusual. Tat said, given what we know about
high-tech spying,2 even when deploying in-house it might still be challenging to nd
a manufacturer whom you trust not to have created a backdoor into the device. Aer
all, you don’t want to spend a lot of money on a device and only later nd out that the
keys can be extracted from it.

Certifcate
In this section I discuss the topics surrounding certicate selection. Tere’s a variety of deci-
sions to make, including which type of certicate to use, which hostnames to include in
each certicate, and which CA to obtain the certicates from.

Certifcate Type
Tere are three types of certicates: domain validated (DV), organization validated (OV),
and extended validation (EV). Te issuance of DV certicates is automated, which is why
they are cheap. Tey should be your default choice. OV certicates require validation of the
organization behind the domain name and contain identifying information. Despite that,
browsers don’t actually treat OV certicates dierently nor do they show all the available
information.
EV certicates dier from DV and OV certicates in several ways: (1) validation procedures
are standardized by the CAB Forum; (2) identifying information is displayed in browser
chrome and highlighted in green; and (3) they are more likely checked for revocation. Te

1 AWS CloudHSM (Amazon Web Services, retrieved 16 May 2014)
2 Photos of an NSA “upgrade” factory show Cisco router getting implant (Ars Technica, 14 May 2014)
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security benets are slight, but they provide better assurance to some better-educated users.
Tis might be valuable, depending on the nature of the business.

Note
If you’re planning to buy an EV certicate, take into account that Chrome requires
Certicate Transparency (CT) for all such certicates issued aer 1 January 2015.
Consult with your desired CA before the purchase and ensure that their certicates
will be properly recognized.

Certifcate Hostnames
Te main purpose of a certicate is to establish trust for the appropriate hostnames, allow-
ing users smooth secure access. On the Web, users are oen confused by needless certicate
name mismatch warnings. Tis problem usually arises from the use of certicates that are
valid for only one of the two name variants (e.g., valid for www.example.com, but not for
example.com).
To avoid such issues, follow this simple rule: if there is a DNS entry pointing to your TLS
server, ensure that the certicate covers it. We can’t control what others are typing in their
browser URL bars, or how they link to our sites. Te only way to be sure is to have certi-
cates with appropriate name coverage. In my experience, some CAs automatically issue cer-
ticates that cover both variants, but there are CAs who don’t.

Note
Another frequent problem comes from placing plaintext-only web sites on an IP
address that is already used to host some other secure web site. Someone who uses
the https:// prex with the name of your plaintext site will not only get a certi-
cate warning due to the name mismatch but will subsequently arrive at the unrelat-
ed secure site hosted on the same server. Tis problem is best avoided by closing
port 443 on the IP addresses used for plaintext-only web sites.

Certifcate Sharing 
Tere are two ways in which a certicate can be shared. First, you can get one that lists all
desired hostnames (e.g., www.example.com, example.com and blog.example.com). Alterna-
tively, you can get a wildcard certicate that’s valid for any number of direct subdomains
(e.g., by getting a certicate for the names *.example.com and example.com).
Certicate sharing has the advantage of reducing maintenance costs and allowing you to use
one IP address for many secure web sites. It’s widely used by content delivery networks, who
operate servers on behalf of others.
In principle, there is nothing wrong with this practice, but only if it doesn’t reduce your se-
curity. However, that’s usually the case. Speaking strictly about encryption, to share a certi-
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cate you also have to share the underlying private key. Tis means that certicate sharing is
not appropriate for sites operated by multiple teams or unrelated web sites. If one of the sites
is attacked, the compromised private key can be used to attack other sites from the group.
Further, aer a compromise, all servers from the group will have to be recongured to use
the new key material.
More importantly, certicate sharing creates a bond at the application level; a vulnerability
in one site can be exploited to attack all other sites from the same certicate. For this reason,
this practice is best avoided. Te same problem occurs if TLS session information is shared
among unrelated servers. You’ll nd a more thorough discussion of this problem in the sec-
tion called “Virtual Host Confusion” in Chapter 6.

Signature Algorithm 
To prove that a certicate is valid, the issuing CA attaches a signature to it. Digital signa-
tures typically depend on the security of two components: one is the strength of the CA’s
private key; the other, the strength of the hashing function. Although the private keys used
for certicate issuance tend to be suciently strong, the most commonly used hashing
function—SHA1—is weak. Although it had been designed to provide 80 bits of security, it’s
currently thought to be only 61 bits strong.
Aer the debacle with MD5 certicate signatures, which were spectacularly fully broken in
2009, this time the industry is moving away from SHA1 in a timely fashion. In 2013, Mi-
croso decreed that they will not accept SHA1 certicates aer 2016 at the latest.3 Tat
prompted CAs to start migrating to using SHA256 as their default hashing function for sig-
natures. In September 2014, Google announced that they would start warning about SHA1
certicates in late 2014, signicantly reducing the time available for SHA1 deprecation. Ini-
tially, the warnings will appear only on certicates that expire aer 2016, but they would
subsequently move to warn about SHA1 even on certicates that expire during 2016.4

For your new certicates, ensure that you use SHA256 or better. Because this is not some-
thing you can request via a CSR, you’ll need to check with your CA in advance. When you
do, also check that the CA’s entire certicate chain is free of SHA1. (Signatures on root cer-
ticates do not count.) Your existing SHA1 certicates can remain in use, but only if they
expire before 2016; otherwise, you should start making plans to replace them as soon as
possible.

Note
Whenever new cryptographic primitives are deployed, we have to deal with older
clients that do not support them. In the case of SHA256, the biggest problems seem

3 SHA1 Deprecation Policy (Windows PKI blog, 12 November 2013)
4 Gradually sunsetting SHA-1 (Google Online Security blog, 5 September 2014)
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to be with Windows XP users who have not yet upgraded to SP35 and with An-
droid devices before version 2.3.6

Before you upgrade your signature algorithm, it’s prudent to examine the web serv-
er logs to determine if those older clients make a signicant portion of your trac.
If they do, consider postponing the changes until the last possible moment to avoid
losing some of the users. Tere is also another option: some web servers support
congurations with more than one certicate per site. If yours does, you could have
the best of both worlds by deploying a SHA1 certicate for older clients and a
SHA2 certicate for everyone else. For the Apache web server, I discuss this de-
ployment approach in the section called “Conguring Multiple Keys” in Chap-
ter 13.

Certifcate Chain
Although we tend to talk about valid server certicates, in reality we congure TLS servers
with certicate chains. A chain is an ordered list of certicates that lead to a trusted root. A
common problem is to see servers whose chains are incomplete and thus invalid. According
to SSL Pulse, there were 5.9% such servers in July 2014.7

Some user agents know how to reconstruct an incomplete chain. Two approaches are com-
mon: (1) all intermediate CA certicates are cached and (2) user agents retrieve the missing
certicates by following the parent certicate information that’s usually embedded in every
certicate. Neither of these approaches is reliable. Te latter is also slow because the users
have to wait until the missing certicates are retrieved from the CAs’ web sites.
It’s also common to see certicates delivered in incorrect order, which is technically invalid.
In practice, almost all user agents know how to reorder certicates to x the chain. For best
results, ensure that your certicate chains are valid and that the order is correct.
Although intermediate certicates are usually valid for longer, they expire, too. If you’re in-
stalling a new certicate, it’s recommended to replace all certicates, even if you’re staying
with the same CA. Tis practice will help you avoid problems with expired intermediate
certicates.
For best performance, your chains should contain the right number of certicates; no more
and no less. Extra certicates (e.g., the root, which is never needed) slow down the TLS
handshake. However, there can be a question of which chain is correct. Multiple trust paths
sometimes exist for historical reasons. For example, a new CA can get their root into mod-
ern browsers, but, to support older clients, they have their root key cross-signed by another

5 SHA-256 certicates are coming (Adam Langley, 14 May 2014)
6 SHA-256 Compatibility (GlobalSign, retrieved 26 September 2014)
7 SSL Pulse (SSL Labs, retrieved 17 July 2014)
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(better-established) CA. In this case you don’t want to “optimize” your chain to be the short-
est possible. Te shorter chain would work only in newer browsers, but fail in older devices.

Revocation
A certicate can and should include two types of revocation information: CRL and OCSP.
It’s possible that a certicate does not include some of the required information, but it’s rare.
Nevertheless, you should still check (e.g., by using the SSL Labs test or the OpenSSL com-
mand-line tools).
It’s more important that your CA provides a reliable and fast OCSP responder service. Aer
all, every time your users connect to your web site, they’ll be connecting to the CA’s site as
well. For best results and reliability, deploy OCSP stapling, which allows you to deliver OC-
SP responses directly from your own server, avoiding potential performance, availability,
and privacy issues.

Choosing the Right Certifcate Authority
For a small site that needs only a simple DV certicate, virtually any CA will suce. You can
do what I do—just buy the cheapest certicate you can nd. Aer all, any public CA can
issue a certicate for your web site without asking you; what’s the point of paying more? But,
if you need a certicate for something important, take your time and select carefully to en-
sure the CA meets your needs. With some advanced techniques such as pinning, by select-
ing a CA you are making a long-term commitment.

Service
At the end of the day, it’s all about the service. Te certicate business is getting more
complicated by the day. If you don’t have experts on your sta, perhaps you should
work with a CA on which you can rely. Costs matter, but so do the management in-
terfaces and the quality of the support.

Reach
If you have a large and diverse user base, you need a CA with widely trusted roots.
Te older CAs—who have had a lot of time to embed their roots in various trust
stores—have a clear advantage here, but a young CA with a root cross-signed by a
better-established CA could do just ne. It’s best to check: (1) make a list of platforms
that are important for you; (2) ask the candidate CAs to document their trust store
placement; (3) ensure that the support is available where you need it. Finally, test
some of those key platforms against a test certicate and see for yourself. Remember
that it is not only important what platforms are supported today, but when exactly
the support had been added. Tere are plenty of devices that do not update their trust
stores.
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Quick adoption of new technologies
Some CAs are only interested in selling certicates; others shape and lead the indus-
try. You should generally work with the CAs who are leading in adoption of new
technologies and migration away from the weak old ones. Today, look for a CA who
issues SHA256 certicates by default, provides good OCSP responder service, and
has a plan to support pinning and Certicate Transparency.

Security
Clearly, a CA’s ability to run their business securely is an important criterion. But how
do you judge security? All CAs go through audits and are thus nominally equally se-
cure, but we know from the past that they are not equal. Te best approach is to look
for evidence of good security posture.

Self-Signed Certifcates and Private CAs
Although this section assumes that you’ll be getting a certicate from a publicly trusted CA,
you can just as well decide to use a self-signed certicate. You could also create your own pri-
vate CA and use it to issue certicates for all your servers. All three approaches have their
place.
For public web sites, the only safe approach is to use certicates from a public CA.
Self-signed certicates are the least useful option. Firefox makes it easier to use them safely;
you create an exception on the rst visit, aer which the self-signed certicate is treated as
valid on subsequent connections. Other browsers make you click-through a certicate warning
every time.8 Unless you’re actually checking the certicate ngerprint every time, it is not pos-
sible to make that self-signed certicate safe. Even with Firefox, it might be dicult to use self-
signed certicates safely. Ask yourself this: what will the members of your group do if they en-
counter a certicate warning on a site where they previously accepted a self-signed certicate?
Would they check with you to conrm that the certicate had been changed, or would they
click through?
In virtually all cases, a much better approach is to use a private CA. It requires a little more
work upfront, but once the infrastructure is in place and the root key is safely distributed to all
users, such deployments are as secure as the rest of the PKI ecosystem.

Protocol Confguration
When it comes to protocol conguration, your choices are likely to be inuenced by a com-
bination of security and interoperability requirements. In the ideal world, just on security

8 That said, it’s usually possible to bypass the browser user interface and import the self-signed certicate directly into the underlying

trusted certicate store. With this, you achieve the same effect as with Firefox exceptions, except that more work is required and there’s

more room for mistakes.
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alone, you would allow only TLS 1.2 and disable all other protocol versions. But such ap-
proach can work only for small groups and tightly-controlled environments—although
modern browsers support TLS 1.2, many other products and tools don’t.
A web site intended for public use needs to support TLS 1.0, TLS 1.1, and TLS 1.2. SSL 2
and SSL 3 are obsolete and insecure. SSL 3 had stayed in use for a very long time but it was
dealt a fatal blow by the so-called POODLE attack,9 which was released in October 2014.
Virtually all clients support at least TLS 1.0, but there’s a potential problem with Internet
Explorer 6 users; this browser version supports only SSL 3 by default. However, in the aer-
math of the POODLE attack large companies and CDNs are disabling SSL 3, which will
likely lead to IE 6 users upgrading to better browsers. (It’s also possible to enable TLS 1.0 in
IE 6 manually, but getting a modern browser is a much better solution for this problem.)

Note
Older protocol versions are of concern because most browsers can be forced to
downgrade to the oldest (and worst) protocol they support. By doing this, an active
network attacker can disable advanced protocol features and indirectly inuence
cipher suite selection. I discuss this in the next section.

Cipher Suite Confguration
In this section I discuss several aspects that inuence cipher suite conguration: encryption
strength, long-term security, performance and interoperability.

Server cipher suite preference
Enforcing server cipher suite preference is vital to achieving best security with a variety of
clients. Cipher suite selection takes place during the TLS handshake; because TLS enforces
handshake integrity, there is no danger that an active network attacker can force some con-
nections to use a weaker suite by attacking the protocol directly.
Tat doesn’t mean that you should oer insecure suites, however. Te same active network
attacker could force a browser (but generally not other types of clients, for example com-
mand-line utilities) to voluntarily downgrade the protocol version to the worst-supported
version. For a server that still supports SSL 3, that implies no authenticated encryption, no
EC cryptography, and sometimes not even AES.

Cipher Strength
Use strong ciphers that provide 128 bits of security. Although AES and CAMELLIA both t
this description, AES has a strong advantage because it can be used with authenticated

9 This POODLE bites: exploiting the SSL 3.0 fallback (Google Online Security Blog, 14 October 2014)
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(GCM) suites that are supported by modern user agents. Authenticated suites are the best
TLS can oer; using them you avoid the inherently unsafe (although not necessarily practi-
cally exploitable) CBC suites. For example, the NSA Suite B cryptography standard, which
denes security policies for national security applications, recommends using only GCM
suites with TLS.10

Forward Secrecy
Do not use the RSA key exchange, which does not provide forward secrecy. Instead, look for
the string ECDHE or DHE in the cipher suite name. Don’t be confused by the fact that RSA can
be used for key exchange and authentication; there is nothing wrong with the latter. For as
long as you continue to use RSA keys, the string RSA will remain in the suite name. For per-
formance reasons (more about that in the next chapter), prefer ECDHE suites over DHE.
With forward secrecy, every connection to your site is individually protected, using a dier-
ent key. Without forward secrecy, the security of all connections eectively depends on the
server’s private key. If that key is ever broken or stolen, all previous communication can be
decrypted. Tis is a huge liability that can be trivially xed by adjusting conguration. In
fact, this is so important that future TLS versions are expected to support only suites that
provide forward secrecy.
For ECDHE, the secp256r1 curve will provide 128 bits of security for the key exchange.
Tere is little choice at the moment when it comes to named curve selection. However, new
curves are being added, along with mechanisms (e.g., in OpenSSL) to choose the best curve
supported by the client. Once those become available, you should prefer the newer curves
with clients that support them.
For DHE, most servers continue to use DH parameters of 1,024 bits, which provide about
80 bits of security. In general, given that with forward security each connection has its own
key, 80 bits might be sucient for sites that don’t have security as a priority. Everyone else
should generally use DH parameters that match the strength of the server private key. For
most sites, that will be 2,048 bits. Tat said, if you prioritize ECDHE, which most modern
clients support, the DHE key exchange will be used only with older clients.
When conguring DHE strength, you have the option to generate your own parameters of
desired strength, but you can also use the standardized groups recommended by RFC
3526.11

10 RFC 6460: Suite B Prole for TLS (M. Salter and R. Housley, January 2012)
11 RFC 3526: More MODP Die-Hellman groups for IKE (T. Kivinen and M. Kojo, May 2003)

Forward Secrecy 257



Performance
Te good news is that GCM suites are also the fastest, which means that you don’t have to
choose between security and speed. Although AES and CAMELLIA are of similar speeds
when implemented in soware, AES again has an advantage because modern processors ac-
celerate it with a special instruction set; it ends being much faster in practice. In addition,
hardware-accelerated AES is thought to be more resistant to cache timing attacks.
Avoid CBC suites that use SHA256 and SHA384 for integrity validation. Tey are much
slower with no clear security benets over SHA1. But don’t be confused with the fact that
GCM suites also have SHA256 and SHA384 in their names; authenticated suites work dif-
ferently and aren’t slow. Also, don’t worry about SHA1 in this context; this hashing function
is safe when used with HMAC, which is what the suites are doing.
For the ECDHE key exchange, use the secp256r1 curve, which provides 128 bits of security
and best performance. Always prefer ECDHE over DHE; the latter is slower even at the
commonly-used and not very secure 1,024 bits. It’s much slower at 2,048 bits.

Interoperability 
Te key to interoperability is supporting a wide selection of suites. TLS clients come in all
shapes and sizes and you don’t want to needlessly refuse access to some of them. If you fol-
low the recommendations here and enforce server cipher suite preference, you are going to
negotiate your preferred suites with most clients. Te remaining, less-wanted, suites will be
used only by old clients that don’t support anything better. Here are some examples:

• Some very old clients might support only 3DES and RC4. Te latter is insecure and
shouldn’t be used, but 3DES, which provides 112 bits of security, is still acceptable for
legacy applications.

• By default, Java clients do not support 256-bit suites.
• Java, before version 8, could not support DHE parameters over 1,024 bits. Tis should

not be a problem for Java 7, because it supports ECDHE suites: by giving higher priori-
ty to ECDHE you can ensure that DHE is never attempted. If you need to support Java
6 clients, you must choose between no forward secrecy (using the RSA key exchange)
and forward secrecy with DH parameters of 1,024 bits. Te latter is preferable.

• For the ECDHE key exchange, only two named curves are widely supported: secp256r1
and secp384r1. If you use some other curves you might end up not negotiating any
ECDHE suites with some clients (e.g., Internet Explorer).

Server Confguration and Architecture
Te only way to achieve strong overall security is to ensure that each individual system
component is secure. Best practices such as disabling unnecessary services, regular patch-
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ing, and strict access controls all apply. Additionally, complex architectures introduce their
own challenges. Special care is needed—ideally during the design phase—to ensure that
scaling up doesn’t introduce new weaknesses. A full discussion of architectural issues is out-
side the scope of this book, but I will cover some aspects that are related to TLS deploy-
ments.

Shared Environments
Shared environments don’t go well with security. Shared hosting, in particular, shouldn’t be
used by any business that operates encryption. Tere are many attack vectors via the lesys-
tem or direct memory access that could result in private key compromise. Shared virtual
servers might be similarly unacceptable, depending on your security requirements. Encryp-
tion is particularly tricky to get right when resources are shared among unrelated parties.
Attacks sometimes depend on having very fast access to the target server (e.g., Lucky 13). In
some cases (e.g., cache timing attacks), the prerequisite is access to the same CPU as the
target server, which is possible in virtual environments.
Infrastructure sharing is always a compromise between costs and convenience on one side
and security on the other. I don’t think you’ll nd it surprising that the best security requires
exclusive hardware, strong physical security, and competent engineering and operational
practices.

Virtual Secure Hosting 
Today, the widely accepted practice still is to use one IP address per secure server. Te main
reason for this is that virtual secure hosting (placing many unrelated secure servers on the
same IP address) depends on a feature called Server Name Indication (SNI), which was
added to TLS only in 2006. Because that was a rather late addition, many older products
(e.g., early Android versions, older embedded devices, and Internet Explorer on Windows
XP) don’t support it. Sites that target a wide audience should therefore continue to use a
separate IP address for each site.
Tat said, relying on SNI availability is on the verge of being practical. Sites that have a
modern user base can already do it. I expect that, over the next several years, we’ll see a rise
in SNI-only sites. Support for Windows XP ended in 2014, and that’s expected to encourage
its users to migrate to more recent operating systems.

Session Caching
Session caching is a performance optimization measure; client and server negotiate a master
secret during their rst connection and establish a session. Subsequent connections use the
same master secret to reduce CPU costs and network latency. Te performance improve-
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ment comes at the expense of reduced security: all connections that are part of the same
session can be broken if the shared master secret is broken. However, because sessions typi-
cally last only for a limited time, the tradeo is acceptable to most deployments.
I wouldn’t advise disabling session caching, as that would seriously degrade server perfor-
mance. For anything but the most secure sites, caching a session for up to a day is accept-
able. For best security, reduce the session cache timeout to a shorter value, for example, one
hour.
When session tickets are used, the security of all connections depends on the same ticket
key. Tis is an area in which current server soware doesn’t provide adequate default con-
guration. Most applications based on OpenSSL use implicit ticket keys that are created on
server startup and never rotated. Tis could lead to the same key used for weeks and
months, eectively disabling forward secrecy. Tus, if you’re using session tickets, deploy
with manually congured ticket keys and regularly rotate them (e.g., daily). Twitter, for ex-
ample, uses fresh keys every 12 hours and deletes old keys aer 36 hours.12

Complex Architectures
Usually, the most secure TLS deployment is that of a standalone server, which comes with
well-dened security boundaries. Complex architectures, which involve many components
and services spread among many servers, oen introduce new weaknesses and attack
points:

Distributed session caching
When a site is served by a cluster of servers, ensuring good performance through ses-
sion caching is more dicult. Tere are typically two ways to address this problem:
(1) use sticky load balancing, which ensures that the same client is always sent to the
same cluster node,13 or (2) share the TLS session cache among all the nodes in the
cluster.
Session cache sharing has a security impact, because the attack surface is larger with
the sessions stored on multiple machines. In addition, plaintext communication pro-
tocols are oen used for backend session synchronization. Tis means that an attack-
er who inltrates the backend network can easily record all master secrets.

Session cache sharing
Session cache sharing among unrelated applications increases the attack surface fur-
ther; it creates a bond among the applications that can be exploited at the application
level, in the same way that certicate sharing, discussed earlier, can. Your default ap-

12 Forward Secrecy at Twitter (Jacob Hoffman-Andrews, 22 November 2013)
13 This is usually done based on the source IP address. Some load balancers can also observe server-assigned session IDs and route based on

their repeated use by clients.
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proach should be to avoid session cache sharing unless it’s necessary. Tis might not
always be easy, as not all servers allow for strict cache separation. If using tickets, en-
sure that each server uses a dierent ticket key.

SSL ofoading and reverse proxies
SSL ooading is a practice of terminating encryption at a separate architecture layer.
Tis practice is dangerous, because, most oen, the trac from the proxy to the ap-
plication is not encrypted. Although you might perceive that the internal network is
secure, in practice this design decision creates a serious long-term attack vector that
can be exploited by an attacker who inltrates the network.

Network trac inspection
Te design of the RSA key exchange allows for network-level trac inspection via
private key sharing. It’s typically done by intrusion detection and network monitoring
tools that can passively decrypt encryption. In some environments, the ability to in-
spect all network trac might be a high priority. However, this practice defeats for-
ward secrecy, which potentially creates a much bigger long-term liability, because
now the security of all trac depends on the shared private key.

Outsourced infrastructure
Take special care when outsourcing critical components of your infrastructure to
someone else. Cloud-based deployments are increasingly popular, but vendors oen
don’t provide enough information about how their services are implemented. Tis
could lead to unpleasant surprises. In 2014, a group of researchers analyzed the
HTTPS implementations of content delivery networks and discovered that some
failed to perform certicate validation.14

Te best approach is to keep encryption under your complete control. For example, if
using Amazon’s Elastic Load Balancer to ensure high availability, congure it at the
TCP level and terminate TLS at your nodes.

Issue Mitigation
In recent years we saw a number of protocol attacks and other security issues that aect
TLS. Some of those are easy to address, typically by patching. Others require a careful con-
sideration of the involved risks so that an appropriate conguration can be deployed. In this
section I discuss what we should do about these known problems, but I don’t otherwise cov-
er them in depth. For that, you should head to Chapter 7, Protocol Attacks.

14 When HTTPS Meets CDN: A Case of Authentication in Delegated Service (Liang et al., IEEE Symposium on Security and Privacy, 2014)
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Renegotiation
Insecure renegotiation is an old aw from 2009 but a large number of systems still suer
from it. Patching should be sucient to x this problem. If you’re not using client certi-
cates, disabling client-initiated renegotiation will make your systems safe. For the safety of
others, you should support the new standard for secure renegotiation.
Servers that still support insecure renegotiation can be attacked with outcomes such as
cross-site request forgery (user impersonation), information leakage, and cross-site script-
ing. Exploitation is easy, with tools readily available.

BEAST (HTTP)
BEAST is a 2011 attack against CBC suites in TLS 1.0 and earlier protocol versions, which
rely on predictable initialization vectors for block ciphers. Tis attack is a client-side issue
that can be used only against browsers, but not against non-interactive tools. All modern
browsers deploy mitigation measures, but users with older browsers (and older versions of
Java, which are needed for the exploit to work) might still be vulnerable. Although newer
protocols (TLS 1.1 onwards) are not vulnerable to BEAST, they are not supported by those
older vulnerable browsers. BEAST is relatively easy to execute and can be used to retrieve
fragments of sensitive information (e.g., session cookies).

CRIME (HTTP)
CRIME is a 2012 attack that exploits information leakage inherent in compression as used
in TLS and earlier versions of the SPDY protocol. Like BEAST, CRIME can be used against
browsers, but not against non-interactive tools. Also like BEAST, CRIME targets fragments
of sensitive information stored in request headers (e.g., session cookies and passwords). Al-
though a large number of servers still support TLS compression, there is little client-side
support and the attack surface is small. Still, TLS compression should be disabled, typically
by patching.

Lucky 13
Lucky 13 is a 2013 attack against CBC suites. It uses statistical analysis and other optimiza-
tion techniques to exploit very small timing dierences that occur during block cipher oper-
ation. A successful attack requires close proximity to the target web server. Lucky 13 typical-
ly targets fragments of sensitive information, for example passwords.
As far as we know, the attacks have been addressed by implementing constant-time decryp-
tion in popular TLS libraries; ensuring you’re running the patched versions everywhere is
necessary to be safe against this attack. Despite that, CBC suites remain inherently vulnera-
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ble (i.e., dicult to implement correctly) and the problem might return again in the future.
For complete safety, deploy authenticated encryption using GCM suites, which are available
in TLS 1.2.

RC4
RC4 had long had a history of security weaknesses, but none of them were thought to aect
the way this cipher was used in TLS. Tat changed in 2013, when better attacks were dis-
closed. We now know how to exploit RC4 weaknesses to recover fragments of sensitive in-
formation. Further disclosures were made in 2015, and we expect the attacks to get better
over time. But all the exploits seen so far work only under controlled conditions; they’re im-
practical to perform in real situations. Tere are rumors that better attacks are possible, but
no evidence so far. For this reason, you should avoid using RC4 unless you really need it. In
some environments, RC4 could be the lesser evil when compared to other attacks, such as
BEAST, Lucky 13, and POODLE attacks. I discuss this in the sidebar in this section.
As of February 2015, RC4 is ocially banned from use with TLS.15Te ban didn’t have a
strong eect on the popularity of RC4. According to SSL Pulse, in March 2015 this weak
cipher is supported by about 72% of monitored servers. Most servers use it to support lega-
cy clients, but about 22% use it even with modern browsers.

15 RFC 7465: Prohibiting RC4 Cipher Suites (Andrei Popov, February 2015)
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RC4 versus BEAST, POODLE, and Lucky 13
Te use of RC4 can’t be discussed in isolation; we have to take into account the context, which
is that this weak cipher can be used as a defense against attacks that many consider more seri-
ous. Problems such as BEAST, Lucky 13 (padding oracle attacks), and POODLE can be miti-
gated using streaming ciphers, and it so happens that RC4 is the only such cipher available.
Unfortunately, RC4 is also known to contain weaknesses. So what to do?
It’s dicult to say. Modern browsers are typically not vulnerable, so you’ll be defending those
old clients that are never going to be updated. BEAST requires a lot of eort to exploit. But the
attack is practical, if only against users with old and vulnerable soware. POODLE is easier to
abuse, although still requires a considerable eort. Padding oracle attacks are thought to have
been suciently addressed, assuming you’re running updated server soware. On the other
side, RC4 weaknesses have so far been exploited only in controlled environments. Tat said,
there is an expectation that attacks against RC4 will get better, whereas the number of users
vulnerable to other attacks is only going to get smaller over time.
For most sites, the best approach is to focus on the future: rely on a recent (patched) server TLS
stack that’s not vulnerable to Lucky 13, deploy TLS 1.2 with GCM suites, disable SSL 3 and
don’t use RC4.
High prole sites with large and potentially vulnerable user bases might consider using RC4 as
a way to mitigate the attacks against CBC. Tis is especially true if they can’t yet disable SSL 3.
Tey should still focus on using strong cryptography with modern browsers (no RC4!), but al-
low and force use of RC4 with TLS 1.0 and older protocol versions.

TIME and BREACH (HTTP) 
TIME and BREACH are 2013 attacks that extend CRIME to attack HTTP compression. Un-
like TLS compression, which was never widely deployed, HTTP compression is very useful
and popular, and can’t be disabled without (usually signicant) performance penalties.
TIME was largely a conceptual attack, without any tools published. BREACH authors re-
leased the source code for their proof-of-concept, which means that this attack is easier to
carry out. Both attacks require a lot of work to execute, which suggests that they are more
suitable for use against specic targets, but not at scale. BREACH can be used to retrieve
small fragments of sensitive data that appear anywhere in an HTML page, if compression is
used.
Addressing BREACH requires more eort because its attack surface is at the application
layer. Tere are two practical mitigation techniques that you should consider:

Masking of sensitive tokens
For sensitive tokens such as those used for CSRF defense and session management,
the best defense is to use masking. BREACH requires that the sensitive string appears
in an HTML page across many requests. An eective mitigation technique is to mask
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the original value so that it appears dierent every time, provided the process can be
reversed. Tis approach requires extensive changes to application source code and
might not be suitable for legacy applications. However, it’s ideal for implementation
in frameworks and libraries.

Disable compression when referrer information is incorrect or unavailable
Disabling compression prevents the attack, but that’s too costly. However, an attack
always comes from elsewhere and not from your own web site. Tis means that you
can examine the referrer information and disable compression only when the attack
is possible—when you see a request arriving from some other web site. In practice,
you also have to disable compression when the referrer information is not available,
which can happen for privacy reasons or if the attacker uses tricks to hide it. Tis
mitigation technique is easy to deploy at web server level and requires no changes to
the source code. Tere’s only a very small performance penalty involved because
compression will be disabled only on requests that arrive from other sites.

Triple Handshake Attack
Triple Handshake Attack is a high-eort attack revealed in 2014. It can be used only against
environments that use client certicates for authentication. Tis attack has similar conse-
quences to insecure renegotiation, with some variations that make exploitation easier. In the
short-term, the best mitigation is to use the latest versions of modern browsers, which have
incorporated counter-measures. Te TLS protocol is currently being extended to address
the underlying core issue.

Heartbleed
Heartbleed is a vulnerability in OpenSSL, a widely deployed cryptographic library. It was
discovered in April 2014. Although not a cryptographic issue in itself, Heartbleed can be
devastating for the vulnerable server. Since the vulnerability was announced, a number of
advanced exploitation techniques have been developed. Attack tools are readily available
and can be used to retrieve server private keys very quickly.
Addressing this problem requires several steps: (1) rst, patch the aected systems so that
the vulnerability is addressed; (2) generate new private keys, obtain new certicates, and re-
voke the old certicates; (3) if using session tickets, change the ticket keys; (4) consider if
other sensitive data might have existed in server memory and determine if further actions
are necessary (e.g., user passwords were commonly found present; some web sites advised
their users to change their passwords).

Warning
It’s common to see servers patched for Heartbleed and with new certicates in-
stalled, but still using unchanged private keys. Such servers are still vulnerable be-
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cause the private keys compromised before the patching can still be used by the at-
tacker.

Pinning
Public trust depends on hundreds of CAs who issue certicates to prove server legitimacy.
Although this approach works well for average web sites that are unlikely to be attacked via
certicate forgery, high-prole sites are le exposed because any CA can issue a certicate
for any domain name. Tis problem can be xed using a technique called public key pinning,
which allows you to specify exactly which CAs are allowed to issue certicates for your do-
main names.
Pinning greatly reduces the attack surface for certicate forgery attacks but comes at a cost:
it requires an eort to design a pinning strategy and operational maturity to carry it out. At
this time, pinning is possible only via the proprietary mechanism embedded in Chrome.
Several standards are currently in various stages of development: DANE (based on
DNSSEC), Public Key Pinning for HTTP, and TACK.

HTTP
Although SSL and TLS were designed so that they can secure any connection-oriented pro-
tocol, the immediate need was to protect HTTP. To this day, web site encryption remains
the most common TLS use case. Over the years, the Web evolved from a simple document
distribution system into a complex application delivery platform. Tis complexity creates
additional attack vectors and requires more eort to secure.

Making Full Use of Encryption
In HTTP, encryption is optional. As a result, many sites fail to use it even though it is gen-
uinely necessary. In some cases by design, in others by omission. Many don’t use encryption
because it requires additional eort and expertise. Some justify lack of encryption citing
performance reasons and costs. Browsers make the situation dicult by allowing secure and
insecure resources to be mixed within the same HTML page.
Te truth is that if you have anything of value online, you need encryption. And you need
full encryption across the entire site because partial encryption is practically impossible to
use securely. Tere are issues with cookie scope and user transitions between insecure and
secure areas that can’t be implemented securely. Mixed content issues—when insecure re-
sources are requested from an otherwise secure page—can be used to achieve a complete
security compromise.
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For all these reasons, the best approach is to enforce encryption on the entire domain name,
across all the applications you might have installed on the subdomains.

Cookie Security
HTTP cookies that have not been declared as secure (a frequent programming error) can be
retrieved by an active network attacker even in the extreme case when the web site in ques-
tion does not operate in plaintext at all. During the quality assurance (QA) phase, pay spe-
cial attention to how cookies are created.
Further, due to the lax cookie specication, it is very easy for attackers to inject cookies into
unsuspecting applications. Tis can be typically achieved from other applications that oper-
ate from a related subdomain (e.g., from blog.example.com into www.example.com), or even
from a nonexistent subdomain in an active network attack. A skilled attacker could use
cookie injection for privilege escalation. For best security, deploy a cookie encryption or an
integrity validation scheme. Te former is better, but the latter can be used in the cases
when cookie read access is needed from JavaScript.

Backend Certifcate and Hostname Validation
Many applications use HTTP over TLS for backend communication; this practice is very
common in native, web, and mobile applications alike. Unfortunately, they suer from a
common failure where they don’t validate certicates correctly, leaving them wide open to
active network attacks. Your QA processes should include tests that check for failures in this
area.
In most cases, all that’s needed is to enable certicate checking in the underlying TLS li-
brary. In others, developers rely on low-level APIs that implement some generic certicate
checks, but not the protocol-specic functionality, such as hostname checking. As a rule of
thumb, low-level APIs should be avoided if there are higher-level alternatives available.
For best security, you should consider using public key pinning in your applications. Unlike
with browsers, where you must wait on pinning to be standardized, in your own applica-
tions you have full control over the code. Pinning is easy to implement and signicantly re-
duces the attack surface.

HTTP Strict Transport Security
HTTP Strict Transport Security (HSTS) is a standard that allows web sites to request strict
handling of encryption. Web sites signal their policies via an HTTP response header for en-
forcement in compliant browsers. Once HSTS is deployed, compliant browsers will switch
to always using TLS when communicating with the web site. Tis addresses a number of
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issues that are otherwise dicult to enforce: (1) users who have plaintext bookmarks and
follow plaintext links; (2) insecure cookies; (3) HTTPS stripping attacks; (4) mixed-content
issues within the same site.
In addition, and perhaps more importantly, HSTS xes handling of invalid certicates.
Without HSTS, when browsers encounter invalid certicates they allow their users to pro-
ceed to the site. Most users can’t dierentiate between attacks and conguration issues and
decide to proceed, which makes them susceptible to active network attacks. With HSTS,
certicate validation failures are nal and can’t be bypassed. Tat brings TLS back to how it
should have been implemented in the rst place.
For best results, HSTS should be activated for the entire namespace of a particular domain
name (e.g. for example.com and all subdomains).

Content Security Policy
Content Security Policy (CSP) is a mechanism that allows web sites to control how resources
embedded in HTML pages are retrieved and over what protocols. As with HSTS, web sites
signal their policies via an HTTP response header for enforcement in compliant browsers.
Although CSP was originally primarily designed as a way of combating XSS, it has an im-
portant application to web site encryption: it can be used to prevent third-party mixed con-
tent by rejecting plaintext links that might be present in the page.

Protocol Downgrade Protection
Although TLS has protocol downgrade protections built-in, browsers make them ineective
by voluntarily downgrading on negotiation failures. Tis is arguably the biggest practical
protocol aw we have at the moment.
Aer months of discussion, Google adopted a proposal around using a special fallback sig-
naling suite to inform servers of potential downgrade attacks. It’s currently implemented in
Chrome. Firefox is expected to implement it version 35.16 To be fully eective, the mecha-
nism must also be supported server-side. When the feature is eventually incorporated into
libraries (OpenSSL supports it starting with version 1.0.1j) it will work transparently. In the
meantime, it is also possible to implement it externally, for example via a protocol-parsing
intrusion detection system.

16 The POODLE Attack and the End of SSL 3.0 (Mozilla Security Blog, 14 October 2014)
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9 Performance Optimization
People sometimes care about security, but they always care about speed; no one ever wanted
their web site to be slower. Some of the motivation for increasing performance comes from
our fascination with being fast. For example, there is a lot of anecdotal evidence that pro-
grammers are obsessed with performance, oen needlessly and at expense of code quality.
On the other hand, it is well documented that speed improvements increase revenue. In
2006, Google said that adding 0.5 seconds to their search results caused a 20% drop in traf-
fic.1 And Amazon said that an increase of 100 ms in latency costs them 1% in revenue.2

Tere is no doubt that TLS has a reputation for being slow. Most of it comes from the early
days, when CPUs were much slower and only a few big sites could aord encryption. Not so
today; computing power is no longer a bottleneck for TLS. In 2010, aer Google enabled
encryption on their email service by default, they famously stated that SSL/TLS is not com-
putationally expensive any more:3

On our production frontend machines, SSL/TLS accounts for less than 1% of
the CPU load, less than 10KB of memory per connection and less than 2% of
network overhead. Many people believe that SSL takes a lot of CPU time and
we hope the above numbers (public for the rst time) will help to dispel that.

Tis chapter is all about getting as close as possible to Google’s performance numbers. A
large part of the discussion is about latency reduction. Most of the techniques apply to any
protocol (even when encryption is not used) but are especially important for TLS because of
its increased connection setup costs. Te rest is about using the least amount of CPU power
possible to achieve desired security and making sure that user agents need to do as little
work as possible to validate your certicates.

1 Marissa Mayer at Web 2.0 (Greg Linden, 9 November 2006)
2 Make Data Useful (Greg Linden, 28 November 2006)
3 Overclocking SSL (Adam Langley, 25 Jun 2010)
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Note
In this chapter I focus on the performance prole of TLS, but there are many other
potential gains elsewhere in the application stack. For a wider look at the topic of
performance of web applications, I recommend Ilya Grigorik’s book High Perfor-
mance Browser Networking, published by O’Reilly in 2013. Tis book is freely avail-
able online.4

Latency and Connection Management
Te speed of network communication is shaped by two main factors: bandwidth and laten-
cy.5 Bandwidth is a measure of how much data you can send in a unit of time. Latency de-
scribes the delay from when a message is sent until it is received on the other end. Of the
two, bandwidth is the less interesting factor because you can generally always buy more of it.
Latency can’t be avoided because it’s imposed on us by the speed limits at which data travels
over network connections.
Latency is a big limiting factor whenever an interactive exchange of messages is required. In
a typical request-response protocol, it takes some time for the request to reach its destina-
tion, and for the response to travel back. Tis measure, known as round-trip time (RTT), is
how we measure latency.
For example, every TCP connection begins a setup phase called the three-way handshake:
(1) client sends a SYN message to request a new connection; (2) server accepts with SYN ACK;
(3) client conrms with ACK and starts sending data. It takes 1.5 round-trips for this hand-
shake to complete. In practice, with client-speaks-rst protocols such as HTTP and TLS, the
actual latency is one round-trip, because the client can start sending data immediately aer
the ACK signal.
Latency has a particularly large impact on TLS, because it has its own elaborate handshake
that adds two further round-trips to connection setup.

4 High Performance Browser Networking (Ilya Grigorik, retrieved 17 July 2014)
5 What is Network Latency and Why Does It Matter? (O3b Networks, retrieved 11 May 2014)
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Figure 9.1. TCP and TLS handshake latencies
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TCP Optimization
Although a complete discussion of TCP optimization is out of the scope of this book, there
are two tweaks that are so important and easy to use that everyone should know about
them. Both are related to the congestion control mechanism built into TCP. At the beginning
of a new connection, you don’t know how fast the other side can go. If there is ample band-
width, you can send data at the fastest possible rate, but what if you’re dealing with a slow
mobile connection? If you send too much data, you will overwhelm the link, leading to the
connection breakdown. For this reason, a speed limit—known as a congestion window—is
built into every TCP connection. Tis window is initially small, but grows over time with
evidence of good performance. Tis mechanism is known as slow start.
Tis brings us to the ugly truth: all TCP connections start slow and increase speed over time
until they reach their full potential. Tis is bad news for HTTP connections, which are oen
short-lived; they almost always operate under suboptimal conditions.
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Te situation is even worse for TLS connections, which consume the precious initial con-
nection bytes (when the congestion window is small) with TLS handshake messages. If the
congestion window is big enough, then there will be no additional delay from slow start. If,
however, it happens that there is a long handshake message that can’t t into the congestion
window, the sender will have to split it into two chunks, send one chunk, wait for an ac-
knowledgment (one round-trip), increase the congestion window, and only then send the
reminder. Later in this chapter, I will discuss several cases in which this situation can hap-
pen.

Initial Congestion Window Tuning 
Te starting speed limit is known as the initial congestion window (initcwnd). If you are de-
ploying on a modern platform, the limit will probably be already set at a high value. RFC
6928, which came out in April 2013,6 recommended setting initcwnd to 10 network seg-
ments (about 15 KB) by default. Te previous recommendation was to use two to four net-
work segments as a starting point.
On older Linux platforms, you can change the initcwnd size for all your routes with:

# ip route | while read p; do ip route change $p initcwnd 10; done

Preventing Slow Start When Idle
Another problem is that slow start can kick in on a connection that has not seen any trac
for some time, reducing its speed. And very quickly, too. Te period of inactivity can be
very small, for example, one second. Tis means that, by default, virtually every long-run-
ning connection (e.g., a HTTP connection that uses keep-alives) will be downgraded from
fast to slow! For best results, this feature is best disabled.
On Linux, you can disable slow start due to inactivity with:

# sysctl -w net.ipv4.tcp_slow_start_after_idle=0

Te setting can be made permanent by adding it to your /etc/sysctl.conf conguration.

Connection Persistence
Most of the TLS performance impact is concentrated in the handshake, which takes place at
the beginning of every connection. One important optimization technique is to reduce the
number of connections used by keeping each connection open for as long as possible. With
this, you minimize the TLS overhead and also improve the TCP performance. As we’ve seen
in the previous section, the longer the TCP connection stays open, the faster it goes.

6 RFC 6928: Increasing TCP’s Initial Window (Chu et al., April 2013)
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In HTTP, most transactions tend to be very brief, translating to short-lived connections. Al-
though the standard originally didn’t provide a way for a connection to stay open for a long
time, keep-alives were added to HTTP/1.0 as an experimental feature and became enabled
by default in HTTP/1.1.
Keeping many connections open for long periods of time can be challenging, because many
web servers are not designed to handle this situation well. For example, Apache was initially
designed to dedicate an entire worker (process or thread, depending on conguration) to
each connection. Te problem with this approach is that slow clients can use up all the
available workers and block the web server. Also, it’s very easy for an attacker to open a large
number of connections and send data very slowly, if at all.7

More recently, the trend has been to use event-driven web servers, which handle all commu-
nication by using a xed thread pool (or even a single execution thread), thus minimizing
per-connection costs and reducing the chances of attack. Nginx is an example of a web serv-
er that was built from the start to operate in this way. Apache also started to use the event-
driven model by default on platforms that support it.
Te disadvantage of long-lived connections is that, aer the last HTTP connection is com-
plete, the server waits for a certain time (the keep-alive timeout) before closing the connec-
tion. Although any one connection won’t consume too many resources, keeping connec-
tions open reduces the overall scalability of the server. Te best case for keep-alives is with a
client that sends a large number of requests in a burst. Te worst case is when the client
sends only one request and leaves the connection open but never submits another request.

Warning
When deploying with long keep-alive timeouts, it’s critical to limit the maximum
number of concurrent connections so that the server is not overloaded. Tune the
server by testing its operation at the edge of capacity. If TLS is handled by
OpenSSL, make sure that the server is setting the SSL_MODE_RELEASE_BUFFERS ag
correctly.8

It’s dicult to recommend any one keep-alive timeout value, because dierent sites have
dierent usage patterns. Tat said, 60 seconds is probably a good starting point. A better
value can be selected on per-site basis by monitoring the user agent behavior.9

Tere is a limit to the maximum keep-alive timeout you can use, because user agents have
their maximums, no matter what servers say. In my tests, Internet Explorer 11 on Windows
7 closed the connection aer 30 seconds, Safari 7 aer 60, and Chrome 35 aer 300 seconds.

7 Slowloris HTTP DoS (RSnake et al., 17 June 2009)
8 SSL_CTX_set_mode(3) (OpenSSL, retrieved 6 July 2014)
9 This can be done by recording the keep-alive status of each connection to the web server access log. The Apache and Nginx chapters both

show how that can be done.
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Firefox 30 defaults to using 115 seconds for the keep-alive timeout (the network.http.keep-
alive.timeout parameter in about:config) unless the server requests a dierent value. With
servers that do, Firefox is happy to stay connected until the server closes the connection.

SPDY, HTTP 2.0, and Beyond 
Tere is only so much we can achieve by tuning TCP and HTTP connection persistence
alone. To go further, in 2009 Google started to experiment with a new protocol called
SPDY.10 Te idea was to introduce a new protocol layer between TCP and HTTP to speed
things up. Positioned in the middle, SPDY could improve HTTP connection management
without actually making any changes to HTTP itself.
With SPDY, multiple HTTP requests and responses are multiplexed, which means that a
browser only ever needs one connection per server. To achieve similar performance with
HTTP alone, browsers have to use multiple connections in parallel. A single long-lived con-
nection allows for much better TCP utilization and reduced server load.
SPDY was a great success, showing performance improvements in a variety of situations.
Perhaps most importantly, SPDY experiments led to an industry-wide eort to design
HTTP 2.011 around the same concepts, waking up HTTP from deep sleep: the previous ver-
sion, HTTP 1.1, was released in 1999.
Whereas HTTP 2.0 is still being developed, SPDY is practical to deploy. Client support is
pretty good among modern browsers: Chrome and Firefox have supported it for a long
time, Internet Explorer added support in 2013 (although only in version 11 running on
Windows 8.1), and Apple announced that it will support SPDY in OS X Yosemite. On the
server side, popular web serving platforms as Apache and Nginx either support or can be
extended to support SPDY.
We should expect that SPDY and HTTP 2.0 will squeeze more performance out of TCP, but
what next? One option is to try to improve the performance of TCP further. For example,
TCP Fast Open is an optimization technique that removes one round-trip from the TCP
handshake.12 Alternatively, we can look at bypassing TCP altogether. Another experiment
led by Google, called QUIC (Quick UDP Internet Connections),13 is a new reliable connec-
tion protocol built on top of UDP that aims to improve both performance (with better con-
nection management, congestion control, and packet loss handling) and security (by using
encryption by default).

10 SPDY (The Chromium Projects, retrieved 27 June 2014)
11 HTTP 2.0 (Wikipedia, retrieved 27 June 2014)
12 TCP Fast Open (Wikipedia, retrieved 27 June 2014)
13 QUIC (Wikipedia, retrieved 27 June 2014)
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Content Delivery Networks
If you maintain a web site that targets a global audience, you need to use a content delivery
network (CDN) to achieve world-class performance. In a sentence, CDNs are geographically
distributed servers that add value largely by oering edge caching and trac optimization
(oen also called WAN optimization).
Most times, when you need to scale a web site, throwing money at the problem helps. If
your database is dying under heavy load, you can buy a bigger server. If your site can’t run
on a single server, you can deploy a cluster. However, no amount of money can eliminate
network latency. Te further away your users are from your servers, the slower your web site
will be.
In such situations, connection setup is a big limiting factor. TCP connections start with a
three-way handshake, which requires a round-trip to complete. Ten there’s the TLS hand-
shake, which requires two additional round-trips, bringing the total to three for HTTPS.14

Tat’s about 90 ms for a nearby user who’s about 30 ms RTT away, but may be much more
for someone who is on the other side of the world.
CDNs typically operate large numbers of geographically distributed servers, with the idea
being to have servers as close to end users as possible. With that proximity, they typically
reduce latency in two ways—edge caching and connection management.

Edge caching
Because CDNs place servers close to users, they can deliver your les to users as if
your servers were right there. Some CDNs enable you to push your les to them; this
approach oers the best control and performance, but it’s more dicult to manage.
Some other CDNs operate as reverse proxies (they retrieve les over HTTP when
they need them and cache them locally for a period of time); they are not as opti-
mized but are instead almost trivial to deploy.

Connection management
Caching is the best-case scenario for CDN deployment, but it’s not suitable for all
sites. If your content is dynamic and user specic, your servers will need to do the
actual work. But a good CDN should be able to help, even without any caching, via
connection management. Tis seems counterintuitive at rst. How can trac go
faster through a CDN than it can if it goes directly to the origin server? Te answer is
that a CDN can eliminate most of the connection setup cost by reusing connections
over long periods of time.
During connection setup, most of the time is spent waiting. You send a packet and
wait for a response. When the other end is very far away, you wait for a long time. But

14 The same latency applies to any client-speaks-rst protocol. Latency for a server-speaks-frst protocol is 2.5 round-trips, because the server

can send application data immediately after its Finished message.
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when the other end is near, you get a quick response. To minimize the waiting, CDNs
can route trac through their own infrastructure, exiting at a point closest to the des-
tination. With full control over their own servers, CDNs can keep the internal con-
nections open for a long time. If they use TCP, that means that there is no connection
setup and that connections run at their maximum speed. But they can also use pro-
prietary protocols and connection multiplexing for even better performance.
When a CDN is used, the user connects to the closest CDN node, which is only a
short distance away. Because the distance is small, the network latency of the TLS
handshake will also be small—for example, 15 ms for a round-trip time of 5 ms. In
the ideal case for a new TLS connection, the CDN can reuse existing long-range con-
nections that it keeps open, going from that node all the way to the nal destination.
Tat means that no further work is necessary; aer the initial fast TLS handshake
with the CDN, the user’s connection with the server is eectively open and applica-
tion data can begin to ow.
Of course, not all CDNs operate sophisticated internal networks that operate in this
way; it’s necessary to research the implementation details when deciding which CDN
to use. Or, even better, test the actual performance.

Figure 9.2. TLS connection setup time comparing direct trac with a CDN with existing origin connections
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Note
Not all CDNs are equal, especially when it comes to following best practices for
TLS performance outlined in this chapter. Before you decide which CDN to use,
make sure to check if they can serve TLS at the fastest possible speed. Ilya Grigorik
maintains a handy chart on his web site dedicated to TLS performance. 15

15 CDN & PaaS performance (Is TLS Fast Yet?, retrieved 27 June 2014)
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TLS Protocol Optimization
With connection management out of the way, I’ll now focus on the performance character-
istics of TLS. Te aim here is to understand how each aspect of TLS impacts performance,
equipping you with the knowledge to tune the protocol for both security and speed.

Key Exchange
Aer latency, the next biggest cost of using TLS comes from having to perform CPU-inten-
sive cryptographic operations in order to securely agree on connection security parameters.
Tis part of the communication is known as key exchange. Its cost is largely determined by
the choice of server private key algorithm, key size, and the key exchange algorithm.

Key size
To achieve security, cryptography relies on processes that are relatively fast with ac-
cess to relevant keys but hugely expensive and time consuming otherwise. Te eort
required to break an encryption key depends on its size; the bigger the key, the better
the protection. However, a bigger key also means longer encryption and decryption
times. For best results, select a key size that provides the appropriate level of security
but not anything over that.

Key algorithm
Tere are two private key algorithms that you can use today: RSA and ECDSA.16 RSA
is still the dominating algorithm, largely because it was the only choice for a very long
time. But RSA is starting to be too slow now that 2,048 bits is the minimum strength
and many are considering deploying 3,072 bits of security in the near future. ECDSA
is much faster and thus increasingly appealing. At a modest size of 256 bits, ECDSA
provides security equivalent to 3,072-bit RSA and better performance.

Key exchange
In theory, you can choose from three key exchange algorithms: RSA, DHE, and ECD-
HE. But you don’t want to use RSA because it does not provide forward secrecy. Of
the remaining two, DHE is too slow; that leaves you with ECDHE.
Te performance of the DHE and ECDHE key exchanges depends on the strength of
the congured negotiation parameters. For DHE, commonly seen parameter
strengths are 1,024 and 2,048 bits, which provide 80 and 112 bits of security, respec-
tively. As for ECDHE, the security and performance are inuenced by the choice of
named curve. Te de facto standard secp256r1 curve provides 128 bits of security.
Te only other practical choice is secp384r1, but this curve is about 30% slower serv-
er-side and doesn’t provide a meaningful increase in security.

16 Although the protocol includes many DSA (DSS) suites, there isn’t wide support for using DSA keys at 2,048 and higher strengths. The maxi-

mum is 1,024 bits, which is insecure.
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In practice, you can’t freely combine key and key exchange algorithms. Instead, you can use
the combinations specied by the protocol. Tere are four possibilities: RSA, DHE_RSA,
ECDHE_RSA, and ECDHE_ECDSA. To understand the performance dierences among these
suites, I ran a test of all four choices using 2,048-bit RSA keys and 256-bit ECDSA keys.
Tese key sizes are what you would expect to use for an average web site. Te DHE key ex-
change was represented with two DH parameter strengths—1,024 and 2,048 bits. Te ECD-
HE key exchange used the secp256r1 curve.
For the test, I used a dedicated Amazon EC2 m3.large instance, which has two Intel Xeon
E5-2670 2.5 GHz processors. Te test was run using a modication17 of Vincent Bernat’s
tool for OpenSSL microbenchmarking.18 I tested OpenSSL 1.0.1f that comes with Ubuntu
14.04 LTS. Te tool runs on two threads (one for the client and another for the server), per-
forms 1,000 TLS handshakes sequentially, and measures CPU consumption of each thread
at the end. You can see the results in the following graph.

Figure 9.3. Performance comparison of TLS key exchange algorithms (lower is better)
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17 ivanr / ssl-dos (GitHub, retrieved 27 June 2014)
18 SSL/TLS & Perfect Forward Secrecy (Vincent Bernat, 28 November 2011)
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What can we conclude from the test results?
• Te servers using RSA today could enable forward secrecy and improve their hand-

shake performance by a factor of two by moving to the ECDHE key exchange and
ECDSA keys.

• Enabling forward secrecy (using the ECDHE key exchange) while keeping RSA for au-
thentication degrades the handshake performance slightly, but it’s unlikely that there
would be a measurable impact overall.

• Te DHE key exchange is slower even with weak 1,024-bit parameters, but it’s much
slower when used with stronger 2,048-bit parameters. If you care about performance,
DHE should be used only as a last resort. Because most modern clients support ECD-
HE, you can congure DHE suites with lower priority so that only old clients use them.
Twitter reported that 75% of their clients use ECDHE,19 which means that up to 25%
might end up using the slower DHE.
Compared to ECDHE, the DHE key exchange also increases the size of the server side
of the handshake by 320 to 450 bytes, depending on the strength of the parameters.
Tis is because the ECDHE key exchange uses standardized parameters that are refer-
enced by name, but the DHE key exchange requires the server to select the negotiation
parameters and send them to the client every time.20

• Clients need to do more work when ECDHE and ECDSA are deployed, but that’s not a
problem, because they submit at most a few connections at any one time. Servers, on
the other hand, have to handle hundreds and thousands of connections in parallel.

Note
Te test results presented here should be used only as a guideline. Tey measure
the performance of a particular version of OpenSSL that’s used for both sides of the
connection. In practice, TLS performance will vary across libraries, devices, and
CPUs.

For a more detailed look at the key exchange performance, I recommend a study by Huang
et al., who looked at the performance of forward secrecy deployments.21 Another good
source of information is Symantec’s 2013 whitepaper that discusses the performance of EC
cryptography.22

19 Forward Secrecy at Twitter (Jacob Hoffman-Andrews, 22 November 2013)
20 I discuss the structure of the key exchange messages in the section called “Key Exchange ” in Chapter 2.
21 An Experimental Study of TLS Forward Secrecy Deployments (Huang et al., 2014)
22 Elliptic Curve Cryptography (ECC) Certicates Performance Analysis (Kumar et al., 12 June 2013)
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False Start
In 2010, Google proposed a modication to the TLS protocol with an aim to reduce the latency
of the full handshake from two round-trips to only one round-trip.23 Normally, a full TLS
handshake requires two round-trips, consisting of four bursts of protocol messages (two for
each client and server), and TLS allows sending of (encrypted) application data only aer the
handshake is fully complete. False Start proposes a tweak to the timing of protocol messages;
rather than wait for the entire handshake to be complete, we can start sending application data
earlier, assuming that the handshake will be successful.
With this change, it’s possible to achieve much better performance. Google cited a 30% reduc-
tion in handshake latency, which is a really big deal.24 Te downside of this change is that if
attacked, the client will have sent some encrypted application data to the attacker, which nor-
mally doesn’t happen. Furthermore, because the integrity of the handshake is validated only
aer it is fully completed, the parameters used for the encryption could have been inuenced
by the attacker.
To counter this attack vector, Google proposed to only ever use False Start with strong cryptog-
raphy: suciently strong private keys, key exchanges that support forward secrecy, and 128-bit
cipher suites.
Despite the performance improvements, Google declared False Start a failure in 2012—there
were too many incompatible servers on the Internet.25 But they didn’t turn it o altogether;
Chrome continued to use False Start with servers that implement the NPN extension (used to
negotiate the SPDY protocol), which were deemed safe. Other browsers followed and adopted
similar behaviors. Firefox supports False Start since version 2826 and has the same require-
ments as Chrome. Apple added support in OS X 10.9, requiring strong cipher suites and For-
ward Security but not NPN.27 Internet Explorer, starting with version 10, implements False
Start as per the original proposal, but also uses a blacklist to disable this feature on sites that are
known not to support it.28

False Start is a great incentive to support forward secrecy. Not only will your security be signi-
cantly better, but the performance will improve too.

23 Transport Layer Security (TLS) False Start (Langley et al., June 2010)
24 SSL FalseStart Performance Results (Mike Belshe, The Chromium Blog, 18 May 2011)
25 False Start’s Failure (Adam Langley, 11 Apr 2012)
26 Re-enable TLS False Start (Bugzilla@Mozilla, bug #942729)
27 sslTransport.c (Apple Secure Transport source code, retrieved 5 May 2014)
28 Networking Improvements in IE10 and Windows 8 (Eric Lawrence, IEInternals, 1 August 2012)
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Certifcates
During a full TLS handshake, the server presents its certicate chain for inspection by the
client. Te size of the certicate chain and its correctness can have an impact on handshake
performance.

Use as few certicates as possible
Each certicate in the chain adds to the size of the handshake. Too many certicates
in the chain may cause overow of the initial congestion window, as discussed earlier.
In the early days of SSL, there were CAs that issued server certicates directly from
their roots, but this practice is dangerous (the roots should be kept oine) and is be-
ing deprecated. Today, having two certicates in the chain is the best you can have:
one certicate for the server and the other for the issuing CA.
Size is not the only factor; each certicate in the chain must be validated by checking
that the signature matches the public key in the issuing certicate. Depending on the
user agent, the revocation status of each certicate might need to be checked, too.
Although I wouldn’t recommend to choose your CA based on the size of its trust
chain, you should check ahead of time that its chain is not too long.

Include only necessary certicates
It’s a frequent error to include unnecessary certicates in the chain. Each such certi-
cate typically adds 1–2 KB to the overall size of the handshake.
Oen, the root certicate is included, even though it serves no purpose there. User
agents will either trust the root certicate (and thus already have a copy) or they
won’t. Having the root in the chain makes no dierence. Tis is a common problem
because even some CAs include their root certicates in the installation instructions.
In other cases, unnecessary certicates in the chain are a result of conguration error.
It’s not uncommon to see servers including intermediate certicates le over from a
previous conguration. In some rare cases, servers send their entire collection of
trusted certicates—hundreds of them.

Provide a complete chain
For a TLS connection to be trusted, the server must provide a complete chain with
certicates that lead a trusted root. Another common error is to provide an incom-
plete certicate chain. Although some user agents are able to obtain the missing cer-
ticates, doing that might involve looking for them over HTTP, which is an activity
that might take many seconds. For best results, ensure that the chain is valid.

Use EC certicate chains
Because ECDSA keys use fewer bits, ECDSA certicates take less space. Huang et al.
(2014) observed that a 256-bit ECDSA certicate chain is about 1 KB shorter than a
2,048-bit RSA chain.
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Be careful about using too many hostnames on the same certicate
Recently, it has become common practice to share one certicate among dozens and,
in some cases, even hundreds of sites. Tis is done to allow many sites to share the
same IP address, thus supporting clients that do not support virtual secure sites (via
the Server Name Extension, or SNI). Each hostname added to the certicate increases
its size. A few hostnames are not going to have any detectable eect, but hundreds
might.
Tere’s a trick you can use if you want to keep handshake size down to a minimum
but still have to host multiple sites on the same IP address: (1) get a separate certi-
cate for each hostname you wish to run and congure your web server to serve these
certicates to the clients that support SNI; (2) get one fallback certicate that con-
tains all the hostnames you have on the same IP address and congure your web
server to serve it to the clients that do not support SNI. If you do this, your SNI
clients (the majority) will get small certicates for the sites they wish to access, and
everyone else (a small number of legacy clients) will get the single long certicate.

Warning
When client authentication is required, it’s possible to congure your server to ad-
vertise which issuing CAs are acceptable for the client certicate. Each such CA is
identied with its distinguished name. When there are too many CAs in the con-
guration, the size of the list can run into many kilobytes, which impedes perfor-
mance. Because advertising acceptable CAs is optional, you can avoid it for perfor-
mance reasons.

Revocation Checking
Even though certicate revocation is in a state of ux and user agent behavior varies widely,
the server operator’s job is clear—deliver revocation information at the fastest speed possi-
ble. In practice, this translates to the following rules.

Use certicates with OCSP information
OCSP is designed for real-time lookups, which allow user agents to request revoca-
tion information only for the web site they are visiting. As a result, lookups are short
and quick (one HTTP request). CRL, by comparison, is a list of many revoked certi-
cates. Some browsers download CRLs when OCSP information is not available, in
which case the communication with your web site might be suspended until the
download is complete. Delays of tens of seconds are not unusual, especially over slow
internet connections (think mobile devices).

Use CAs with fast and reliable OCSP responders
OCSP responder performance varies among CAs. Tis fact remained hidden for a
long time, which is unusual given the potential for high performance degradation by
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slow and faulty OCSP responders. Before you commit to a CA, check their OCSP re-
sponder history. Refer to the section called “Responder Availability and Performance”
in Chapter 5 for more information. As a rule of thumb, the best performance is going
to be with CAs who use CDNs to distribute revocation information.
Another criteria for CA selection is how quickly they update their OCSP responders.
To avoid site errors, you want your certicates to be known to the responder as soon
as they are issued. Inexplicably, some CAs have long delays for new certicates, dur-
ing which OCSP responders return errors.

Deploy OCSP stapling
OCSP stapling is a protocol feature that allows revocation information (the entire
OCSP response) to be included in the TLS handshake. With OCSP stapling enabled,
user agents are given all the information they need to perform revocation checking,
resulting in much better performance. At about 450 bytes, OCSP stapling increases
the size of the handshake and slows it down a bit, but the savings come from user
agents not having to look for revocation information on a separate connection to the
CAs’ OCSP responders.
OCSP responses vary in size, depending on the issuing CA’s deployment practices.
Short OCSP responses will be signed by the same certicate that issued the end-entity
certicate (the one that is being checked for revocation). Because the user agent will
already have the issuing certicate, the OCSP response can contain only the revoca-
tion status and a signature.
Some CAs prefer to use a dierent certicate to sign their OCSP responses. Because
user agents don’t know about that other certicate in advance, the CAs must include
it with every OCSP response. Tis practice adds slightly over 1 KB to the size of the
OCSP response.

Note
When browsers skip on revocation checking, they achieve better performance but
security suers. EV certicates are always checked for revocation and thus provide
better security. DV certicates, which are not always checked, may have a slight
performance edge. Tis problem can be solved with the use of OCSP stapling, in
which case the performance will be the same for both certicate types.

Session Resumption
TLS understands two types of handshakes: full and abbreviated. In theory, the full hand-
shake is performed only once, aer which the client establishes a TLS session with the server.
On subsequent connections, the two can use the faster abbreviated handshake and resume
the previously negotiated session. Te abbreviated handshake is faster because it doesn’t re-
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quire any costly cryptographic operations and uses one less round-trip. A good resumption
rate reduces server load and improves latency for end users.
TLS session resumption is jointly controlled by both parties involved in the communication.
On your side, you should aim to congure session caching so that individual sessions re-
main valid for about a day. Aer that, it will be up to clients to decide when to resume and
when to start afresh. My personal experience and anecdotal evidence from others suggests
that you can expect a 50% resumption rate on a properly congured server.3

Transport Overhead 
In TLS, the minimal transport unit is a TLS record, which can contain up to 16,384 bytes of
data. Without encryption, TLS records don’t do much and have only a small overhead; each
record starts with ve bytes of metadata: content type (one byte), protocol version (two
bytes), and data length (two bytes).

Figure 9.4. TLS record overhead for streaming, block, and authenticated cipher suites
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Encryption and data-integrity algorithms introduce additional overhead, which varies de-
pending on the negotiated cipher suite. Streaming ciphers incur little overhead, because
they produce one byte of output for every byte of input; overhead comes only from integrity
validation.
Block ciphers incur more overhead, because each TLS record needs to include an explicit IV
equal to the cipher block size as well as padding to force the length of plaintext to be a mul-
tiple of the block size. Te length of the padding varies depending on the length of data, but
it’s going to be one half of the block size on average. Most secure ciphers currently in use are
designed with a 16-byte block size.
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Ciphers that provide integrated authentication (AEAD suites) are somewhere in the middle:
they don’t use padding, but they include an eight-byte nonce with every record.
Te following table presents overhead calculations for the most commonly used suites.

Table 9.1. Transport overhead for each of the widely available ciphers

Cipher TLS Record IV/Nonce Padding
(average/
worst)

HMAC/Tag Total (average)

AES-128-CBC-SHA 5 16 8 / 16 20 49

AES-128-CBC-SHA256 5 16 8 / 16 32 61

AES-128-GCM-SHA256 5 8 - 16 29

AES-256-CBC-SHA 5 16 8 / 16 20 49

AES-256-CBC-SHA256 5 16 8 / 16 32 61

AES-256-GCM-SHA384 5 8 - 16 29

CAMELLIA-128-CBC 5 16 8 / 16 20 49

3DES-EDE-CBC-SHA 5 8 4 / 8 20 37

RC4-128-SHA 5 - - 20 25

SEED-CBC-SHA 5 16 8 / 16 20 49

As you can see, the overhead varies a lot among cipher suites. In the worst case, suites that
use AES and SHA256 add 61 bytes of overhead on average. In the best case, authenticated
suites are quite slim at 29 bytes. Tis amount of overhead is not huge, especially when com-
pared with the overhead of the next layer down; the overhead of TCP/IP is 52 bytes per
packet for IPv4 and 72 bytes per packet for IPv6. Given that IP packets tend to be around
1,500 bytes but TLS records go as far as 16,384 bytes, it’s likely that TCP will incur much
more overhead than TLS.
Either way, it’s vital not to send small amounts of data if you can avoid it. Unless real-time
delivery of short messages is required, some buering of application data is necessary to en-
sure low network overhead. For example, when constructing an HTML page dynamically
it’s generally better to use a small output buer of, say, 4 KB so that tiny writes are combined
and sent in larger batches. I’ve seen some miscongured applications in which every single
data write (of only a few bytes) produced a TCP packet, causing a huge network overhead.
Tis type of problem will be more common when working with sockets directly rather than
in web applications.
If you’re not sure what your application is doing (which is not uncommon, given how many
abstraction layers we have in our soware these days), capture the trac at the network lay-
er to observe the TCP packet and TLS record sizes.
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Symmetric Encryption 
When it comes to CPU consumption, the worst is over once a TLS handshake completes.
Still, cryptographic operations used for symmetric encryption have a noticeable CPU cost,
which depends on the choice of cipher, cipher mode, and integrity validation functions.
To determine performance characteristics of various ciphers suites, I conducted further tests
using the same environment that I used earlier in this chapter. I made sure to select a pro-
cessor that supports the AES-NI instruction set, which provides hardware acceleration for
the AES cipher.29 I expect most performance-sensitive web sites to operate on similar hard-
ware. Each test run consisted of two threads—one for the client and the other for the server
—sending about 1 GB of data to the other side, 16 KB at time. I tested all practical and se-
cure cipher suites available today as well as some legacy suites for comparison.

29 If you’re purchasing hardware, examine the CPU specications to determine AES-NI support. In a cloud environment, you should be able to do

the same by examining the vendor’s documentation. On a server running Linux, look for the “aes” fag in /proc/cpuinfo.

286 Chapter 9: Performance Optimization



Figure 9.5. Performance comparison of various cipher suites, relative to AES-128-CBC-SHA (lower is better)
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I decided on AES-128-CBC as the reference suite, because it’s one of the most commonly used
suites among the still-secure ones. Te results tell us an interesting story:

• AES is a clear performance winner. Even without hardware acceleration, AES is fast—
faster than all other ciphers except for RC4. With hardware acceleration, we see that
AES-128-CBC is 2.77 times faster than CAMELLIA-128-CBC. Compared to the fastest AES
result, AES-128-GCM-SHA256, CAMELLIA-128-CBC is four times slower.

• AES used with SHA256, as specied in TLS 1.2, is signicantly slower. Tis is because
SHA256 is much slower than SHA.

• AES-128 in authenticated (GCM) mode is 1.4 times faster than the reference AES suite.
It’s even faster than RC4-128-SHA, which was the previous speed champion. Tis is very
encouraging, given that this suite is also one of the strongest currently available.

• Te legacy 3DES and SEED suites are many times slower and should be avoided. Te
same goes for RC4, which, although pretty fast, is insecure.
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Although we tend to spend most of our time benchmarking servers, it’s worth keeping an
eye on client-side performance. Newer desktops and laptops might support hardware-accel-
erated AES, but there are large numbers of underpowered mobile devices that don’t. For this
reason, Google is currently experimenting with a new authenticated cipher suite called
ChaCha20-Poly1305.30 Although roughly half the speed of accelerated AES, the perfor-
mance of this new suite is about three times better on mobile devices, with potential for fur-
ther improvements. Google is already heavily using the new suite; the rest of us will have to
wait for the standardization process to complete.31

TLS Record Buffering Latency 
If you recall from an earlier discussion, TLS records are the smallest unit of data TLS can
send and receive. Because there is mismatch between the size of TLS records and the size of
the underlying TCP packets, a full-sized TLS record of 16 KB needs to be chopped up into
many smaller TCP packets, typically each under 1.5 KB.

Figure 9.6. Example fragmentation of 32 KB of application data for transport using TLS and TCP

Application payload (32 KB)

TLS record (16 KB)TLS record (16 KB)

TCP packets

But there’s a catch: even though some pieces of an entire record will arrive sooner and some
later, no processing can be done until all of them are available. Tis is because a TLS record
is also the smallest unit of data that can be decrypted and integrity-validated. Tis buering
eect can sometimes result in an increase in latency.

Packet loss and delay
Although TCP can recover from lost and delayed packets, it does so at a cost of one
round-trip. Each additional round-trip means a delay for the entire TLS record, not
just the lost packet.

30 TLS Symmetric Crypto (Adam Langley, 27 Feb 2014)
31 ChaCha20 and Poly1305 based Cipher Suites for TLS (Langley and Wang, November 2013)
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Initial congestion window
Another way to trigger an additional round-trip delay is by sending large chunks of
data early in a connection, overowing the initial congestion window. Once the con-
gestion window is full, the sender will need to wait for an acknowledgment (one
round-trip) before it can grow the congestion window and send more data.

If your web server supports TLS record tuning, you should consider changing the default
value—which is probably large, most likely 16 KB—to something more reasonable. Finding
the best size requires some experimentation, because it depends on the deployed cipher
suites and their transport overhead, as discussed in an earlier section.
If you don’t want to spend much time on this task, consider using about 4 KB as a reason-
able default. If you want to set the TLS record size to match the size of TCP packets exactly,
start at about 1,400 bytes and tweak the exact size by observing the packets on the wire. For
example, assuming that the IP Maximum Transfer Unit (MTU) is 1,500 bytes:

    1,500 bytes MTU
  -    40 bytes IPv6 header
  -    32 bytes TCP header
  -    49 bytes TLS record
  -------------------------
  = 1,378 bytes

Tere are several problems with using a static TLS record size, no matter what value is se-
lected. First, MTU values vary. Although most clients inherit the Ethernet limit of 1,500
bytes, there are protocols that support larger sizes. For example, so-called jumbo frames al-
low for up to 9,000 bytes. Second, it’s easy to miscalculate and specify an incorrect size. For
example, the calculation is slightly dierent if you’re using IPv4 (20 bytes in the header,
rather than 40) or if your cipher suite conguration changes.
Another problem is that by reducing the size of the TLS record you increase the transport
overhead. To transmit 16 KB of data using a large TLS record, you might incur an overhead
of about 50 bytes (0.3%). But if you have to split that same record into, say, 10 records, the
overhead will be 500 bytes (3%).
It’s probably best to leave TLS record size tuning to web servers, for two reasons: (1) they
can discover the MTU at the beginning of each connection and (2) they can vary the record
size over the connection lifetime, using small values early on when the congestion window
is small and switching to larger values as more data is transferred. HAProxy does exactly
that.32

32 OPTIM: ssl: implement dynamic record size adjustment (Willy Tarreau, 2 February 2014)
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Interoperability
Interoperability issues can sometimes have a substantial negative performance impact, yet
they can remain hidden unless you know exactly where to look. For example, if your server
is intolerant to some of the newer protocol features (e.g., TLS 1.2), browsers might need to
make several connection attempts to negotiate an encrypted connection.33 However, unless
you experience this problem yourself and notice the performance degradation, it’s unlikely
that you will know about it; servers can’t detect it and browsers don’t alert you about it.
Te best way to ensure good TLS performance is to run an up-to-date TLS stack with sup-
port for the most recent protocol versions and extensions.

Hardware Acceleration 
In the early days of SSL, public cryptography was too slow for the then available hardware.
As a result, the only way to achieve decent performance was by using hardware acceleration.
Over time, as the speed of general-purpose CPUs increased, acceleration devices started to
lose their market.34

Companies running the world’s largest web sites are happy handling encryption in soware.
For example, Facebook had this to say on hardware acceleration:35

We have found that modern soware-based TLS implementations running on
commodity CPUs are fast enough to handle heavy HTTPS trac load with-
out needing to resort to dedicated cryptographic hardware. We serve all of our
HTTPS trac using soware running on commodity hardware.

Today, hardware cryptographic devices are purchased more for their ability to store private
keys safely (this type of product is known as Hardware Security Module, or HSM) and less
for their ability to accelerate public key cryptography. However, using an HSM could create
a bottleneck in your architecture, because such devices are more dicult to scale.
Hardware acceleration could be the right thing to do depending on your circumstances. For
example, if you have an existing system that is operating at the edge of capacity, installing an
acceleration card might be the preferred option over other hardware and architectural
changes.

33 Multiple connection attempts are part of the voluntary protocol downgrade mechanism employed by modern browsers. I discuss it at length in

the section called “Voluntary Protocol Downgrade” in Chapter 6.
34 High Scalability for SSL and Apache (Cox and Thorpe, July 2000)
35 HTTP2 Expression of Interest (Doug Beaver, on the HTTP Working Group mailing list, 15 July 2012)
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Denial of Service Attacks
Denial of Service (DoS) attacks—for fun or for prot—are common on the Internet. Attack-
ing is easy and cheap. Defending, on the other hand, is costly and time consuming. Any
small web site can be quickly overwhelmed by pretty much anyone who wants to try. As for
bigger sites, if they stay up, it’s only because they spent a lot of money on defense and the
attacker hasn’t tried hard enough.
Te principal way of executing serious DoS attacks is using botnets, which are large net-
works of compromised computers. Servers are valued as botnet nodes because they tend to
have access to ample bandwidth. Home computers are valued because there are so many of
them; what they lack in power, they make up in numbers.
If someone is willing to use a botnet to attack you, chances are that your TLS conguration
is not going to make a dierence. With or without TLS, determined attackers can continu-
ously increase the size of the botnet until they succeed, at little cost to them. Tat said,
there’s currently an interesting experimental proposal to extend TLS to require proof of
client work before spending server resources.36 However, ultimately, defending against DoS
attacks is usually done at the network level.

Connection throttling
Tis is an “entry-level” DoS defense measure, which you can deploy for an entire net-
work using specialized devices or even on individual servers in kernel congura-
tion.37 With this approach, you should be able to defend against the simpler attacks—
for example, those executed from a few IP addresses. Connection throttling is not go-
ing to be of much help with attackers that ood your internet connection with trac
from many individual hosts.

Overprovisioning
Te more resources you have, the more dicult it will be for your attackers to suc-
ceed. Overprovisioning is expensive, but buying more servers and having a very large
internet connection could be a viable approach if you’re under frequent attacks.

Tird-party mitigation
When all else fails, you can deal with the situation by employing one of the compa-
nies who specialize in mitigation of distributed DoS attacks. Teir primary advantage
is that they have ample resources at their disposal as well as the know-how.

All of this does not mean that you should give up on tuning TLS to minimize your exposure
to DoS attacks. On the contrary, there are certain aspects of TLS that make DoS attacks easi-
er; they require your attention.

36 Using Client Puzzles to Protect TLS Servers From Denial of Service Attacks (Y. Nir, 29 April 2014)
37 SSL computational DoS mitigation (Vincent Bernat, 1 November 2011)
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Key Exchange and Encryption CPU Costs
With plaintext protocols (e.g., HTTP), servers frequently spend most of their time sending
les to their clients. Tis operation is so common that applications can ask the kernel to
send a particular le to a socket without bothering with the details. With TLS, the same ap-
plication has to read a le, encrypt it, and transmit it. Tat’s always going to be slower.
But it’s going to be slower for clients, too, because they have to perform those same opera-
tions, just in a dierent order. Where it gets messy is the handshake, which requires several
CPU-intensive cryptographic operations. Clients and servers spend dierent amounts of
time during a handshake, with a dierent performance prole for each key-exchange algo-
rithm. If clients have to perform less work than servers, then we have a situation that can be
used for DoS attacks.
Tis is exactly the case with RSA, which is used in a particular way (with short public expo-
nents) that makes operations with public keys (which clients perform) faster than opera-
tions with private keys (which servers perform). In practice, with an average 2,048-bit RSA
key, servers end up doing about four times more work. As a result, a client with a modest
CPU can overpower a strong server by performing many handshakes in parallel.
To conrm this, I ran a test with two identical computers, one running a web server with a
2,048-bit RSA key and the other attacking it. I was able to trivially overwhelm the CPU on
the server by using the popular ab benchmarking tool against it. In the meantime, the client
was running comfortably at slightly over 10% CPU consumption.
RSA is still the dominant authentication and key-exchange algorithm, but there’s good
news: it’s on the way out. Its biggest problem is that it does not support forward secrecy. In
the short term, people are turning to ECDHE_RSA, which keeps RSA for authentication but
uses ECDHE for the key exchange. With ECDHE_RSA, clients still perform less work, but it’s
not as bad: only 2.5 times less. Further in the future is ECDHE_ECDSA, which turns things
around—clients perform about 1.5 times more work!

Note
To benet from these alternative algorithms, you’d have to remove support for the
RSA key exchange from your conguration. Otherwise, the attacker could force the
slowest suites during the attacks.

Encryption has its costs, too. You saw earlier in this chapter that the SEED cipher is 4x times
slower and 3DES is 11x times slower than the most commonly used AES-128. Many servers
keep 3DES in their conguration for older clients such as Internet Explorer 6. Although it’s
unlikely that the choice of cipher suite plays a major role in a TLS DoS attack, it certainly
can make things worse.
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Client-Initiated Renegotiation
Renegotiation is a protocol feature that allows either side to request a new handshake to ne-
gotiate potentially dierent connection parameters. Tis feature is rarely needed; allowing
clients to request renegotiation, in particular, has no practical purpose at present, but it does
make DoS mitigation more dicult.
In a “standard” TLS computational DoS attack, there’s one handshake per connection. If you
have connection throttling in place, you know that one connection to your TLS server costs
you some amount in CPU processing power. If client-initiated renegotiation is allowed, at-
tackers can perform many handshakes on the same connection, bypassing the detection
mechanisms.38 Tis technique also reduces the number of concurrent connections needed
and thus improves overall attack latency.
In October 2011, a German hacker group, “Te Hacker’s Choice,” released a tool called thc-
ssl-dos, which uses renegotiation to amplify computational DoS attacks against TLS.39

Not all servers support client-initiated renegotiation. IIS stopped supporting it with IIS 6,
Nginx never supported it, and Apache stopped supporting it in 2.2.15. But there is still a
number of vendors who are reluctant to remove this feature. Some vendors who are keeping
client-initiated renegotiation are looking to limit the number of renegotiations that take
place on the same connection. Ideally, you shouldn’t allow client-initiated renegotiation at
all.

Optimized TLS Denial of Service Attacks
Renegotiation makes TLS computational DoS attacks more dicult to detect, but tools that
use it are not fundamentally dierent; they’re still essentially sending a large number of vir-
tual clients to a web site. In both cases, the handshake CPU processing asymmetry is what
makes the attack possible. As it turns out, it is possible to improve the approach so that no
cryptographic operations are needed on the client.
When the thc-ssl-dos tool was announced, it received a fair amount of media interest. Eric
Rescorla, one of the TLS protocol designers, followed up with an analysis of the use of rene-
gotiation as a DoS amplication technique.40 His conclusion was that there is an easier way
to execute computational TLS DoS. In his approach, clients use hardcoded handshake mes-
sages that require no cryptographic operations. In addition, they avoid parsing or otherwise
validating any of the messages received from the server. Because the messages are struc-

38 It’s still possible to detect the attacks, but that would typically require deep trac inspection, ideally by parsing the protocol messages. This

ability is not as common as straightforward connection counting.
39 THC SSL DOS (The Hacker’s Choice, 24 October 2011)
40 SSL/TLS and Computational DoS (Eric Rescorla, 25 October 2011)

Client-Initiated Renegotiation 293



turally correct, they appear valid to the server until the very end of the handshake. By that
point, it’s too late, because all the expensive work had been done.
Using Eric’s blueprint, Michal Trojnara subsequently wrote a proof-of-concept tool called
sslsqueeze.41

When I tested sslsqueeze, I found that it performed much better than ab. I installed it on a
single-CPU server running a 2.80 GHz Intel Xeon E5-2680, and the target was an eight-
CPU server in the same data center. Te tool consumed all CPU resources on the target
server aer only a few seconds in operation.

41 Index of ftp://ftp.stunnel.org/sslsqueeze/ (Michal Trojnara, 16 November 2011)
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10 HSTS, CSP, and Pinning
Tis chapter discusses several technologies that can substantially improve the security of the
SSL/TLS and PKI ecosystem. Tey fall into two groups. In the rst group, we have HTTP
Strict Transport Security (HSTS) and Content Security Policy (CSP), which are HTTP-specif-
ic and widely supported by browsers. Tey are not only practical today but also fundamen-
tal for the security of your web sites. I cover them in detail sucient for deployment.
Te second group of technologies implements pinning, which is a technique that makes TLS
authentication more secure. Outside of native applications (where pinning is fully practi-
cal), pinning is still early in its lifecycle; there is currently no good support in browsers.
Tus, this chapter presents the possible future directions, but we’re yet to see which will gain
wide adoption and become standards.

HTTP Strict Transport Security
HTTP Strict Transport Security (HSTS), released in November 2012 as RFC 6797,1 is a pro-
posed standard that describes a strict approach to the handling of web site encryption. It is
designed to mitigate several critical weaknesses in how TLS is implemented in today’s
browsers.

No way of knowing if a site supports TLS
HTTP does not specify a way for user agents to determine if web sites implement
TLS.2 Because of this, when a URL without a scheme is entered into the address bar,
browsers have to choose between HTTP and HTTPS protocols. At the moment, they
default to plaintext communication, which is vulnerable to interception.

Tolerance of certicate problems
Since the very beginning of the Web, browsers have been sidestepping the problem of
TLS connection authenticity. Rather than abandon connections to sites with invalid

1 RFC 6797: HTTP Strict Transport Security (HSTS) (Hodges and Jackson, November 2012)
2 This could be implemented using DNS SRV records, which are designed to point to the exact hostname and port that provide a particular

service. SRV records are specied in RFC 2782, which was published in February 2000.
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certicates, browsers display warnings and allow their users to click through. Studies
have shown that many users ignore the warnings and expose themselves to active at-
tacks.

Mixed content issues
A frequent mistake when developing secure web sites is to use plaintext resources
from an otherwise secure HTML page. All browsers allow such resources to a certain
degree, and in many cases these plaintext connections can be used to compromise the
entire user session. Another common problem is mixing plaintext and encrypted
pages on the same domain name. Tis is very dicult to implement correctly and
most commonly leads to vulnerabilities.

Cookie security issues
Another common implementation mistake is to forget to secure application cookies.
Even when a web site is available only under TLS, an active network attacker can
tease the cookies out from the victim’s browser.

Note
For a complete discussion of all the problems listed here and dierent ways to at-
tack them, head to Chapter 5, HTTP and Browser Issues.

When HSTS is deployed on a web site, it addresses all of these issues by using two mecha-
nisms: (1) plaintext URLs are transparently rewritten to use encryption and (2) all certi-
cate errors are treated as fatal (users are not allowed to click through). In this way, HSTS
signicantly reduces the attack surface and makes the job of secure web site deployment
much easier. It is quite possibly the best thing to happen to TLS recently.
HSTS has its origins in the work of Jackson and Barth, who, in 2008, designed Force-
HTTPS,3 a cookie-based mechanism to allow “sophisticated users to transparently retrot
security onto some insecure sites that support HTTPS.” Along with their paper, they provid-
ed a proof of concept in the form of a Firefox extension.

Confguring HSTS
Web sites that wish to support HSTS do so by emitting the Strict-Transport-Security
header on all of their encrypted HTTP responses, like so:

Strict-Transport-Security: max-age=31536000; includeSubDomains

Assuming that the TLS connection is error free, a compliant browser will activate HSTS for
the duration of the retention period specied in the max-age parameter. Te

3 ForceHTTPS: Protecting High-Security Web Sites from Network Attacks (Jackson and Barth, 2008)
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includeSubDomains parameter species that HSTS should be enabled on the host that emit-
ted the header and also on all its subdomains.

Warning
Before deploying HSTS with includeSubDomains enabled, determine if forcing
browsers to use encryption on the entire domain name space might have negative
consequences on other sites that share the name. At the very least, ensure that all
your sites do support encryption and have valid certicates.

Te specication requires user agents to ignore the HSTS header if it is seen on a plaintext
connection or on a connection with certicate errors (this includes self-signed certicates).
Tis behavior is intended to prevent Denial of Service (DoS) attacks against plaintext-only
sites, which would otherwise be trivial to execute by an active network attacker. In addition,
using HSTS on IP addresses is not permitted.
It is possible to revoke HSTS; to do so, set the max-age parameter to zero:

Strict-Transport-Security: max-age=0

However, the revocation happens only when a browser (one that previously enabled HSTS
for the site) visits the site again and updates its conguration. Tus, the success of revoca-
tion (and policy adjustment, for that matter) will depend on the frequency of user visits.
In the best case, HSTS should be congured at the location that is closest to the user. For
example, if you have many web servers and a reverse proxy (or web application rewall) in
front of them, it makes sense to congure HSTS there, in a single location. Otherwise, con-
gure your HSTS policies at the web-server level. If your web server does not explicitly sup-
port HSTS, it most likely has a mechanism that allows adding of arbitrary response headers.
Te latter approach can work equally well, but do read the ne print. In some cases, adding
headers to error responses (e.g., 404 pages) either is impossible or requires special congu-
ration.
If all else fails, you can also add HSTS at the application level. However, be aware that your
application might not see all web site requests. For example, web servers typically deliver
static resources directly and also handle some redirections themselves.

Ensuring Hostname Coverage
By default, HSTS is enabled only on the hostname that emits the Strict-Transport-
Security response header. Sites that are deployed across more than one hostname (e.g.,
store.example.com and accounts.example.com) should therefore take care to activate HSTS
on all of them. Otherwise, it might happen that some users, who visit some hosts but not
the ones with the HSTS instructions, are le unprotected.
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Some applications use so-called domain cookies, which are set on the root domain name
(e.g., example.com) and can be used by any subdomain. Tis technique is typically used with
sites that are spread across multiple hostnames but require unied authentication and ses-
sion management. In this case, it is even more important to enable HSTS on all deployed
hostnames, including the root domain name. You don’t want to leave a loophole that might
be exploited for attacks.
Even sites that use only one hostname need to consider this problem, because it is very like-
ly that their users will sometimes access the site without the prex (e.g., example.com) and
sometimes with (e.g., www.example.com). Because we don’t control inbound links, we have
to take extra care when conguring HSTS and enable it on all hostnames.

Warning
A common mistake is to forget to congure HSTS on redirections. For example,
some of your users might arrive at your root domain name (e.g., example.com)
rst. If you don’t have HSTS congured there, users who arrive that way might still
be vulnerable to SSL stripping attacks, despite HSTS on the main domain name.
For best results, enumerate all paths that lead to your web site, and add HSTS to all
of them.

Cookie Security
Because HSTS enforces encryption on all connections to a particular web site, you might
think that even insecure cookies remain safe against an active network attacker. Unfortu-
nately, the cookie specication is very permissive and creates opportunities for additional
attack vectors, such as:

Attacks via made-up hostnames
Cookies are typically set for a particular hostname and all its subdomains. At the
same time, an active network attacker can manipulate the DNS at will and create ar-
bitrary hostnames under the same domain name as the target web site. Tus, if you
set a cookie for www.example.com, the attacker can steal it by forcing and intercepting
access to madeup.www.example.com. If the cookie is insecure, plaintext access will do.
If the cookie is secure, the attacker can present a self-signed certicate and hope that
the user will click through.

Cookie injection
Te cookie specication doesn’t use a separate namespace for secure cookies. What
this means is that a cookie set from a plaintext connection can overwrite an existing
secure cookie. In practice, this means that an active network attacker can inject arbi-
trary cookies into an otherwise secure application.
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In the case of domain cookies, the attacker can inject a cookie from an existing sib-
ling hostname (e.g., blog.example.com). Otherwise, an active network attacker can
make up an arbitrary hostname and inject from it.

Tese problems can largely be addressed with the use of the includeSubDomains parameter,
which activates HSTS on the delivering hostname and all its subdomains. When domain
cookies are used, the only secure approach is to activate HSTS on the root domain name
and thus on the entire domain namespace. I discuss cookie security issues at length in the
section called “Cookie Manipulation” in Chapter 5.

Attack Vectors
HSTS greatly improves our ability to secure web sites, but there are several edge cases that
you need to be aware of. Consider the following situations.

First access
Because HSTS is activated via a HTTP response header, it does not provide security
on the rst access. However, once activated the protection will remain enabled until
the retention period expires. Te lack of security on the rst access is mitigated by
browsers embedding (or preloading) a list of sites that are known to support HSTS.
Tis is possible only because the number of sites that support HSTS is still very small.

Short retention duration
HSTS works best when deployed with a long retention period (e.g., at least six
months). Tat way, users are protected for the duration of their rst session but also
on their subsequent visits to the web site. If the retention period is short and the users
don’t visit again before it expires, their next access will not be protected.

Clock attacks
Users whose computers are congured to automatically update their clocks using
Network Time Protocol (NTP) without authentication could be attacked by a network
attacker who can subvert the NTP messages. Setting the computer’s clock to a time in
the future will cause a site’s HSTS policy to lapse, allowing the victim’s next visit to be
insecure. Te danger of this attack vector depends on the NTP access frequency. Tis
will typically be once or twice a day. According to research published in October
2014, operating systems range from easy to dicult to attack. Some, like Fedora, syn-
chronize their clocks every minute, making them an easy target for the attacker. Oth-
ers, like OS X, synchronize less frequently (minutes), but are still a relatively easy tar-
get. Windows seems the most secure of all; even though it too uses NTP without au-
thentication, it synchronizes only once a week and has built-in defense measures to
prevent very large time changes.4

4 Bypassing HTTP Strict Transport Security (Jose Selvi, October 2014)
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Response header injection
Response header injection is a web application vulnerability that enables the attacker
to inject arbitrary response headers into the victim’s trac. If such a vulnerability is
present in an application, an attacker can inject a forged Strict-Transport-Security
header that disables HSTS. Against an application that does not use HSTS, this attack
could be used to enable it and potentially execute a DoS attack.
When this attack is delivered against an application that already uses HSTS, the out-
bound response headers will include two copies of the Strict-Transport-Security
header. Te attacker’s header will be used if it ends up being rst in the response.

TLS truncation
Although the TLS protocol is not vulnerable to truncation attacks, most browsers’
implementations are. A skilled active network attacker can use a special technique to
intercept a TLS connection and truncate it aer the rst digit of the max-age parame-
ter. If successful, such an attack can reduce the HSTS duration to, at most, nine sec-
onds. Tis is a so-called cookie cutter attack, which I discuss in the section called
“Cookie Cutting” in Chapter 6.

Mixed content issues
Te HSTS designers chose not to fully address mixed content issues, most likely be-
cause it’s a hard problem and because browser vendors tend to have dierent ideas
about dealing with it. As a result, HSTS includes only non-normative advice against
allowing mixed content in Section 12.4 (“Disallow Mixed Security Context Loads”).
Still, HSTS provides a partial solution because plaintext requests for the same host-
name (where HSTS is active) are not allowed. To address third-party mixed content,
deploy Content Security Policy (CSP), which can be used to allow only HTTPS re-
quests from a given page.

Hostname and port sharing
HSTS is activated on an entire hostname and across all ports. Tis approach does not
work very well in shared hosting situations in which multiple parties are able to con-
trol a site’s response headers. In such situations, care should be taken to screen all re-
sponses to ensure that the correct HSTS header is sent (or that no HSTS header is
sent at all).

Robust Deployment Checklist
Even though HSTS is relatively simple, deploying it can be quite complicated if the environ-
ment in which you’re operating is complex enough. For all but the simplest environments, I
recommend deploying HSTS in two major steps: start with a test run that does everything
right in terms of conguration but uses a very short duration value. Later, increase the dura-
tion to the desired long-term value.
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Follow these steps for the test run:
1. Ensure that the Strict-Transport-Security header is emitted on all encrypted re-

sponses across all hostnames (e.g., accounts.example.com and www.example.com) and
with includeSubDomains specied.

2. Enable HSTS on the root domain name (e.g., example.com), also with
includeSubDomains specied.

3. Determine all paths that lead to your site, and double-check that all redirections emit
HSTS policies.

4. Initially, start with a temporary short-term policy retention duration. Tis will allow
you to relatively easily recover from forgetting that you have an important plaintext-
only site in production.

5. Redirect all HTTP trac to HTTPS. Tis will ensure that your users always receive the
HSTS instructions on their rst visits.

6. Modify your sites so that each hostname submits at least one request to the root do-
main name. Tis will ensure that HSTS is fully enabled on the entire domain names-
pace, even if your users do not visit the root domain name directly.

7. For extra points, if you have a reverse proxy in front of your web site(s), congure your
HSTS policy centrally at the proxy level. To prevent header injection vulnerabilities
from being used to bypass HSTS, delete any HSTS response headers set by the back-
end web servers.

Aer a period of time, when you establish that your deployment is correct in all aspects,
increase the policy retention duration. You can do this incrementally, or by immediately
switching to a long-term value. Take the following steps:

1. Increase the policy retention duration to a long-term value, for example, 12 months.
Tis will not only give you the best protection but also ensure that you are put on
preload lists that have minimum duration requirements.

2. Follow the preload instructions and notify the preload list maintainers.5

5 Chrome HSTS preload request form (Adam Langley, retrieved 11 March 2015)
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What if You Can’t Activate HSTS on the Entire Domain Name?
For best results, HSTS should be enabled on the main domain name and all its subdomains.
Unfortunately, this might not always be possible. Especially if you’re working with a large exist-
ing infrastructure, it might be some time until you are able to migrate all the services to
HTTPS.
Even in this situation, you could still use includeSubDomains only on the main application
hostname (e.g., www.example.com, but not on example.com). Tis will provide sucient securi-
ty, except in a case in which domain cookies are used. However, you need to do this carefully.
Because HSTS policies do not include the names of the hostnames to which they apply, it’s pos-
sible to inadvertently activate HSTS from the wrong place.
When deploying HSTS without any subdomain coverage, the risks described in the section
called “Cookie Security” apply. Such risks can be mitigated by deploying a cryptographic secu-
rity mechanism to guarantee cookie condentiality and integrity.

Browser Support
Tere is currently decent support for HSTS in desktop browsers thanks to early adoption by
Chrome and Firefox, in 2010 and 2011, respectively. Safari joined them with the OS X 10.9
release in late 2013. Internet Explorer does not currently implement HSTS in any of the sta-
ble versions, but this feature is being worked on.6

As of February 2015, HSTS is supported in the Windows 10 Technical Preview releases.7

Table 10.1. Browser support for HTTP Strict Transport Security

Browser HSTS Support Since Preloading

Chrome Yes v4.0.249.78;a January 2010 Yes

Firefox Yes v4;b March 2011 Yes (from v17)

Internet Explorer No (in development) - -

Opera Yes v12 (Presto/2.10.239);c June 2012 Yes (from v15)

Safari Yes v7 (OS X 10.9 Mavericks); October 2013 Yes
a Stable Channel Update (Chrome Releases blog, 25 January 2010)
b Firefox 4 release notes (Mozilla, 22 March 2011)
c Web specications support in Opera Presto 2.10 (Opera, retrieved 19 April 2014)

Most browsers ship preloaded with a list of sites that are known to support HSTS. However,
it seems that at this point in time the lists are largely compiled manually. Some vendors

6 HTTP Strict Transport Security (IE Platform Status, retrieved 11 March 2015)
7 HTTP Strict Transport Security comes to Internet Explorer (IEBlog, retrieved 11 March 2015)
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(e.g., Mozilla) are talking about scanning the Web to generate a comprehensive list of sites
that support HSTS, but the details are scarce.

Chrome
Chrome maintains a preload list for HSTS and public key pinning.8 At the time of
writing in March 2015, the list contains over 2000 sites. Te list is updated manually.

Firefox
Mozilla seeded their HSTS list from Chrome in November 2012.9 It’s possible and
likely that they have been synchronizing the list since. Mozilla’s list is smaller than
Google’s, because they require a minimum max-age of 18 weeks in order to include a
site.

Opera
Starting with version 15, the Opera browser uses the same engine as Chrome and
thus inherits its HSTS preload list.

Safari
Safari on OS X preloads a number of HSTS-enabled hostnames. At the time of writ-
ing, I counted 179 entries on my computer (~/Library/Cookies/HSTS.plist). Apple
never announced support for HSTS, and thus we know little about their plans for the
list’s maintenance.

Privacy Implications
Te nature of HSTS dictates that browsers use a persistent store to keep track of the HSTS
sites they visit. When a user encounters an HSTS site for the rst time, an entry is added to
the browser’s HSTS database. Tis fact makes it possible to test if someone has visited a par-
ticular site before—just ask them to follow a plaintext link to the site. If they visit the link,
they had never been to that site before. However, if they had visited that site before, HSTS
will kick in, rewrite the link, and visit the HTTPS variant instead.
In essence, a HSTS policy can be used to store one bit of information in a browser. One bit
does not sound like much, but, when used with a wildcard certicate, an adversary could
create as many dierent hostnames as they needed, each with a separate HSTS policy, and
each carrying one bit of information.10

Content Security Policy 
Content Security Policy (CSP) is a declarative security mechanism that allows web site oper-
ators to control the behavior of compliant user agents (typically browsers). By controlling

8 HTTP Strict Transport Security (The Chromium Projects, retrieved 11 March 2015)
9 Preloading HSTS (Mozilla Security Blog, 1 November 2012)
10 The Double-Edged Sword of HSTS Persistence and Privacy (Leviathan Security Group, 4 April 2012)
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what features are enabled and where content is downloaded from, web sites can reduce their
attack surface.
Te main goal of CSP is defense against cross-site scripting (XSS) attacks. For example, CSP
can be used to completely disable inline JavaScript and control where external code is load-
ed from. It can also disable dynamic code evaluation. With all of those attack vectors dis-
abled, attacking with XSS becomes much more dicult.
CSP had been developed at Mozilla, who experimented with the concept over several years,
rst calling it content restrictions11 and later Content Security Policy.12 CSP 1.0 became a
W3C Candidate Recommendation in November 2012;13 work is currently in progress on
CSP 1.1.14

A web site that wishes to enable CSP sets the desired policy by using the Content-Security-
Policy response header.15 To give you an idea of what policies look like, consider this exam-
ple adapted from the specication:

Content-Security-Policy: default-src 'self'; img-src *;
                         object-src *.cdn.example.com;
                         script-src scripts.example.com

Tis policy allows resources to be loaded only from its own origin by default, but allows im-
ages to be loaded from any URI, plugin content only from the specied CDN addresses, and
external scripts only from scripts.example.com.
Unlike with HSTS, CSP policies are not persistent; they’re used only on the pages that refer-
ence them and are then promptly forgotten. Tus, CSP is much less risky to use. If an error
is made, the policy can be updated with immediate eect. Tere is also no danger of persis-
tent denial of service attacks stemming from injected response headers.

Preventing Mixed Content Issues
Mixed content issues arise when a secure web page relies on resources (e.g., images and
scripts) that are retrieved over plaintext connections. Browsers improved their handling of
this problem in recent years, but their approach is generally still too lax. For example, all
browsers allow so-called passive mixed content, typically images. Not unexpectedly, there are
also dierences in the handling among browsers. Safari, for example, does not currently im-

11 Content Restrictions (Gervase Markham, last update 20 March 2007)
12 Content Security Policy (Mozilla’s CSP Archive, last updated in 2011)
13 Content Security Policy 1.0 (W3C Candidate Recommendation, 15 November 2012)
14 Content Security Policy 1.1 (W3C Working Draft, retrieved 23 April 2014)
15 You might see other header names mentioned in blog posts, for example, X-Content-Security-Policy and X-Webkit-CSP. Those headers

were used in the early days of CSP, when the functionality was largely experimental. The only header name relevant today is the ocial one.
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pose any restrictions, not even on scripts. You’ll nd a detailed discussion of mixed content
issues in the section called “Mixed Content” in Chapter 5.
Because CSP allows us to control where content comes from, we can use it to instruct com-
pliant browsers to use only secure protocols. Tat’s wss for the WebSocket protocol and
https for everything else.
Tus, to address only mixed content issues without attempting to improve anything else,
consider the following CSP policy as a starting point:

Content-Security-Policy: default-src https: 'unsafe-inline' 'unsafe-eval';
                         connect-src https: wss:

Te policy includes three main elements:
• Te default-src directive establishes that the page can load content from anywhere

(any host and any port), provided it’s done securely (https).
• Te 'unsafe-inline' and 'unsafe-eval' expressions re-enable inline JavaScript and

dynamic code evaluation, which are disabled by default by CSP. Ideally, you wouldn’t
want to have these expressions in a policy, but without them most existing applications
break.

• Te connect-src directive controls content locations used by server push notica-
tions,16 WebSocket protocol,17 and XMLHttpRequest.18

Once you establish that this initial policy is working for you, consider tightening JavaScript
execution (by removing the 'unsafe-inline' and 'unsafe-eval' expressions) and replacing
generic source restrictions with more specic hosts (e.g., https://cdn.example.com instead
of https:).

Policy Testing
A nice thing about CSP is that it is able to enforce one policy while testing others in parallel.
Tis means that you are even able to deploy testing policies in production, which tend to be
much more complex than development environments.
Te Content-Security-Policy-Report-Only response header is used to create a testing-only
policy:

Content-Security-Policy-Report-Only: default-src 'self'

If a report-only policy fails, nothing is blocked, but reporting can be congured so that the
failure can be communicated back to the originating web site.

16 Server-Sent Events (W3C Editor’s Draft, published 14 May 2014)
17 RFC 6455: The WebSocket Protocol (Fette and Melnikov, December 2011)
18 XMLHttpRequest Level 1 (W3C Working Draft, published 30 January 2014)
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Reporting
Another nice feature of CSP is that it supports reporting, which can be used to track policy
violations. With this feature, development is much easier. It is also very comforting to know
that the policy deployed in production is not breaking anything.
To enable reporting, use the report-uri directive:

Content-Security-Policy: default-src 'self';
                         report-uri http://example.org/csp-report.cgi

With that, CSP policy violations will be submitted to the specied URI, using the POST re-
quest method and the report data in the request body. For example:

{
  "csp-report": {
    "document-uri": "http://example.org/page.html",
    "referrer": "http://evil.example.com/haxor.html",
    "blocked-uri": "http://evil.example.com/image.png",
    "violated-directive": "default-src 'self'",
    "original-policy": "default-src 'self'; report-uri http://example.org↩
/csp-report.cgi"
  }
}

Browser Support
CSP is well supported in current browsers. Chrome and Firefox have been experimenting
with it for years, and it’s recently started to arrive in other mainstream browsers. Te only
major desktop browser not to support CSP is Internet Explorer; their team lists this feature
as In Development.19

19 Content Security Policy (IE Platform Status, retrieved 29 June 2014)
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Table 10.2. Browser support for Content Security Policy

Browser CSP Support Since

Android Browser Yes 4.4.x (October 2013).a

Chrome Yes v25 (February 2013). b Experimental support since June
2011.c

Firefox Yes v23 (August 2013). d Experimental support since June 2009,
in Firefox v4.e

Internet Explorer No (in development) -

Opera Yes v15 (July 2013).

Safari Yes v7 (iOS 7 on September 2013 and OS X 10.9 on October
2013). Experimental support since v6 in Mountain Lion.f

a Content Security Policy (Can I use, retrieved 29 June 2014)
b Chrome 25 Beta: Content Security Policy and Shadow DOM (The Chromium Blog, 14 January 2013)
c New Chromium security features, June 2011 (The Chromium Blog, 14 June 2011)
d Content Security Policy 1.0 lands in Firefox Aurora (Mozilla Hacks, 29 May 2013)
e Shutting Down XSS with Content Security Policy (Brandon Sterne, Mozilla Security Blog, 19 June 2009)
f Safari 6 gets Content-Security-Policy right (rachelbythebay, 29 July 2012)

Pinning 
Pinning is a security technique that can be used to associate a service with one or more
cryptographic identities such as certicates and public keys. Depending on where and how
it is used, pinning can achieve three main security improvements:

Attack surface reduction
Te dominant TLS authentication model in use today relies on public CAs. Teir job
is to issue certicates to domain name owners but not to other random people. In
turn, user agents trust all CA-issued certicates unconditionally. Tis model suers
from an enormous aw: a domain owner’s authorization is not required for certicate
issuance. As a consequence, any CA can issue a certicate for any domain name. Giv-
en that there are hundreds of CAs and possibly thousands of entities who inuence
certicate issuance in one way or another, the attack surface is huge.
With pinning, owners can specify (pin) the CAs that are allowed to issue certicates
for their domain names. Tey can look at the market, decide which one or two CAs
are best for them, and congure the pins accordingly. Aer that, they no longer care
that there are hundreds of public CAs because they are no longer a risk.

Key continuity
Key continuity is a variation on the previous use case, but it can be used without rely-
ing on public CAs. Let’s assume that you somehow know that a particular key is valid
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for some web site. With that, whenever you visit the site you can compare their cur-
rent key with your “correct” key; if the keys match, you know that you are not under
attack.
Key continuity is commonly used with the SSH protocol. Keys are associated with
servers when they are seen for the rst time and checked on subsequent visits. Tis is
also known as trust on rst use (TOFU).
Firefox uses key continuity when it allows you to create an exception for a certicate
it can’t verify; the exception is valid only for that particular certicate. If you are later
attacked with a dierent (MITM) certicate, Firefox will show a certicate warning
again.

Authentication
Pinning can even be used for authentication, provided there is a reliable (secure)
channel to communicate the required cryptographic identities to end users. For ex-
ample, if we ever deployed a secure DNS that cannot be subverted by active network
attacks, then we could use it to store the ngerprints of web site certicates. Tose
ngerprints could then be checked on every site visit.

What to Pin?
Pinning can be used with several cryptographic elements; the usual candidates are certi-
cates and public keys. For example, a possible approach is to have a copy of the certicate
you expect to see for a particular site so that you can compare it with the certicate you
actually get. Tere is little reason to keep the entire certicate; you can achieve the same
eect by using its hash (e.g., SHA256), which is much shorter and easier to handle.
In practice, public key pinning is more practical, because certicates are sometimes reissued
without changing the public key. It is also common to see several certicates for the same
public key. Tus, if you pin the public key the pin will work across all certicates associated
with it.
Protocols that do not rely on certicates could pin public keys directly, but for TLS the best
element to pin is the SubjectPublicKeyInfo (SPKI) eld of X.509 certicates.20 Tis eld
contains the public key itself as well as additional metadata that’s necessary for accurate
identication:

SubjectPublicKeyInfo  ::=  SEQUENCE  {
     algorithm            AlgorithmIdentifier,
     subjectPublicKey     BIT STRING  }

If you want to examine the contents of the SPKI eld for a given certicate, use this com-
mand:

20 More information on the structure of X.509 certicates is available in the section called “Certicates ” in Chapter 3.
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$ openssl x509 -in server.crt -noout -text
[...]
Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:b8:0e:05:25:f8:81:e9:e7:ba:21:40:5f:d7:d4:
                    09:5c:8c:d4:e9:44:e7:c0:04:5b:7f:6e:16:8a:01:
                    37:2b:b9:ed:b6:09:cd:1f:55:d5:b8:ee:79:13:ae:
                    e7:1d:6a:ec:01:7c:02:5a:10:af:f9:68:28:ff:d5:
                    61:b0:37:f8:a6:b2:87:42:90:3c:70:19:40:67:49:
                    99:1d:3c:44:3e:16:4e:9a:06:e4:06:66:36:2f:23:
                    39:16:91:cf:92:56:57:1d:30:db:71:5a:68:a2:c3:
                    d5:07:23:e4:90:8e:9e:fb:97:ad:89:d5:31:3f:c6:
                    32:d0:04:17:5c:80:9b:0c:6d:9b:2a:b2:f9:39:ac:
                    85:75:84:82:64:23:9a:7d:c4:96:57:1e:7b:bf:27:
                    2e:48:2d:9e:74:90:32:c1:d8:91:54:12:af:5a:bb:
                    01:20:15:0e:ff:7b:57:83:9d:c2:fe:59:ce:ea:22:
                    6b:77:75:27:01:25:17:e1:41:31:4c:7f:a8:eb:0e:
                    8c:b9:18:b2:9a:cc:74:5e:36:1f:8f:a1:f4:71:a9:
                    ff:72:e6:a0:91:f0:90:b2:5a:06:57:79:b6:1e:97:
                    98:6b:5c:3a:a9:6a:be:84:bc:86:75:cb:81:6d:28:
                    68:c0:e5:d5:3e:c5:f0:7d:85:27:ae:ce:7a:b7:41:
                    ce:f9
                Exponent: 65537 (0x10001)

To generate a SPKI hash, rst extract the eld from the certicate into its own le:

$ openssl x509 -in server.crt -noout -pubkey | \
  openssl asn1parse -inform PEM -noout -out server.spki 

You can then, for example, calculate a SHA256 hash of it and encode it using Base64 encod-
ing:

$ openssl dgst -sha256 -binary server.spki | base64
zB8EXAKscl3P+4a5lFszGaEniLrNswOQ1ZGwD+TzADg=

Where to Pin?
When it comes to deciding where to pin, the answer is not as clear. Te obvious choice is to
pin the server’s public key, but there are several downsides to this approach. One is that
servers are naturally very exposed to attacks. If the server’s private key is compromised and
replaced, the old pin will no longer be valid. Even in the absence of an attack, server keys
should be frequently rotated in order to minimize the amount of data protected with the
same key. Finally, complex deployments oen rely on multiple keys and certicates for the
same site; maintaining pins for all of them would be dicult and time consuming.
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For this reason, we can consider pinning elsewhere in the certicate chain. Tese days, most
certicate chains start with the end-entity certicate, have one intermediate CA certicate,
and nish with a root. If you pin to either of the latter two, you should be able to change the
server identity, get a new certicate from the same CA, and continue to use the same pins.
Tis sounds ideal, but there are some complications. First, CAs usually have multiple roots.
Tey also have multiple intermediate CAs, which they use for dierent classes of certicates,
to minimize risk, change signature algorithms, and so on. Your next certicate from the
same CA might not use exactly the same intermediate and root certicates.
In addition, CAs also rely on cross-certication with other, more established, roots from
other CAs in order to support older clients. What this means is that there might be multiple
valid trust paths for a given certicate. In practice, a user agent can decide to use a dierent
trust path from the one you have in mind. If that happens, and if your pin is attached to an
excluded trust path, the validation will fail.
With all of this in mind, the best candidate for pinning is the rst intermediate CA certi-
cate. Because its signature is on the end-entity certicate, the issuing CA’s public key must
always be in the chain. Tis approach ensures that a user agent won’t bypass the pin, but it’s
still possible that the CA will issue a future certicate from a dierent intermediate CA.
Tere is no clear solution to this, but there are steps you can take to mitigate the risks:

• Ask your CAs to support pinning and commit to practices that will ensure that your
pins remain valid with future certicates.

• Always have a backup pin and a spare certicate from a dierent CA.

Note
Te most reliable way to use pinning is with your own intermediary CA. Tis setup
ensures that the pinned public key is always in the chain. It also gives you a degree
of root agility; if you’re not happy with your CA, you can get a dierent intermedi-
ate certicate (using the same private key) from someone else. Finally, because
you’re always pinning to the same public key, the pins can be shared among all
your sites.

Should You Use Pinning?
Pinning is a powerful technique for attack surface reduction, but it does not come for free.
To deploy pinning, you need a good understanding of the tradeos and a mature organiza-
tion that can deal with the operational challenges. Te obvious problem is that pinning en-
sures that TLS connections are established only to the pinned identities. What happens if
you lose those identities, for whatever reason?
Te fear of the sel-inicted denial of service attack is possibly the reason that pinning has
been slow to take o. Browser vendors understand this, and it’s also evident from the pin-
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ning proposals. Unlike HSTS, where long policy-retention periods (e.g., one year) are com-
mon, pinning periods are usually measured in days. A maximum of 30 days is common.
However, no matter how short the pinning period is, mistakes will always happen. I am cu-
rious to see if browser vendors will eventually implement a mechanism for pin breaking to
use for emergencies.
In the remainder of this section, I describe several ways to deploy pinning, but only one of
them (Chrome pinning) can be used straight away. Te only exception is pinning for native
applications, in which you control both sides of the communication. In this case, pinning is
fully under your control and, with careful planning, can be very eective.
So, given that pinning for web sites is still an immature technology, there is generally no
need to rush. If you’re running a high-prole web site, consider using Chrome pinning now.
Otherwise, you should rst evaluate if pinning is for you. Evaluate your environment, try to
prepare a deployment plan, and assess the challenges and costs. Ten decide.

Pinning in Native Applications
Te most straightforward use of pinning is in native applications, in which you control both
sides of the communication. Tis will be the case with desktop and mobile applications. In
an increasingly connected world, most modern applications have a backend that they talk
to, and many use HTTPS for that communication.

Private Backends
Tere are two approaches you can take. Te rst applies when the backend is used only by
your applications. In this case, you can generate your own root key and use it to issue your
own certicates. By distributing the root’s public key with your applications, you will be able
to reliably verify certicate signatures.
On many platforms, this type of pinning is easy to do. For example, Java ships with a num-
ber of trust roots that are used by default. Whenever you open an HTTPS connection to a
site, those trust roots are used to verify the authenticity of the connection. But, because you
don’t want to trust all those roots, you can create your own trust store, and then place only
your own root in it. If whenever you open an HTTPS connection to your site you specify
your own trust store, then you have pinning in action.
If you don’t want to maintain your own root key, you can use SPKI pinning, as described
earlier. If you’re aer some code, Moxie Marlinspike described both of these approaches in
his article.21

Starting with version 4.2, Android has limited support for public key pinning.22

21 Your app shouldn’t suffer SSL’s problems (Moxie Marlinspike, 5 December 2011)
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Public Backends
In some cases, applications have backends that are also accessed by third parties (i.e., the
public). Ten, obtaining certicates from a public CA is the way to go. Tat way, others will
be able to connect to the service and verify its authenticity. You won’t be able to deploy pin-
ning to secure their access, at least not until one of the pinning proposals becomes widely
supported.
If you still want to protect access from your own applications, you can follow the advice
from the previous section and pin to the public key. A possibly more secure approach is to
create another private backend, in which case you can also use your own root key for the
certicates.

Chrome Public Key Pinning 
Google started to experiment with public key pinning with Chrome 12,23 when they
shipped a user interface that allows for custom HSTS and pinning conguration.24 Ten, in
Chrome 13, they added (preloaded) pins for most of their own web sites.25

Behind the scenes, the same mechanism is used for both HSTS preloading and pinning; the
required information is hardcoded in the browser itself. Because Chrome is based on the
open-source Chromium browser, the source le containing this information is available for
us to view.26

Tere’s only one policy le, and it contains a single JSON structure with two further lists:
(1) web sites that support HSTS or pinning and (2) pinsets to dene acceptable public keys
for them.
Each web site entry carries information about its HSTS conguration and the desired pin-
set:

{ "name": "encrypted.google.com",
  "include_subdomains": true,
  "mode": "force-https",
  "pins": "google"
}

A pinset is a collection of allowed SPKI hashes; it uses the names of certicates that are not
in the le but are shipped with the browser:

22 Certicate pinning in Android 4.2 (Nikolay Elenkov, 12 December 2012)
23 New Chromium security features, June 2011 (The Chromium Blog, 14 June 2011)
24 The present versions of Chrome still include this user interface; it can be accessed via chrome://net-internals/#hsts.
25 Public key pinning (Adam Langley, 4 May 2011)
26 transport_security_state_static.json (Chromium source code, retrieved 29 June 2014)

312 Chapter 10: HSTS, CSP, and Pinning



{ "name": "google",
  "static_spki_hashes": [
      "GoogleBackup2048",
      "GoogleG2"
  ]
}

With the pinset approach, Chrome creates a whitelist of public keys that can be used in
certicate chains for the pinned sites. Te format also allows for public key blacklisting (via
the bad_static_spki_hashes parameter), but no site appears to be using it at the moment.
Tere is also a provision to disable pinning when SNI is not available, which is necessary for
some sites that provide correct certicate chains only when SNI is enabled.27

As you can see, this all seems very straightforward. Because the Chrome developers have
graciously allowed others to include their pinning information in their browsers, some
high-prole sites and projects (e.g., Twitter and Tor) are also protected with pinning. Hun-
dreds of sites have their HSTS information preloaded.

Warning
To allow users to MITM their own trac, pinning is not enforced on manually
added root certicates. On the one hand, this allows for local debugging (e.g., using
local developer proxies) and content inspection by antivirus products; on the other,
it also allows for transparent corporate trac interception. It has been reported
that some malware authors install custom certicates to perform MITM attacks;
such certicates would also bypass pin validation.28

Chrome includes a reporting mechanism that is used to report pin validation failures to
Google. (Anecdotally, for privacy reasons, the reporting is enabled only for Google’s own
properties.) We know this because Chrome’s pinning detected several PKI incidents: Dig-
iNotar, TURKTRUST, and ANSSI. You can read about them in Chapter 4, Attacks against
PKI.

Note
Firefox 32, released in September 2014, added support for hardcoded public key
pinning, which is similar to the mechanism already used in Chrome.29 Firefox on
Android added supported this type of pinning in version 34.

27 Chrome supports SNI, which is why this feature might seem illogical at rst. However, there are still situations in which Chrome is ready to

fall back all the way from TLS 1.2 to SSL 3, which doesn’t support extensions (which means that Chrome can’t send the SNI information).
28 New Man-in-the-Middle attacks leveraging rogue DNS (Don Jackson, PhishLabs, 26 March 2014)
29 Public key pinning released in Firefox (Mozilla Security blog, 2 September 2014)
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Microsoft Enhanced Mitigation Experience Toolkit 
Microso does not currently support site-controlled pinning in Internet Explorer, but it
provides an add-on called Enhanced Mitigation Experience Toolkit (EMET),30 which can be
used by end users to protect themselves individually. Although EMET is largely focused on
buer overow and similar attacks, one of its features is certicate pinning. EMET 5, cur-
rently in beta, ships with pinning rules for several key Microso sites, Facebook, Twitter,
and Yahoo. Users can add their own pins if they wish.31

Public Key Pinning Extension for HTTP 
Public Key Pinning Extension for HTTP (HPKP)32 is a future standard for public key pinning
for HTTP user agents, in development since 2011. Te work was initiated by Google, which,
even though it had implemented pinning in Chrome, understood that manually maintain-
ing a list of pinned sites doesn’t scale. At the time of writing, HPKP is near completion. Al-
though there are few rm statements from browser vendors regarding their support,
Chrome and Firefox are expected to implement HPKP once it’s complete.
Because there are many similarities between HPKP and HSTS, if you haven’t already read
the section on HSTS (earlier in this chapter), I propose that you do now. Here’s a quick
overview of the common features:

• HPKP is set at the HTTP level, using the Public-Key-Pins (PKP) response header.

• Policy retention period is set with the max-age parameter, which species duration in
seconds.

• Pinning can be extended to subdomains if the includeSubDomains parameter is used.

• Te PKP header can be used only over a secure encryption without any errors; if multi-
ple headers are seen, only the rst one is processed.

• When a new PKP header is received, the information in it overwrites previously stored
pins and metadata.

Pins are created by specifying the hashing algorithm and an SPKI ngerprint computed us-
ing that algorithm. For example:

Public-Key-Pins: max-age=2592000;
       pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
       pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ="

30 Enhanced Mitigation Experience Toolkit 4.1 (Microsoft, 12 February 2013)
31 Announcing EMET 5.0 Technical Preview (Microsoft Security Research and Defense Blog, 25 February 2014)
32 Public Key Pinning Extension for HTTP (Internet-Draft, Evans et al., 14 October 2014)
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Te only hashing algorithm supported at the moment is SHA256; the sha256 identier is
used when conguring the pins. Te ngerprints are encoded using Base64 encoding.
To enable pinning, you must specify the policy retention period and provide at least two
pins. One of the pins must be present in the chain used for the connection over which the
pins were received. Te other pin must not be present. Because pinning is a potentially dan-
gerous operation (it’s easy to make a mistake and perform a sel-inicted denial of service
attack), the second pin is required as a backup. Te recommended practice is to have a
backup certicate from a dierent CA and to keep it oine. Further, it is recommended that
the backup certicate is occasionally tested. You really don’t want to need it and only then
nd that it is not working.

Reporting
Unlike HSTS, but similarly to CSP, HPKP species a mechanism for user agents to report
pin-validation failures. Tis feature is activated using the report-uri parameter, which
should contain the endpoint to which the report will be submitted.

Public-Key-Pins: max-age=2592000;
       pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
       pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
       report-uri="http://example.com/pkp-report"

Te report is submitted using a POST HTTP request, which includes a JSON structure in the
request body. For example (taken from a dra version of the HPKP specication):

  {
    "date-time": "2014-04-06T13:00:50Z",
    "hostname": "www.example.com",
    "port": 443,
    "effective-expiration-date": "2014-05-01T12:40:50Z"
    "include-subdomains": false,
    "served-certificate-chain": [
      "-----BEGIN CERTIFICATE-----\n
      MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT\n
      ...
      HFa9llF7b1cq26KqltyMdMKVvvBulRP/F/A8rLIQjcxz++iPAsbw+zOzlTvjwsto\n
      WHPbqCRiOwY1nQ2pM714A5AuTHhdUDqB1O6gyHA43LL5Z/qHQF1hwFGPa4NrzQU6\n
      yuGnBXj8ytqU0CwIPX4WecigUCAkVDNx\n
      -----END CERTIFICATE-----",
      ...
    ],
    "validated-certificate-chain": [
      "-----BEGIN CERTIFICATE-----\n
      MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT\n
      ...
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      HFa9llF7b1cq26KqltyMdMKVvvBulRP/F/A8rLIQjcxz++iPAsbw+zOzlTvjwsto\n
      WHPbqCRiOwY1nQ2pM714A5AuTHhdUDqB1O6gyHA43LL5Z/qHQF1hwFGPa4NrzQU6\n
      yuGnBXj8ytqU0CwIPX4WecigUCAkVDNx\n
      -----END CERTIFICATE-----",
      ...
    ],
    "known-pins": [
      "pin-sha256=\"d6qzRu9zOECb90Uez27xWltNsj0e1Md7GkYYkVoZWmM=\"",
      "pin-sha256=\"E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=\""
    ]
  }

Deployment without Enforcement
Reports are especially useful when HPKP is deployed without enforcement. Tis can be
achieved using the Public-Key-Pins-Report-Only response header. Tis approach allows or-
ganizations to deploy pinning without fear of failure, ensure that it is congured correctly,
and only later move to enforcement. Depending on their risk prole, some organizations
might choose to never enable enforcement; knowing that you are being attacked is oen as
useful as avoiding the attack.

DANE
DNS-Based Authentication of Named Entities (DANE),33 is a proposed standard designed to
provide associations between domain names and one or more cryptographic identities. Te
idea is that domain name owners, who already have control over their DNS conguration,
can use the DNS as a separate channel to distribute information needed for robust TLS au-
thentication. DANE is straightforward and relatively easy to deploy, but does not provide
any security by itself. Instead, it relies on the availability of Domain Name System Security
Extensions (DNSSEC).34

DNSSEC is an attempt to extend the current DNS implementation, which does not provide
any security, with a new architecture that supports authentication using digital signatures.
With authentication, we should be able to cryptographically verify that the DNS informa-
tion we obtain is correct. DNSSEC is quite controversial. It’s been in development for more
than a decade, and its deployment has been slow. Experts’ opinions dier widely as to
whether DNSSEC is an improvement over the current DNS system or alternative improve-
ments should be sought.
At the time of writing, about 70% of all top level domain names are signed.35 However, en-
abling the DNSSEC backend is the easier part; getting wide end-user system support is go-

33 RFC 6698: The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA (Hoffman and Schlyter,

August 2012)
34 Domain Name System Security Extensions (Wikipedia, retrieved 29 June 2014)
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ing to take some more time. Fedora, a major Linux distribution, is the rst operating system
to consider enabling DNSSEC by default, in version 21 planned for Q4 2014.36

DANE Use Cases
In our current model for TLS authentication, we rely on a two-step approach: (1) rst we
have a group of certication authorities that we trust to issue certicates only to genuine
domain name owners, then, whenever a site is accessed, (2) user agents (e.g., browsers)
check that the certicates are correct for the intended names. Tis split model is required
because authentication of distant parties (e.g., people who have never met) is very tricky to
get right, especially at scale. Te system is designed to work on the assumption that the in-
formation provided by DNS is not reliable (i.e., can be subverted by an active network at-
tacker).
With DNSSEC, we get a communication channel that ensures that the information we re-
ceive comes from domain name owners; this means that we don’t necessarily need third
parties (CAs) to vouch for them any more. Tis opens up several interesting use cases:

Secure deployment of self-signed certicates
Today, self-signed certicates are considered insecure because there is no way for av-
erage users to dierentiate them from self-signed MITM certicates. In other words,
all self-signed certicates look the same. But, we can use a secure DNS to pin the
certicate, thus allowing our user agent to know that they are using the right one.
MITM certicates are easily detected.

Secure deployment of private roots
If you can securely pin the server certicate, then you can just as well pin any other
certicate in the chain. Tat means that you can create your own root certicate and
make users agents trust it—but only for the sites you own. Tis is a variation of the
previous use case and largely of interest to those who have many sites. Rather than
pin individual certicates (of which there are many, and they need to be frequently
rotated), you create one root and pin it only once on all sites.

Certicate and public key pinning
DANE is not necessarily about displacing the current trust architecture. You can as
easily pin CA-issued certicates and public CA roots. By doing this, you will be re-
ducing the attack surface and eectively deciding which CAs are allowed to issue cer-
ticates for your properties.

35 TLD DNSSEC Report (ICANN Research, retrieved 29 June 2014)
36 Fedora 21 To Have DNSSEC Validation Enabled By Default (Dan York, 2 May 2014)
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Implementation
DANE introduces a new DNS entry type, called TLSA Resource Record (TLSA RR, or just
TLSA), which is used to carry certicate associations. TLSA consists of four elds: (1) Cer-
ticate Usage to specify which part of a certicate chain should be pinned and how the vali-
dation should be performed; (2) a Selector to specify what element is used for pinning; (3) a
Matching Type to choose between an exact match or hashing; and (4) Certicate Association
Data, which carries the actual raw data used for matching. Dierent combinations of these
four elds are used to deploy dierent pinning types.

Certifcate Usage

Te Certicate Usage eld can have four dierent values. In the original RFC, the values are
simply digits from 0 to 3. A subsequent RFC added acronyms to make it easier to remember
the correct values.37

CA constraint (0; PKIX-TA)
Creates a pin for a CA, whose matching certicate must be found anywhere in the
chain. PKIX validation is performed as usual, and the root must come from a trusted
CA.

Service certicate constraint (1; PKIX-EE)
Creates an end-entity pin, whose certicate must be presented at the rst position in
the chain. PKIX validation is performed as usual, and the root must come from a
trusted CA.

Trust anchor assertion (2; DANE-TA)
Creates a trust anchor pin for a CA certicate (root or intermediate) that must be
present in the trust chain. PKIX validation is performed as usual, but user agents
must trust the pinned CA certicate. Tis option allows for certicates that are not
issued by public CAs.

Domain-issued certicate (3; DANE-EE)
Creates an end-entity pin, whose certicate must be presented at the rst position in
the chain. Tere is no PKIX validation, and the pinned certicate is assumed to be
trusted.

Selector

Te Selector eld species how the association is presented. Tis allows us to create an asso-
ciation with a certicate (0; Cert) or with the SubjectPublicKeyInfo eld (1; SPKI).

37 RFC 7218: Adding Acronyms to Simplify Conversations about DANE (Gudmundsson, April 2014)
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Matching Type

Te Matching Type eld species if the matching is by direct comparison (0; Full) or via
hashing (1 and 2, or SHA2-256 and SHA2-512, respectively). Support for SHA256 is required;
support for SHA512 is recommended.

Certifcate Association Data

Te Certicate Association Data eld contains the raw data that is used for the association.
Its contents are determined by the values of the other three elds in the TLSA record. Te
certicate, which is always the starting point of an association, is assumed to be in DER for-
mat.

Deployment
Leaving DNSSEC conguration and signing aside (only because it is out of scope of this
book), DANE is pretty easy to deploy. All you need to do is add a new TLSA record under
the correct name. Te name is not just the domain name you wish to secure; it’s a combina-
tion of three segments separated by dots:

• Te rst segment is the port on which the service is running, prexed with an under-
score. For example, _443 for HTTPS and _25 for SMTP.

• Te second segment is the protocol, also prexed with an underscore. Tree protocols
are supported: UDP, TCP, and SCTP. For HTTPS, the segment will be _tcp.

• Te third segment is the fully qualied domain name for which you wish to create an
association. For example, www.example.com.

In the following example, an association is created between a domain name and the public
key of a CA (Certicate Usage is 0), identied by the SubjectPublicKeyInfo eld (Selector is
1) via its hex-encoded SHA256 hash (Matching Type is 1):

_443._tcp.www.example.com. IN TLSA (
      0 1 1 d2abde240d7cd3ee6b4b28c54df034b9
            7983a1d16e8a410e4561cb106618e971 )

DANE is activated by adding one or more TLSA records to the desired domain name. If at
least one association is present, user agents are required to establish a match; otherwise they
must abort the TLS handshake. If there are no associations, then the user agent can process
the TLS connection as it would normally.
Because multiple associations (TLSA records) can be congured for a domain name, it’s
possible to have one or more backup associations. It’s also possible to rotate associations
without any downtime. Unlike HPKP, DANE does not specify a memory eect, but there is
one built into DNS itself: the time to live (TTL) value, which is the duration for which a
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record can be cached. Still, the lack of explicit memory eect is DANE’s strength; mistakes
are easy to correct by reconguring DNS. When deploying, especially initially, it’s best to
use the shortest TTL possible.
A potential disadvantage is the fact that the DANE RFC does not mandate any user interac-
tion when a matching association can’t be found. For example, HPKP advises that the user
is given the means to manually break the pins in case of failure. Tis is a double-edged
sword: stubborn users might end up overriding the security mechanisms in the case of a
genuine attack. On the other hand, with DANE, there is no recourse when conguration
mistakes happen. Another problem is that DANE does not support reporting, making it
dicult to nd out about association matching failures as they occur.

Application Support
At the time of writing, DANE is not supported by major browsers. Adding support is di-
cult, because DANE builds on DNSSEC; until operating systems start using DNSSEC,
browsers need to implement DNSSEC resolution themselves. Chrome experimented with
DANE back in 2011 (in Chrome 14), but eventually removed support, citing lack of use.38

Because of this, DANE is currently of interest only to enthusiasts and those who wish to
learn where public TLS authentication might be heading.
Despite lack of support, you can play with DANE today thanks to the DNSSEC TLSA Val-
idator add-on, which is available for all major browsers.39 Teir releases are not always up-
to-date with the latest browser versions. When I tried it, the Firefox version wouldn’t work
with my installation. If you do successfully install the add-on, VeriSign operates a demon-
stration site that you can test with.40

Outside of browsers, applications are slowly adding support for DNSSEC. For example,
ostx did with version 2.11, which shipped in January 2014.41

Trust Assertions for Certifcate Keys (TACK) 
Trust Assertions for Certicate Keys (TACK)42 is a proposal for public key pinning that aims
to be independent of both public CAs and the DNS. Te idea is that site operators create
and establish their own signing keys (known as TACK Signing Keys, or TSKs), to provide
support for independence. Once a user agent recognizes a TSK for a particular site, that key
can be used to revoke old server keys, issue new ones, and so on. In other words, a TSK is

38 DNSSEC authenticated HTTPS in Chrome (Adam Langley, 16 Jun 2011)
39 DNSSEC/TLSA Validator add-on for Web Browsers (CZ.NIC, retrieved 29 June 2014)
40 Verisign Labs DANE Demonstration (VeriSign, retrieved 29 June 2014)
41 DANE TLS authentication (Postx TLS Support, retrieved 29 June 2014)
42 Trust Assertions for Certicate Keys (Marlinspike and Perrin, January 2013)
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similar to a private CA. Although a per-site TSK is recommended, related sites could rely on
the same signing key.
TACK is the most ambitious of all pinning proposals, and that also makes it the most com-
plex. A compliant user agent expresses support for TACK by submitting en empty tack ex-
tension in its ClientHello. In response, a compliant server uses the same extension to send
one or more tacks, which are pins of the server’s public key signed with the site’s TSK. Pins
are noted on the rst sighting, but are activated only when seen for the second time. Tere is
no xed policy retention duration. Instead, on every visit a user agent works out a new poli-
cy retention time by subtracting the timestamp of the rst pin sighting from the current
timestamp. Tere is also a maximum limit of 30 days.
TACK is interesting because it can be used with any protocol (unlike, say, HPKP, which
works only for HTTP). On the other hand, the use of a separate signing key introduces
more complexity. In addition, it requires changes to the TLS protocol. At this time, it isn’t
clear whether browser vendors are planning to provide support for it.

Certifcation Authority Authorization 
Certication Authority Authorization (CAA)43 proposes a way for domain name owners to
authorize CAs to issue certicates for their domain names. It is intended as a defense-in-
depth measure against attacks on the validation process during certicate issuance; with
CAA, CAs can satisfy themselves that they are communicating with the real domain name
owner.
CAA relies on DNS for policy distribution; it recommends DNSSEC but doesn’t require it. It
extends DNS by adding the CAA Resource Record (CAA RR), which is used to create autho-
rization entries.
CAA supports several property tags, which are instructions to CAs. For example, the issue
tag can be used to allow a CA (identied by its domain name) to issue a certicate for a
particular domain name:

certs.example.com       CAA 0 issue "ca.example.net"

Te same tag can be used to forbid certicate issuance:

nocerts.example.com     CAA 0 issue ";"

Other tags include issuewild, which concerns itself with wildcard certicates, and iodef,
which denes a communication channel (e.g., email address) for CAs to report invalid cer-
ticate issuance requests back to site owners.

43 RFC 6944: DNS Certication Authority Authorization (CAA) Resource Record (Hallam-Baker, January 2013)
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True success of CAA requires wide adoption by CAs. Attackers can always target the non-
compliant CAs and get fraudulent certicates from them. Of course, from the perspective of
a compliant CA, this is not necessarily a failure; anything that reduces the likelihood of at-
tacks will be seen as positive. However, if there aren’t enough CAs supporting this feature,
site owners are unlikely to make the eort to congure authorizations for their properties.
Like DANE, CAA works best with DNSSEC. Without it, CAs must take special care not to
expose themselves to DNS spoong attacks.
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11 OpenSSL
OpenSSL is an open source project that consists of a cryptographic library and an SSL/TLS
toolkit. From the project’s web site:

Te OpenSSL Project is a collaborative eort to develop a robust, commercial-
grade, full-featured, and Open Source toolkit implementing the Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) protocols as well as a full-
strength general purpose cryptography library. Te project is managed by a
worldwide community of volunteers that use the Internet to communicate,
plan, and develop the OpenSSL toolkit and its related documentation.

OpenSSL is a de facto standard in this space and comes with a long history. Te code initial-
ly began its life in 1995 under the name SSLeay,1 when it was developed by Eric A. Young
and Tim J. Hudson. Te OpenSSL project was born in the last days of 1998, when Eric and
Tim stopped their work on SSLeay to work on a commercial SSL/TLS toolkit called BSAFE
SSL-C at RSA Australia.
Today, OpenSSL is ubiquitous on the server side and in many client tools. Te command-
line tools are also the most common choice for key and certicate management as well as
testing. Interestingly, browsers have historically used other libraries, but that might change
soon, given that the Google Chrome team is planning a transition to OpenSSL on all plat-
forms.2 Te command-line tools provided by OpenSSL are most commonly used to manage
keys and certicates.
OpenSSL is dual-licensed under OpenSSL and SSLeay licenses. Both are BSD-like, with an
advertising clause. Te license has been a source of contention for a very long time, because
neither of the licenses is considered compatible with the GPL family of licenses. For that
reason, you will oen nd that GPL-licensed programs favor GnuTLS.

1 The letters “eay” in the name SSLeay are Eric A. Young’s initials.
2 Chrome: From NSS to OpenSSL (Chrome design document, retrieved 10 July 2014)
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Getting Started
If you’re using one of the Unix platforms, getting started with OpenSSL is easy; you’re virtu-
ally guaranteed to already have it on your system. Te only problem that you might face is
that you might not have the latest version. In this section, I assume that you’re using a Unix
platform, because that’s the natural environment for OpenSSL.
Windows users tend to download binaries, which might complicate the situation slightly. In
the simplest case, if you need OpenSSL only for its command-line utilities, the main
OpenSSL web site links to Shining Light Productions3 for the Windows binaries. In all other
situations, you need to ensure that you’re not mixing binaries compiled under dierent ver-
sions of OpenSSL. Otherwise, you might experience crashes that are dicult to trou-
bleshoot. Te best approach is to use a single bundle of programs that includes everything
that you need. For example, if you want to run Apache on Windows, you can get your bina-
ries from the Apache Lounge.4

Determine OpenSSL Version and Confguration
Before you do any work, you should know which OpenSSL version you’ll be using. For ex-
ample, here’s what I get for version information with openssl version on Ubuntu 12.04
LTS, which is the system that I’ll be using for the examples in this chapter:

$ openssl version
OpenSSL 1.0.1 14 Mar 2012

At the time of this writing, a transition from OpenSSL 0.9.x to OpenSSL 1.0.x is in progress.
Te version 1.0.1 is especially signicant because it is the rst version to support TLS 1.1
and 1.2. Te support for newer protocols is part of a global trend, so it’s likely that we’re
going to experience a period during which interoperability issues are not uncommon.

Note
Various operating systems oen modify the OpenSSL code, usually to x known
issues. However, the name of the project and the version number generally stay the
same, and there is no indication that the code is actually a fork of the original
project that will behave dierently. For example, the version of OpenSSL used in
Ubuntu 12.04 LTS5 is based on OpenSSL 1.0.1c. At the time of this writing, the full
name of the package is openssl 1.0.1-4ubuntu5.16, and it contains patches for the
many issues that came to light over time.

3 Win32 OpenSSL (Shining Light Productions, retrieved 3 July 2014)
4 Apache 2.4 VC11 Binaries and Modules Win32 and Win64 (Apache Lounge, retrieved 3 July 2014)
5 “openssl” source package in Precise (Ubuntu, retrieved 3 July 2014)

324 Chapter 11: OpenSSL



To get complete version information, use the -a switch:

$ openssl version -a
OpenSSL 1.0.1 14 Mar 2012
built on: Fri Jun 20 18:54:15 UTC 2014
platform: debian-amd64
options:  bn(64,64) rc4(8x,int) des(idx,cisc,16,int) blowfish(idx)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN ↩
-DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -g -O2 -fstack-protector ↩
--param=ssp-buffer-size=4 -Wformat -Wformat-security -Werror=format-security -D↩
_FORTIFY_SOURCE=2 -Wl,-Bsymbolic-functions -Wl,-z,relro -Wa,--noexecstack -Wall ↩
-DOPENSSL_NO_TLS1_2_CLIENT -DOPENSSL_MAX_TLS1_2_CIPHER_LENGTH=50 -DMD32_REG_T=int ↩
-DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM↩
_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES↩
_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
OPENSSLDIR: "/usr/lib/ssl"

Te last line in the output (/usr/lib/ssl) is especially interesting because it will tell you
where OpenSSL will look for its conguration and certicates. On my system, that location
is essentially an alias for /etc/ssl, where Ubuntu keeps TLS-related les:

lrwxrwxrwx  1 root root   14 Apr 19 09:28 certs -> /etc/ssl/certs
drwxr-xr-x  2 root root 4096 May 28 06:04 misc
lrwxrwxrwx  1 root root   20 May 22 17:07 openssl.cnf -> /etc/ssl/openssl.cnf
lrwxrwxrwx  1 root root   16 Apr 19 09:28 private -> /etc/ssl/private

Te misc/ folder contains a few supplementary scripts, the most interesting of which are the
scripts that allow you to implement a private certication authority (CA).

Building OpenSSL
In most cases, you will be using the operating system–supplied version of OpenSSL, but
sometimes there are good reasons to upgrade. For example, your current server platform
may still be using OpenSSL 0.9.x, and you might want to support newer protocol versions
(available only in OpenSSL 1.0.1). Further, the newer versions may not have all the features
you need. For example, on Ubuntu 12.04 LTS, there’s no support for SSL 2 in the s_client
command. Although not supporting this version of SSL by default is the right decision,
you’ll need this feature if you’re routinely testing other servers for SSL 2 support.
You can start by downloading the most recent version of OpenSSL (in my case, 1.0.1h):

$ wget http://www.openssl.org/source/openssl-1.0.1h.tar.gz

Te next step is to congure OpenSSL before compilation. In most cases, you’ll be leaving
the system-provided version alone and installing OpenSSL in a dierent location. For exam-
ple:
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$ ./config \
--prefix=/opt/openssl \
--openssldir=/opt/openssl \
enable-ec_nistp_64_gcc_128

Te enable-ec_nistp_64_gcc_128 parameter activates optimized versions of certain fre-
quently used elliptic curves. Tis optimization depends on a compiler feature that can’t be
automatically detected, which is why it’s disabled by default.
You can then follow with:

$ make depend
$ make
$ sudo make install

You’ll get the following in /opt/openssl:

drwxr-xr-x 2 root root  4096 Jun  3 08:49 bin
drwxr-xr-x 2 root root  4096 Jun  3 08:49 certs
drwxr-xr-x 3 root root  4096 Jun  3 08:49 include
drwxr-xr-x 4 root root  4096 Jun  3 08:49 lib
drwxr-xr-x 6 root root  4096 Jun  3 08:48 man
drwxr-xr-x 2 root root  4096 Jun  3 08:49 misc
-rw-r--r-- 1 root root 10835 Jun  3 08:49 openssl.cnf
drwxr-xr-x 2 root root  4096 Jun  3 08:49 private

Te private/ folder is empty, but that’s normal; you do not yet have any private keys. On the
other hand, you’ll probably be surprised to learn that the certs/ folder is empty too.
OpenSSL does not include any root certicates; maintaining a trust store is considered out-
side the scope of the project. Luckily, your operating system probably already comes with a
trust store that you can use. You can also build your own with little eort, as you’ll see in the
next section.

Note
When compiling soware, it’s important to be familiar with the default congura-
tion of your compiler. System-provided packages are usually compiled using all the
available hardening options, but if you compile some soware yourself there is no
guarantee that the same options will be used.6

Examine Available Commands
OpenSSL is a cryptographic toolkit that consists of many dierent utilities. I counted 46 in
my version. If it were ever appropriate to use the phrase Swiss Army knife of cryptography,

6 compiler hardening in Ubuntu and Debian (Kees Cook, 3 February 2014)
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this is it. Even though you’ll use only a handful of the utilities, you should familiarize your-
self with everything that’s available, because you never know what you might need in the
future.
Tere isn’t a specic help keyword, but help text is displayed whenever you type something
OpenSSL does not recognize:

$ openssl help
openssl:Error: 'help' is an invalid command.

Standard commands
asn1parse         ca                ciphers           cms
crl               crl2pkcs7         dgst              dh
dhparam           dsa               dsaparam          ec
ecparam           enc               engine            errstr
gendh             gendsa            genpkey           genrsa
nseq              ocsp              passwd            pkcs12
pkcs7             pkcs8             pkey              pkeyparam
pkeyutl           prime             rand              req
rsa               rsautl            s_client          s_server
s_time            sess_id           smime             speed
spkac             srp               ts                verify
version           x509

Te rst part of the help output lists all available utilities. To get more information about a
particular utility, use the man command followed by the name of the utility. For example, man
ciphers will give you detailed information on how cipher suites are congured.
Help output doesn’t actually end there, but the rest is somewhat less interesting. In the sec-
ond part, you get the list of message digest commands:

Message Digest commands (see the `dgst' command for more details)
md4               md5               rmd160            sha
sha1

And then, in the third part, you’ll see the list of all cipher commands:

Cipher commands (see the `enc' command for more details)
aes-128-cbc       aes-128-ecb       aes-192-cbc       aes-192-ecb
aes-256-cbc       aes-256-ecb       base64            bf
bf-cbc            bf-cfb            bf-ecb            bf-ofb
camellia-128-cbc  camellia-128-ecb  camellia-192-cbc  camellia-192-ecb
camellia-256-cbc  camellia-256-ecb  cast              cast-cbc
cast5-cbc         cast5-cfb         cast5-ecb         cast5-ofb
des               des-cbc           des-cfb           des-ecb
des-ede           des-ede-cbc       des-ede-cfb       des-ede-ofb
des-ede3          des-ede3-cbc      des-ede3-cfb      des-ede3-ofb
des-ofb           des3              desx              rc2
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rc2-40-cbc        rc2-64-cbc        rc2-cbc           rc2-cfb
rc2-ecb           rc2-ofb           rc4               rc4-40
seed              seed-cbc          seed-cfb          seed-ecb
seed-ofb          zlib

Building a Trust Store
OpenSSL does not come with any trusted root certicates (also known as a trust store), so if
you’re installing from scratch you’ll have to nd them somewhere else. One possibility is to
use the trust store built into your operating system. Tis choice is usually ne, but default
trust stores may not always be up to date. A better choice—but one that involves more work
—is to turn to Mozilla, which is putting a lot of eort into maintaining a robust trust store.
For example, this is what I did for my assessment tool on SSL Labs.
Because it’s open source, Mozilla keeps the trust store in the source code repository:

https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins↩
/certdata.txt

Unfortunately, their certicate collection is in a proprietary format, which is not of much
use to others as is. If you don’t mind getting the collection via a third party, the Curl project
provides a regularly-updated conversion in Privacy-Enhanced Mail (PEM) format, which
you can use directly:

http://curl.haxx.se/docs/caextract.html

But you don’t have to write a conversion script if you’d rather download directly from
Mozilla. Conversion scripts are available in Perl or Go. I describe both in the following sec-
tions.

Note
If you do end up working on your own conversion script, note that Mozilla’s root
certicate le actually contains two types of certicates: those that are trusted and
are part of the store and also those that are explicitly distrusted. Tey use this
mechanism to ban compromised intermediate CA certicates (e.g., DigiNotar’s old
certicates). Both conversion tools described here are smart enough to exclude dis-
trusted certicates during the conversion process.

Conversion Using Perl
Te Curl project makes available a Perl script written by Guenter Knauf that can be used to
convert Mozilla’s trust store:

https://raw.github.com/bagder/curl/master/lib/mk-ca-bundle.pl
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Aer you download and run the script, it will fetch the certicate data from Mozilla and
convert it to the PEM format:

$ ./mk-ca-bundle.pl
Downloading 'certdata.txt' ...
Processing  'certdata.txt' ...
Done (156 CA certs processed, 19 untrusted skipped).

If you keep previously downloaded certicate data around, the script will use it to deter-
mine what changed and process only the updates.

Conversion Using Go
If you prefer the Go programming language, consider Adam Langley’s conversion tool,
which you can get from GitHub:

https://github.com/agl/extract-nss-root-certs

To kick o a conversion process, rst download the tool itself:

$ wget https://raw.github.com/agl/extract-nss-root-certs/master/convert_mozilla↩
_certdata.go

Ten download Mozilla’s certicate data:

$ wget https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw↩
/builtins/certdata.txt --output-document certdata.txt

Finally, convert the le with the following command:

$ go run convert_mozilla_certdata.go > ca-certificates
2012/06/04 09:52:29 Failed to parse certificate starting on line 23068: negative ↩
serial number 

In my case, there was one invalid certicate that the Go X.509 library couldn’t handle, but
otherwise the conversion worked as expected.

Key and Certifcate Management
Most users turn to OpenSSL because they wish to congure and run a web server that sup-
ports SSL. Tat process consists of three steps: (1) generate a strong private key, (2) create a
Certicate Signing Request (CSR) and send it to a CA, and (3) install the CA-provided cer-
ticate in your web server. Tese steps (and a few others) are covered in this section.
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Key Generation
Te rst step in preparing for the use of public encryption is to generate a private key. Be-
fore you begin, you must make several decisions:

Key algorithm
OpenSSL supports RSA, DSA, and ECDSA keys, but not all types are practical for use
in all scenarios. For example, for web server keys everyone uses RSA, because DSA
keys are eectively limited to 1,024 bits (Internet Explorer doesn’t support anything
stronger) and ECDSA keys are yet to be widely supported by CAs. For SSH, DSA and
RSA are widely used, whereas ECDSA might not be supported by all clients.

Key size
Te default key sizes might not be secure, which is why you should always explicitly
congure key size. For example, the default for RSA keys is only 512 bits, which is
simply insecure. If you used a 512-bit key on your server today, an intruder could
take your certicate and use brute force to recover your private key, aer which he or
she could impersonate your web site. Today, 2,048-bit RSA keys are considered se-
cure, and that’s what you should use. Aim also to use 2,048 bits for DSA keys and at
least 256 bits for ECDSA.

Passphrase
Using a passphrase with a key is optional, but strongly recommended. Protected keys
can be safely stored, transported, and backed up. On the other hand, such keys are
inconvenient, because they can’t be used without their passphrases. For example, you
might be asked to enter the passphrase every time you wish to restart your web serv-
er. For most, this is either too inconvenient or has unacceptable availability implica-
tions. In addition, using protected keys in production does not actually increase the
security much, if at all. Tis is because, once activated, private keys are kept unpro-
tected in program memory; an attacker who can get to the server can get the keys
from there with just a little more eort. Tus, passphrases should be viewed only as a
mechanism for protecting private keys when they are not installed on production sys-
tems. In other words, it’s all right to keep passphrases on production systems, next to
the keys. If you need better security in production, you should invest in a hardware
solution.7

To generate an RSA key, use the genrsa command:

$ openssl genrsa -aes128 -out fd.key 2048
Generating RSA private key, 2048 bit long modulus

7 A small number of organizations will have very strict security requirements that require the private keys to be protected at any cost. For them,

the solution is to invest in a Hardware Security Module (HSM), which is a type of product specically designed to make key extraction impossible,

even with physical access to the server. To make this work, HSMs not only generate and store keys, but also perform all necessary operations

(e.g., signature generation). HSMs are typically very expensive.
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....+++

...................................................................................↩
+++
e is 65537 (0x10001)
Enter pass phrase for fd.key: ****************
Verifying - Enter pass phrase for fd.key: ****************

Here, I specied that the key be protected with AES-128. You can also use AES-192 or
AES-256 (switches -aes192 and -aes256, respectively), but it’s best to stay away from the
other algorithms (DES, 3DES, and SEED).

Warning
Te e value that you see in the output refers to the public exponent, which is set to
65,537 by default. Tis is what’s known as a short public exponent, and it signi-
cantly improves the performance of RSA verication. Using the -3 switch, you can
choose 3 as your public exponent and make verication even faster. However, there
are some unpleasant historical weaknesses associated with the use of 3 as a public
exponent, which is why generally everyone recommends that you stick with 65,537.
Te latter choice provides a safety margin that’s been proven eective in the past.

Private keys are stored in the so-called PEM format, which is just text:

$ cat fd.key
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,01EC21976A463CE36E9DB59FF6AF689A

vERmFJzsLeAEDqWdXX4rNwogJp+y95uTnw+bOjWRw1+O1qgGqxQXPtH3LWDUz1Ym
mkpxmIwlSidVSUuUrrUzIL+V21EJ1W9iQ71SJoPOyzX7dYX5GCAwQm9Tsb40FhV/
[21 lines removed...]
4phGTprEnEwrffRnYrt7khQwrJhNsw6TTtthMhx/UCJdpQdaLW/TuylaJMWL1JRW
i321s5me5ej6Pr4fGccNOe7lZK+563d7v5znAx+Wo1C+F7YgF+g8LOQ8emC+6AVV
-----END RSA PRIVATE KEY-----

A private key isn’t just a blob of random data, even though that’s what it looks like at a
glance. You can see a key’s structure using the following rsa command:

$ openssl rsa -text -in fd.key
Enter pass phrase for fd.key: ****************
Private-Key: (2048 bit)
modulus:
    00:9e:57:1c:c1:0f:45:47:22:58:1c:cf:2c:14:db:
    [...]
publicExponent: 65537 (0x10001)
privateExponent:
    1a:12:ee:41:3c:6a:84:14:3b:be:42:bf:57:8f:dc:
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    [...]
prime1:
    00:c9:7e:82:e4:74:69:20:ab:80:15:99:7d:5e:49:
    [...]
prime2:
    00:c9:2c:30:95:3e:cc:a4:07:88:33:32:a5:b1:d7:
    [...]
exponent1:
    68:f4:5e:07:d3:df:42:a6:32:84:8d:bb:f0:d6:36:
    [...]
exponent2:
    5e:b8:00:b3:f4:9a:93:cc:bc:13:27:10:9e:f8:7e:
    [...]
coefficient:
    34:28:cf:72:e5:3f:52:b2:dd:44:56:84:ac:19:00:
    [...]
writing RSA key
-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----

If you need to have just the public part of a key separately, you can do that with the follow-
ing rsa command:

$ openssl rsa -in fd.key -pubout -out fd-public.key
Enter pass phrase for fd.key: ****************

If you look into the newly generated le, you’ll see that the markers clearly indicate that the
contained information is indeed public:

$ cat fd-public.key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnlccwQ9FRyJYHM8sFNsY
PUHJHJzhJdwcS7kBptutf/L6OvoEAzCVHi/m0qAA4QM5BziZgnvv+FNnE3sgE5pz
iovEHJ3C959mNQmpvnedXwfcOIlbrNqdISJiP0js6mDCzYjSO1NCQoy3UpYwvwj7
0ryR1F+abARehlts/Xs/PtX3VamrljiJN6JNgFICy3ZvEhLZEKxR7oob7TnyZDrj
IHxBbqPNzeiqLCFLFPGgJPa0cH8DdovBTesvu7wr/ecsf8CYyUCdEwGkZh9DKtdU
HFa9H8tWW2mX6uwYeHCnf2HTw0E8vjtOb8oYQxlQxtL7dpFyMgrpPOoOVkZZW/P0
NQIDAQAB
-----END PUBLIC KEY-----

It’s good practice to verify that the output contains what you’re expecting. For example, if
you forget to include the -pubout switch on the command line, the output will contain your
private key instead of the public key.
DSA key generation is a two-step process: DSA parameters are created in the rst step and
the key in the second. Rather than execute the steps one at a time, I tend to use the follow-
ing two commands as one:
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$ openssl dsaparam -genkey 2048 | openssl dsa -out dsa.key -aes128
Generating DSA parameters, 2048 bit long prime
This could take some time
[...]
read DSA key
writing DSA key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************

Tis approach allows me to generate a password-protected key without leaving any tempo-
rary les (DSA parameters) and/or temporary keys on disk.
Te process is similar for ECDSA keys, except that it isn’t possible to create keys of arbitrary
sizes. Instead, for each key you select a named curve, which controls key size, but it controls
other EC parameters as well. Te following example creates a 256-bit ECDSA key using the
secp256r1 named curve:

$ openssl ecparam -genkey -name secp256r1 | openssl ec -out ec.key -aes128
using curve name prime256v1 instead of secp256r1
read EC key
writing EC key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************

OpenSSL supports many named curves (you can get a full list with the -list_curves
switch), but, for web server keys, you’re limited to only two curves that are supported by all
major browsers: secp256r1 (OpenSSL uses the name prime256v1) and secp384r1.

Creating Certifcate Signing Requests
Once you have a private key, you can proceed to create a Certicate Signing Request (CSR).
Tis is a formal request asking a CA to sign a certicate, and it contains the public key of the
entity requesting the certicate and some information about the entity. Tis data will all be
part of the certicate. A CSR is always signed with the private key corresponding to the
public key it carries.
CSR creation is usually an interactive process during which you’ll be providing the elements
of the certicate distinguished name. Read the instructions given by the openssl tool care-
fully; if you want a eld to be empty, you must enter a single dot (.) on the line, rather than
just hit Return. If you do the latter, OpenSSL will populate the corresponding CSR eld with
the default value. (Tis behavior doesn’t make any sense when used with the default
OpenSSL conguration, which is what virtually everyone does. It does make sense once you
realize you can actually change the defaults, either by modifying the OpenSSL conguration
or by providing your own conguration les.)
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$ openssl req -new -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:London
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Feisty Duck Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:www.feistyduck.com
Email Address []:webmaster@feistyduck.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Note
According to Section 5.4.1 of RFC 2985,8 challenge password is an optional eld
that was intended for use during certicate revocation as a way of identifying the
original entity that had requested the certicate. If entered, the password will be
included verbatim in the CSR and communicated to the CA. It’s rare to nd a CA
that relies on this eld; all instructions I’ve seen recommend leaving it alone. Hav-
ing a challenge password does not increase the security of the CSR in any way. Fur-
ther, this eld should not be confused with the key passphrase, which is a separate
feature.

Aer a CSR is generated, use it to sign your own certicate and/or send it to a public CA
and ask him or her to sign the certicate. Both approaches are described in the following
sections. But before you do that, it’s a good idea to double-check that the CSR is correct.
Here’s how:

$ openssl req -text -in fd.csr -noout
Certificate Request:
    Data:
        Version: 0 (0x0)
        Subject: C=GB, L=London, O=Feisty Duck Ltd, CN=www.feistyduck.com↩
/emailAddress=webmaster@feistyduck.com

8 RFC 2985: PKCS #9: Selected Object Classes and Attribute Types Version 2.0 (M. Nystrom and B. Kaliski, November 2000)
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        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
                    [16 more lines...]
                    d1:57
                Exponent: 65537 (0x10001)
        Attributes:
            a0:00
    Signature Algorithm: sha1WithRSAEncryption
         a7:43:56:b2:cf:ed:c7:24:3e:36:0f:6b:88:e9:49:03:a6:91:
         [13 more lines...]
         47:8b:e3:28

Creating CSRs from Existing Certifcates
You can save yourself some typing if you’re renewing a certicate and don’t want to make
any changes to the information presented in it. With the following command, you can cre-
ate a brand-new CSR from an existing certicate:

$ openssl x509 -x509toreq -in fd.crt -out fd.csr -signkey fd.key

Note
Unless you’re using some form of public key pinning and wish to continue using
the existing key, it’s best practice to generate a new key every time you apply for a
new certicate. Key generation is quick and inexpensive and reduces your expo-
sure.

Unattended CSR Generation
CSR generation doesn’t have to be interactive. Using a custom OpenSSL conguration le,
you can both automate the process (as explained in this section) and do certain things that
are not possible interactively (as discussed in subsequent sections).
For example, let’s say that we want to automate the generation of a CSR for
www.feistyduck.com. We would start by creating a le fd.cnf with the following contents:

[req]
prompt = no
distinguished_name = dn
req_extensions = ext
input_password = PASSPHRASE

[dn]
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CN = www.feistyduck.com
emailAddress = webmaster@feistyduck.com
O = Feisty Duck Ltd
L = London
C = GB

[ext]
subjectAltName = DNS:www.feistyduck.com,DNS:feistyduck.com

Now you can create the CSR directly from the command line:

$ openssl req -new -config fd.cnf -key fd.key -out fd.csr

Signing Your Own Certifcates
If you’re installing a TLS server for your own use, you probably don’t want to go to a CA to
get a publicly trusted certicate. It’s much easier to sign your own. Te fastest way to do this
is to generate a self-signed certicate. If you’re a Firefox user, on your rst visit to the web
site you can create a certicate exception, aer which the site will be as secure as if it were
protected with a publicly trusted certicate.
If you already have a CSR, create a certicate using the following command:

$ openssl x509 -req -days 365 -in fd.csr -signkey fd.key -out fd.crt
Signature ok
subject=/CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com/O=Feisty Duck ↩
Ltd/L=London/C=GB
Getting Private key
Enter pass phrase for fd.key: ****************

You don’t actually have to create a CSR in a separate step. Te following command creates a
self-signed certicate starting with a key alone:

$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt

If you don’t wish to be asked any questions, use the -subj switch to provide the certicate
subject information on the command line:

$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt \
 -subj "/C=GB/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com"

Creating Certifcates Valid for Multiple Hostnames
By default, certicates produced by OpenSSL have only one common name and are valid for
only one hostname. Because of this, even if you have related web sites, you are forced to use
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a separate certicate for each site. In this situation, using a single multidomain certicate
makes much more sense. Further, even when you’re running a single web site, you need to
ensure that the certicate is valid for all possible paths that end users can take to reach it. In
practice, this means using at least two names, one with the www prex and one without (e.g.,
www.feistyduck.com and feistyduck.com).
Tere are two mechanisms for supporting multiple hostnames in a certicate. Te rst is to
list all desired hostnames using an X.509 extension called Subject Alternative Name (SAN).
Te second is to use wildcards. You can also use a combination of the two approaches when
it’s more convenient. In practice, for most sites, you can specify a bare domain name and a
wildcard to cover all the subdomains (e.g., feistyduck.com and *.feistyduck.com).

Warning
When a certicate contains alternative names, all common names are ignored.
Newer certicates produced by CAs may not even include any common names. For
that reason, include all desired hostnames on the alternative names list.

First, place the extension information in a separate text le. I’m going to call it fd.ext. In
the le, specify the name of the extension (subjectAltName) and list the desired hostnames,
as in the following example:

subjectAltName = DNS:*.feistyduck.com, DNS:feistyduck.com

Ten, when using the x509 command to issue a certicate, refer to the le using the
-extfile switch:

$ openssl x509 -req -days 365 \
-in fd.csr -signkey fd.key -out fd.crt \
-extfile fd.ext

Te rest of the process is no dierent from before. But when you examine the generated
certicate aerward, you’ll nd that it contains the SAN extension:

 X509v3 extensions:
            X509v3 Subject Alternative Name:
                DNS:*.feistyduck.com, DNS:feistyduck.com

Examining Certifcates
Certicates might look a lot like random data at rst glance, but they contain a great deal of
information; you just need to know how to unpack it. Te x509 command does just that, so
use it to look at the self-signed certicates you generated.
In the following example, I use the -text switch to print certicate contents and -noout to
reduce clutter by not printing the encoded certicate itself (which is the default behavior):
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$ openssl x509 -text -in fd.crt -noout
Certificate:
    Data:
        Version: 1 (0x0)
        Serial Number: 13073330765974645413 (0xb56dcd10f11aaaa5)
    Signature Algorithm: sha1WithRSAEncryption
        Issuer: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, ↩
O=Feisty Duck Ltd, L=London, C=GB
        Validity
            Not Before: Jun  4 17:57:34 2012 GMT
            Not After : Jun  4 17:57:34 2013 GMT
        Subject: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, ↩
O=Feisty Duck Ltd, L=London, C=GB
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
                    [16 more lines...]
                    d1:57
                Exponent: 65537 (0x10001)
    Signature Algorithm: sha1WithRSAEncryption
         49:70:70:41:6a:03:0f:88:1a:14:69:24:03:6a:49:10:83:20:
         [13 more lines...]
         74:a1:11:86

Self-signed certicates usually contain only the most basic certicate data, as seen in the
previous example. By comparison, certicates issued by public CAs are much more interest-
ing, as they contain a number of additional elds (via the X.509 extension mechanism). Let’s
go over them quickly.
Te Basic Constraints extension is used to mark certicates as belonging to a CA, giving
them the ability to sign other certicates. Non-CA certicates will either have this extension
omitted or will have the value of CA set to FALSE. Tis extension is critical, which means
that all soware-consuming certicates must understand its meaning.

X509v3 Basic Constraints: critical
    CA:FALSE

Te Key Usage (KU) and Extended Key Usage (EKU) extensions restrict what a certicate
can be used for. If these extensions are present, then only the listed uses are allowed. If the
extensions are not present, there are no use restrictions. What you see in this example is
typical for a web server certicate, which, for example, does not allow for code signing:

X509v3 Key Usage: critical
    Digital Signature, Key Encipherment
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X509v3 Extended Key Usage:
    TLS Web Server Authentication, TLS Web Client Authentication

Te CRL Distribution Points extension lists the addresses where the CA’s Certicate Revoca-
tion List (CRL) information can be found. Tis information is important in cases in which
certicates need to be revoked. CRLs are CA-signed lists of revoked certicates, published at
regular time intervals (e.g., seven days).

X509v3 CRL Distribution Points:
    Full Name:
      URI:http://crl.starfieldtech.com/sfs3-20.crl

Note
You might have noticed that the CRL location doesn’t use a secure server, and you
might be wondering if the link is thus insecure. It is not. Because each CRL is
signed by the CA that issued it, browsers are able to verify its integrity. In fact, if
CRLs were distributed over TLS, browsers might face a chicken-and-egg problem
in which they want to verify the revocation status of the certicate used by the
server delivering the CRL itself!

Te Certicate Policies extension is used to indicate the policy under which the certicate
was issued. For example, this is where extended validation (EV) indicators can be found (as
in the example that follows). Te indicators are in the form of unique object identiers
(OIDs), and they are unique to the issuing CA. In addition, this extension oen contains
one or more Certicate Policy Statement (CPS) points, which are usually web pages or PDF
documents.

X509v3 Certificate Policies:
    Policy: 2.16.840.1.114414.1.7.23.3
    CPS: http://certificates.starfieldtech.com/repository/

Te Authority Information Access (AIA) extension usually contains two important pieces of
information. First, it lists the address of the CA’s Online Certicate Status Protocol (OCSP)
responder, which can be used to check for certicate revocation in real time. Te extension
may also contain a link to where the issuer’s certicate (the next certicate in the chain) can
be found. Tese days, server certicates are rarely signed directly by trusted root certicates,
which means that users must include one or more intermediate certicates in their congu-
ration. Mistakes are easy to make and will invalidate the certicates. Some clients (e.g., In-
ternet Explorer) will use the information provided in this extension to x an incomplete
certicate chain, but many clients won’t.

Authority Information Access:
    OCSP - URI:http://ocsp.starfieldtech.com/
    CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf↩
_intermediate.crt
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Te Subject Key Identier and Authority Key Identier extensions establish unique subject
and authority key identiers, respectively. Te value specied in the Authority Key Identi-
er extension of a certicate must match the value specied in the Subject Key Identier ex-
tension in the issuing certicate. Tis information is very useful during the certication
path-building process, in which a client is trying to nd all possible paths from a leaf (serv-
er) certicate to a trusted root. Certication authorities will oen use one private key with
more than one certicate, and this eld allows soware to reliably identify which certicate
can be matched to which key. In the real world, many certicate chains supplied by servers
are invalid, but that fact oen goes unnoticed because browsers are able to nd alternative
trust paths.

X509v3 Subject Key Identifier:
    4A:AB:1C:C3:D3:4E:F7:5B:2B:59:71:AA:20:63:D6:C9:40:FB:14:F1
X509v3 Authority Key Identifier:
    keyid:49:4B:52:27:D1:1B:BC:F2:A1:21:6A:62:7B:51:42:7A:8A:D7:D5:56

Finally, the Subject Alternative Name extension is used to list all the hostnames for which
the certicate is valid. Tis extension used to be optional; if it isn’t present, clients fall back
to using the information provided in the Common Name (CN), which is part of the Subject
eld. If the extension is present, then the contents of the CN eld is ignored during valida-
tion.

X509v3 Subject Alternative Name:
    DNS:www.feistyduck.com, DNS:feistyduck.com

Key and Certifcate Conversion 
Private keys and certicates can be stored in a variety of formats, which means that you’ll
oen need to convert them from one format to another. Te most common formats are:

Binary (DER) certicate
Contains an X.509 certicate in its raw form, using DER ASN.1 encoding.

ASCII (PEM) certicate(s)
Contains a base64-encoded DER certicate, with -----BEGIN CERTIFICATE----- used
as the header and -----END CERTIFICATE----- as the footer. Usually seen with only
one certicate per le, although some programs allow more than one certicate de-
pending on the context. For example, the Apache web server requires the server cer-
ticate to be alone in one le, with all intermediate certicates together in another.

Binary (DER) key
Contains a private key in its raw form, using DER ASN.1 encoding. OpenSSL creates
keys in its own traditional (SSLeay) format. Tere’s also an alternative format called
PKCS#8 (dened in RFC 5208), but it’s not widely used. OpenSSL can convert to and
from PKCS#8 format using the pkcs8 command.
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ASCII (PEM) key
Contains a base64-encoded DER certicate with additional metadata (e.g., the algo-
rithm used for password protection).

PKCS#7 certicate(s)
A complex format designed for the transport of signed or encrypted data, dened in
RFC 2315. It’s usually seen with .p7b and .p7c extensions and can include the entire
certicate chain as needed. Tis format is supported by Java’s keytool utility.

PKCS#12 (PFX) key and certicate(s)
A complex format that can store and protect a server key along with an entire certi-
cate chain. It’s commonly seen with .p12 and .pfx extensions. Tis format is com-
monly used in Microso products, but is also used for client certicates. Tese days,
the PFX name is used as a synonym for PKCS#12, even though PFX referred to a
dierent format a long time ago (an early version of PKCS#12). It’s unlikely that
you’ll encounter the old version anywhere.

PEM and DER Conversion
Certicate conversion between PEM and DER formats is performed with the x509 tool. To
convert a certicate from PEM to DER format:

$ openssl x509 -inform PEM -in fd.pem -outform DER -out fd.der

To convert a certicate from DER to PEM format:

$ openssl x509 -inform DER -in fd.der -outform PEM -out fd.pem

Te syntax is identical if you need to convert private keys between DER and PEM formats,
but dierent commands are used: rsa for RSA keys, and dsa for DSA keys.

PKCS#12 (PFX) Conversion
One command is all that’s needed to convert the key and certicates in PEM format to
PKCS#12. Te following example converts a key (fd.key), certicate (fd.crt), and interme-
diate certicates (fd-chain.crt) into an equivalent single PKCS#12 le:

$ openssl pkcs12 -export \
    -name "My Certificate" \
    -out fd.p12 \
    -inkey fd.key \
    -in fd.crt \
    -certfile fd-chain.crt
Enter Export Password: ****************
Verifying - Enter Export Password: ****************
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Te reverse conversion isn’t as straightforward. You can use a single command, but in that
case you’ll get the entire contents in a single le:

$ openssl pkcs12 -in fd.p12 -out fd.pem -nodes

Now, you must open the le fd.pem in your favorite editor and manually split it into individ-
ual key, certicate, and intermediate certicate les. While you’re doing that, you’ll notice
additional content provided before each component. For example:

Bag Attributes
    localKeyID: E3 11 E4 F1 2C ED 11 66 41 1B B8 83 35 D2 DD 07 FC DE 28 76
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/2.5.4.15=Private Organization↩
/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd↩
/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http:/↩
/certificates.starfieldtech.com/repository/CN=Starfield Secure Certification ↩
Authority
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
BhMCVVMxEDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAj
[...]

Tis additional metadata is very handy to quickly identify the certicates. Obviously, you
should ensure that the main certicate le contains the leaf server certicate and not some-
thing else. Further, you should also ensure that the intermediate certicates are provided in
the correct order, with the issuing certicate following the signed one. If you see a self-
signed root certicate, feel free to delete it or store it elsewhere; it shouldn’t go into the
chain.

Warning
Te nal conversion output shouldn’t contain anything apart from the encoded key
and certicates. Although some tools are smart enough to ignore what isn’t needed,
other tools are not. Leaving extra data in PEM les might result in problems that
are dicult to troubleshoot.

It’s possible to get OpenSSL to split the components for you, but doing so requires multiple
invocations of the pkcs12 command (including typing the bundle password each time):

$ openssl pkcs12 -in fd.p12 -nocerts -out fd.key -nodes
$ openssl pkcs12 -in fd.p12 -nokeys -clcerts -out fd.crt
$ openssl pkcs12 -in fd.p12 -nokeys -cacerts -out fd-chain.crt

Tis approach won’t save you much work. You must still examine each le to ensure that it
contains the correct contents and to remove the metadata.
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PKCS#7 Conversion
To convert from PEM to PKCS#7, use the crl2pkcs7 command:

$ openssl crl2pkcs7 -nocrl -out fd.p7b -certfile fd.crt -certfile fd-chain.crt

To convert from PKCS#7 to PEM, use the pkcs7 command with the -print_certs switch:

openssl pkcs7 -in fd.p7b -print_certs -out fd.pem

Similar to the conversion from PKCS#12, you must now edit the fd.pem le to clean it up
and split it into the desired components.

Confguration
In this section, I discuss two topics relevant for TLS deployment. Te rst is cipher suite
conguration, in which you specify which of the many suites available in TLS you wish to
use for communication. Tis topic is important because virtually every program that uses
OpenSSL reuses its suite conguration mechanism. Tat means that once you learn how to
congure cipher suites for one program, you can reuse the same knowledge elsewhere. Te
second topic is the performance measurement of raw crypto operations.

Cipher Suite Selection
A common task in TLS server conguration is selecting which cipher suites are going to be
supported. Programs that rely on OpenSSL usually adopt the same approach to suite cong-
uration as OpenSSL does, simply passing through the conguration options. For example,
in Apache httpd, the cipher suite conguration may look like this:

SSLHonorCipherOrder On  
SSLCipherSuite "HIGH:!aNULL:@STRENGTH"

Te rst line controls cipher suite prioritization (and congures httpd to actively select
suites). Te second line controls which suites will be supported.
Coming up with a good suite conguration can be pretty time consuming, and there are a
lot of details to consider. Te best approach is to use the OpenSSL ciphers command to de-
termine which suites are enabled with a particular conguration string.

Obtaining the List of Supported Suites
Before you do anything else, you should determine which suites are supported by your
OpenSSL installation. To do this, invoke the ciphers command with the switch -v and the
parameter ALL:COMPLEMENTOFALL (clearly, ALL does not actually mean “all”):
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$ openssl ciphers -v 'ALL:COMPLEMENTOFALL'
ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA384
ECDHE-ECDSA-AES256-SHA384      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA384
ECDHE-RSA-AES256-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA1
[106 more lines...]

Tip
If you’re using OpenSSL 1.0.0 or later, you can also use the uppercase -V switch to
request extra-verbose output. In this mode, the output will also contain suite IDs,
which are always handy to have. For example, OpenSSL does not always use the
RFC names for the suites; in such cases, you must use the IDs to cross-check.

In my case, there were 111 suites in the output. Each line contains information on one suite
and the following information:

1. Suite name
2. Required minimum protocol version
3. Key exchange algorithm
4. Authentication algorithm
5. Cipher algorithm and strength
6. MAC (integrity) algorithm
7. Export suite indicator

If you change the ciphers parameter to something other than ALL:COMPLEMENTOFALL,
OpenSSL will list only the suites that match that conguration. For example, you can ask it
to list only cipher suites that are based on RC4, as follows:

$ openssl ciphers -v 'RC4'
ECDHE-RSA-RC4-SHA    SSLv3 Kx=ECDH       Au=RSA   Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA  SSLv3 Kx=ECDH       Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA        SSLv3 Kx=ECDH       Au=None  Enc=RC4(128) Mac=SHA1
ADH-RC4-MD5          SSLv3 Kx=DH         Au=None  Enc=RC4(128) Mac=MD5
ECDH-RSA-RC4-SHA     SSLv3 Kx=ECDH/RSA   Au=ECDH  Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA   SSLv3 Kx=ECDH/ECDSA Au=ECDH  Enc=RC4(128) Mac=SHA1
RC4-SHA              SSLv3 Kx=RSA        Au=RSA   Enc=RC4(128) Mac=SHA1
RC4-MD5              SSLv3 Kx=RSA        Au=RSA   Enc=RC4(128) Mac=MD5
PSK-RC4-SHA          SSLv3 Kx=PSK        Au=PSK   Enc=RC4(128) Mac=SHA1
EXP-ADH-RC4-MD5      SSLv3 Kx=DH(512)    Au=None  Enc=RC4(40)  Mac=MD5  export
EXP-RC4-MD5          SSLv3 Kx=RSA(512)   Au=RSA   Enc=RC4(40)  Mac=MD5  export

Te output will contain all suites that match your requirements, even if they’re insecure.
Clearly, you should choose your conguration strings carefully in order to activate only
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what’s secure. Further, the order in which suites appear in the output matters. When you
congure your TLS server to actively select the cipher suite that will be used for a connec-
tion (which is the best practice and should always be done), the suites listed rst are given
priority.

Keywords
Cipher suite keywords are the basic building blocks of cipher suite conguration. Each suite
name (e.g., RC4-SHA) is a keyword that selects exactly one suite. All other keywords select
groups of suites according to some criteria. Keyword names are case-sensitive. Normally, I
might direct you to the OpenSSL documentation for a comprehensive list of keywords, but
it turns out that the ciphers documentation is not up to date; it’s missing some more recent
additions. For that reason, I’ll try to document all the keywords in this section.
Group keywords are shortcuts that select frequently used cipher suites. For example, HIGH
will select only very strong cipher suites.

Table 11.1. Group keywords

Keyword Meaning

DEFAULT The default cipher list. This is determined at compile time and, as of OpenSSL 1.0.0, is
normally ALL:!aNULL:!eNULL. This must be the rst cipher string specied.

COMPLEMENTOFDEFAULT The ciphers included in ALL, but not enabled by default. Currently, this is ADH. Note that
this rule does not cover eNULL, which is not included by ALL (use COMPLEMENTOFALL if
necessary).

ALL All cipher suites except the eNULL ciphers, which must be explicitly enabled.

COMPLEMENTOFALL The cipher suites not enabled by ALL, currently eNULL.

HIGH “High”-encryption cipher suites. This currently means those with key lengths larger
than 128 bits, and some cipher suites with 128-bit keys.

MEDIUM “Medium”-encryption cipher suites, currently some of those using 128-bit encryption.

LOW “Low”-encryption cipher suites, currently those using 64- or 56-bit encryption algo-
rithms, but excluding export cipher suites. Insecure.

EXP, EXPORT Export encryption algorithms. Including 40- and 56-bit algorithms. Insecure.

EXPORT40 40-bit export encryption algorithms. Insecure.

EXPORT56 56-bit export encryption algorithms. Insecure.

TLSv1, SSLv3, SSLv2 TLS 1.0, SSL 3, or SSL 2 cipher suites, respectively.

Digest keywords select suites that use a particular digest algorithm. For example, MD5 selects
all suites that rely on MD5 for integrity validation.
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Table 11.2. Digest algorithm keywords

Keyword Meaning

MD5 Cipher suites using MD5. Obsolete and insecure.

SHA, SHA1 Cipher suites using SHA1 and SHA2 (v1.0.0+).

SHA256 (v1.0.0+) Cipher suites using SHA256.

SHA384 (v1.0.0+) Cipher suites using SHA384.

Note
Te digest algorithm keywords select only suites that validate data integrity at the
protocol level. TLS 1.2 introduced support for authenticated encryption, which is a
mechanism that bundles encryption with integrity validation. When the so-called
AEAD (Authenticated Encryption with Associated Data) suites are used, the proto-
col doesn’t need to provide additional integrity verication. For this reason, you
won’t be able to use the digest algorithm keywords to select AEAD suites (current-
ly, those that have GCM in the name). Te names of these suites do use SHA256 and
SHA384 suxes, but (confusing as it may be) here they refer to the hash functions
used to build the pseudorandom function used with the suite.

Authentication keywords select suites based on the authentication method they use. Today,
virtually all public certicates use RSA for authentication. Over time, we will probably see a
very slow rise in the use of Elliptic Curve (ECDSA) certicates.

Table 11.3. Authentication keywords

Keyword Meaning

aDH Cipher suites effectively using DH authentication, i.e., the certicates carry DH keys.
(v1.0.2+)

aDSS, DSS Cipher suites using DSS authentication, i.e., the certicates carry DSS keys.

aECDH (v1.0.0+) Cipher suites that use ECDH authentication.

aECDSA (v1.0.0+) Cipher suites that use ECDSA authentication.

aNULL Cipher suites offering no authentication. This is currently the anonymous DH algo-
rithms. Insecure.

aRSA Cipher suites using RSA authentication, i.e., the certicates carry RSA keys.

PSK Cipher suites using PSK (Pre-Shared Key) authentication.

SRP Cipher suites using SRP (Secure Remote Password) authentication.

Key exchange keywords select suites based on the key exchange algorithm. When it comes
to ephemeral Die-Hellman suites, OpenSSL is inconsistent in naming the suites and the
keywords. In the suite names, ephemeral suites tend to have an E at the end of the key ex-
change algorithm (e.g., ECDHE-RSA-RC4-SHA and DHE-RSA-AES256-SHA), but in the keywords
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the E is at the beginning (e.g., EECDH and EDH). To make things worse, some older suites do
have E at the beginning of the key exchange algorithm (e.g., EDH-RSA-DES-CBC-SHA).

Table 11.4. Key exchange keywords

Keyword Meaning

ADH Anonymous DH cipher suites. Insecure.

AECDH (v1.0.0+) Anonymous ECDH cipher suites. Insecure.

DH Cipher suites using DH (includes ephemeral and anonymous DH).

ECDH (v1.0.0+) Cipher suites using ECDH (includes ephemeral and anonymous ECDH).

EDH (v1.0.0+) Cipher suites using ephemeral DH key agreement.

EECDH (v1.0.0+) Cipher suites using ephemeral ECDH.

kECDH (v1.0.0+) Cipher suites using ECDH key agreement.

kEDH Cipher suites using ephemeral DH key agreements (includes anonymous DH).

kEECDH (v1.0.0+) Cipher suites using ephemeral ECDH key agreement (includes anonymous ECDH).

kRSA, RSA Cipher suites using RSA key exchange.

Cipher keywords select suites based on the cipher they use.

Table 11.5. Cipher keywords

Keyword Meaning

3DES Cipher suites using triple DES.

AES Cipher suites using AES.

AESGCM (v1.0.0+) Cipher suites using AES GCM.

CAMELLIA Cipher suites using Camellia.

DES Cipher suites using single DES. Obsolete and insecure.

eNULL, NULL Cipher suites that don’t use encryption. Insecure.

IDEA Cipher suites using IDEA.

RC2 Cipher suites using RC2. Obsolete and insecure.

RC4 Cipher suites using RC4. Insecure.

SEED Cipher suites using SEED.

What remains is a number of suites that do not t into any other category. Te bulk of them
are related to the GOST standards, which are relevant for the countries that are part of the
Commonwealth of Independent States, formed aer the breakup of the Soviet Union.
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Table 11.6. Miscellaneous keywords

Keyword Meaning

@STRENGTH Sorts the current cipher suite list in order of encryption algorithm key length.

aGOST Cipher suites using GOST R 34.10 (either 2001 or 94) for authentication. Requires a
GOST-capable engine.

aGOST01 Cipher suites using GOST R 34.10-2001 authentication.

aGOST94 Cipher suites using GOST R 34.10-94 authentication. Obsolete. Use GOST R 34.10-2001
instead.

kGOST Cipher suites using VKO 34.10 key exchange, specied in RFC 4357.

GOST94 Cipher suites using HMAC based on GOST R 34.11-94.

GOST89MAC Cipher suites using GOST 28147-89 MAC instead of HMAC.

Combining Keywords
In most cases, you’ll use keywords by themselves, but it’s also possible to combine them to
select only suites that meet several requirements, by connecting two or more keywords with
the + character. In the following example, we select suites that use RC4 and SHA:

$ openssl ciphers -v 'RC4+SHA'
ECDHE-RSA-RC4-SHA    SSLv3 Kx=ECDH       Au=RSA   Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA  SSLv3 Kx=ECDH       Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA        SSLv3 Kx=ECDH       Au=None  Enc=RC4(128) Mac=SHA1
ECDH-RSA-RC4-SHA     SSLv3 Kx=ECDH/RSA   Au=ECDH  Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA   SSLv3 Kx=ECDH/ECDSA Au=ECDH  Enc=RC4(128) Mac=SHA1
RC4-SHA              SSLv3 Kx=RSA        Au=RSA   Enc=RC4(128) Mac=SHA1
PSK-RC4-SHA          SSLv3 Kx=PSK        Au=PSK   Enc=RC4(128) Mac=SHA1

Building Cipher Suite Lists
Te key concept in building a cipher suite conguration is that of the current suite list. Te
list always starts empty, without any suites, but every keyword that you add to the congu-
ration string will change the list in some way. By default, new suites are appended to the list.
For example, to choose all suites that use RC4 and AES ciphers:

$ openssl ciphers -v 'RC4:AES'

Te colon character is commonly used to separate keywords, but spaces and commas are
equally acceptable. Te following command produces the same output as the previous ex-
ample:

$ openssl ciphers -v 'RC4 AES'
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Keyword Modifers
Keyword modiers are characters you can place at the beginning of each keyword in order
to change the default action (adding to the list) to something else. Te following actions are
supported:

Append
Add suites to the end of the list. If any of the suites are already on the list, they will
remain in their present position. Tis is the default action, which is invoked when
there is no modier in front of the keyword.

Delete (-)
Remove all matching suites from the list, potentially allowing some other keyword to
reintroduce them later.

Permanently delete (!)
Remove all matching suites from the list and prevent them from being added later by
another keyword. Tis modier is useful to specify all the suites you never want to
use, making further selection easier and preventing mistakes.

Move to the end (+)
Move all matching suites to the end of the list. Works only on existing suites; never
adds new suites to the list. Tis modier is useful if you want to keep some weaker
suites enabled but prefer the stronger ones. For example, the string RC4:+MD5 enables
all RC4 suites, but pushes the MD5-based ones to the end.

Sorting

Te @STRENGTH keyword is unlike other keywords (I assume that’s why it has the @ in the
name): It will not introduce or remove any suites, but it will sort them in order of descend-
ing cipher strength. Automatic sorting is an interesting idea, but it makes sense only in a
perfect world in which cipher suites can actually be compared by cipher strength.
Take, for example, the following cipher suite conguration:

$ openssl ciphers -v 'DES-CBC-SHA:DES-CBC3-SHA:RC4-SHA:AES256-SHA:@STRENGTH'
AES256-SHA                     SSLv3   Kx=RSA  Au=RSA   Enc=AES(256)    Mac=SHA1
DES-CBC3-SHA                   SSLv3   Kx=RSA  Au=RSA   Enc=3DES(168)   Mac=SHA1
RC4-SHA                        SSLv3   Kx=RSA  Au=RSA   Enc=RC4(128)    Mac=SHA1
DES-CBC-SHA                    SSLv3   Kx=RSA  Au=RSA   Enc=DES(56)     Mac=SHA1

In theory, the output is sorted in order of strength. In practice, you’ll oen want better con-
trol of the suite order:

• For example, AES256-SHA (a CBC suite) is vulnerable to the BEAST attack when used
with TLS 1.0 and earlier protocols. If you want to mitigate the BEAST attack server-
side, you’ll prefer to prioritize the RC4-SHA suite, which isn’t vulnerable to this problem.
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• 3DES is only nominally rated at 168 bits; a so-called meet-in-the-middle attack reduces
its strength to 112 bits,9 and further issues make the strength as low as 108 bits.10 Tis
fact makes DES-CBC3-SHA inferior to 128-bit cipher suites. Strictly speaking, treating
3DES as a 168-bit cipher is a bug in OpenSSL that might be xed in a future release.

Handling Errors
Tere are two types of errors you might experience while working on your conguration.
Te rst is a result of a typo or an attempt to use a keyword that does not exist:

$ openssl ciphers -v '@HIGH'
Error in cipher list
140460843755168:error:140E6118:SSL routines:SSL_CIPHER_PROCESS_RULESTR:invalid ↩
command:ssl_ciph.c:1317:

Te output is cryptic, but it does contain an error message.
Another possibility is that you end up with an empty list of cipher suites, in which case you
might see something similar to the following:

$ openssl ciphers -v 'SHA512'
Error in cipher list
140202299557536:error:1410D0B9:SSL routines:SSL_CTX_set_cipher_list:no cipher ↩
match:ssl_lib.c:1312:

Putting It All Together
To demonstrate how various cipher suite conguration features come together, I will
present one complete real-life use case. Please bear in mind that what follows is just an ex-
ample. Because there are usually many aspects to consider when deciding on the congura-
tion, there isn’t such a thing as a single perfect conguration.
For that reason, before you can start to work on your conguration, you should have a clear
idea of what you wish to achieve. In my case, I wish to have a reasonably secure and ecient
conguration, which I dene to mean the following:

1. Use only strong ciphers of 128 eective bits and up (this excludes 3DES).
2. Use only suites that provide strong authentication (this excludes anonymous and ex-

port suites).
3. Do not use any suites that rely on weak primitives (e.g., MD5).
4. Implement robust support for forward secrecy, no matter what keys and protocols are

used. With this requirement comes a slight performance penalty, because I won’t be

9 Cryptography/Meet In The Middle Attack (Wikibooks, retrieved 31 March 2014)
10 Attacking Triple Encryption (Stefan Lucks, 1998)
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able to use the fast RSA key exchange. I’ll minimize the penalty by prioritizing ECD-
HE, which is substantially faster than DHE.

5. Prefer ECDSA over RSA. Tis requirement makes sense only in dual-key deployments,
in which we want to use the faster ECDSA operations wherever possible, but fall back
to RSA when talking to clients that do not yet support ECDSA.

6. With TLS 1.2 clients, prefer AES GCM suites, which provide the best security TLS can
oer.

7. Because RC4 was recently found to be weaker than previously thought,11 we want to
push it to the end of the list. Tat’s almost as good as disabling it. Although BEAST
might still be a problem in some situations, I’ll assume that it’s been mitigated client-
side.

Usually the best approach is to start by permanently eliminating all the components and
suites that you don’t wish to use; this reduces clutter and ensures that the undesired suites
aren’t introduced back into the conguration by mistake.
Te weak suites can be identied with the following cipher strings:

• aNULL; no authentication
• eNULL; no encryption
• LOW; low-strength suites
• 3DES; eective strength of 108 bits
• MD5; suites that use MD5
• EXP; obsolete export suites

To reduce the number of suites displayed, I’m going to eliminate all DSA, PSK, SRP, and
ECDH suites, because they’re used only very rarely. I am also removing the IDEA and SEED
ciphers, which are obsolete but might still be supported by OpenSSL. In my conguration, I
won’t use CAMELLIA either, because it’s slower and not as well supported as AES (e.g., no
GCM or ECDHE variants in practice).

!aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED

Now we can focus on what we want to achieve. Because forward secrecy is our priority, we
can start with the kEECDH and kEDH keywords:

kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA ↩
!IDEA !SEED

If you test this conguration, you’ll nd that RSA suites are listed rst, but I said I wanted
ECDSA rst:

11 On the Security of RC4 in TLS and WPA (AlFardan et al., 13 March 2013)

Cipher Suite Selection 351



ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA384
ECDHE-ECDSA-AES256-SHA384      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA384
ECDHE-RSA-AES256-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA1
ECDHE-ECDSA-AES256-SHA         SSLv3   Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA1
ECDHE-RSA-AES128-GCM-SHA256    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(128) Mac=AEAD
[...]

In order to x this, I’ll put ECDSA suites rst, by placing kEECDH+ECDSA at the beginning of
the conguration:

kEECDH+ECDSA kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH ↩
!CAMELLIA !IDEA !SEED

Te next problem is that older suites (SSL 3) are mixed with newer suites (TLS 1.2). In order
to maximize security, I want all TLS 1.2 clients to always negotiate TLS 1.2 suites. To push
older suites to the end of the list, I’ll use the +SHA keyword (TLS 1.2 suites are all using either
SHA256 or SHA384, so they won’t match):

kEECDH+ECDSA kEECDH kEDH +SHA !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP ↩
!kECDH !CAMELLIA !IDEA !SEED

At this point, I’m mostly done. I only need to add the remaining secure suites to the end of
the list; the HIGH keyword will achieve this. In addition, I’m also going to make sure RC4
suites are last, using +RC4 (to push existing RC4 suites to the end of the list) and RC4 (to add
to the list any remaining RC4 suites that are not already on it):

kEECDH+ECDSA kEECDH kEDH HIGH +SHA +RC4 RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP ↩
!DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED

Let’s examine the entire nal output, which consists of 28 suites. In the rst group are the
TLS 1.2 suites:

ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-SHA384      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA384
ECDHE-ECDSA-AES128-GCM-SHA256  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD
ECDHE-ECDSA-AES128-SHA256      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128)    Mac=SHA256
ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA384
ECDHE-RSA-AES128-GCM-SHA256    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-SHA256        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(128)    Mac=SHA256
DHE-RSA-AES256-GCM-SHA384      TLSv1.2 Kx=DH   Au=RSA   Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-SHA256          TLSv1.2 Kx=DH   Au=RSA   Enc=AES(256)    Mac=SHA256
DHE-RSA-AES128-GCM-SHA256      TLSv1.2 Kx=DH   Au=RSA   Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-SHA256          TLSv1.2 Kx=DH   Au=RSA   Enc=AES(128)    Mac=SHA256
AES256-GCM-SHA384              TLSv1.2 Kx=RSA  Au=RSA   Enc=AESGCM(256) Mac=AEAD
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AES256-SHA256                  TLSv1.2 Kx=RSA  Au=RSA   Enc=AES(256)    Mac=SHA256
AES128-GCM-SHA256              TLSv1.2 Kx=RSA  Au=RSA   Enc=AESGCM(128) Mac=AEAD
AES128-SHA256                  TLSv1.2 Kx=RSA  Au=RSA   Enc=AES(128)    Mac=SHA256

ECDHE suites are rst, followed by DHE suites, followed by all other TLS 1.2 suites. Within
each group, ECDSA and GCM have priority.
In the second group are the suites that are going to be used by TLS 1.0 clients, using similar
priorities as in the rst group:

ECDHE-ECDSA-AES256-SHA         SSLv3   Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA1
ECDHE-ECDSA-AES128-SHA         SSLv3   Kx=ECDH Au=ECDSA Enc=AES(128)    Mac=SHA1
ECDHE-RSA-AES256-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA1
ECDHE-RSA-AES128-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(128)    Mac=SHA1
DHE-RSA-AES256-SHA             SSLv3   Kx=DH   Au=RSA   Enc=AES(256)    Mac=SHA1
DHE-RSA-AES128-SHA             SSLv3   Kx=DH   Au=RSA   Enc=AES(128)    Mac=SHA1
DHE-RSA-SEED-SHA               SSLv3   Kx=DH   Au=RSA   Enc=SEED(128  ) Mac=SHA1
AES256-SHA                     SSLv3   Kx=RSA  Au=RSA   Enc=AES(256)    Mac=SHA1
AES128-SHA                     SSLv3   Kx=RSA  Au=RSA   Enc=AES(128)    Mac=SHA1

Finally, the RC4 suites are at the end:

ECDHE-ECDSA-RC4-SHA            SSLv3   Kx=ECDH Au=ECDSA Enc=RC4(128)    Mac=SHA1
ECDHE-RSA-RC4-SHA              SSLv3   Kx=ECDH Au=RSA   Enc=RC4(128)    Mac=SHA1
RC4-SHA                        SSLv3   Kx=RSA  Au=RSA   Enc=RC4(128)    Mac=SHA1

Recommended Confguration
Te conguration in the previous section was designed to use as an example of cipher suite
conguration using OpenSSL suite keywords, but it’s not the best setup you could have. In
fact, there isn’t any one conguration that will satisfy everyone. In this section, I’ll give you
several congurations to choose from based on your preferences and risk assessment.
Te design principles for all congurations here are essentially the same as those from the
previous section, but I am going to make two changes to achieve better performance. First, I
am going to put 128-bit suites on top of the list. Although 256-bit suites provide some in-
crease in security, for most sites the increase is not meaningful and yet still comes with the
performance penalty. Second, I am going to prefer HMAC-SHA over HMAC-SHA256 and
HMAC-SHA384 suites. Te latter two are much slower but also don’t provide a meaningful
increase in security.
In addition, I am going to change my approach from conguring suites using keywords to
using suite names directly. I think that keywords, conceptually, are not a bad idea: you spec-
ify your security requirements and the library does the rest, without you having to know a
lot about the suites that are going to be used. Unfortunately, this approach no longer works
well in practice, as we’ve become quite picky about what suites we wish to have enabled and
in what order.
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Using suite names in a conguration is also easier: you just list the suites you want to use.
And, when you’re looking at someone’s conguration, you now know exactly what suites are
used without having to run the settings through OpenSSL.
Te following is my default starting conguration, designed to oer strong security as well
as good performance:

ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
EDH-RSA-DES-CBC3-SHA

Tis conguration uses only suites that support forward secrecy and provide strong encryp-
tion. Most modern browsers and other clients will be able to connect, but some very old
clients might not. As an example, older Internet Explorer versions running on Windows XP
will fail.
If you really need to provide support for a very old range of clients—and only then—consid-
er adding the following suites to the end of the list:

AES128-SHA
AES256-SHA
DES-CBC3-SHA
ECDHE-RSA-RC4-SHA
RC4-SHA

Most of these legacy suites use the RSA key exchange, which means that they don’t provide
forward secrecy. Te AES cipher is preferred, but 3DES and (the insecure) RC4 are also sup-
ported for maximum compatibility with as many clients as possible. If the use of RC4 can’t
be avoided, the preference is to use the ECDHE suite that provides forward secrecy.
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Performance
As you’re probably aware, computation speed is a signicant limiting factor for any crypto-
graphic operation. OpenSSL comes with a built-in benchmarking tool that you can use to
get an idea about a system’s capabilities and limits. You can invoke the benchmark using the
speed command.
If you invoke speed without any parameters, OpenSSL produces a lot of output, little of
which will be of interest. A better approach is to test only those algorithms that are directly
relevant to you. For example, for usage in a secure web server, you might care about RC4,
AES, RSA, ECDH, and SHA algorithms:

$ openssl speed rc4 aes rsa ecdh sha

Tere are three relevant parts to the output. Te rst part consists of the OpenSSL version
number and compile-time conguration. Tis information is useful if you’re testing several
dierent versions of OpenSSL with varying compile-time options:

OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) ↩
blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN ↩
-DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG↩
_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES↩
_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used: times
The 'numbers' are in 1000s of bytes per second processed.

Te second part contains symmetric cryptography benchmarks (i.e., hash functions and pri-
vate cryptography):

type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
sha1             29275.44k    85281.86k   192290.28k   280526.68k   327553.12k
rc4             160087.81k   172435.03k   174264.75k   176521.50k   176700.62k
aes-128 cbc      90345.06k   140108.84k   170027.92k   179704.12k   182388.44k
aes-192 cbc     104770.95k   134601.12k   148900.05k   152662.30k   153941.11k
aes-256 cbc      95868.62k   116430.41k   124498.19k   127007.85k   127430.81k
sha256           23354.37k    54220.61k    99784.35k   126494.48k   138266.71k
sha512           16022.98k    64657.88k   113304.06k   178301.77k   214539.99k

Finally, the third part contains the asymmetric (public) cryptography benchmarks:

                  sign    verify    sign/s verify/s
rsa  512 bits 0.000120s 0.000011s   8324.9  90730.0
rsa 1024 bits 0.000569s 0.000031s   1757.0  31897.1
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rsa 2048 bits 0.003606s 0.000102s    277.3   9762.0
rsa 4096 bits 0.024072s 0.000376s     41.5   2657.4
                              op      op/s
 160 bit ecdh (secp160r1)   0.0003s   2890.2
 192 bit ecdh (nistp192)   0.0006s   1702.9
 224 bit ecdh (nistp224)   0.0006s   1743.5
 256 bit ecdh (nistp256)   0.0007s   1513.3
 384 bit ecdh (nistp384)   0.0015s    689.6
 521 bit ecdh (nistp521)   0.0029s    340.3
 163 bit ecdh (nistk163)   0.0009s   1126.2
 233 bit ecdh (nistk233)   0.0012s    818.5
 283 bit ecdh (nistk283)   0.0028s    360.2
 409 bit ecdh (nistk409)   0.0060s    166.3
 571 bit ecdh (nistk571)   0.0130s     76.8
 163 bit ecdh (nistb163)   0.0009s   1061.3
 233 bit ecdh (nistb233)   0.0013s    755.2
 283 bit ecdh (nistb283)   0.0030s    329.4
 409 bit ecdh (nistb409)   0.0067s    149.7
 571 bit ecdh (nistb571)   0.0146s     68.4

What’s this output useful for? You should be able to compare how compile-time options
aect speed or how dierent versions of OpenSSL compare on the same platform. For ex-
ample, the previous results are from a real-life server that’s using the OpenSSL 0.9.8k
(patched by the distribution vendor). I’m considering moving to OpenSSL 1.0.1h because I
wish to support TLS 1.1 and TLS 1.2; will there be any performance impact? I’ve download-
ed and compiled OpenSSL 1.0.1h for a test. Let’s see:

$ ./openssl-1.0.1h speed rsa
[...]
OpenSSL 1.0.1h 5 Jun 2014
built on: Thu Jul  3 18:30:06 BST 2014
options:bn(64,64) rc4(8x,int) des(idx,cisc,16,int) aes(partial) idea(int) ↩
blowfish(idx)
compiler: gcc -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H ↩
-Wa,--noexecstack -m64 -DL_ENDIAN -DTERMIO -O3 -Wall -DOPENSSL_IA32_SSE2 -DOPENSSL↩
_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM ↩
-DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH↩
_ASM
                  sign    verify    sign/s verify/s
rsa  512 bits 0.000102s 0.000008s   9818.0 133081.7
rsa 1024 bits 0.000326s 0.000020s   3067.2  50086.9
rsa 2048 bits 0.002209s 0.000068s    452.8  14693.6
rsa 4096 bits 0.015748s 0.000255s     63.5   3919.4

Apparently, OpenSSL 1.0.1h is almost twice as fast on this server for my use case (2,048-bit
RSA key): Te performance went from 277 signatures/s to 450 signatures/s. Tis means that
I’ll get better performance if I upgrade. Always good news!
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Using the benchmark results to estimate deployment performance is not straightforward
because of the great number of factors that inuence performance in real life. Further, many
of those factors lie outside TLS (e.g., HTTP keep alive settings, caching, etc.). At best, you
can use these numbers only for a rough estimate.
But before you can do that, you need to consider something else. By default, the speed com-
mand will use only a single process. Most servers have multiple cores, so to nd out how
many TLS operations are supported by the entire server, you must instruct speed to use sev-
eral instances in parallel. You can achieve this with the -multi switch. My server has four
cores, so that’s what I’m going to use:

$ openssl speed -multi 4 rsa
[...]
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) ↩
blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN ↩
-DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG↩
_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES↩
_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used:
                  sign    verify    sign/s verify/s
rsa  512 bits 0.000030s 0.000003s  33264.5 363636.4
rsa 1024 bits 0.000143s 0.000008s   6977.9 125000.0
rsa 2048 bits 0.000917s 0.000027s   1090.7  37068.1
rsa 4096 bits 0.006123s 0.000094s    163.3  10652.6

As expected, the performance is almost four times better than before. I’m again looking at
how many RSA signatures can be executed per second, because this is the most CPU-inten-
sive cryptographic operation performed on a server and is thus always the rst bottleneck.
Te result of 1,090 signatures/second tells us that this server can handle about 1,000 brand-
new TLS connections per second. In my case, that’s sucient—with a very healthy safety
margin. Because I also have session resumption enabled on the server, I know that I can
support many more than 1,000 TLS connections per second. I wish I had enough trac on
that server to worry about the performance of TLS.
Another reason why you shouldn’t believe the output of the speed command too much is
because it doesn’t use the fastest available cipher implementations by default. In some ways,
the default output is a lie. For example, on servers that support the AES-NI instruction set
to accelerate AES computations, this feature won’t be used by default when testing:

$ openssl speed aes-128-cbc
[...]
The 'numbers' are in 1000s of bytes per second processed.
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type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
aes-128 cbc      67546.70k    74183.00k    69278.82k   155942.87k   156486.38k

To activate hardware acceleration, you have to use the -evp switch on the command line:

$ openssl speed -evp aes-128-cbc
[..]
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
aes-128-cbc     188523.36k   223595.37k   229763.58k   203658.58k   206452.14k

Creating a Private Certifcation Authority
If you want to set up your own CA, everything you need is already included in OpenSSL.
Te user interface is purely command line–based and thus not very user friendly, but that’s
possibly for the better. Going through the process is very educational, because it forces you
to think about every aspect, even the smallest details.
Te educational aspect of setting a private CA is the main reason why I would recommend
doing it, but there are others. An OpenSSL-based CA, crude as it might be, can well serve
the needs of an individual or a small group. For example, it’s much better to use a private
CA in a development environment than to use self-signed certicates everywhere. Similarly,
client certicates—which provide two-factor authentication—can signicantly increase the
security of your sensitive web applications.
Te biggest challenge in running a private CA is not setting everything up but keeping the
infrastructure secure. For example, the root key must be kept oine because all security de-
pends on it. On the other hand, CRLs and OCSP responder certicates must be refreshed
on a regular basis, which requires bringing the root online.

Note
Before you begin to properly read this section, I recommend rst going through
Chapter 3, Public-Key Infrastructure, which will give you a good background in cer-
ticate structure and the operation of certication authorities.

Features and Limitations
In the rest of this section, we’re going to create a private CA that’s similar in structure to
public CAs. Tere’s going to be one root CA from which other subordinate CAs can be cre-
ated. We’ll provide revocation information via CRLs and OCSP responders. To keep the
root CA oine, OCSP responders are going to have their own identities. Tis isn’t the sim-
plest private CA you could have, but it’s one that can be secured properly. As a bonus, the
subordinate CA will be technically constrained, which means that it will be allowed to issue
certicates only for the allowed hostnames.
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Aer the setup is complete, the root certicate will have to be securely distributed to all in-
tended clients. Once the root is in place, you can begin issuing client and server certicates.
Te main limitation of this setup is that the OCSP responder is chiey designed for testing
and can be used only for lighter loads.

Creating a Root CA
Creating a new CA involves several steps: conguration, creation of a directory structure
and initialization of the key les, and nally generation of the root key and certicate. Tis
section describes the process as well as the common CA operations.

Root CA Confguration
Before we can actually create a CA, we need to prepare a conguration le that will tell
OpenSSL exactly how we want things set up. Conguration les aren’t needed most of the
time, during normal usage, but they are essential when it comes to complex operations, such
as root CA creation. OpenSSL conguration les are powerful; before you proceed I suggest
that you familiarize yourself with their capabilities (man config on the command line).
Te rst part of the conguration le contains some basic CA information, such as the
name and the base URL, and the components of the CA’s distinguished name. Because the
syntax is exible, information needs to be provided only once:

[default]
name                    = root-ca
domain_suffix           = example.com
aia_url                 = http://$name.$domain_suffix/$name.crt
crl_url                 = http://$name.$domain_suffix/$name.crl
ocsp_url                = http://ocsp.$name.$domain_suffix:9080
default_ca              = ca_default
name_opt                = utf8,esc_ctrl,multiline,lname,align

[ca_dn]
countryName             = "GB"
organizationName        = "Example"
commonName              = "Root CA"

Te second part directly controls the CA’s operation. For full information on each setting,
consult the documentation for the ca command (man ca on the command line). Most of the
settings are self-explanatory; we mostly tell OpenSSL where we want to keep our les. Be-
cause this root CA is going to be used only for the issuance of subordinate CAs, I chose to
have the certicates valid for 10 years. For the signature algorithm, the secure SHA256 is
used by default.
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Te default policy (policy_c_o_match) is congured so that all certicates issued from this
CA have the countryName and organizationName elds that match that of the CA. Tis
wouldn’t be normally done by a public CA, but it’s appropriate for a private CA:

[ca_default]
home                    = .
database                = $home/db/index
serial                  = $home/db/serial
crlnumber               = $home/db/crlnumber
certificate             = $home/$name.crt
private_key             = $home/private/$name.key
RANDFILE                = $home/private/random
new_certs_dir           = $home/certs
unique_subject          = no
copy_extensions         = none
default_days            = 3650
default_crl_days        = 365
default_md              = sha256
policy                  = policy_c_o_match

[policy_c_o_match]
countryName             = match
stateOrProvinceName     = optional
organizationName        = match
organizationalUnitName  = optional
commonName              = supplied
emailAddress            = optional

Te third part contains the conguration for the req command, which is going to be used
only once, during the creation of the self-signed root certicate. Te most important parts
are in the extensions: the basicConstraint extension indicates that the certicate is a CA,
and the keyUsage contains the appropriate settings for this scenario:

[req]
default_bits            = 4096
encrypt_key             = yes
default_md              = sha256
utf8                    = yes
string_mask             = utf8only
prompt                  = no
distinguished_name      = ca_dn
req_extensions          = ca_ext

[ca_ext]
basicConstraints        = critical,CA:true
keyUsage                = critical,keyCertSign,cRLSign
subjectKeyIdentifier    = hash
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Te fourth part of the conguration le contains information that will be used during the
construction of certicates issued by the root CA. All certicates will be CAs, as indicated
by the basicConstraints extension, but we set pathlen to zero, which means that further
subordinate CAs are not allowed.
All subordinate CAs are going to be constrained, which means that the certicates they is-
sue will be valid only for a subset of domain names and restricted uses. First, the
extendedKeyUsage extension species only clientAuth and serverAuth, which is TLS client
and server authentication. Second, the nameConstraints extension limits the allowed host-
names only to example.com and example.org domain names. In theory, this setup enables
you to give control over the subordinate CAs to someone else but still be safe in knowing
that they can’t issue certicates for arbitrary hostnames. If you wanted, you could restrict
each subordinate CA to a small domain namespace. Te requirement to exclude the two IP
address ranges comes from the CA/Browser Forum’s Baseline Requirements, which have a
denition for technically constrained subordinate CAs.12

In practice, name constraints are not entirely practical, because some major platforms don’t
currently recognize the nameConstraints extension. If you mark this extension as critical,
such platforms will reject your certicates. You won’t have such problems if you don’t mark
it as critical (as in the example), but then some other platforms won’t enforce it.

[sub_ca_ext]
authorityInfoAccess     = @issuer_info
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:true,pathlen:0
crlDistributionPoints   = @crl_info
extendedKeyUsage        = clientAuth,serverAuth
keyUsage                = critical,keyCertSign,cRLSign
nameConstraints         = @name_constraints
subjectKeyIdentifier    = hash

[crl_info]
URI.0                   = $crl_url

[issuer_info]
caIssuers;URI.0         = $aia_url
OCSP;URI.0              = $ocsp_url

[name_constraints]
permitted;DNS.0=example.com
permitted;DNS.1=example.org
excluded;IP.0=0.0.0.0/0.0.0.0
excluded;IP.1=0:0:0:0:0:0:0:0/0:0:0:0:0:0:0:0

12 Baseline Requirements (The CA/Browser Forum, retrieved 9 July 2014)
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Te h and nal part of the conguration species the extensions to be used with the cer-
ticate for OCSP response signing. In order to be able to run an OCSP responder, we gener-
ate a special certicate and delegate the OCSP signing capability to it. Tis certicate is not
a CA, which you can see from the extensions:

[ocsp_ext]
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:false
extendedKeyUsage        = OCSPSigning
keyUsage                = critical,digitalSignature
subjectKeyIdentifier    = hash

Root CA Directory Structure
Te next step is to create the directory structure specied in the previous section and initial-
ize some of the les that will be used during the CA operation:

$ mkdir root-ca
$ cd root-ca
$ mkdir certs db private
$ chmod 700 private
$ touch db/index
$ openssl rand -hex 16  > db/serial
$ echo 1001 > db/crlnumber

Te following subdirectories are used:
certs/

Certicate storage; new certicates will be placed here as they are issued.

db/
Tis directory is used for the certicate database (index) and the les that hold the
next certicate and CRL serial numbers. OpenSSL will create some additional les as
needed.

private/
Tis directory will store the private keys, one for the CA and the other for the OCSP
responder. It’s important that no other user has access to it. (In fact, if you’re going to
be serious about the CA, the machine on which the root material is stored should
have only a minimal number of user accounts.)

Note
When creating a new CA certicate, it’s important to initialize the certicate serial
numbers with a random number generator, as I do in this section. Tis is very use-
ful if you ever end up creating and deploying multiple CA certicates with the
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same distinguished name (common if you make a mistake and need to start over);
conicts will be avoided because the certicates will have dierent serial numbers.

Root CA Generation
We take two steps to create the root CA. First, we generate the key and the CSR. All the
necessary information will be picked up from the conguration le when we use the
-config switch:

$ openssl req -new \
    -config root-ca.conf \
    -out root-ca.csr \
    -keyout private/root-ca.key

In the second step, we create a self-signed certicate. Te -extensions switch points to the
ca_ext section in the conguration le, which activates the extensions that are appropriate
for a root CA:

$ openssl ca -selfsign \
    -config root-ca.conf \
    -in root-ca.csr \
    -out root-ca.crt \
    -extensions ca_ext

Structure of the Database File
Te database in db/index is a plaintext le that contains certicate information, one certi-
cate per line. Immediately aer the root CA creation, it should contain only one line:

V    240706115345Z        1001    unknown    /C=GB/O=Example/CN=Root CA

Each line contains six values separated by tabs:
1. Status ag (V for valid, R for revoked, E for expired)
2. Expiration date (in YYMMDDHHMMSSZ format)
3. Revocation date or empty if not revoked
4. Serial number (hexadecimal)
5. File location or unknown if not known
6. Distinguished name

Root CA Operations
To generate a CRL from the new CA, use the -gencrl switch of the ca command:
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$ openssl ca -gencrl \
    -config root-ca.conf \
    -out root-ca.crl

To issue a certicate, invoke the ca command with the desired parameters. It’s important
that the -extensions switch points to the correct section in the conguration le (e.g., you
don’t want to create another root CA).

$ openssl ca \
    -config root-ca.conf \
    -in sub-ca.csr \
    -out sub-ca.crt \
    -extensions sub_ca_ext

To revoke a certicate, use the -revoke switch of the ca command; you’ll need to have a
copy of the certicate you wish to revoke. Because all certicates are stored in the certs/
directory, you only need to know the serial number. If you have a distinguished name, you
can look for the serial number in the database.
Choose the correct reason for the value in the -crl_reason switch. Te value can be one of
the following: unspecified, keyCompromise, CACompromise, affiliationChanged, superseded,
cessationOfOperation, certificateHold, and removeFromCRL.

$ openssl ca \
    -config root-ca.conf \
    -revoke certs/1002.pem \
    -crl_reason keyCompromise

Create a Certifcate for OCSP Signing
First, we create a key and CSR for the OCSP responder. Tese two operations are done as for
any non-CA certicate, which is why we don’t specify a conguration le:

$ openssl req -new \
    -newkey rsa:2048 \
    -subj "/C=GB/O=Example/CN=OCSP Root Responder" \
    -keyout private/root-ocsp.key \
    -out root-ocsp.csr

Second, use the root CA to issue a certicate. Te value of the -extensions switch species
ocsp_ext, which ensures that extensions appropriate for OCSP signing are set. I reduced the
lifetime of the new certicate to 365 days (from the default of 3,650). Because these OCSP
certicates don’t contain revocation information, they can’t be revoked. For that reason, you
want to keep the lifetime as short as possible. A good choice is 30 days, provided you are
prepared to generate a fresh certicate that oen:

$ openssl ca \
    -config root-ca.conf \
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    -in root-ocsp.csr \
    -out root-ocsp.crt \
    -extensions ocsp_ext \
    -days 30

Now you have everything ready to start the OCSP responder. For testing, you can do it from
the same machine on which the root CA resides. However, for production you must move
the OCSP responder key and certicate elsewhere:

$ openssl ocsp \
    -port 9080
    -index db/index \
    -rsigner root-ocsp.crt \
    -rkey private/root-ocsp.key \
    -CA root-ca.crt \
    -text

You can test the operation of the OCSP responder using the following command line:

$ openssl ocsp \
    -issuer root-ca.crt \
    -CAfile root-ca.crt \
    -cert root-ocsp.crt \
    -url http://127.0.0.1:9080

In the output, verify OK means that the signatures were correctly veried, and good means
that the certicate hasn’t been revoked.

Response verify OK
root-ocsp.crt: good
        This Update: Jul  9 18:45:34 2014 GMT

Creating a Subordinate CA
Te process of subordinate CA generation largely mirrors the root CA process. In this sec-
tion, I will only highlight the dierences where appropriate. For everything else, refer to the
previous section.

Subordinate CA Confguration
To generate a conguration le for the subordinate CA, start with the le we used for the
root CA and make the changes listed here. We’ll change the name to sub-ca and use a dier-
ent distinguished name. We’ll put the OCSP responder on a dierent port, but only because
the ocsp command doesn’t understand virtual hosts. If you used a proper web server for the
OCSP responder, you could avoid using special ports altogether. Te default lifetime of new
certicates will be 365 days, and we’ll generate a fresh CRL once every 30 days.
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Te change of copy_extensions to copy means that extensions from the CSR will be copied
into the certicate, but only if they are not already set in our conguration. With this
change, whoever is preparing the CSR can put the required alternative names in it, and the
information from there will be picked up and placed in the certicate. Tis feature is some-
what dangerous (you’re allowing someone else to have limited direct control over what goes
into a certicate), but I think it’s ne for smaller environments:

[default]
name                    = sub-ca
ocsp_url                = http://ocsp.$name.$domain_suffix:9081

[ca_dn]
countryName             = "GB"
organizationName        = "Example"
commonName              = "Sub CA"

[ca_default]
default_days            = 365
default_crl_days        = 30
copy_extensions         = copy

At the end of the conguration le, we’ll add two new proles, one each for client and serv-
er certicates. Te only dierence is in the keyUsage and extendedKeyUsage extensions. Note
that we specify the basicConstraints extension but set it to false. We’re doing this because
we’re copying extensions from the CSR. If we le this extension out, we might end up using
one specied in the CSR:

[server_ext]
authorityInfoAccess     = @issuer_info
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:false
crlDistributionPoints   = @crl_info
extendedKeyUsage        = clientAuth,serverAuth
keyUsage                = critical,digitalSignature,keyEncipherment
subjectKeyIdentifier    = hash

[client_ext]
authorityInfoAccess     = @issuer_info
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:false
crlDistributionPoints   = @crl_info
extendedKeyUsage        = clientAuth
keyUsage                = critical,digitalSignature
subjectKeyIdentifier    = hash
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Aer you’re happy with the conguration le, create a directory structure following the
same process as for the root CA. Just use a dierent directory name, for example, sub-ca.

Subordinate CA Generation
As before, we take two steps to create the subordinate CA. First, we generate the key and the
CSR. All the necessary information will be picked up from the conguration le when we
use the -config switch.

$ openssl req -new \
    -config sub-ca.conf \
    -out sub-ca.csr \
    -keyout private/sub-ca.key

In the second step, we get the root CA to issue a certicate. Te -extensions switch points
to the sub_ca_ext section in the conguration le, which activates the extensions that are
appropriate for the subordinate CA.

$ openssl ca \
    -config root-ca.conf \
    -in sub-ca.csr \
    -out sub-ca.crt \
    -extensions sub_ca_ext

Subordinate CA Operations
To issue a server certicate, process a CSR while specifying server_ext in the -extensions
switch:

$ openssl ca \
    -config sub-ca.conf \
    -in server.csr \
    -out server.crt \
    -extensions server_ext

To issue a client certicate, process a CSR while specifying client_ext in the -extensions
switch:

$ openssl ca \
    -config sub-ca.conf \
    -in client.csr \
    -out client.crt \
    -extensions client_ext

Note
When a new certicate is requested, all its information will be presented to you for
verication before the operation is completed. You should always ensure that ev-

Creating a Subordinate CA 367



erything is in order, but especially if you’re working with a CSR that someone else
prepared. Pay special attention to the certicate distinguished name and the
basicConstraints and subjectAlternativeName extensions.

CRL generation and certicate revocation are the same as for the root CA. Te only thing
dierent about the OCSP responder is the port; the subordinate CA should use 9081 in-
stead. It’s recommended that the responder uses its own certicate, which avoids keeping
the subordinate CA on a public server.
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12 Testing with OpenSSL
Due to the large number of protocol features and implementation quirks, it’s sometimes dif-
ficult to determine the exact conguration and features of secure servers. Although many
tools exist for this purpose, it’s oen dicult to know exactly how they’re implemented, and
that sometimes makes it dicult to fully trust their results. Even though I spent years test-
ing secure servers and have access to good tools, when I really want to understand what is
going on, I resort to using OpenSSL and Wireshark. I am not saying that you should use
OpenSSL for everyday testing; on the contrary, you should nd an automated tool that you
trust. But, when you really need to be certain of something, the only way is to get your
hands dirty with OpenSSL.

Connecting to SSL Services
OpenSSL comes with a client tool that you can use to connect to a secure server. Te tool is
similar to telnet or nc, in the sense that it handles the SSL/TLS layer but allows you to fully
control the layer that comes next.
To connect to a server, you need to supply a hostname and a port. For example:

$ openssl s_client -connect www.feistyduck.com:443

Once you type the command, you’re going to see a lot of diagnostic output (more about that
in a moment) followed by an opportunity to type whatever you want. Because we’re talking
to an HTTP server, the most sensible thing to do is to submit an HTTP request. In the fol-
lowing example, I use a HEAD request because it instructs the server not to send the response
body:

HEAD / HTTP/1.0
Host: www.feistyduck.com

HTTP/1.1 200 OK
Date: Tue, 10 Mar 2015 17:13:23 GMT
Server: Apache
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Strict-Transport-Security: max-age=31536000
Cache-control: no-cache, must-revalidate
Content-Type: text/html;charset=UTF-8
Transfer-Encoding: chunked
Set-Cookie: JSESSIONID=7F3D840B9C2FDB1FF7E5731590BD9C99; Path=/; Secure; HttpOnly
Connection: close

read:errno=0

Now we know that the TLS communication layer is working: we got through to the HTTP
server, submitted a request, and received a response back. Let’s go back to the diagnostic
output. Te rst couple of lines will show the information about the server certicate:

CONNECTED(00000003)
depth=3 L = ValiCert Validation Network, O = "ValiCert, Inc.", OU = ValiCert Class ↩
2 Policy Validation Authority, CN = http://www.valicert.com/, emailAddress = ↩
info@valicert.com
verify error:num=19:self signed certificate in certificate chain
verify return:0

On my system (and possibly on yours), s_client doesn’t pick up the default trusted certi-
cates; it complains that there is a self-signed certicate in the certicate chain. In most cases,
you won’t care about certicate validation; but if you do, you will need to point s_client to
the trusted certicates, like this:

$ openssl s_client -connect www.feistyduck.com:443 -CAfile /etc/ssl/certs↩
/ca-certificates.crt
CONNECTED(00000003)
depth=3 L = ValiCert Validation Network, O = "ValiCert, Inc.", OU = ValiCert Class ↩
2 > Policy Validation Authority, CN = http://www.valicert.com/, emailAddress = ↩
info@valicert.com
verify return:1
depth=2 C = US, O = "Starfield Technologies, Inc.", OU = Starfield Class 2 ↩
Certification Authority
verify return:1
depth=1 C = US, ST = Arizona, L = Scottsdale, O = "Starfield Technologies, Inc.", ↩
OU = http://certificates.starfieldtech.com/repository, CN = Starfield Secure ↩
Certification Authority, serialNumber = 10688435
verify return:1
depth=0 1.3.6.1.4.1.311.60.2.1.3 = GB, businessCategory = Private Organization, ↩
serialNumber = 06694169, C = GB, ST = London, L = London, O = Feisty Duck Ltd, CN ↩
= www.feistyduck.com
verify return:1

Instead of s_client complaining, you now see it verifying each of the certicates from the
chain. For the verication to work, you must have access to a good selection of CA certi-
cates. Te path I used in the example (/etc/ssl/certs/ca-certificates.crt) is valid on
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Ubuntu 12.04 LTS but might not be valid on your system. If you don’t want to use the sys-
tem-provided CA certicates for this purpose, you can rely on those provided by Mozilla, as
discussed in the section called “Building a Trust Store” in Chapter 11.

Warning
Apple’s operating system OS X ships with a modied version of OpenSSL that
sometimes overrides certicate validation. In other words, the -CAfile switch
might not work as expected. You can x this by setting the
OPENSSL_X509_TEA_DISABLE environment variable before you invoke s_client.1
Given that the default version of OpenSSL on OS X is from the 0.9.x branch and
thus obsolete, it’s best that you upgrade to the latest version, for example using
Homebrew or MacPorts.

Te next section in the output lists all the certicates presented by the server in the order in
which they were delivered:

Certificate chain
 0 s:/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization↩
/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd↩
/CN=www.feistyduck.com
   i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http:/↩
/certificates.starfieldtech.com/repository/CN=Starfield Secure Certification ↩
Authority/serialNumber=10688435
 1 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http:/↩
/certificates.starfieldtech.com/repository/CN=Starfield Secure Certification ↩
Authority/serialNumber=10688435
   i:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification ↩
Authority
 2 s:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification ↩
Authority
   i:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy ↩
Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
 3 s:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy ↩
Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
   i:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy ↩
Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com

For each certicate, the rst line shows the subject and the second line shows the issuer in-
formation.
Tis part is very useful when you need to see exactly what certicates are sent; browser cer-
ticate viewers typically display reconstructed certicate chains that can be almost com-
pletely dierent from the presented ones. To determine if the chain is nominally correct,

1 Apple OpenSSL Verication Surprises (Hynek Schlawack, 3 March 2014)
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you might wish to verify that the subjects and issuers match. You start with the leaf (web
server) certicate at the top, and then you go down the list, matching the issuer of the cur-
rent certicate to the subject of the next. Te last issuer you see can point to some root
certicate that is not in the chain, or—if the self-signed root is included—it can point to
itself.
Te next item in the output is the server certicate; it’s a lot of text, but I’m going to remove
most of it for brevity:

Server certificate
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
[30 lines removed...]
os5LW3PhHz8y9YFep2SV4c7+NrlZISHOZVzN
-----END CERTIFICATE-----
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization↩
/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd↩
/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http:/↩
/certificates.starfieldtech.com/repository/CN=Starfield Secure Certification ↩
Authority/serialNumber=10688435

Note
Whenever you see a long string of numbers instead of a name in a subject, it means
that OpenSSL does not know the object identier (OID) in question. OIDs are
globally unique and unambiguous identiers that are used to refer to “things.” For
example, in the previous output, the OID 1.3.6.1.4.1.311.60.2.1.3 should have
been replaced with jurisdictionOfIncorporationCountryName, which is used in ex-
tended validation (EV) certicates.

If you want to have a better look at the certicate, you’ll rst need to copy it from the output
and store it in a separate le. I’ll discuss that in the next section.
Te following is a lot of information about the TLS connection, most of which is self-ex-
planatory:

---
No client certificate CA names sent
---
SSL handshake has read 3043 bytes and written 375 bytes
---
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
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SSL-Session:
    Protocol  : TLSv1.1
    Cipher    : ECDHE-RSA-AES256-SHA
    Session-ID: 032554E059DB27BF8CD87EBC53E9FF29376265F0BBFDBBFB7773D2277E5559F5
    Session-ID-ctx:
    Master-Key: 1A55823368DB6EFC397DEE2DC3382B5BB416A061C19CEE162362158E90F1FB0846E↩
EFDB2CCF564A18764F1A98F79A768
    Key-Arg   : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    TLS session ticket lifetime hint: 300 (seconds)
    TLS session ticket:
    0000 - 77 c3 47 09 c4 45 e4 65-90 25 8b fd 77 4c 12 da   w.G..E.e.%..wL..
    0010 - 38 f0 43 09 08 a1 ec f0-8d 86 f8 b1 f0 7e 4b a9   8.C..........~K.
    0020 - fe 9f 14 8e 66 d7 5a dc-0f d0 0c 25 fc 99 b8 aa   ....f.Z....%....
    0030 - 8f 93 56 5a ac cd f8 66-ac 94 00 8b d1 02 63 91   ..VZ...f......c.
    0040 - 05 47 af 98 11 81 65 d9-48 5b 44 bb 41 d8 24 e8   .G....e.H[D.A.$.
    0050 - 2e 08 2d bb 25 59 f0 8f-bf aa 5c b6 fa 9c 12 a6   ..-.%Y....\.....
    0060 - a1 66 3f 84 2c f6 0f 06-51 c0 64 24 7a 9a 48 96   .f?.,...Q.d$z.H.
    0070 - a7 f6 a9 6e 94 f2 71 10-ff 00 4d 7a 97 e3 f5 8b   ...n..q...Mz....
    0080 - 2d 1a 19 9c 1a 8d e0 9c-e5 55 cd be d7 24 2e 24   -........U...$.$
    0090 - fc 59 54 b0 f8 f1 0a 5f-03 08 52 0d 90 99 c4 78   .YT...._..R....x
    00a0 - d2 93 61 d8 eb 76 15 27-03 5e a4 db 0c 05 bb 51   ..a..v.'.^.....Q
    00b0 - 6c 65 76 9b 4e 6b 6c 19-69 33 2a bd 02 1f 71 14   lev.Nkl.i3*...q.

    Start Time: 1390553737
    Timeout   : 300 (sec)
    Verify return code: 0 (ok)
---

Te most important information here is the protocol version (TLS 1.1) and cipher suite
used (ECDHE-RSA-AES256-SHA). You can also determine that the server has issued to you a
session ID and a TLS session ticket (a way of resuming sessions without having the server
maintain state) and that secure renegotiation is supported. Once you understand what all of
this output contains, you will rarely look at it.

Warning
Operating system distributions oen ship tools that are dierent from the stock
versions. We have another example of that here: Te previous command negotiated
TLS 1.1, even though the server supports TLS 1.2. Why? As it turns out, some
OpenSSL versions shipped with Ubuntu 12.04 LTS disable TLS 1.2 for client con-
nections in order to avoid certain interoperability issues. To avoid problems like
these, I recommend that you always test with a version of OpenSSL that you con-
gured and compiled.
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Testing Protocols that Upgrade to SSL
When used with HTTP, TLS wraps the entire plain-text communication channel to form
HTTPS. Some other protocols start o as plaintext, but then they upgrade to encryption. If
you want to test such a protocol, you’ll have to tell OpenSSL which protocol it is so that it
can upgrade on your behalf. Provide the protocol information using the -starttls switch.
For example:

$ openssl s_client -connect gmail-smtp-in.l.google.com:25 -starttls smtp

At the time of writing, the supported protocols are smtp, pop3, imap, ftp, and xmpp.

Using Different Handshake Formats
Sometimes, when you are trying to test a server using OpenSSL, your attempts to communi-
cate with the server may fail even though you know the server supports TLS (e.g., you can
see that TLS is working when you attempt to use a browser). One possible reason this might
occur is that the server does not support the older SSL 2 handshake.
Because OpenSSL attempts to negotiate all protocols it understands and because SSL 2 can
be negotiated only using the old SSL 2 handshake, it uses this handshake as the default. Even
though it is associated with a very old and insecure protocol version, the old handshake for-
mat is not technically insecure. It supports upgrades, which means that a better protocol can
be negotiated. However, this handshake format does not support many connection negotia-
tion features that were designed aer SSL 2.
Tereore, if something is not working and you’re not sure what it is exactly, you can try to
force OpenSSL to use the newer handshake format. You can do that by disabling SSL 2:

$ openssl s_client -connect www.feistyduck.com:443 -no_ssl2

Another way to achieve the same eect is to specify the desired server name on the com-
mand line:

$ openssl s_client -connect www.feistyduck.com:443 -servername www.feistyduck.com

In order to specify the server name, OpenSSL needs to use a feature of the newer handshake
format (the feature is called Server Name Indication [SNI]), and that will force it to abandon
the old format.

Extracting Remote Certifcates
When you connect to a remote secure server using s_client, it will dump the server’s PEM-
encoded certicate to standard output. If you need the certicate for any reason, you can
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copy it from the scroll-back buer. If you know in advance you only want to retrieve the
certicate, you can use this command line as a shortcut:

$ echo | openssl s_client -connect www.feistyduck.com:443 2>&1 | sed --quiet '↩
/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > www.feistyduck.com.crt

Te purpose of the echo command at the beginning is to separate your shell from s_client.
If you don’t do that, s_client will wait for your input until the server times out (which may
potentially take a very long time).
By default, s_client will print only the leaf certicate; if you want to print the entire chain,
give it the -showcerts switch. With that switch enabled, the previous command line will
place all the certicates in the same le.

Testing Protocol Support
By default, s_client will try to use the best protocol to talk to the remote server and report
the negotiated version in output.

    Protocol  : TLSv1.1

If you need to test support for specic protocol versions, you have two options. You can ex-
plicitly choose one protocol to test by supplying one of the -ssl2, -ssl3, -tls1, -tls1_1, or -
tls1_2 switches. Alternatively, you can choose which protocols you don’t want to test by us-
ing one or many of the following: -no_ssl2, -no_ssl3, -no_tls1, -no_tls1_1, or -no_tls1_2.

Note
Not all versions of OpenSSL support all protocol versions. For example, the older
versions of OpenSSL will not support TLS 1.1 and TLS 1.2, and the newer versions
might not support older protocols, such as SSL 2.

For example, here’s the output you might get when testing a server that doesn’t support a
certain protocol version:

$ openssl s_client -connect www.example.com:443 -tls1_2
CONNECTED(00000003)
140455015261856:error:1408F10B:SSL routines:SSL3_GET_RECORD:wrong version ↩
number:s3_pkt.c:340:
---
no peer certificate available
---
No client certificate CA names sent
---
SSL handshake has read 5 bytes and written 7 bytes
---
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New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
    Protocol  : TLSv1.2
    Cipher    : 0000
    Session-ID:
    Session-ID-ctx:
    Master-Key:
    Key-Arg   : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    Start Time: 1339231204
    Timeout   : 7200 (sec)
    Verify return code: 0 (ok)
---

Testing Cipher Suite Support
A little trick is required if you wish to use OpenSSL to determine if a remote server supports
a particular cipher suite. Te cipher conguration string is designed to select which suites
you wish to use, but if you specify only one suite and successfully handshake with a server,
then you know that the server supports the suite. If the handshake fails, you know the sup-
port is not there.
As an example, to test if a server supports RC4-SHA, type:

$ openssl s_client -connect www.feistyduck.com:443 -cipher RC4-SHA

If you want to determine all suites supported by a particular server, start by invoking
openssl ciphers ALL to obtain a list of all suites supported by your version of OpenSSL.
Ten submit them to the server one by one to test them individually. I am not suggesting
that you do this manually; this is a situation in which a little automation goes a long way. In
fact, this is a situation in which looking around for a good tool might be appropriate.
Tere is a disadvantage to testing this way, however. You can only test the suites that
OpenSSL supports. Tis used to be a much bigger problem; before version 1.0, OpenSSL
supported a much smaller number of suites (e.g., 32 on my server with version 0.9.8k). With
a version from the 1.0.1 branch, you can test over 100 suites and probably most of the rele-
vant ones.
No single SSL/TLS library supports all cipher suites, and that makes comprehensive testing
dicult. For SSL Labs, I resorted to using partial handshakes for this purpose, with a cus-
tom client that pretends to support arbitrary suites. It actually can’t negotiate even a single
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suite, but just proposing to negotiate is enough for servers to tell you if they support a suite
or not. Not only can you test all the suites this way, but you can also do it very eciently.

Testing Servers that Require SNI
Initially, SSL and TLS were designed to support only one web site per IP endpoint (address
and port combination). SNI is a TLS extension that enables use of more than one certicate
on the same IP endpoint. TLS clients use the extension to send the desired name, and TLS
servers use it to select the correct certicate to respond with. In a nutshell, SNI makes virtu-
al secure hosting possible.
Because SNI is not yet very widely used by servers, in most cases you won’t need to specify it
on the s_client command line. But when you encounter an SNI-enabled system, one of
three things can happen:

• Most oen, you will get the same certicate you would get as if SNI information had
not been supplied.

• Te server might respond with the certicate for some site other than the one you wish
to test.

• Very rarely, the server might abort the handshake and refuse the connection.
You can enable SNI in s_client with the -servername switch:

$ openssl s_client -connect www.feistyduck.com:443 -servername www.feistyduck.com

You can determine if a site requires SNI by testing with and without the SNI switch and
checking if the certicates are the same. If they are not, SNI is required.
Sometimes, if the requested server name is not available, the server says so with a TLS
warning. Even though this warning is not fatal as far as the server is concerned, the client
might decide to close the connection. For example, with an older OpenSSL version (i.e., be-
fore 1.0.0), you will get the following error message:

$ /opt/openssl-0.9.8k/bin/openssl s_client -connect www.feistyduck.com:443 ↩
-servername xyz.com
CONNECTED(00000003)
1255:error:14077458:SSL routines:SSL23_GET_SERVER_HELLO:reason(1112):s23↩
_clnt.c:596:

Testing Session Reuse
When coupled with the -reconnect switch, the s_client command can be used to test ses-
sion reuse. In this mode, s_client will connect to the target server six times; it will create a
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new session on the rst connection, then try to reuse the same session in the subsequent
ve connections:

$ echo | openssl s_client -connect www.feistyduck.com:443 -reconnect

Te previous command will produce a sea of output, most of which you won’t care about.
Te key parts are the information about new and reused sessions. Tere should be only one
new session at the beginning, indicated by the following line:

New, TLSv1/SSLv3, Cipher is RC4-SHA

Tis is followed by ve session reuses, indicated by lines like this:

Reused, TLSv1/SSLv3, Cipher is RC4-SHA

Most of the time, you don’t want to look at all that output and want an answer quickly. You
can get it using the following command line:

$ echo | openssl s_client -connect www.feistyduck.com:443 -reconnect -no_ssl2 2> ↩
/dev/null | grep 'New\|Reuse'
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384

Here’s what the command does:
• Te -reconnect switch activates the session reuse mode.
• Te -no_ssl2 switch indicates that we do not wish to attempt an SSL 2 connection,

which changes the handshake of the rst connection to that of SSL 3 and better. Te
older, SSL 2 handshake format handshake doesn’t support TLS extensions and inter-
feres with the session-reuse mechanism on servers that support session tickets.

• Te 2> /dev/null part hides stderr output, which you don’t care about.
• Finally, the piped grep command lters out the rest of the u and lets through only

the lines that you care about.

Note
If you don’t want to include session tickets in the test—for example, because not all
clients support this feature yet—you can disable it with the -no_ticket switch.

378 Chapter 12: Testing with OpenSSL



Checking OCSP Revocation
If an OCSP responder is malfunctioning, sometimes it’s dicult to understand exactly why.
Checking certicate revocation status from the command line is possible, but it’s not quite
straightforward. You need to perform the following steps:

1. Obtain the certicate that you wish to check for revocation.

2. Obtain the issuing certicate.

3. Determine the URL of the OCSP responder.

4. Submit an OCSP request and observe the response.
For the rst two steps, connect to the server with the -showcerts switch specied:

$ openssl s_client -connect www.feistyduck.com:443 -showcerts

Te rst certicate in the output will be the one belonging to the server. If the certicate
chain is properly congured, the second certicate will be that of the issuer. To conrm,
check that the issuer of the rst certicate and the subject of the second match:

---
Certificate chain
 0 s:/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization↩
/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd↩
/CN=www.feistyduck.com
   i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http:/↩
/certificates.starfieldtech.com/repository/CN=Starfield Secure Certification ↩
Authority/serialNumber=10688435
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
[30 lines of text removed]
os5LW3PhHz8y9YFep2SV4c7+NrlZISHOZVzN
-----END CERTIFICATE-----
 1 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http:/↩
/certificates.starfieldtech.com/repository/CN=Starfield Secure Certification ↩
Authority/serialNumber=10688435
   i:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification ↩
Authority
-----BEGIN CERTIFICATE-----
MIIFBzCCA++gAwIBAgICAgEwDQYJKoZIhvcNAQEFBQAwaDELMAkGA1UEBhMCVVMx
[...]

If the second certicate isn’t the right one, check the rest of the chain; some servers don’t
serve the chain in the correct order. If you can’t nd the issuer certicate in the chain, you’ll
have to nd it somewhere else. One way to do that is to look for the Authority Information
Access extension in the leaf certicate:
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$ openssl x509 -in fd.crt -noout -text
[...]
    Authority Information Access:
        OCSP - URI:http://ocsp.starfieldtech.com/
        CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf↩
_intermediate.crt
[...]

If the CA Issuers information is present, it should contain the URL of the issuer certicate. If
the issuer certicate information isn’t available, you can try to open the site in a browser, let
it reconstruct the chain, and download the issuing certicate from its certicate viewer. If all
that fails, you can look for the certicate in your trust store or visit the CA’s web site.
If you already have the certicates and just need to know the address of the OCSP respon-
der, use the -ocsp_uri switch with the x509 command as a shortcut:

$ openssl x509 -in fd.crt -noout -ocsp_uri
http://ocsp.starfieldtech.com/

Now you can submit the OCSP request:

$ openssl ocsp -issuer issuer.crt -cert fd.crt -url http://ocsp.starfieldtech.com/ ↩
-CAfile issuer.crt
WARNING: no nonce in response
Response verify OK
fd.crt: good
        This Update: Feb 18 17:59:10 2013 GMT
        Next Update: Feb 18 23:59:10 2013 GMT

You want to look for two things in the response. First, check that the response itself is valid
(Response verify OK in the previous example), and second, check what the response said.
When you see good as the status, that means that the certicate hasn’t been revoked. Te
status will be revoked for revoked certicates.

Note
Te warning message about the missing nonce is telling you that OpenSSL wanted
to use a nonce as a protection against replay attacks, but the server in question did
not reply with one. Tis generally happens because CAs want to improve the per-
formance of their OCSP responders. When they disable the nonce protection (the
standard allows it), OCSP responses can be produced (usually in batch), cached,
and reused for a period of time.

You may encounter OCSP responders that do not respond successfully to the previous com-
mand line. Te following suggestions may help in such situations.
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Do not request a nonce
Some servers cannot handle nonce requests and respond with errors. OpenSSL will
request a nonce by default. To disable nonces, use the -no_nonce command-line
switch.

Supply a Host request header
Although most OCSP servers respond to HTTP requests that don’t specify the cor-
rect hostname in the Host header, some don’t. If you encounter an error message that
includes an HTTP error code (e.g., 404), try adding the hostname to your OCSP re-
quest. You can do this if you are using OpenSSL 1.0.0 or later by using the undocu-
mented -header switch.

With the previous two points in mind, the nal command to use is the following:

$ openssl ocsp -issuer issuer.crt -cert fd.crt -url http://ocsp.starfieldtech.com/ ↩
-CAfile issuer.crt -no_nonce -header Host ocsp.starfieldtech.com

Testing OCSP Stapling
OCSP stapling is an optional feature that allows a server certicate to be accompanied by an
OCSP response that proves its validity. Because the OCSP response is delivered over an al-
ready existing connection, the client does not have to fetch it separately.
OCSP stapling is used only if requested by a client, which submits the status_request ex-
tension in the handshake request. A server that supports OCSP stapling will respond by in-
cluding an OCSP response as part of the handshake.
When using the s_client tool, OCSP stapling is requested with the -status switch:

$ echo | openssl s_client -connect www.feistyduck.com:443 -status

Te OCSP-related information will be displayed at the very beginning of the connection
output. For example, with a server that does not support stapling you will see this line near
the top of the output:

CONNECTED(00000003)
OCSP response: no response sent

With a server that does support stapling, you will see the entire OCSP response in the out-
put:

OCSP Response Data:
    OCSP Response Status: successful (0x0)
    Response Type: Basic OCSP Response
    Version: 1 (0x0)
    Responder Id: C = US, O = "GeoTrust, Inc.", CN = RapidSSL OCSP-TGV Responder
    Produced At: Jan 22 17:48:55 2014 GMT
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    Responses:
    Certificate ID:
      Hash Algorithm: sha1
      Issuer Name Hash: 834F7C75EAC6542FED58B2BD2B15802865301E0E
      Issuer Key Hash: 6B693D6A18424ADD8F026539FD35248678911630
      Serial Number: 0FE760
    Cert Status: good
    This Update: Jan 22 17:48:55 2014 GMT
    Next Update: Jan 29 17:48:55 2014 GMT
[...]

Te certicate status good means that the certicate has not been revoked.

Checking CRL Revocation
Checking certicate verication with a Certicate Revocation List (CRL) is even more in-
volved than doing the same via OCSP. Te process is as follows:

1. Obtain the certicate you wish to check for revocation.

2. Obtain the issuing certicate.

3. Download and verify the CRL.

4. Look for the certicate serial number in the CRL.
Te rst steps overlap with OCSP checking; to complete them follow the instructions in the
section called “Checking OCSP Revocation”.
Te location of the CRL is encoded in the server certicate; you can extract it with the fol-
lowing command:

$ openssl x509 -in fd.crt -noout -text | grep crl
                  URI:http://rapidssl-crl.geotrust.com/crls/rapidssl.crl

Ten fetch the CRL from the CA:

$ wget http://rapidssl-crl.geotrust.com/crls/rapidssl.crl

Verify that the CRL is valid (i.e., signed by the issuer certicate):

$ openssl crl -in rapidssl.crl -inform DER -CAfile issuer.crt -noout
verify OK

Now, determine the serial number of the certicate you wish to check:

$ openssl x509 -in fd.crt -noout -serial
serial=0FE760
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At this point, you can convert the CRL into a human-readable format and inspect it manu-
ally:

$ openssl crl -in rapidssl.crl -inform DER -text -noout
Certificate Revocation List (CRL):
        Version 2 (0x1)
    Signature Algorithm: sha1WithRSAEncryption
        Issuer: /C=US/O=GeoTrust, Inc./CN=RapidSSL CA
        Last Update: Jan 25 11:03:00 2014 GMT
        Next Update: Feb  4 11:03:00 2014 GMT
        CRL extensions:
            X509v3 Authority Key Identifier:
                keyid:6B:69:3D:6A:18:42:4A:DD:8F:02:65:39:FD:35:24:86:78:91:16:30

            X509v3 CRL Number:
                92103
Revoked Certificates:
    Serial Number: 0F38D7
        Revocation Date: Nov 26 20:07:51 2013 GMT
    Serial Number: 6F29
        Revocation Date: Aug 15 20:48:57 2011 GMT
[...]
    Serial Number: 0C184E
        Revocation Date: Jun 13 23:00:12 2013 GMT
    Signature Algorithm: sha1WithRSAEncryption
         95:df:e5:59:bc:95:e8:2f:bb:0a:4f:20:ad:ca:8f:78:16:54:
         35:32:55:b0:c9:be:5b:89:da:ba:ae:67:19:6e:07:23:4d:5f:
         16:18:5c:f3:91:15:da:9e:68:b0:81:da:68:26:a0:33:9d:34:
         2d:5c:84:4b:70:fa:76:27:3a:fc:15:27:e8:4b:3a:6e:2e:1c:
         2c:71:58:15:8e:c2:7a:ac:9f:04:c0:f6:3c:f5:ee:e5:77:10:
         e7:88:83:00:44:c4:75:c4:2b:d3:09:55:b9:46:bf:fd:09:22:
         de:ab:07:64:3b:82:c0:4c:2e:10:9b:ab:dd:d2:cb:0c:a9:b0:
         51:7b:46:98:15:83:97:e5:ed:3d:ea:b9:65:d4:10:05:10:66:
         09:5c:c9:d3:88:c6:fb:28:0e:92:1e:35:b0:e0:25:35:65:b9:
         98:92:c7:fd:e2:c7:cc:e3:b5:48:08:27:1c:e5:fc:7f:31:8f:
         0a:be:b2:62:dd:45:3b:fb:4f:25:62:66:45:34:eb:63:44:43:
         cb:3b:40:77:b3:7f:6c:83:5c:99:4b:93:d9:39:62:48:5d:8c:
         63:e2:a8:26:64:5d:08:e5:c3:08:e2:09:b0:d1:44:7b:92:96:
         aa:45:9f:ed:36:f8:62:60:66:42:1c:ea:e9:9a:06:25:c4:85:
         fc:77:f2:71

Te CRL starts with some metadata, which is followed by a list of revoked certicates, and it
ends with a signature (which we veried in the previous step). If the serial number of the
server certicate is on the list, that means it had been revoked.
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If you don’t want to look for the serial number visually (some CRLs can be quite long), grep
for it, but be careful that your formatting is correct (e.g., if necessary, remove the 0x prex,
omit any leading zeros, and convert all letters to uppercase). For example:

$ openssl crl -in rapidssl.crl -inform DER -text -noout | grep FE760

Testing Renegotiation
Te s_client tool has a couple of features that can assist you with manual testing of renego-
tiation. First of all, when you connect, the tool will report if the remote server supports se-
cure renegotiation. Tis is because a server that supports secure renegotiation indicates its
support for it via a special TLS extension that is exchanged during the handshake phase.
When support is available, the output may look like this (emphasis mine):

New, TLSv1/SSLv3, Cipher is AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
    [...]

If secure renegotiation is not supported, the output will be slightly dierent:

Secure Renegotiation IS NOT supported

Even if the server indicates support for secure renegotiation, you may wish to test whether it
also allows clients to initiate renegotiation. Client-initiated renegotiation is a protocol feature
that is not needed in practice (because the server can always initiate renegotiation when it is
needed) and makes the server more susceptible to denial of service attacks.
To initiate renegotiation, you type an R character on a line by itself. For example, assuming
we’re talking to an HTTP server, you can type the rst line of a request, initiate renegotia-
tion, and then nish the request. Here’s what that looks like when talking to a web server
that supports client-initiated renegotiation:

HEAD / HTTP/1.0
R
RENEGOTIATING
depth=3 C = US, O = "VeriSign, Inc.", OU = Class 3 Public Primary Certification ↩
Authority
verify return:1
depth=2 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU = "(c) 2006 ↩
VeriSign, Inc. - For authorized use only", CN = VeriSign Class 3 Public Primary ↩
Certification Authority - G5
verify return:1
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depth=1 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU = Terms of ↩
use at https://www.verisign.com/rpa (c)06, CN = VeriSign Class 3 Extended ↩
Validation SSL CA
verify return:1
depth=0 1.3.6.1.4.1.311.60.2.1.3 = US, 1.3.6.1.4.1.311.60.2.1.2 = California, ↩
businessCategory = Private Organization, serialNumber = C2759208, C = US, ST = ↩
California, L = Mountain View, O = Mozilla Corporation, OU = Terms of use at ↩
www.verisign.com/rpa (c)05, OU = Terms of use at www.verisign.com/rpa (c)05, CN = ↩
addons.mozilla.org
verify return:1
Host: addons.mozilla.org

HTTP/1.1 301 MOVED PERMANENTLY
Content-Type: text/html; charset=utf-8
Date: Tue, 05 Jun 2012 16:42:51 GMT
Location: https://addons.mozilla.org/en-US/firefox/
Keep-Alive: timeout=5, max=998
Transfer-Encoding: chunked
Connection: close

read:errno=0

When renegotiation is taking place, the server will send its certicates to the client again.
You can see the verication of the certicate chain in the output. Te next line aer that
continues with the Host request header. Seeing the web server’s response is the proof that
renegotiation is supported. Because of the various ways the renegotiation issue was ad-
dressed in various versions of SSL/TLS libraries, servers that do not support renegotiation
may break the connection or may keep it open but refuse to continue to talk over it (which
usually results in a timeout).
A server that does not support renegotiation will atly refuse the second handshake on the
connection:

HEAD / HTTP/1.0
R
RENEGOTIATING
140003560109728:error:1409E0E5:SSL routines:SSL3_WRITE_BYTES:ssl handshake ↩
failure:s3_pkt.c:592:

At the time of writing, the default behavior for OpenSSL is to connect to servers that don’t
support secure renegotiation; it will also accept both secure and insecure renegotiation, opt-
ing for whatever the server is able to do. If renegotiation is successful with a server that
doesn’t support secure renegotiation, you will know that the server supports insecure client-
initiated renegotiation.
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Note
Te most reliable way to test for insecure renegotiation is to use the method de-
scribed in this section, but with a version of OpenSSL that was released before the
discovery of insecure renegotiation (e.g., 0.9.8k). I mention this because there is a
small number of servers that support both secure and insecure renegotiation. Tis
vulnerability is dicult to detect with modern versions of OpenSSL, which prefer
the secure option.

Testing for the BEAST Vulnerability
Te BEAST attack exploits a weakness that exists in all versions of SSL, and TLS protocols
before TLS 1.1. Te weakness aects all CBC suites and both client and server data streams;
however, the BEAST attack works only against the client side. Most modern browsers use
the so-called 1/n-1 split as a workaround to prevent exploitation, but some servers continue
to deploy mitigations on their end, especially if they have a user base that relies on older
(and unpatched) browsers.
Te ideal mitigation approach is to rely only on TLS 1.1 and better, but these newer proto-
cols are not yet suciently widely supported. Te situation is complicated by the fact that
RC4 itself is now considered insecure. If you think BEAST is more dangerous than RC4
weaknesses, you might deploy TLS 1.2 for use with up-to-date clients, but force RC4 with
everyone else.

Strict mitigation
Do not support any CBC suites when protocols TLS 1.0 and earlier are used, leaving
only RC4 suites enabled. Clients that don’t support RC4 won’t be able to negotiate a
secure connection. Tis mode excludes some potential web site users, but it’s required
by some PCI assessors.

RC4 prioritization
Because only a very small number of clients do not support RC4, the second ap-
proach is to leave CBC suites enabled, but enforce RC4 with all clients that support it.
Tis approach provides protection to all but a very small number of visitors.

How you are going to test depends on what behavior you expect of the server. With both
approaches, we want to ensure that only insecure protocols are used by using the -no_ssl2,
-no_tls_1_1, and -no_tls_1_2 switches.
To test for strict mitigation, attempt to connect while disabling all RC4 suites on your end:

$  echo | openssl s_client -connect www.feistyduck.com:443 \
-cipher 'ALL:!RC4' -no_ssl2 -no_tls1_1 -no_tls1_2

If the connection is successful (which is possible only if a vulnerable CBC suite is used), you
know that strict mitigation is not in place.
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To test for RC4 prioritization, attempt to connect with all RC4 suites moved to the end of
the cipher suite list:

$ echo | openssl s_client -connect www.feistyduck.com:443 \
-cipher 'ALL:+RC4' -no_ssl2 -no_tls1_1 -no_tls1_2

A server that prioritizes RC4 will choose one of RC4 suites for the connection, ignoring all
the CBC suites that were also oered. If you see anything else, you know that the server
does not have any BEAST mitigations in place.

Testing for Heartbleed
You can test for Heartbleed manually or by using one of the available tools. (Tere are many
tools, because Heartbleed is very easy to exploit.) But, as usual with such tools, there is a
question of their accuracy. Tere is evidence that some tools fail to detect vulnerable
servers.2 Given the seriousness of Heartbleed, it’s best to either test manually or by using a
tool that gives you full visibility of the process. I am going to describe an approach you can
use with only a modied version of OpenSSL.
Some parts of the test don’t require modications to OpenSSL, assuming you have a version
that supports the Heartbeat protocol (version 1.0.1 and newer). For example, to determine if
the remote server supports the Heartbeat protocol, use the -tlsextdebug switch to display
server extensions when connecting:

$ openssl s_client -connect www.feistyduck.com:443 -tlsextdebug
CONNECTED(00000003)
TLS server extension "renegotiation info" (id=65281), len=1
0001 - <SPACES/NULS>
TLS server extension "EC point formats" (id=11), len=4
0000 - 03 00 01 02                                       ....
TLS server extension "session ticket" (id=35), len=0
TLS server extension "heartbeat" (id=15), len=1
0000 - 01
[...]

A server that does not return the heartbeat extension is not vulnerable to Heartbleed. To
test if a server responds to heartbeat requests, use the -msg switch to request that protocol
messages are shown, then connect to the server, type B and press return:

$ openssl s_client -connect www.feistyduck.com:443 -tlsextdebug -msg
[...]
---
B

2 Bugs in Heartbleed detection scripts (Shannon Simpson and Adrian Hayter, 14 April 2014)
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HEARTBEATING
>>> TLS 1.2  [length 0025], HeartbeatRequest
    01 00 12 00 00 3c 83 1a 9f 1a 5c 84 aa 86 9e 20
    c7 a2 ac d7 6f f0 c9 63 9b d5 85 bf 9a 47 61 27
    d5 22 4c 70 75
<<< TLS 1.2  [length 0025], HeartbeatResponse
    02 00 12 00 00 3c 83 1a 9f 1a 5c 84 aa 86 9e 20
    c7 a2 ac d7 6f 52 4c ee b3 d8 a1 75 9a 6b bd 74
    f8 60 32 99 1c
read R BLOCK

Tis output shows a complete heartbeat request and response pair. Te second and third
bytes in both heartbeat messages specify payload length. We submitted a payload of 18 bytes
(12 hexadecimal) and the server responded with a payload of the same size. In both cases
there were also additional 16 bytes of padding. Te rst two bytes in the payload make the
sequence number, which OpenSSL uses to match responses to requests. Te remaining pay-
load bytes and the padding are just random data.
To detect a vulnerable server, you’ll have to prepare a special version of OpenSSL that sends
incorrect payload length. Vulnerable servers take the declared payload length and respond
with that many bytes irrespective of the length of the actual payload provided.
At this point, you have to decide if you want to build an invasive test (which exploits the
server by retrieving some data from the process) or a noninvasive test. Tis will depend on
your circumstances. If you have permission for your testing activities, use the invasive test.
With it, you’ll be able to see exactly what is returned, and there won’t be room for errors.
For example, some versions of GnuTLS support Heartbeat and will respond to requests with
incorrect payload length, but they will not actually return server data. A noninvasive test
can’t reliably diagnose that situation.
Te following patch against OpenSSL 1.0.1h creates a noninvasive version of the test:

--- t1_lib.c.original   2014-07-04 17:29:35.092000000 +0100
+++ t1_lib.c    2014-07-04 17:31:44.528000000 +0100
@@ -2583,6 +2583,7 @@
 #endif

 #ifndef OPENSSL_NO_HEARTBEATS
+#define PAYLOAD_EXTRA 16
 int
 tls1_process_heartbeat(SSL *s)
        {
@@ -2646,7 +2647,7 @@
                 * sequence number */
                n2s(pl, seq);

-               if (payload == 18 && seq == s->tlsext_hb_seq)
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+               if ((payload == (18 + PAYLOAD_EXTRA)) && seq == s->tlsext_hb_seq)
                        {
                        s->tlsext_hb_seq++;
                        s->tlsext_hb_pending = 0;
@@ -2705,7 +2706,7 @@
        /* Message Type */
        *p++ = TLS1_HB_REQUEST;
        /* Payload length (18 bytes here) */
-       s2n(payload, p);
+       s2n(payload + PAYLOAD_EXTRA, p);
        /* Sequence number */
        s2n(s->tlsext_hb_seq, p);
        /* 16 random bytes */

To build a noninvasive test, increase payload length by up to 16 bytes, or the length of the
padding. When a vulnerable server responds to such a request, it will return the padding
but nothing else. To build an invasive test, increase the payload length by, say, 32 bytes. A
vulnerable server will respond with a payload of 50 bytes (18 bytes sent by OpenSSL by de-
fault, plus your 32 bytes) and send 16 bytes of padding. By increasing the declared length of
the payload in this way, a vulnerable server will return up to 64 KB of data. A server not
vulnerable to Heartbleed will not respond.
To produce your own Heartbleed testing tool, unpack a fresh copy of OpenSSL source code,
edit ssl/t1_lib.c to make the change as in the patch, compile as usual, but don’t install. Te
resulting openssl binary will be placed in the apps/ subdirectory. Because it is statically
compiled, you can rename it to something like openssl-heartbleed and move it to its per-
manent location.
Here’s an example of the output you’d get with a vulnerable server that returns 16 bytes of
server data (in bold):

B
HEARTBEATING
>>> TLS 1.2  [length 0025], HeartbeatRequest
    01 00 32 00 00 7c e8 f5 62 35 03 bb 00 34 19 4d
    57 7e f1 e5 90 6e 71 a9 26 85 96 1c c4 2b eb d5
    93 e2 d7 bb 5f
<<< TLS 1.2  [length 0045], HeartbeatResponse
    02 00 32 00 00 7c e8 f5 62 35 03 bb 00 34 19 4d
    57 7e f1 e5 90 6e 71 a9 26 85 96 1c c4 2b eb d5
    93 e2 d7 bb 5f 6f 81 0f aa dc e0 47 62 3f 7e dc
    60 95 c6 ba df c9 f6 9d 2b c8 66 f8 a5 45 64 0b
    d2 f5 3d a9 ad
read R BLOCK
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If you want to see more data retrieved in a single response, increase the payload length, re-
compile, and test again. Alternatively, to retrieve another batch of the same size, enter the B
command again.
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13 Confguring Apache
Apache httpd is a popular web server that has powered large parts of the Web since its early
beginnings. Apache is a mature product and has superb TLS support in the 2.4.x branch,
especially in the most recent releases (signicant improvements were made in version 2.4.7).
If you’re compiling Apache from source code, you can take advantage of all the available fea-
tures.
In practice, most people have access to some version from the 2.2.x branch, because that’s
what the previous generations of the popular server distributions (e.g., Debian, Ubuntu,
Red Hat Enterprise Linux, etc.) used to ship. Te current generations either ship or will ship
Apache 2.4.x, which means that this newer version will slowly start to gain in popularity.
Te following table shows the major dierences between the 2.2.x and 2.4.x branches.

Table 13.1. Apache httpd TLS features across the most recent stable branches

 Apache 2.2.x Apache 2.4.x

Strong default DH parameters Barely; xed at 1,024 bits 2,048 bits and stronger (2.4.7+)

Congurable DH and ECDH parameters - Yes (2.4.7+)

Elliptic curve support Yes (2.2.26)a Yes

OCSP stapling - Yes

Distributed TLS session caching - Yes

Congurable session ticket keys - Yes

Disable session tickets - Yes (2.4.11)
a Earlier versions can support ECDHE key exchange with a third-party utility called TLS Interposer (described later in this chapter).

Note
Most operating system distributions ship with soware packages that carry the
same (or similar) version numbers but dier in functionality from the stock releas-
es made by the developers. Te changes are most oen only security xes, but they
could be features, too. You should review the package documentation and the
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source code (packages typically contain the original source code and the patches)
to understand if the dierences are important.

Te biggest practical problem with the 2.2.x branch is lack of support for elliptic curve (EC)
cryptography. Although Apache added EC support in 2.2.26 (released in November 2013),
most distributions ship versions based on some earlier release. Without EC crypto, you can-
not deploy the ECDHE key exchange, which means that you can’t have fast and robust sup-
port for forward secrecy. Some distributions backport important features; check yours for
this possibility.
Te lack of other features is tolerable. OCSP stapling is nice to have (it improves site perfor-
mance) but not critical for most people. If it’s something you nd important, you’ll probably
want to install Apache 2.4.x from source code.
In addition to the big and obvious dierences, the 2.4.x branch contains a large number of
small improvements that are not obvious at rst but might be signicant because they add
up. As one example, Apache 2.4.x probably consumes much less memory because it uses the
reduced memory consumption mode in OpenSSL (the SSL_MODE_RELEASE_BUFFERS option).
Tis OpenSSL feature was not enabled in the latest 2.2.x version when I checked.
Tis chapter is designed to cover the most important and interesting aspects of Apache’s
TLS conguration, but it’s not a reference guide. For the ner details, please refer to the
ocial documentation.

Installing Apache with Static OpenSSL
Back in 2004, when I was working on my rst book, Apache Security, it was quite common
to install Apache from source code, and I spent a lot of time documenting the process. As
the technology stabilized, most people stopped bothering with the source code and relied
on the binaries provided by the operating system. Te latter is also more safer, chances are
that your operating system vendor will release security updates faster than you can recom-
pile the soware you compiled from source.
Today, to use the best TLS features we sometimes have to roll up our sleeves and do every-
thing the old-fashioned way. For example, I have a couple of servers running Ubuntu 10.04
LTS; the OpenSSL version installed does not support TLS 1.2, and its Apache 2.2.x does not
support the ECDHE suites.
If you’re running one of the older distributions, the easiest way to run Apache with a recent
version of OpenSSL is to compile the crypto code statically and install everything into a sep-
arate location. Tat way, you achieve the goal, but you don’t mess with the rest of the operat-
ing system.
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First, get the most recent stable version of OpenSSL and install it at a location in which it
will not interfere with your system version. Follow the instructions in the section called
“Building OpenSSL” in Chapter 11 .
Ten, get the latest versions of Apache and the APR and APR-Util libraries. Unpack all three
packages into the same source tree, with the latter two in the location in which Apache ex-
pects them:

$ tar zxvf httpd-2.4.10.tar.gz
$ cd httpd-2.4.10/srclib/
$ tar zxvf ../../apr-1.5.1.tar.gz
$ ln -s apr-1.5.1/ apr
$ tar zxvf ../../apr-util-1.5.3.tar.gz
$ ln -s apr-util-1.5.3/ apr-util

You are now ready to congure and install Apache. Te mod_ssl module will be compiled
statically; all other modules will be compiled dynamically.

$ ./configure \
    --prefix=/opt/httpd \
    --with-included-apr \
    --enable-ssl \
    --with-ssl=/opt/openssl-1.0.1h \
    --enable-ssl-staticlib-deps \
    --enable-mods-static=ssl
$ make
$ sudo make install

From here, you can proceed to tweak the conguration. All modules will be compiled by
default, but only some of them will be enabled in the conguration.

Enabling TLS
If you are deploying a web site on the default HTTPS port (443), Apache will automatically
enable the TLS protocol on the IP address in question. Te only time you will need to ex-
plicitly enable TLS is when you’re using a nonstandard port. For example:

# TLS is enabled by default on port 443
Listen 192.168.0.1:443

# But explicit configuration is required on all other ports
Listen 192.168.0.1:8443 https

You might also nd many congurations that do not congure the protocol using the
Listen directive; they instead enable TLS in the site conguration using the SSLEngine di-
rective:
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<VirtualHost 192.168.0.1:443>
    # Site hostname.
    ServerName site1.example.com

    # Enable front-end TLS in this virtual host.
    SSLEngine on
    
    # Other configuration directives.
    ...
</VirtualHost>

Tis approach is popular with those who started with Apache 2.0.x, because the Listen di-
rective in those versions had no support for protocol conguration.

Note
Apache implements a web server and a proxy server. Consequently, there are con-
guration directives that control TLS operation in both of these roles. Most proxy
directives begin with SSLProxy; you should ignore them when you’re conguring
the web server side of things.

Confguring TLS Protocol
To congure frontend TLS in Apache, you need three directives. Te rst is SSLProtocol,
which species which protocols should be enabled:

# Enable all protocols except SSL 2 and
# SSL 3, which are obsolete and insecure.
SSLProtocol all -SSLv2 -SSLv3

Te common approach is to enable all available protocols with all, then disable the ones
you do not wish to deploy. Te second directive is SSLHonorCipherOrder, which instructs
Apache to select its preferred suite during TLS handshake (instead of choosing the rst sup-
ported suite oered by the client):

# The server selects the cipher suite, not the clients.
SSLHonorCipherOrder on

Finally, SSLCipherSuite takes an OpenSSL suite-conguration string and congures which
suites are going to be enabled and in which order:

# This cipher suite configuration uses only suites that provide
# forward security, in the order that provides the best performance.
SSLCipherSuite "ECDHE-ECDSA-AES128-GCM-SHA256 \
ECDHE-ECDSA-AES256-GCM-SHA384 \
ECDHE-ECDSA-AES128-SHA \
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ECDHE-ECDSA-AES256-SHA \
ECDHE-ECDSA-AES128-SHA256 \
ECDHE-ECDSA-AES256-SHA384 \
ECDHE-RSA-AES128-GCM-SHA256 \
ECDHE-RSA-AES256-GCM-SHA384 \
ECDHE-RSA-AES128-SHA \
ECDHE-RSA-AES256-SHA \
ECDHE-RSA-AES128-SHA256 \
ECDHE-RSA-AES256-SHA384 \
DHE-RSA-AES128-GCM-SHA256 \
DHE-RSA-AES256-GCM-SHA384 \
DHE-RSA-AES128-SHA \
DHE-RSA-AES256-SHA \
DHE-RSA-AES128-SHA256 \
DHE-RSA-AES256-SHA256 \
EDH-RSA-DES-CBC3-SHA"

Note
Te cipher suite conguration from this example is secure, but, depending on your
preferences and risk prole, you might prefer something slightly dierent. You’ll
nd a thorough discussion of TLS server conguration in Chapter 8, Deployment
and examples for OpenSSL in the section called “Recommended Conguration” in
Chapter 11.

Te previous example was primarily designed for newer Apache versions, which have ellip-
tic crypto support, but will fall back gracefully on older installations.

Tip
TLS protocol conguration is best placed in the main server scope, where it applies
to all sites hosted on the server. Tune it on a per-site basis only if necessary.

Confguring Keys and Certifcates
In addition to conguring the TLS protocol, a secure web site also requires a private key and
a certicate chain. For this, you typically require three directives, as in the following exam-
ple:

# Configure the server private key.
SSLCertificateKeyFile conf/server.key

# Configure the server certificate.
SSLCertificateFile conf/server.crt

# Configure intermediate chain certificates supplied

Conguring Keys and Certicates 395



# by the CA. This directive is not needed when the server
# certificate is self-signed.
SSLCertificateChainFile conf/chain.pem

Note
Starting with version 2.4.8, the SSLCertificateChainFile directive is deprecated.
Instead, you are requested to provide all certicates in the le pointed to by the
SSLCertificateFile directive. Tis change was probably driven by the fact that
more sites want to use multikey deployments (e.g., RSA and ECDSA at the same
time) and that each key might require a dierent certicate chain.

Not conguring the entire certicate chain correctly is a frequent mistake that causes certi-
cate warnings for connecting clients. To avoid this problem, always follow the instructions
provided by your CA. When renewing a certicate, make sure you use the new intermediate
certicates provided; the old ones might no longer be appropriate.

Note
Te example in this section assumes that your private key is not protected with a
passphrase. I recommend that keys are created and backed up with a passphrase
but deployed without a passphrase on the server. If you want to use protected keys,
you will have to use the SSLPassPhaseDialog directive to interface Apache with an
external program that will provide the passphrase every time it is needed.

Confguring Multiple Keys
It’s not widely known that Apache allows secure sites to use more than one type of TLS key.
Tis facility, which had originally been designed to allow sites to deploy RSA and DSA keys
in parallel, is virtually unused because DSA faded into obscurity for web server keys.
Tese days, there is a lot of discussion about deploying ECDSA keys in order to improve
handshake performance. In parallel, there is a desire to migrate certicate signatures to
SHA2, because the currently widely used SHA1 is nearing the end of its useful life. Te
problem is that older clients might not support ECDSA keys and SHA2 signatures. One so-
lution is to deploy with two sets of keys and certicates: RSA and SHA1 for older clients and
ECDSA and SHA2 for newer clients.
Deploying a site with multiple keys is straightforward: simply specify multiple keys and cer-
ticates, one set aer another. For example:

# RSA key.
SSLCertificateKeyFile conf/server-rsa.key
SSLCertificateFile conf/server-rsa.crt

# DSA key.
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SSLCertificateKeyFile conf/server-dsa.key
SSLCertificateFile conf/server-dsa.crt

# ECDSA key.
SSLCertificateKeyFile conf/server-ecdsa.key
SSLCertificateFile conf/server-ecdsa.crt

# Intermediate certificates; must work
# with all three server certificates.
SSLCertificateChainFile conf/chain.pem

Te only catch is that the SSLCertificateChainFile directive can be used only once per
server, which means that the intermediate certicates must be identical for all three certi-
cates. Tere are early indications that the CAs who are starting to oer ECDSA keys are set
up this way.
It’s possible to use dierent certicate hierarchies, but then you must avoid
SSLCertificateChainFile altogether. Instead, concatenate all the necessary intermediate
certicates (for all the keys) into a single le, and point to it using the SSLCACertificateFile
directive. Tere might be a slight performance penalty with this approach because, on every
new connection, OpenSSL now needs to examine the available CA certicates in order to
construct the certicate chain.

Note
To ensure that all deployed keys are actually used, make sure you also enable the
corresponding cipher suites in the conguration. ECDSA suites have the word
“ECDSA” in the name; DSA suites have the word “DSS” in the name; all other au-
thenticated suites are designed to work with RSA keys.

Wildcard and Multisite Certifcates
If you have two or more sites that share a certicate, it is possible to deploy them on the
same IP address, despite the fact that virtual secure hosting is not yet feasible for public web
sites. No special conguration is required; simply associate all such sites with the same IP
address and ensure that they are all using the same certicate.1

Tis works because TLS termination and HTTP host selection are two separate steps. When
terminating TLS, in the absence of SNI information (see the next section for more informa-
tion) Apache serves the certicate of the default site for that IP address, which is the site
that appears rst in the conguration. In the second step, Apache looks at the Host request

1 Technically, the restrictions are per IP address and port combination (a TCP/IP endpoint). You could, for example, host one secure site on

192.168.0.1:443 and another on 192.168.0.1.:8443. In practice, public sites can be hosted only on port 443, so the restrictions are effec-

tively per IP address.
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header provided and serves the correct site at the HTTP level. If the requested hostname is
not congured on the IP address, the default web site will be served.
With this type of deployment, you might get a warning similar to this one:

[Mon Dec 30 11:26:04.058505 2013] [ssl:warn] [pid 31136:tid 140679275079488] AH0229↩
2: Init: Name-based SSL virtual hosts only work for clients with TLS server name ↩
indication support (RFC 4366)

Tis is because Apache notices that you have multiple secure sites on the same endpoint but
does not check to see that the default certicate is valid for all sites. From version 2.4.10
onwards, the warning doesn’t show.

Virtual Secure Hosting
Unlike the setup discussed in the previous section, true virtual secure hosting takes place
when a number of unrelated web sites, each with its own certicate, share one IP address.
Because this feature is not supported by SSL and the early versions of TLS, there are still
many clients that do not have it. For this reason, it is not yet feasible to use virtual secure
hosting for public web sites aimed at a wide audience, but it could possibly be used for sites
with a modern user base.
Apache supports virtual secure hosting and uses it automatically when needed. Te only
question is: what happens if you do rely on virtual secure hosting but receive a client that
does not support it? Normally, in situations like that Apache serves the certicate belonging
to the default site associated with the requested IP address. Because that certicate is unlike-
ly to match the desired hostname, the user ends up with a certicate warning. However, if
they are able to bypass the warning, they will get through to the site they wanted to see.2

You can’t avoid certicate warnings in situations like this, but it’s best practice not to serve
any content from sites that rely on virtual secure hosting to clients that don’t understand
SNI. Tis is what the SSLStrictSNIVHostCheck directive does, and there are two ways to use
it.
Te rst way is to enforce strict virtual secure hosting on the entire IP address. To do that,
you place the directive in the default virtual host. For example:

# Apache 2.2.x requires the following directive to support
# name-based virtual hosting. Apache 2.4.x and better do not.
NameVirtualHost 192.168.0.1:443

<VirtualHost 192.168.0.1:443>
    ServerName does-not-exist.example.com

2 Assuming, of course, that the requested hostname is congured on the server; if it isn’t, they will get the default web site again.
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    # Do not serve any content to the clients that
    # do not support virtual secure hosting (via SNI).
    SSLStrictSNIVHostCheck On

    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site1.example.com
    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site2.example.com
    ...
</VirtualHost>

Alternatively, you can enforce strict virtual secure hosting only for some sites, with relaxed
conguration for others. In the following example, site1.example.com will not be served to
clients that do not support SNI, but other sites will be:

<VirtualHost 192.168.0.1:443>
    ServerName default.example.com
    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site1.example.com

    # Do not serve this site to clients that
    # do not support virtual secure hosting (via SNI).
    SSLStrictSNIVHostCheck On

    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site2.example.com
    ...
</VirtualHost>

Whenever an error occurs due to a strict SNI check, Apache will force the request to fail
with status 403 and no indication of the root cause. If the information provided in the Host
header is correct, the ErrorDocument directive of the matching host will be consulted. If it
species a redirection or a message, that message will be sent back to the client. If
ErrorDocument species a le or a script, its processing will fail.
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If you want to deliver a custom error message for this case, it’s possible to do so by disabling
the built-in strict SNI checking and implementing a custom check instead. Te SSL_TLS_SNI
Apache variable contains the client-provided SNI information; if this variable is empty, that
means that the client doesn’t support SNI. Te following mod_rewrite conguration (placed
in a virtual host section) worked for me:

RewriteEngine On
RewriteCond %{SSL:SSL_TLS_SNI} =""
RewriteRule ^ /errors/no-sni.html

Note
Te behavior described here is implemented in versions up until 2.4.9. From 2.4.10
onwards, Apache behaves dierently: (1) the stock 403 response page includes the
reason for the rejection and (2) the ErrorDocument directive can invoke a script.
Tese changes make it possible to congure a script to handle 403 errors, detect the
mention of SNI in the error note (the REDIRECT_ERROR_NOTES variable), and provide
dierent messages depending on the exact context.

Reserving Default Sites for Error Messages
It is never a good idea to deliver actual web site content in response to an incorrectly speci-
ed request. For example, you don’t want a search engine to index a web site under arbitrary
hostnames. Whatever content you deliver will be seen by the client as belonging to the site
that it requested; a mismatch can sometimes be used to exploit a vulnerability from one site
as if it existed on another. To avoid this, I suggest that you reserve default sites on each IP
address and port combination for the delivery of error messages.
Here’s an example conguration you could use:

# We're using this default web site to explain
# host mismatch and SNI issues to our users.
<VirtualHost 192.168.0.1:443>
    # The hostname used here should never match.
    ServerName does-not-exist.example.com
    DocumentRoot /var/www/does-not-exist

    # Require SNI support for all sites on this IP address and port.
    SSLStrictSNIVHostCheck on    

    # Force all requests to this site to fail with a 404 status code.
    RewriteEngine On
    RewriteRule ^ - [L,R=404]

    # Error message for the clients that request
    # a hostname that is not configured on this server.
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    ErrorDocument 404 "<h1>No such site</h1><p>The site you requested does not ↩
exist.</p>"

    # Other configuration directives as desired.
    # Enable TLS as usual and use a self-signed certificate.
    ...
</VirtualHost>

Forward Secrecy
If you are deploying Apache from the 2.4.x branch and compiling everything from source
code, you have at your disposal DHE and ECDHE suites, which allow you to support robust
forward secrecy. Otherwise, when relying on the system-provided packages, they sometimes
don’t support EC cryptography, for several reasons:

EC cryptography is not supported by older Apache 2.2.x versions
Many Apache 2.2.x versions found in popular distributions do not support EC cryp-
tography, even when coupled with an OpenSSL version that does. Tis is largely be-
cause when OpenSSL decided to add support for EC, it le it disabled by default. If
you are in this situation but don’t want to install Apache from source code, there’s a
workaround that might be sucient, which I explain later in this section.

Older OpenSSL version
If the underlying OpenSSL installation does not support newer features (such as EC
crypto), then it does not matter if Apache does. Older versions of OpenSSL are still
prevalent on older installations, and even some newer operating system releases use
them. For example, OS X Mavericks, released in November 2013, ships with
OpenSSL 0.9.8y (that’s the most recent version from the old 0.9.x branch).
A good OpenSSL version to use today is the most recent one from the 1.0.1 branch or
newer. Luckily, Apache can be built with a statically compiled OpenSSL version,
which means that you can upgrade just the web server without messing with a core
operating system package.

OpenSSL version without EC support
For a long time, operating systems built by Red Hat used to ship without any support
for EC cryptography, because their lawyers wanted to play it safe when it came to cer-
tain EC patents. Tis made it very dicult for anyone using Fedora and Red Hat En-
terprise Linux distributions (and the open source derivatives, such as CentOS) to de-
ploy forward secrecy well.3 Te only way to do it well was to recompile the key system
packages.

3 ECDHE is important, because the only alternative, DHE suites, can’t be used to achieve forward secrecy with Internet Explorer. On top of that,

DHE is much slower than the RSA and ECDHE key exchanges, which is why most sites don’t want to use it.
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Tis changed in October 2013, when Fedora 18 and later versions were updated with
OpenSSL versions that have EC crypto enabled.4

Starting with version 6.5, which shipped in November 2013, all Red Hat Enterprise
Linux versions support EC cryptography.5

Enabling ECDHE Suites in Apache 2.2.x without Patching
TLS Interposer6 is a Linux tool that can be used to improve how programs use OpenSSL with-
out having to recompile them or change them in any other way. It works by intercepting calls
to certain OpenSSL functions and overriding their behaviors.
By default, TLS Interposer will:

• Disable SSL 2 and SSL 3 protocols
• Enable support for ECDHE cipher suites
• Enforce its own cipher suite conguration, which is strong by default

A great use case for TLS Interposer is enabling ECDHE cipher suites on Apache 2.2.x. Tis tool
can’t add all EC features to Apache, but the addition of ECDHE suites enables you to support
robust forward secrecy, which is the most common requirement.

OCSP Stapling
Online Certicate Status Protocol (OCSP) is the protocol that’s used to obtain certicate re-
vocation information on demand. Most certicates include OCSP information, which al-
lows TLS clients to talk directly to the issuing CA to conrm that the certicate has not
been revoked. OCSP stapling allows the web server to obtain a fresh OCSP response from
the CA, cache it locally, and submit it to the client along with the certicate. In this case, the
client does not need to contact the CA; this improves performance and results in better pri-
vacy. Apache supports OCSP stapling starting with the 2.4.x branch.

Confguring OCSP Stapling
Although Apache has many directives for OCSP stapling, most of them are needed only for
ne-tuning. You need only two directives to enable stapling initially:

# Configure a cache of 128 KB for OCSP responses. Tune the
# cache size based on the number of certificates in use on

4 Bug #319901: missing ec and ecparam commands in openssl package (Red Hat Bugzilla, closed 22 October 2013)
5 Red Hat Enterprise Linux 6.5 Release Notes (Red Hat, 21 November 2013)
6 TLS Interposer (Marcel Waldvogel, retrieved 12 July 2014)
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# the server.
SSLStaplingCache shmcb:/opt/httpd/logs/stapling_cache(128000)

# Enable OCSP stapling by default for all sites on this server.
SSLUseStapling on

In this example, I congured a server-wide cache for OCSP responses and then enabled sta-
pling by default for all sites. You can also use the SSLUseStapling directive elsewhere to en-
able or disable stapling for individual sites.
By default, successful OCSP responses will be cached for 3,600 seconds, but you can change
this timeout using the SSLStaplingStandardCacheTimeout directive.

Note
OCSP requests are submitted over HTTP, which means that your web server needs
to be allowed to make outbound requests to various OCSP responders across the
Internet. If you’re operating an outbound rewall, ensure that there are exceptions
to allow this trac.

Conguring OCSP stapling can fail if your site does not have a properly congured certi-
cate chain. In order for Apache to verify OCSP responses (which it always does), it needs
the CA certicate that issued the server certicate. Without it, stapling won’t be possible and
Apache will complain about the problem:

[Thu Jan 23 16:26:58.547877 2014] [ssl:error] [pid 1333:tid 140576489142080] AH0221↩
7: ssl_stapling_init_cert: Can't retrieve issuer certificate!
[Thu Jan 23 16:26:58.547900 2014] [ssl:error] [pid 1333:tid 140576489142080] AH0223↩
5: Unable to configure server certificate for stapling

If for some reason you are not using SSLCertificateChainFile to congure the chain, you
can provide the required CA certicate in the SSLCACertificateFile conguration. In fact,
the best practice is to always have the root certicate there.
To use OpenSSL to see if OCSP stapling is congured correctly, follow the instructions from
the section called “Testing OCSP Stapling” in Chapter 12.

Handling Errors
Apache caches both successful and failed OCSP responses. In theory, there is no harm in
this, because your clients are expected to obtain the same result by talking to the CA direct-
ly. In practice, it depends. For example, because even failed responses are cached (600 sec-
onds by default; change the value with SSLStaplingErrorCacheTimeout), a one-o problem
might end up being propagated to all your users.
Given that there is a lot of anecdotal evidence that OCSP responders can be aky, I think
you should exercise caution and not return responder errors:
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SSLStaplingReturnResponderErrors off

If you do choose to propagate the errors, remember that Apache by default generates fake
OCSP tryLater responses in the cases in which the real OCSP responder is unresponsive. I
think it’s safer to disable this functionality, too:

SSLStaplingFakeTryLater off

As an example of when this might be an issue, consider someone reconguring the out-
bound rewall around your web server and inadvertently preventing Apache from reaching
the OCSP responders. If you disable fake responses, your clients will still be able to commu-
nicate with the responders directly.

Using a Custom OCSP Responder
Normally, OCSP requests are submitted to the OCSP responder listed in the certicate. But
there are two cases in which you might want to hardcode OCSP responder information:

• Some certicates might not actually contain any OCSP information, even though the
issuing CA operates a responder. In this case, you can provide the OCSP responder ad-
dress manually.

• In heavily locked-down environments, direct outbound trac from the web server
might be forbidden. In this case, if you want to use OCSP stapling, you’ll need to con-
gure an HTTP proxy for OCSP requests.

You can override the certicate OCSP information globally or on a per-site basis, using the
SSLStaplingForceURL directive:

SSLStaplingForceURL http://ocsp.example.com

Confguring Ephemeral DH Key Exchange
Traditionally, Apache has le OpenSSL to congure the default strength of the Die-Hell-
man (DH) key exchange. Tat worked for a long time, but the OpenSSL default strength of
1,024 bits is no longer considered adequate. Compare this strength to the current best prac-
tice that all server keys have at least 2,048 bits.
For a very long time, the only way to increase the strength of DH key exchange had been to
change the source code, using a patch that was available only for the 2.4.x branch.7 But this
is no more. Starting with version 2.4.7, Apache will automatically tune the strength of the
DH key exchange to match the strength of the corresponding private key.

7 Increasing DHE strength on Apache 2.4.x (Ivan Ristić, 15 August 2013)
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Note
Given that 1,024-bit DH parameters are considered weak but not entirely insecure,
most sites will probably be just ne even if they are stuck with an earlier version of
Apache. Further, if your server supports ECDHE suites for forward secrecy (which
you can achieve even with older Apache versions), the DH key exchange will be
used only with older clients.

TLS Session Management
Apache supports both mechanisms for session management: server-side state caching and
session tickets. Apache 2.2.x has sucient features for standalone deployments, but Apache
2.4.x adds features necessary for distributed operation.

Standalone Session Cache
For individual web servers, there is only one practical option for TLS session caching:
shared memory. It’s also possible to cache the sessions in DBM les, but this approach is
known to be unreliable under heavy load (per Apache documentation).
For caching using shared memory, you need to have the mod_socache_shmcb module enabled
rst. Aer that, specify the following two directives in the server scope:

# Specify session cache type, path, and size (1 MB).
SSLSessionCache shmcb:/path/to/logs/ssl_scache(1024000)

# Specify maximum session cache duration of one day.
SSLSessionCacheTimeout 86400

By default, the timeout is set to ve minutes, which is very conservative. Tere is little rea-
son for new sessions to be renegotiated that oen; I chose 24 hours instead. Te default
cache size is 512 KB, but I increased that to 1 MB. Both values would probably work for
smaller web sites. Popular web sites will need to understand their usage patterns and set the
cache size to the appropriate value. In my tests with Apache 2.4.x, you should expect to store
roughly 4,000 sessions using a cache of 1 MB.

Note
Restarting Apache (even using the graceful option that keeps the master process
around) clears the session cache. Tus, each restart comes with a small CPU penal-
ty for the server and latency penalty for the users. In general, it’s not something you
should be worried about unless you’re restarting very frequently.

Depending on the Apache version, for TLS session caching you might also need to cong-
ure the mutex that is used to synchronize access to the cache. Apache 2.4.x uses a mutex by

TLS Session Management 405



default, but the conguration can be tweaked using the Mutex directive. Inexplicably, stock
Apache 2.2.x does not use a mutex by default, which means that its cache can get easily cor-
rupted under heavy load.
To congure a mutex on Apache 2.2.x, use the SSLMutex directive:

# Configure the mutex for TLS session cache access synchronization.
SSLMutex file:/var/run/apache2/ssl_mutex

On Unix platforms, reliable automated mutex selection has traditionally been dicult, be-
cause it is generally not possible to select any one mutex type that performs and works well
across all systems. For this reason, you’ll nd that programs tend to use le-based mutexes
by default; they are the most reliable but not the fastest.

Note
Apache uses the same TLS session cache for the entire server, but sharing the ses-
sion cache among unrelated applications can be dangerous. Session resumption us-
es an abbreviated TLS handshake that skips certicate validation. A network at-
tacker who can redirect trac from one port to another can potentially bypass cer-
ticate validation and force request processing by an incorrect application. Tis at-
tack could, for example, lead to information leakage. For a complete discussion of
the potential problems refer to the section called “Deployment Weaknesses” in
Chapter 6.

Standalone Session Tickets
By default, the session ticket implementation is provided by OpenSSL. For standalone
servers, this approach “just works,” although there are some aspects that you should be
aware of:

• Session tickets are protected using 128-bit AES encryption. A throwaway key is gener-
ated when the web server is initially started. It’s possible that multiple keys will be used,
depending on the conguration.

• Te key size is xed, but 128 bits is suciently strong for most use cases.
• When the server is restarted, new ticket keys are generated. Tis means that all connec-

tions that arrive aer the restart will need to negotiate new TLS sessions.
• Te same AES key is used for as long the server remains active. To minimize the im-

pact of session tickets on forward secrecy, you should ensure that you regularly restart
the web server. Daily is best.
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Distributed Session Caching
If you operate more than one server for the same web site but you’re not terminating TLS
centrally (e.g., on a load balancer) and not using sticky sessions (clients are always sent to
the same node), you will need distributed TLS session caching—a mechanism to exchange
session information among the cluster nodes.
Apache 2.4.x supports distributed TLS session caching out of the box, using the popular
network caching program memcached. To use it, deploy an instance of memcached for the
cache, and then connect all your web servers to it.
First, ensure you have the mod_socache_memcache module installed and activated:

LoadModule socache_memcache_module modules/mod_socache_memcache.so

Ten, congure the TLS session caching, like so:

# Use memcached for the TLS session cache.
SSLSessionCache memcache:memcache.example.com:11211

# Specify maximum session cache duration of one hour.
SSLSessionCacheTimeout 3600

As for the memcached size, consider these important points:
• As with a standalone server, allocate enough RAM to ensure that the session data is

cached for the entire duration of the session (the -m parameter).

• Lock the cache memory (the -k option) to improve performance and prevent the sensi-
tive TLS session data from being written to swap.

• Ensure that the maximum number of connections allowed is sucient to cover the
maximum number of concurrent connections supported by the entire cluster (the -c
option).

You can use the following conguration le as a starting point for customization:

# Run as daemon.
-d

# Run as user memcache.
-u memcache

# Run on port 11211.
-p 11211

# Log to this log file.
logfile /var/log/memcached.log
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# Allocate a 10 MB cache.
-m 10

# Allow up to 10240 connections.
-c 10240

# Lock all memory to improve performance and (more importantly)
# to prevent sensitive TLS session data from being written to swap.
-k 

At a glance, running a distributed TLS session cache appears to be straightforward. In prac-
tice, it depends on the details, and there are many additional issues that you need to consid-
er, including the following.

Availability
Web server nodes no longer keep any TLS session information locally, instead relying
on the congured memcache to provide the data. Tis means that the memcache is
now a point of failure for your cluster. How are you going to handle the memcache
misbehaving?

Performance
With TLS session data now hosted remotely, memcache lookups on resumed TLS
connections will add to the latency. If the network is fast and reliable, that cost will be
xed and probably small. Te only reliable way to tell is to measure the cost, by com-
paring the performance of a single server against that of the entire cluster. Just make
sure you disable session tickets in the client; otherwise you’ll be potentially measuring
the wrong resumption mechanism.

Security
Communication with the memcache is not encrypted, which means that the sensitive
TLS session data will be exposed as it travels over your internal network. Tis is not
ideal, because a compromise of any server on the same network also results with the
compromise of all your TLS sessions. Tis issue can be solved by communicating
with the memcache over a special encrypted network segment.

Note
Because TLS session cache sharing can result in security weaknesses, it’s best prac-
tice to never share a cache among unrelated applications. Tis is particularly true
for distributed caching, for which it’s more likely that servers powering multiple
applications will use the same cache. For best security, run separate memcache sec-
tions, one for each application.
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Distributed Session Tickets
If you are deploying a web server cluster in which each node is expected to terminate TLS,
then session tickets introduce an additional management challenge. In order to decrypt ses-
sion data reliably, all the cluster nodes must share the same key; this means that you can no
longer rely on the per-server keys generated by OpenSSL.
Apache 2.2.x does not support congurable ticket keys, which means that your only option
is to disable session tickets, as explained in the previous section. Apache 2.4.x supports
manually congured session ticket keys via the SSLSessionTicketKeyFile directive. With it,
you can manually generate a ticket key le and push it to all your cluster nodes, using the
same mechanism you use to manage other conguration data.
A session ticket key le consists of 48 bytes of cryptographically random data. Te data is
used for three 16-byte (128-bit) fragments, one each for key name, HMAC secret, and AES
key.
Using OpenSSL, you can generate a ticket key le like this:

$ openssl rand -out ticket.key 48

Aer that, you only need to tell Apache where the key le is:

SSLSessionTicketKeyFile /path/to/ticket.key

Warning
Te session ticket key le must be protected in the same way as all other private
keys. Although it is not necessary to back it up, you must ensure that only the root
user can access the le. Also, always use a dierent session ticket key for dierent
applications. Tat will ensure that a session from one site can’t be resumed on an-
other.

As with standalone servers, to minimize the impact of session tickets on forward secrecy
you have to rotate the session ticket key regularly—for example, once a day.

Disabling Session Tickets
Although session tickets are a welcome addition to the TLS protocol, there are occasions
when you might want to disable them, typically because they introduce additional opera-
tional overhead. Starting with Apache 2.4.11, you can disable session tickets using the
SSLSessionTickets directive. If you’re running an older version and don’t want to upgrade,
the only solution is to patch the Apache source code, as explained here.
To disable session tickets in Apache 2.2.x (tested against v2.2.27), apply the following patch:
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--- ./modules/ssl/ssl_engine_init.c.orig    2014-07-16 10:53:06.000000000 +0100
+++ ./modules/ssl/ssl_engine_init.c    2014-07-16 10:53:44.000000000 +0100
@@ -615,6 +615,11 @@
      */
     SSL_CTX_set_options(ctx, SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION);
 #endif
+
+#ifdef SSL_OP_NO_TICKET
+    /* Disable session tickets. */
+    SSL_CTX_set_options(ctx, SSL_OP_NO_TICKET); 
+#endif
 }

To disable session tickets in Apache 2.4.x (tested against v2.4.10), apply the following patch:

--- ./modules/ssl/ssl_engine_init.c.orig 2014-07-14 05:29:22.000000000 -0700
+++ ./modules/ssl/ssl_engine_init.c 2014-07-21 08:07:17.584482127 -0700
@@ -583,6 +583,11 @@
         SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS);
 #endif
 
+#ifdef SSL_OP_NO_TICKET
+ /* Disable session tickets. */
+ SSL_CTX_set_options(ctx, SSL_OP_NO_TICKET);
+#endif
+
     return APR_SUCCESS;
 }

To disable session tickets, rst apply the correct patch to the source code. You can do this by
positioning in the directory that contains the source code and the patch, and executing the
following command:

$ patch -p0 < disable-tickets-2.4.10.patch
patching file ./modules/ssl/ssl_engine_init.c

From here, recongure Apache with your desired conguration and enable the
SSL_OP_NO_TICKET compiler ag. For example:

$ ./configure \
    --prefix=/opt/httpd \
    --with-included-apr \
    --enable-ssl \
    CFLAGS=-DSSL_OP_NO_TICKET
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Client Authentication
As far as the conguration is concerned, using client authentication is straightforward: you
enable it, provide all the necessary CA certicates to form a full chain for validation, and
provide revocation information:

# Require client authentication.
SSLVerifyClient require

# Specify the maximum depth of the certification path,
# from the client certificate to a trusted root.
SSLVerifyDepth 2

# Allowed CAs that issue client certificates. The
# distinguished names of these certificates will be sent
# to each user to assist with client certificate selection.
SSLCACertificateFile conf/trusted-certificates.pem

Te traditional way to check client certicates for revocation is to use a local CRL list. Tis
option provides the best performance, because all operations are done locally. A script is
usually congured to run periodically to retrieve fresh CRLs and reload the web server:

# Enable client certificate revocation checking.
SSLCARevocationCheck chain

# The list of revoked certificates. A reload is required
# every time this list is changed.
SSLCARevocationFile conf/revoked-certificates.crl

Starting with Apache 2.4.x, you can also use OCSP revocation checking. Tis option pro-
vides real-time revocation information at the cost of reduced performance:

# Use OCSP to check client certificates for revocation.
SSLOCSPEnable On

If client authentication is required but the client doesn’t provide one, mod_ssl will reject the
TLS handshake with a fatal alert. For end users, this means that they get a cryptic error mes-
sage. It’s possible to handle this situation more gracefully by using dierent values for the
SSLVerifyClient directive:

optional
Requests a client certicate during TLS handshake, but doesn’t require it. Te status
of the validation is stored in the SSL_CLIENT_VERIFY variable: NONE for no certicate,
SUCCESS for a valid certicate, and FAILED: followed by an error message for a certi-
cate that failed validation. Tis feature is useful if you want to provide a custom re-
sponse to those users who fail client certicate validation.
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optional_no_ca
Requests a client certicate during TLS handshake, but doesn’t attempt validation. In-
stead, it’s expected that an external service will validate the certicate (which is avail-
able in the SSL_CLIENT_ family of variables).

Note
Using optional client authentication can be problematic, because some browsers
don’t prompt the user or otherwise select a client certicate if this option is cong-
ured. Tere are also issues with some other browsers that won’t proceed to the site
if they can’t provide a certicate. Before you seriously consider optional client au-
thentication for deployment, test with the browsers you have in your environment.

For performance reasons, mod_ssl doesn’t export its variables by default. If you need them,
enable the export by conguring the required variables using the SSLOptions directive:

# Export standard mod_ssl variables as well
# as certificate data to the environment.
SSLOptions +StdEnvVars +ExportCertData

Mitigating Protocol Issues
Apache developers have generally been quick to address TLS protocol–related issues. In
practice, because most deployments are based on Apache versions included with various
operating systems, it’s up to the vendors to keep their packages secure.

Insecure Renegotiation
Insecure renegotiation is a protocol aw discovered in 2009 and largely mitigated during
2010. Before this issue was discovered, Apache 2.2.x used to support client-initiated renego-
tiation. Version 2.2.15, released in March 2010, not only disabled client-initiated renegotia-
tion but also provided support for secure renegotiation (RFC 5746). Apache 2.4.x was rst
released in early 2012, which means that it was never vulnerable.

Warning
Disabling client-initiated renegotiation does not fully address this vulnerability if
server-initiated renegotiation is used and if you are accepting clients that do not
support RFC 5746. Tis is because the attacker can connect to the server, submit a
request that initiates server-initiated renegotiation, then exploit the victim (client).
For best security, inspect the SSL_SECURE_RENEG variable to conrm that the client
supports secure renegotiation.
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BEAST
Technically, the predictable IV vulnerability in TLS 1.0 and earlier protocols—better known
as the BEAST attack—aects both client and server sides of the communication. In practice,
only browsers are vulnerable, because exploitation requires that the attacker is able to con-
trol what data is sent (and subsequently encrypted). For this reason, BEAST cannot be ad-
dressed with a server-side patch.

CRIME
Te 2012 CRIME attack exploits compression at the TLS protocol level. Te issue has not
been xed in the protocol, which is why everyone resorted to disabling compression. Unre-
lated to the CRIME attack, Apache added the SSLCompression directive to versions 2.2.24
(February 2013) and 2.4.3 (August 2012), but compression stayed enabled by default.8 Com-
pression was disabled by default in versions 2.2.26 (November 2013) and 2.4.4 (February
2013).
When it comes to distribution-specic Apache versions, chances are that most vendors have
provided security patches by now. For example, Debian xed their version of Apache in
November 20129and Ubuntu in July 2013.10 On Red Hat and derived distributions, for a pe-
riod of time it was necessary to disable compression by manipulating environment vari-
ables,11 but Red Hat eventually disabled compression by default in March 2013.12

If your version of Apache supports TLS compression, it’s best to explicitly disable it with:

SSLCompression off

Warning
Disabling compression depends on the functionality that is available in OpenSSL
1.0.0 and later (the SSL_OP_NO_COMPRESSION conguration option). Older OpenSSL
versions might not actually be able to disable compression.

Deploying HTTP Strict Transport Security
Because HTTP Strict Transport Security (HSTS) is activated via a response header, congur-
ing it on a site is generally easy. However, there are certain traps you can fall into, which is

8 Bug #53219: mod_ssl should allow to disable ssl compression (ASF Bugzilla, closed 3 March 2013)
9 DSA-2579-1 apache 2 — Multiple issues (Debian, 30 November 2012)
10 USN-1898-1: OpenSSL vulnerability (Ubuntu Security Notice, 3 July 2013)
11 Bug #857051: SSL/TLS CRIME attack against HTTPS, comment #5 (Red Hat Bugzilla, closed 19 April 2013)
12 RHSA-2013:0587-1 (Red Hat, 4 March 2013)
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why I recommend that you read the section called “HTTP Strict Transport Security” in
Chapter 10 before you make any decisions.
HSTS is enabled using the Header directive. It’s best to use the always condition to ensure
that the response header is set on all responses, including errors:

# Enable HTTP Strict Transport Security.
Header always set Strict-Transport-Security "max-age=31536000; includeSubDomains"

According to the RFC, the HSTS policy can be set only on HTTP responses delivered over
an encrypted channel. Te same site on port 80 doesn’t need any HSTS conguration, but,
for best results, it does need a redirection to port 443. Tis will ensure that all site visitors
reach HTTPS as soon as possible:

<VirtualHost *:80>
    ServerName www.example.com
    ServerAlias example.com
    ...
    # Redirect all visitors to the encrypted portion of the site.
    RedirectPermanent / https://www.example.com/
</VirtualHost>

Monitoring Session Cache Status
It’s a little known fact that Apache exposes the status of the TLS session cache via the
mod_status module. To enable this feature, rst request that additional status information is
recorded (in the main conguration context):

# Request tracking of extended status information. This directive
# is only necessary with Apache 2.2.x. Apache 2.4.x should automatically
# enable it when mod_status is loaded.
ExtendedStatus On

Ten congure mod_status output in the desired location:

<Location /status>
    SetHandler server-status

    # Restrict access to the following IP addresses. We don't
    # want the world to see our sensitive status information.
    Require ip 192.168.0.1
</Location>

Warning
Te output of mod_status contains sensitive data, which is why you must always re-
strict access to it. Te best way is via HTTP Basic Authentication, but then you’ll
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have yet another password to remember. Network range restrictions, as in my ex-
ample, are almost as useful.

When you open the status page, at the bottom you will see output similar to this (emphasis
mine):

cache type: SHMCB, shared memory: 512000 bytes, current entries: 781
subcaches: 32, indexes per subcache: 88
time left on oldest entries' objects: avg: 486 seconds, (range: 0...2505)
index usage: 27%, cache usage: 33%
total entries stored since starting: 12623
total entries replaced since starting: 0
total entries expired since starting: 11688
total (pre-expiry) entries scrolled out of the cache: 148
total retrieves since starting: 6579 hit, 3353 miss
total removes since starting: 0 hit, 0 miss

Logging Negotiated TLS Parameters
Default web server logging mechanisms care only about HTTP requests and errors; they
won’t tell you much about your TLS usage. Tere are two main reasons why you might want
to keep an eye on your TLS operations:

Performance
Incorrectly congured TLS session resumption can incur a substantial performance
penalty, which is why you will want to keep an eye on the session resumption hit ra-
tio. Having a log le for this purpose is useful to ensure that your server does resume
TLS sessions and also to assist you with the tuning of the cache. Only Apache 2.4.x
allows you to do this, via the SSL_SESSION_RESUMED environment variable.

Protocol and cipher suite usage
Knowing which protocol versions and cipher suites are actually used by your user
base is important when it’s time to disable the weak versions. For example, SSL 2 re-
mained widely supported over many years because people were afraid to turn it o.
We are now facing similar problems with the SSL 3 protocol and the RC4 and 3DES
ciphers.

Assuming that you’re using Apache 2.4.x, use the following directives to monitor TLS con-
nections:

# Make TLS variables available to the logging module.
SSLOptions +StdEnvVars

# Record per-request TLS information to a separate log file.
CustomLog /path/to/ssl.log "%t %h %k %X %{SSL_PROTOCOL}e\
 %{SSL_CIPHER}e %{SSL_SESSION_ID}e %{SSL_SESSION_RESUMED}e"
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Please note the following:
• Te session ID will be logged only when a session is resumed, not during the initial

request.

• Te value of the SSL_SESSION_RESUMED variable will be Initial for new sessions and
Resumed for resumed sessions.

• Te %k variable keeps track of how many requests there have been on the same connec-
tion. If you see a zero in a log entry, you’ll know it’s the rst request. Tat’s the one that
counts.

• Te %X variable records connection status at the end of the request. A dash means that
the connection will be closed, whereas a plus sign means that the connection will stay
open.

Tere’s a slight mismatch between Apache’s logging facilities and our need to track TLS pro-
cessing in detail. TLS connection parameters are generally decided once at the beginning of
a connection and don’t change unless renegotiation occurs. Apache’s CustomLog directive
handles requests, which means that you will get multiple nearly identical log entries for long
connections with many HTTP transactions. Te %k variable is useful to keep track of this.
On one hand, this will make the log grow more quickly. On the other, logging every transac-
tion will help you determine the frequency of connection reuse, which is the most ecient
mode of operation (for both HTTP and TLS).

Note
Tere is currently no way to log connections with successful TLS handshakes but
without any requests. Similarly, it is not possible to log TLS handshake failures.

Advanced Logging with mod_sslhaf
Apache’s logging facilities allow you to determine which TLS parameters were used on a
connection, but they don’t give you any information beyond that. For example, you don’t
know the highest protocol version and cipher suites that were oered by each client. With
that information, you could, for example, determine your users’ capabilities and arrive at
the optimal TLS conguration without having to go through a potentially painful process of
trial and error.
To answer these and similar questions, I built an Apache module called mod_sslhaf. Tis
module does not hook into Apache; instead, it passively observes and parses all TLS connec-
tions to extract client capabilities. It can be used to provide the following interesting infor-
mation:

• Highest protocol version supported
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• List of oered cipher suites

• List of used TLS extensions—in particular:

• Availability of the SNI extension

• Support for session tickets

• Support for OCSP stapling
In addition to the above, mod_sslhaf can also log the entire raw ClientHello, which is very
useful if you want to perform custom handshake analysis. Tere is also a special variable
called SSLHAF_LOG, which is set only on the rst request on a connection. Tis variable is
designed to work with Apache’s conditional logging feature, and it allows you to record only
one log entry per connection (which saves a lot of disk space).
Installing mod_sslhaf is straightforward. Tere are no formal releases, so you’ll have to use
git to clone the source code repository:

$ git clone https://github.com/ssllabs/sslhaf.git

Because the module is small (only about 1,000 lines of code), the documentation is included
with the source code itself, in the le mod_sslhaf.c. To compile the module, execute:

$ apxs -cia mod_sslhaf.c

Te command line switches c, i, and a stand for compile, install, and activate. Depending on
your conguration le, activation can sometimes fail. In that case, activate the module man-
ually by adding the following line to your conguration (use the path that is correct on your
system, of course):

LoadModule sslhaf_module /path/to/modules/mod_sslhaf.so

Te following conguration uses all mod_sslhaf features and records the most important
data points, but only once per connection:

# Make TLS variables available to the logging module.
SSLOptions +StdEnvVars

# Record per-request TLS information to a separate log file.
CustomLog /path/to/ssl.log "%t %h %k %X %{SSL_PROTOCOL}e\
 %{SSL_CIPHER}e %{SSL_SESSION_ID}e %{SSL_SESSION_RESUMED}e |\
 %{SSLHAF_HANDSHAKE}e %{SSLHAF_PROTOCOL}e %{SSLHAF_SUITES}e\
 %{SSLHAF_EXTENSIONS_LEN}e %{SSLHAF_EXTENSIONS}e \"%{User-Agent}i\""\
 env=SSLHAF_LOG

Te rst half of this log format is identical to the format used in the previous section; the
additional mod_sslhaf information is provided aer the pipe character.
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Tip
Most people will never consider analyzing raw ClientHello records, which is why I
have not included them in the log format. Aer all, they do take a lot of space and
impact logging performance. If you do want to track this data, the variable that
holds it is called SSLHAF_RAW.
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14 Confguring Java and Tomcat
Tis chapter focuses on the TLS capabilities of the Java platform, covering the evolution of
features across many releases, but focusing mostly on Java 7 and Java 8. I start the chapter
with a discussion of the cryptographic features available in the platform itself, and then
move on to cover both client and server deployments and congurations. Finally, I discuss
Tomcat, one of the most popular Java web servers.

Java Cryptography Components
In Java, there are several components that work together to provide a complete implementa-
tion of the SSL and TLS protocols and the surrounding functionality. Tey are:

Java Cryptography Architecture (JCA)
JCA provides a unied architecture for everything related to cryptography. Concep-
tually, JCA consists of only a set of abstract APIs and no actual code. Te key aspect
of JCA is that it allows an arbitrary number of providers, which compete to provide
the specied functionality.

Java Certication Path API
Te Java Certication Path API (or CertPath, as it is commonly referred to through-
out the Java reference documentation) deals with everything related to certicates
and certication paths. For SSL/TLS specically, CertPath provides APIs that deal
with X.509 certication paths, as specied by the PKIX standards. Most SSL and TLS
deployments rely on PKIX to establish trust.

Java Secure Socket Extension (JSSE)
JSSE is the component that deals with the SSL and TLS protocols, building on the
cryptographic algorithms and other APIs provided by JCA packages. JSSE is imple-
mented as a set of APIs with support for interchangeable implementations.

JCA Providers
Java comes with a number of providers that implement various cryptographic algo-
rithms and makes it easy to install new providers as desired. Te default congura-
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tion will satisfy the needs of most installations. Sometimes, when you wish to enable
specic functionality or improve performance, you might decide to explicitly cong-
ure which providers are used and how.

Keytool
Java does not keep keys and certicates as individual les; rather it bundles them all
in a single storage facility called a keystore. In order to manipulate the contents of a
keystore, you will need to use keytool, which is included with every Java Develop-
ment Kit (JDK).

Java Root Certicate Store
A TLS library is not very useful on the public Internet without a collection of trusted
certicates, which are known as roots or root certicates. A collection of root certi-
cates is also called a truststore. JVM vendors typically maintain their own truststores
and ship them with their products.1

In this section, I aim to provide you all of the SSL/TLS-related information you will need.
However, if you want to go deeper, it is recommended that you visit the Java 72 and Java 83

reference documentation.

Strong and Unlimited Encryption
Java cryptography operates in one of two modes of strength. In both cases, the code base is
exactly the same, but some limits are imposed by the conguration. By default, each instal-
lation operates in strong mode, which is somewhat restricted to comply with the US export
restrictions for cryptography. In this mode, for example, the AES cipher is limited to 128
bits. Te other mode is called unlimited strength and does not have any articial restrictions.
Te default mode is strong enough for most use cases, but the use of unlimited-strength en-
cryption is recommended to reduce potential interoperability issues in edge cases. (I will
discuss these issues further later in this chapter.)
If you do want to enable the unlimited mode (e.g., it’s very useful if you want to write an SSL
assessment tool, in which case you want to have access to as many cipher suites as possible),
you’ll need to download special policy les from Oracle’s web site4 and put them in the cor-
rect location on the disk, per the installation instructions.

Note
On some systems, there will be more than one Java installation available. Make
sure you patch the correct one or all of them. Even when there is only one version

1 Including Certicate Authority Root Certicates in Java (Oracle, retrieved 1 July 2014)
2 Java SE 7 Security Documentation (Oracle, retrieved 2 July 2014)
3 Java SE 8 Security Documentation (Oracle, retrieved 2 July 2014)
4 JCE Unlimited Strength Jurisdiction Policy Files for Java 7 and Java 8 (Oracle, retrieved 2 July 2014)

420 Chapter 14: Conguring Java and Tomcat



installed, the JDK and JRE usually go into separate directories and might need to
be patched separately.5

Provider Confguration
Java ships with many providers; some are generic, and some are platform specic. Oracle’s
SSL/TLS implementation (SunJSSE) is a good example of a generic provider, because the
same code is used on all platforms. On the other end of the spectrum, the SunMSCAPI
provider is a special component that interfaces with cryptographic features of Windows op-
erating systems.
You will generally not need to deal with provider conguration except in a few cases, such
as when you desire specic functionality or if you are looking to improve performance. In
the following cases, for example:

Performance tuning
Java-provided crypto is not inherently slower,6 but in practice Java might not be the
fastest platform. Tere is certainly some evidence that shows that crypto performance
can be improved using OpenSSL and NSS. As an illustration, an Intel use case claims
up to 38% performance improvement when Java is coupled with NSS libraries.7

FIPS mode
Java supports FIPS, but only if coupled with an external FIS-certied provider. One
such provider is Mozilla’s NSS.

Te ability to exchange one provider for another is also very useful if you come across bugs
or implementation limitations. In theory, you should be able to overcome those by using
another provider. Of course, in practice you might replace one set of bugs and limitations
with another.

Features Overview
Java’s SSL/TLS implementation has traditionally been conservative and late to implement
key protocol features. In that sense, Java’s library has been quite similar to others (except
Microso’s). For example, client-side support for virtual secure hosting was added in Java 7,
but for server-side support we had to wait until Java 8. Similarly, although TLS 1.2 support
was added in Java 7, it was enabled by default only in Java 8.

5 Patch-in-Place and Static JRE Installation (Java Platform Standard Edition 7 Documentation; retrieved 2 July 2014)
6 Best performance is usually achieved using assembly and optimization by hand. There is a lot of native and assembly code included with the

Java platform, and some of it is used for cryptographic operations. For example, Java 8 added assembly code to accelerate some AES operations

on Intel and AMD processors.
7 Improved AES Crypto performance on Java with NSS using Intel® AES-NI Instructions (Intel whitepaper; 6 April 2012)

Provider Conguration 421



Table 14.1. Evolution of SSL/TLS protocol features in JSSE

 Java 5 (May
2004–October
2009)

Java 6 (Decem-
ber 2006–
February 2013)

Java 7 (July
2011–)

Java 8 (March
2014–)

Elliptic Curve crypto Noa Yesb Yesc Yes

Client-side SNI - - Yes Yes

Server-side SNI - - - Yes

TLS 1.1 and 1.2 - - Yesd Yes

AEAD GCM suites - - - Yes

SHA256 and SHA384 suites - - Yes Yes

DH over 1,024 bits (client) - - - Yes

DH over 768 bits (server) - - - Yese

Secure renegotiation u26+ u22+ Yes Yes

BEAST mitigation (1/n-1 split) - u29+ u1+ Yes

OCSP stapling - - - -

Server cipher suite preference - - - Yes

Disable client-initiated renegotiation - - - Yes

Hardware-accelerated AES - - - Partialf

Default client handshake format v2 v2 v3 v3
a In Java 5, JCA provided only EC APIs, but no implementation.
b In Java 6, JSSE added support for EC suites, but the JDK itself didn’t implement any EC algorithms. The only platform that supported EC suites
by default was Solaris, which had native EC functionality and integrated with Java using PKCS#11.
c Ocial Java 7 implements EC algorithms via the SunEC provider. However, this component is not included in OpenJDK. To add EC support, look
for third-party libraries such as BouncyCastle, or integrate with a native implementation using PKCS#11.
d Disabled by default in client mode. Enabled by default in server mode.
e Only 1,024 bits by default, but can be increased to 2,048 bits.
f JEP 164: Leverage CPU Instructions for AES Cryptography (OpenJDK web site)

Protocol Vulnerabilities
Te most recent versions of Java do not suer from any of the known SSL/TLS vulnerabili-
ties. Although there are frequent Java releases with security xes, most vulnerabilities aect
only client soware. For this reason, server-side installations are oen le unpatched for
long periods of time. However, occasionally a server-side bug is xed, and sometimes the
issue is in the cryptographic libraries. For example, the patch release in April 2014 xed a
serious problem in JSSE.8

Another reason to upgrade server installations is to refresh the truststores. Tis might be
relevant for web applications that communicate with external systems.

8 Easter Hack: Even More Critical Bugs in SSL/TLS Implementations (Chris Meyer, 16 April 2014)
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Insecure renegotiation
Oracle initially addressed insecure renegotiation on 30 March 2010 with an interim
patch that disabled renegotiation.9 Secure renegotiation was implemented on 12 Oc-
tober 2010 in Java 5u26 and Java 6u22. Java 7 and later supported secure renegotia-
tion from the rst release.
Like most other client-side soware, Java clients will connect to servers that do not
implement secure renegotiation. Tis is dangerous, because clients have no way of
detecting attacks against insecure renegotiation even if they themselves do support
secure renegotiation. Te alternative is to allow clients to connect only to servers that
support secure renegotiation, but in that case you will have to accept that connec-
tions with insecure servers will fail.10

BEAST
To address the BEAST attack, Java implements the 1/n-1 split starting with Java 6u29
and Java 7u1.

CRIME
Te CRIME attack exploits information leakage inherent in compression. Java never
supported compression at the TLS level, which means that no Java client was ever
vulnerable to CRIME. Java web applications might still be vulnerable to the CRIME
variants TIME and BREACH, which attack HTTP response body compression.

Interoperability Issues 
With Java in server mode, you are not very likely to experience interoperability issues; Java
supports a variety of protocols and suites, which means that you will be able to communi-
cate with virtually any client.
It’s a dierent situation in client mode, in which there are several potential problems that
you need to be aware of:

Missing root certicates
Te root certicate store shipped with the JRE enables Java clients to communicate
with previously unseen web sites. Over time, old roots are retired and new ones are
added. If a web site is relying on a root certicate that is not in your store, connec-
tions to the site will fail. If you’re not updating your JRE regularly, then the root store
might become stale, causing connectivity failures. Old root stores might also contain
roots that shouldn’t be trusted any more. In some cases, it may be that the ocial root
store does not contain a root you wish to trust. If that happens, you will need to man-
ually add such roots.

9 Transport Layer Security (TLS) Renegotiation Issue Readme (Oracle, retrieved 2 July 2014)
10 According to the SSL Pulse results from July 2014, about 11.6% of the monitored servers do not support secure renegotiation.
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Servers with only 256-bit suites enabled
A very small number of sites are congured only with 256-bit cipher suites. If your
JRE hasn’t been upgraded to the unlimited mode (it’s capable only of 128-bit AES),
you might not be able to communicate with such sites.

DH parameters over 1,024 bits
All versions prior to Java 8 are limited to supporting client-side Die-Hellman (DH)
parameters of only up to 1,024 bits. Although few servers use anything stronger at the
moment, 1,024-bit DH parameters are considered weak, and there is a trend to de-
ploy stronger parameters.

RSA keys under 1,024 bits
Starting with 7u40, Java refuses to connect to servers that use insecure RSA keys that
oer less than 1,024 bits of security. It is possible to bypass this restriction by chang-
ing the jdk.certpath.disabledAlgorithms property, but that’s generally not a good
idea.

MD2 root certicates
Also from 7u40, Java versions will not accept certicates with MD2 signatures. A
small number of servers contain such certicates in their chains, and they will cause
TLS connections to fail. Although it is possible to override the rejection of MD2, you
should consider it only as a last resort.

Stricter Algorithm Restrictions
Java’s default algorithm restrictions for certication path building could be improved for better
security, disabling all insecure algorithms and key sizes. Consider the following setting for the
jdk.certpath.disabledAlgorithms security property:

  MD2, MD5, RSA keySize < 2048, DSA keySize < 2048, EC keySize < 256

Tese restrictions don’t necessarily aect the root certicates in your truststores. For best re-
sults, you should also inspect all the root certicates and remove the weak ones (use the above
criteria).

Tuning via Properties
Java exposes a number of system and security properties that can be used to change the de-
fault cryptography settings. In this section, I am including a selection of the most useful set-
tings. You can nd the full list in the JSSE documentation.11

11 Customizable Items in JSSE (JSSE 8 Reference Guide, retrieved 2 July 2014)
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Table 14.2. Most useful system and security properties for SSL/TLS and PKI tuning

Purpose Property name Description

Default client protocols for
HttpsUrlConnection

https.protocols Provide a comma-separated list of desired pro-
tocols. For example:
TLSv1,TLSv1.1,TLSv1.2. Starting with Java
8, you can use jdk.tls.client.protocols
to affect all SunJSSE clients.

Default client cipher suites for
HttpsUrlConnection

https.cipherSuites Comma-separated list of desired cipher suites
to be used by HttpsUrlConnection.

Use Server Name Indication (SNI) jsse.enableSNIExtension Enabled by default in Java 7 and later. Should
not be disabled unless you encounter incom-
patible servers.

Allow insecure renegotiation sun.security.ssl.
allowUnsafeRenegotiation

Disabled by default and should stay that way.

Allow insecure renegotiation
clients

sun.security.ssl.
allowLegacyHelloMessages

Enabled by default in order to allow not-yet-
patched TLS clients. Ideally, it should be dis-
abled, but that may cause interoperability
problems.

Disabled suite algorithms jdk.tls.disabledAlgorithms A handy setting to use to disable certain algo-
rithms without changing application source
code. Security property.

Disabled certicate algorithms jdk.certpath.
disabledAlgorithms

Algorithm restrictions for certication path pro-
cessing. Contains MD2, RSA keySize <
1024 in 7u40 and newer. The documentation
for this parameter is in the java.security
le. Security property.

Reconstruct incomplete certicate
chains

com.sun.
security.enableAIAcaIssuers

If enabled, Java clients will follow AIA informa-
tion when available and attempt to reconstruct
incomplete certicate chains. Disabled by de-
fault.

Enable revocation checking com.sun.net.ssl.
checkRevocation

Disabled by default. If enabled, requires that
either CRL or OCSP revocation methods are en-
abled.

Enable OCSP revocation checking ocsp.enable When enabled, Java clients will check certi-
cates for revocation via OCSP. Disabled by de-
fault. Security property.

Enable CRL revocation checking com.sun.
security.enableCRLDP

When enabled, Java clients will check certi-
cates for revocation via CRL. Disabled by de-
fault. If OCSP checking is enabled, it will be at-
tempted rst.

In Java 8, several new properties are available:
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Table 14.3. New conguration system properties available in Java 8

Purpose Property name Description

Disable client-initiated renegotia-
tion

jdk.tls.
rejectClientInitiatedRenego
tiation

Set to true to disable client-initiated renegoti-
ation. Not documented at the time of writing.

Congure server Die-Hellman
strength

jdk.tls.ephemeralDHKeySize Leave undened for 1,024 bits. Set to legacy
for the weak Java 7 behavior, matched to
match key size, and a number from 1,024 to
2,048 for a xed value.

Default SunJSSE client protocols jdk.tls.client.protocols Similar to https.protocols, but affects all
SunJSSE clients, not just
HttpsUrlConnection.

System and security properties are similar, but they are congured dierently. You can set a
system property in one of two ways. First is via the -D switch on the JVM command line. For
example:

$ java -Dhttps.protocols=TLSv1 myMainClass

Alternatively, at runtime you can use the System.setProperty() method:

System.setProperty("https.protocols", "TLSv1");

Security properties, on the other hand, are chiey congured by editing the $JAVA_HOME/lib/
security/java.security le. If you want to override the settings from the command line,
you can, but under two conditions:

1. Te security.overridePropertiesFile setting in the main conguration le must be
set to true (the default).

2. You can’t specify individual properties on the command line; instead, you have to cre-
ate a property le with all of your property overrides in it.

If these two conditions are met, you can override the default security properties, like so:

$ java -Djava.security.properties=/path/to/my/java.security-overrides

Tere is also an undocumented feature that allows you to specify an entirely dierent secu-
rity conguration (not just override the defaults) by using two equals signs:

$ java -Djava.security.properties==/path/to/my/java.security

At runtime, you can set a security property using the Security.setProperty() method. For
example, to improve the default policy on algorithm strength you could do this:

Security.setProperty("jdk.certpath.disabledAlgorithms",
    "MD2, MD5, RSA keySize < 2048, DSA keySize < 2048, EC keySize < 256");
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Warning
Setting properties at runtime might not always be reliable. Some classes might look
up the property values only once at startup, which might lead them to miss the
changed properties. For best results, congure properties in the conguration les
or by using command-line switches.

Common Error Messages
When something unexpected happens, JSSE will throw an exception, but the language used
in the error messages tends to be very technical and oen does not provide enough clues to
help resolve the problem. Tis section contains a collection of commonly observed JSSE er-
ror messages and options to deal with them.

Certifcate Chain Issues
Sometimes, a Java client attempting to connect to a server might not be able to validate the
certicate. When that happens, the following exceptions are thrown:

javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: ↩
PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderExcepti↩
on: unable to find valid certification path to requested target

As for the root cause behind the problem, it can be one of the following issues:
Unknown certication authority

Te server’s certicate is signed by a CA unknown to your Java client. Tis might
happen if your keystore conguration is too old and does not contain the new CA or
if the server is using a custom CA (which will never be recognized by the public). If
you are certain that the CA is genuine, you can solve this problem by adding the
missing certicate to your truststore. Other than that, trusting arbitrary root certi-
cates is not recommended; once added, a root certicate can impersonate any web
site in the world.

Incomplete chain
Although we spend most of our time discussing server certicates, in reality servers
need to congure chains of certicates. If a server’s chain is incomplete, clients won’t
be able to nd a path to a trusted root. Te solution is to recongure the server with
the correct certicate chain.
Sometimes, incomplete chains can be reconstructed with the help of the Authority In-
formation Access (AIA) extension, which contains a URL which you can use to down-
load the next certicate in the chain. Java does not follow AIA information by default.
To enable this feature, set the com.sun.security.enableAIAcaIssuers property to
true.
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Self-signed certicate
Many servers run with only self-signed certicates. If they are delivering services in-
tended for public consumption, that’s unacceptable. If not, it might be all right, and
you should be able to deal with the problem by creating an exception and trusting
that certicate.

Warning
Contrary to many “solutions” you can nd on the Internet, you should never at-
tempt to solve the self-signed certicate problem by disabling validation in your
code. If you do that, your programs will fail miserably when under a man-in-the-
middle (MITM) attack. Basically, anyone would be able to present any certicate to
your code and impersonate the server you’re connecting to.

Server Hostname Mismatch
When connecting to a remote web server over TLS, the expectation is that the hostname
from the URL will match one of the hostnames specied in the certicate. If that’s not the
case, the following exception will occur:

javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: No ↩
name matching beta.feistyduck.com found

Te solution simply is to install a correct certicate, which includes the missing hostname.

Client Dife-Hellman Limitations
All versions prior to Java 8 support Die-Hellman (DH) parameters of only up to 1,024
bits. When a Java client running on one of those platforms encounters a server that wishes
to use a suite with DH parameters over 1,024 bits (almost always 2,048 bits), you will see the
following exceptions:

javax.net.ssl.SSLException: java.lang.RuntimeException: Could not generate DH ↩
keypair
...
Caused by: java.lang.RuntimeException: Could not generate DH keypair
...
Caused by: java.security.InvalidAlgorithmParameterException: Prime size must be ↩
multiple of 64, and can only range from 512 to 1024 (inclusive)

If you have control over the server in question, it is easy to make this problem go away, by
doing one of the following:

• Enable and prioritize ECDHE suites on the server. Java 6 and 7 clients support these,
and will happily use them. (But do note that with Java 6 you must switch to using the
v3 handshake in order to utilize the ECDHE suites at the client level.)
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• If the server does not support ECDHE suites, you can prioritize RSA suites on the serv-
er, but you will lose forward secrecy with your Java clients.

• As a last resort, you can downgrade DH parameters to 1,024 bits. Tis, of course, also
downgrades the security of all DH suites.

If you’d rather make changes to the client conguration, you can try replacing Oracle’s JCE
component (where the limitation lives) with that developed by the Bouncy Castle project.12

I’ve had mixed results with this approach. Sometimes it works, but the addition of a
provider might produce other exceptions that can’t be easily explained.

Server Name Indication Intolerance
A small number of servers are intolerant to the Server Name Indication (SNI) extension,
which is used by default by clients starting with Java 7. More commonly, servers that do
support SNI send a TLS warning when the SNI information couldn’t be matched to any vir-
tual host on the server. Although TLS warnings are not fatal and can be ignored, Java clients
react to them by aborting the connection. You will know you have this problem if you up-
grade your JVM and start seeing the following exception:

javax.net.ssl.SSLProtocolException: handshake alert: unrecognized_name

Strict Secure Renegotiation Failures
When the JVM is in the strict secure renegotiation mode, the requirement for every TLS
handshake will be that both sides implement secure renegotiation. If that’s not the case, you
will get the following exception:

javax.net.ssl.SSLHandshakeException: Failed to negotiate the use of secure ↩
renegotiation

You will not get this exception unless you’ve explicitly enabled the strict secure renegotia-
tion mode by setting sun.security.ssl.allowLegacyHelloMessages to false. If you experi-
ence this problem in a Java client, the best way to deal with it is to upgrade the server. If
that’s not possible, your only other option is to revert back to the default (and unsafe) mode.

Protocol Negotiation Failure
SSL 3 is an older, obsolete protocol version that shouldn’t be used. Virtually all servers on
the Internet support at least TLS 1.0 and you’re not likely to experience interoperability is-
sues, but you might encounter an odd SSL 3-only server. If you disable SSL 3, you might
encounter the following exception with such servers:

12 Provider Installation (Bouncy Castle, retrieved 2 July 2014)
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javax.net.ssl.SSLHandshakeException: Server chose SSLv3, but that protocol version ↩
is not enabled or not supported by the client.

To resolve this problem, you either need to get the server to upgrade or downgrade the
client.
On the other end of the spectrum, if you don’t enable newer protocols, you might encounter
a server that does not support TLS 1.0 and earlier. Tis, too, is rare, but if you come across
it, the message will be:

javax.net.ssl.SSLException: Received fatal alert: protocol_version

Handshake Format Incompatibility
Java 6 and older versions use the SSL 2 handshake format by default, but not all servers do.
If you come across a server that does not, you will see the following message:

javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake

You can x this problem by reconguring the client to use the SSL 3 handshake format, as
described in the section called “Using Strong Protocols on the Client Side”.

Securing Java Web Applications
In this section, I discuss several topics related to secure use of encryption in either Java
clients or web applications. Tese topics aren’t very complicated, but the correct information
is oen dicult to nd in the sea of documents available on the Web. Please note that I
don’t discuss here anything outside encryption. For example, cookie security and session
management security are complex topics and there is a lot to be said, but complete coverage
of these topics is outside the scope of this book.

Enforcing Encryption
You can write a web application that wants to be secure (i.e., deployed under TLS), but you
can’t actually enforce that. Due to an operator mistake or conguration error, your applica-
tion might be available under plain-text HTTP.
My advice is to always check programmatically if the application is accessed securely by in-
voking the isSecure() method on the HttpServletRequest instance supplied by the Servlet
container. For existing applications in which you don’t have control over the source code,
checks can be added in a servlet lter.

Note
Tis programmatic check will catch the obvious conguration errors, but it is not
foolproof. Some systems terminate TLS at earlier architectural layers (e.g., load bal-
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ancers and proxies) but use web server conguration settings to convince applica-
tions that encryption is in place.

Securing Web Application Cookies
Te following code snippet creates a cookie with both httpOnly and secure ags set and
adds it to the response (via the HttpServletResponse instance supplied by the Servlet con-
tainer):

Cookie cookie = new Cookie(cookieName, cookieValue);
cookie.setMaxAge(cookieLifeInDays * 24 * 3600);
cookie.setHttpOnly(true);
cookie.setSecure(true);
response.addCookie(cookie);

Clearly, if you have an existing application that does not use cookies properly, you will need
to examine the source code to nd where the cookies are created, and make them all secure.
If you don’t want to make changes to the source code (or don’t have access to it), try writing
a servlet lter13 that intercepts cookies as they are being created and forcefully makes them
secure.

Securing Web Session Cookies
Java applications almost universally rely on the underlying servlet containers to manage ses-
sions for them. In practice, this means that conguration changes need to be made in order
to secure session cookies.
Tis is easy to do for applications that rely on the Servlet 3 specication or newer,14 which
introduced conguration settings for securing session cookies. To do this, add the following
snippet to the application’s web.xml le:15

<session-config>
    <cookie-config>
        <secure>true</secure>
        <http-only>true</http-only>
    </cookie-config>
<session-config>

For applications using earlier Servlet specication versions, the exact behavior depends on
the container. Some products automatically create secure cookies when encryption is used.

13 The Essentials of Filters (Oracle, retrieved 2 July 2014)
14 JSR-000315 Java™ Servlet 3.0 (Java Community Process, December 2009)
15 It is possible to achieve the same effect programmatically by conguring the SessionCookieConfig instance obtained from the current

ServletContext, which is best done just after the context has been created from a ServletContextListener.
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Deploying HTTP Strict Transport Security
HTTP Strict Transport Security (HSTS) is a new technology that enables strict handling of
encryption by web applications that don’t wish to receive any plaintext trac. I cover HSTS
in detail in Chapter 10, HSTS, CSP, and Pinning. To deploy it, you need to set a single re-
sponse header in your application. Only one method invocation is needed for this:

response.setHeader("Strict-Transport-Security", "max-age=31536000; ↩
includeSubDomains");

However, conguring security policies is generally better done at the web server level. Java
applications can also use servlet lters. Rather than writing your own, consider using one of
the available open source projects, for example, HeadLines.16

Using Strong Protocols on the Client Side
For client applications, Java’s default protocol conguration has traditionally been focused
on interoperability at the cost of security. Java 6, for example, uses the old SSL 2 handshake
format, which is necessary only if you are actually willing to use SSL 2, but Java never sup-
ported this version of the protocol. Java 7 doesn’t use the SSL 2 handshake format, but still
doesn’t use TLS 1.1 and 1.2 for clients by default, despite supporting these newer protocol
versions. (Tey are enabled by default for servers.) Java 8 enables TLS 1.1 and 1.2 for clients
and servers alike.
If all you need is HttpsURLConnection, then the simplest way to change the default behavior
is via the https.protocols system property I discussed earlier, in the section called “Tuning
via Properties”. Tis will change the default protocol conguration for this class. Starting
with Java 8, the jdk.tls.client.protocols system property does the same, but for all code
that relies on SunJSSE.
If you’re an application developer and don’t control the environment in which your applica-
tion runs, changing system properties is not appropriate; it’s better to programmatically en-
sure your application uses the desired protocols. Tis task is straightforward if you’re han-
dling synchronous sockets directly; you can use SSLSocket.setSSLParameters() to deploy
your own conguration.
But for many common tasks, sockets are too low level, which is why you’ll oen nd your-
self using the higher-level HttpsURLConnection class. Unfortunately, to change the protocols
used by this class is more dicult; you will need to create a custom SSLSocketFactory and
make sure it is always used.

16 HeadLines (SourceClear, retrieved 1 July 2014)
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Below is my custom factory, which enables all supported protocols (it’s future compatible
because protocol versions are not hardcoded) but disables the SSL 2 handshake format and
the SSL 3 protocol:

import java.io.IOException;
import java.net.InetAddress;
import java.net.Socket;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.List;

import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;

public class MySSLSocketFactory extends SSLSocketFactory {

    private String enabledProtocols[] = null;

    private String enabledCipherSuites[];

    private SSLSocketFactory sslSocketFactory;

    public MySSLSocketFactory() {
        sslSocketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();
        enabledCipherSuites = sslSocketFactory.getDefaultCipherSuites();
    }

    private Socket reconfigureSocket(Socket socket) {
        SSLSocket sslSocket = (SSLSocket) socket;

        if (enabledProtocols != null) {
            sslSocket.setEnabledProtocols(enabledProtocols);
        } else {
            List<String> myProtocols = new ArrayList<String>();

            for (String p : sslSocket.getSupportedProtocols()) {
                if (p.equalsIgnoreCase("SSLv2Hello")
                        || (p.equalsIgnoreCase("SSLv3"))) {
                    continue;
                }

                myProtocols.add(p);
            }

            sslSocket.setEnabledProtocols(myProtocols
                    .toArray(new String[myProtocols.size()]));
        }
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        sslSocket.setEnabledCipherSuites(enabledCipherSuites);

        return socket;
    }

    public void setEnabledProtocols(String[] newEnabledProtocols) {
        enabledProtocols = newEnabledProtocols;
    }

    public void setEnabledCipherSuites(String[] newEnabledCipherSuites) {
        enabledCipherSuites = newEnabledCipherSuites;
    }

    @Override
    public Socket createSocket(Socket s, String host, int port,
            boolean autoClose) throws IOException {
        return reconfigureSocket(sslSocketFactory.createSocket(s, host, port,
                autoClose));
    }

    @Override
    public String[] getDefaultCipherSuites() {
        return enabledCipherSuites;
    }

    @Override
    public String[] getSupportedCipherSuites() {
        return sslSocketFactory.getSupportedCipherSuites();
    }

    @Override
    public Socket createSocket(String host, int port) throws IOException,
            UnknownHostException {
        return reconfigureSocket(sslSocketFactory.createSocket(host, port));
    }

    @Override
    public Socket createSocket(InetAddress host, int port) throws IOException {
        return reconfigureSocket(sslSocketFactory.createSocket(host, port));
    }

    @Override
    public Socket createSocket(String host, int port, InetAddress localHost,
            int localPort) throws IOException, UnknownHostException {
        return reconfigureSocket(sslSocketFactory.createSocket(host, port,
                localHost, localPort));
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    }

    @Override
    public Socket createSocket(InetAddress address, int port,
            InetAddress localAddress, int localPort) throws IOException {
        return reconfigureSocket(sslSocketFactory.createSocket(address, port,
                localAddress, localPort));
    }
}

Ten, whenever you create an instance of HttpsUrlConnection, assign it a custom factory:

URL u = new URL("https://www.feistyduck.com");
HttpsURLConnection uc = (HttpsURLConnection) u.openConnection();
uc.setSSLSocketFactory(new MySSLSocketFactory());

Revocation Checking
By default, Java will not perform any revocation checks on the certicates it encounters.
Tis is potentially insecure. You should enable both CRL and OCSP revocation checking for
maximum security by setting com.sun.net.ssl.checkRevocation, ocsp.enable, and
com.sun.security.enableCRLDP to true.
In addition, you should also consider allowing Java to attempt to reconstruct incomplete
certicate chains, via the com.sun.security.enableAIAcaIssuers property. Incomplete cer-
ticate chains can’t be validated, which means that communication with such servers will
fail.

Common Keystore Operations 
In this section, I cover the most common tasks related to key and certicate management.
Te keytool utility will help you with many of these tasks, but you might need to resort to
using OpenSSL for some, particularly for key and certicate import.

Note
If you don’t enjoy spending time on the command line, consider using a tool called
KeyStore Explorer,17 which provides a friendly user interface for common keytool
operations.

Keystore Layout
Although it might not be obvious at rst, Java will allow you to use any number of keystores.
For client-side activity, you most likely won’t need to do much, because the system-provided

17 KeyStore Explorer (retrieved 1 July 2014)
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root keystore will be sucient. You might need to update this keystore from time to time,
but you’re unlikely to use more than one.
It’s dierent for server operation. Here, not only are multiple keystores possible, they are ac-
tively recommended. Unless you have a very good reason to do otherwise, you should al-
ways use one keystore per web site. Te advantages of this approach are that (1) you can
secure web site keys individually, using dierent passphrases, and (2) migration of sites
from one server to another is easy.
Within a keystore, each certicate chain is required to have a unique alias. If you adopt my
recommendation about server keystore usage, you will not need to think about these aliases
much, because there will always be only one certicate chain in the entire keystore. In the
rest of this chapter, I will assume this is the case, and I will always use the alias “server.”

Creating a Key and a Self-Signed Certifcate
To create a private key with a self-signed certicate, use the -genkeypair command:18

$ keytool -genkeypair \
    -keystore feistyduck.jks \
    -alias server \
    -keyalg RSA \
    -keysize 3072 \
    -validity 365 \
    -ext SAN="DNS:www.feistyduck.com,DNS:feistyduck.com"
Enter keystore password: ****************
Re-enter new password: ****************

In this example, I use a keytool feature that allows creation of certicates valid for multiple
hostnames (the -ext switch). Tis feature is not available in Java 6 and earlier versions.

Warning
Te keytool utility is able to accept the keystore password on the command line via
the -storepass switch. However, I prefer not to use it, because if you do the pass-
word is recorded in your command-line history and might be seen on the process
list.

Aer you provide the password, you will be asked for the information that will go into the
certicate. Te rst question is misleading; you shouldn’t respond with your name, but with
the desired hostname (e.g., www.feistyduck.com):

What is your first and last name?
  [Unknown]:  www.feistyduck.com

18 Before Java 7, this command was called -genkey.
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What is the name of your organizational unit?
  [Unknown]:  Engineering
What is the name of your organization?
  [Unknown]:  Feisty Duck Limited
What is the name of your City or Locality?
  [Unknown]:  London
What is the name of your State or Province?
  [Unknown]:  England
What is the two-letter country code for this unit?
  [Unknown]:  GB
Is CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ↩
ST=England, C=GB correct?
  [no]:  yes

Enter key password for <server>
        (RETURN if same as keystore password):

You can now check the resulting keystore to see what your key and certicate look like:

$ keytool -keystore feistyduck.jks -list -v
Enter keystore password: ****************
[...]
Alias name: server
Creation date: 01-Jul-2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ↩
ST=England, C=GB
Issuer: CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ↩
ST=England, C=GB
Serial number: 4f3326e0
Valid from: Tue Jul 01 17:10:31 BST 2014 until: Wed Jul 01 17:10:31 BST 2015
Certificate fingerprints:
         MD5:  55:63:0B:F5:F5:45:67:62:2D:85:FE:5C:D2:8E:1E:27
         SHA1: A4:AD:C6:1E:F6:1F:73:B0:BD:C6:2F:83:F5:B1:67:82:61:94:89:CE
         SHA256: FD:0A:BE:5B:9F:93:9D:BA:DF:FD:54:8B:37:0A:A4:7C:92:1F:03:25:8C:01:↩
ED:92:9B:BE:AA:19:68:27:B9:4D
         Signature algorithm name: SHA256withRSA
         Version: 3

Extensions:

#1: ObjectId: 2.5.29.17 Criticality=false
SubjectAlternativeName [
  DNSName: www.feistyduck.com
  DNSName: feistyduck.com
]
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#2: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 02 14 B4 49 F6 15 F0 77   FE 9A C8 86 2A 02 10 95  ...I...w....*...
0010: 9A 46 FD EB                                        .F..
]
]

Creating a Certifcate Signing Request
Aer you create a key and a self-signed certicate, creating a Certicate Signing Request
(CSR) requires little eort:

$ keytool -certreq \
    -keystore feistyduck.jks \
    -alias server \
    -file fd.csr
Enter keystore password: ****************

Now you can submit the le fd.csr to your CA to obtain a certicate.

Importing Certifcates
When you receive the server certicate back from your CA, you will need to import it into
the keystore along with all other certicates that are necessary to construct the entire chain.
First, import the root certicate:

$ keytool -import \
    -keystore feistyduck.jks \
    -trustcacerts \
    -alias root \
    -file root.crt

Ten, using the same command (but with a dierent alias each time), import the intermedi-
ate certicates:

$ keytool -import \
    -keystore feistyduck.jks \
    -trustcacerts \
    -alias intermediate1 \
    -file intermediate1.crt

Finally, import the server certicate:

$ keytool -import \
    -keystore feistyduck.jks \
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    -alias server \
    -file fd.crt

Note
Te great thing about keytool is that it checks that the imported certicate matches
the key and that the certicate chain is valid. According to my research, about 6%
of all servers have incorrect certicate chains. Tis behavior of keytool ensures that
such mistakes do not happen.

Converting Existing Certifcates
If you are migrating an existing server from, say, Apache, you will need to merge several key
and certicate les into a single keystore. Te keytool utility can’t do this, but it’s easy using
OpenSSL.
Te following command will take existing keys and certicates and convert them into a new
keystore in pkcs12 format:

$ openssl pkcs12 -export \
    -out feistyduck.p12 \
    -inkey fd.key \
    -in fd.crt \
    -certfile fd-intermediates.crt \
    -name server
Enter Export Password: ****************
Verifying - Enter Export Password: ****************

If you have more than one intermediate certicate, put them all into a single le (fd-
intermediates.crt in the previous example).
You can use this new keystore directly, but because it’s not in Java’s native format you might
need to specify the type in the conguration. For example, in Tomcat you do that with the
keystoreType parameter set to pkcs12.
Alternatively, if you like everything neat and tidy, you can use keytool to convert the key-
store into the native (JKS) format:

$ keytool -importkeystore \
    -srckeystore feistyduck.p12 \
    -srcstoretype pkcs12 \
    -destkeystore feistyduck.jks
Enter destination keystore password: ****************
Re-enter new password: ****************
Enter source keystore password: ****************
Entry for alias server successfully imported.
Import command completed:  1 entries successfully imported, 0 entries failed or ↩
cancelled
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Importing Client Root Certifcates
From time to time, you might encounter a situation in which your Java clients can’t connect
to a server even though the certicate was issued by a public CA. In such cases, you will
need to add the missing root certicate to your keystore.
Te rst step is to obtain the missing root certicate. Tis is generally easy, because these
days every browser has a certicate viewer. Simply navigate to the web site in question,
choose the certicate viewer option, and export the root certicate to a le. Tere is no need
to export the intermediate certicates.
Ten issue the following command:

$ keytool -import \
    -keystore /path/to/keystore.jks \
    -trustcacerts \
    -file /path/to/root.crt \
    -alias UNIQUE_ROOT_ALIAS

Note
If you’re creating a custom keystore for explicit use by an application, you can
choose an arbitrary password for it. Te password is of little importance if you’re
only keeping root certicates in the keystore. If you intend to replace Java’s default
keystore, however, use “changeit” for the password, to match the one used by de-
fault.

I recommend that you maintain your master keystore in a separate location and distribute it
as needed. To change the default Java keystore, simply copy yours to the correct location; in
most cases that’s $JAVA_HOME/jre/lib/security/cacerts.

Tomcat
If you are looking to run a web server on the Java platform, chances are you will rely on
Tomcat or one of the many products derived from it. Using TLS with Tomcat can be confus-
ing, because there are several ways to do it:

No TLS at Tomcat level
Historically, quite a few Tomcat deployments are placed behind Apache reverse prox-
ies. Apache is not only popular but also robust, and it has a wide range of modules
that support every feature imaginable; it makes sense to have it as a separate architec-
ture layer to handle all HTTP-related functionality, leaving Tomcat to focus on Java-
specic bits. Tis approach is so popular that Apache comes standard with a special
proxy module, mod_proxy_ajp, which interfaces directly with Tomcat by using a cus-
tom protocol called AJP.

440 Chapter 14: Conguring Java and Tomcat



In this mode, everything related to TLS is congured at the Apache level. Tis ap-
proach will appeal to those who already have experience using Apache but also to
those who wish to avoid Java’s and Tomcat’s TLS limitations.

Using JSSE
If you do want to terminate TLS at the Tomcat level, the default choice is to use JSSE.
Tis approach is straightforward, because every Java installation supports it out of the
box without any tuning. Easy as it is, this choice also means accepting all the limita-
tions of JSSE. However, many improvements in Java 8 mean that JSSE is now a viable
platform for strong secure servers.

Using APR and OpenSSL
In order to make Tomcat perform better, its developers have come up with a special
native library called Tomcat Native.19 Tis library wraps two other mature native li-
braries: APR (the core of the Apache web server) and OpenSSL. If Tomcat Native is
discovered by Tomcat at startup, it’s automatically picked up. Tere is some anecdotal
evidence that the performance with Tomcat Native will be better, but because this li-
brary also takes over socket handling and other I/O operations it’s dicult to say
which performance improvements are from better I/O and which come from
OpenSSL. At startup, Tomcat itself will tell you that using Tomcat Native improves
performance.
A major downside of Tomcat Native is that it complicates deployment; it’s another
component that needs to be installed and maintained. Tomcat Native binds to the
specic JDK, which means that you might need to recompile it whenever you change
Java versions.
For Windows, binaries are provided. Some platforms—for example, Ubuntu—in-
clude Tomcat Native as an optional package (on Ubuntu the name is libtcnative-1),
but that version might be too old for use with recent Tomcat versions. Furthermore,
newer Tomcat Native versions include important improvements.
When you do decide to use OpenSSL, Java’s cryptography features and performance
no longer matter; it only matters what versions of Tomcat Native and OpenSSL you’re
using and what features they support.

To make things more confusing, Tomcat with JSSE supports two connectors (server compo-
nents that handle incoming connections): the older BIO (blocking) and the newer NIO

19 Tomcat Native (Apache Software Foundation, retrieved 1 July 2014)
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(nonblocking).20 If you want to use OpenSSL, there is only one connector that supports a
mix of blocking and nonblocking operations.
Te following table, copied from Tomcat documentation, shows a comparison of the dier-
ent options.

Table 14.4. Comparison of performance features of various Tomcat connectors

 Java BIO Java NIO Java NIO2 Tomcat Native

Class name Http11Protocol Http11NioProtocol Http11Nio2Protocol Http11AprProtocol

Tomcat version 3.x onwards 6.x onwards 8.x onwards 5.5.x onwards

Supports polling No Yes Yes Yes

Polling size N/A maxConnections maxConnections maxConnections

Read HTTP request Blocking Nonblocking Nonblocking Blocking

Read HTTP body Blocking Sim-blockinga Blocking Blocking

Write HTTP response Blocking Sim-blocking Blocking Blocking

Wait for next request Blocking Nonblocking Nonblocking Nonblocking

SSL implementation Java (JSSE) Java (JSSE) Java (JSSE) OpenSSL

SSL handshake Blocking Nonblocking Nonblocking Blocking

Max connections maxConnections maxConnections maxConnections maxConnections
a Although the connector is nonblocking, traditionally the Servlet specication requires blocking I/O for request and response bodies. Thus, the
nonblocking connector is simulating blocking I/O. The Servlet 3.1 specication (which is supported in Tomcat 8) introduces nonblocking I/O.

Tis complicated choice is perhaps why many decide to put a reverse proxy in front of Tom-
cat, thus avoiding a dicult decision. Te main problem is that there are no clear guidelines
to help us determine which approach might be best and when. However, performance is on-
ly one aspect of the decision. When it comes to TLS, the actual features are perhaps more
important. Te following table summarizes the dierences between using JSSE with Java 7
and Java 8, Tomcat Native, and terminating TLS in an Apache reverse proxy before Tomcat.

20 The blocking/nonblocking monikers are used to explain how TCP connections are handled. A blocking connector will dedicate a separate

thread to each TCP client. A nonblocking connector might handle all TCP clients using only one or a small number of threads. Blocking connec-

tors tend to perform better with fast clients, whereas nonblocking connectors better handle a large number of slower clients. Tomcat 7.x uses the

BIO connector by default, whereas Tomcat 8.x uses NIO.
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Table 14.5. Comparison of TLS features of the available options for TLS termination

 Tomcat (Java
7)

Tomcat (Java 8) Tomcat Native Apache 2.4.x

Strong DH parameters; bits No; 768 Borderline; 1,024 Borderline; 1,024 Yes; 2048+ (2.4.7)

Congure stronger DH parameters - Yes - Yes (2.4.7)

Elliptic Curve support Yes Yes Yes (1.1.30) Yes

Congure EC parameters - - - Yes (2.4.7)

Cipher suite preference - Not yeta Yes Yes

Virtual secure hosting - Not yeta - Yes

Disable client-initiated renegotiation - Yes Yes Yes

TLS session caching control Yes Yes - Yes

TLS session cache clustering - - - Yes

Session ticket support - - Yes Yes

Disable session tickets - - - Yes (2.4.11)

Explicit session ticket conguration - - - Yes

OCSP stapling - - - Yes

Multikey supportb - - - Yes
a Although supported by JSSE in Java 8, this feature requires explicit support in the Tomcat code. It’s not available at the time of writing.
b The underlying JSSE engine supports multikey operation starting with Java 7, but this feature is not used by Tomcat.

Some of the features listed in the previous table are of an advanced nature and will aect
only demanding users. But some are quite basic and signicantly limit JSSE in Java 7 and
earlier releases:

Insecure DHE suites
In Java 8, server ephemeral Die-Hellman (DH) suites use 1,024 bits of security by
default, which is a good choice for interoperability but not a great one for security.
Te strength can be increased to 2,048 bits by using the jdk.tls.ephemeralDHKeySize
system property.
In Java 7 and earlier, server ephemeral DH is limited to 768 bits. For this reason, you
should not use any ephemeral DH suites with JSSE unless you upgrade to Java 8.

Cipher suite preference
In versions before Java 8, JSSE does not allow servers to control cipher suite order.
Tis means that the rst supported suite from the list oered by the client will be
used. In practice, this limits your ability to enforce secure conguration. For example,
it’s not possible to have RC4 in your conguration but use it only with clients that
don’t support anything better. Similarly, it’s not possible to prefer suites that provide
forward secrecy over the ones that don’t.
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Starting with Java 8, server preference is supported by JSSE, but each server applica-
tion will probably need to be updated to support this feature. Tomcat doesn’t support
it yet, but a patch is available to enable it.21

Disable client-initiated renegotiation
Client-initiated renegotiation is a protocol feature that is not used for anything use-
ful, but what it does do is create an opportunity for an attacker to execute a DoS at-
tack by forcing the server to continuously renegotiate, consuming signicant CPU re-
sources. Te weakness here is principally that multiple handshakes are taking place
on the same TCP connection. Because most DoS detection techniques operate by ob-
serving connection rates, this type of attack is dicult to mitigate.
Starting with Java 8, it is possible to disable client-initiated renegotiation by using the
undocumented jdk.tls.rejectClientInitiatedRenegotiation system property.

In the light of these problems, until Java web servers are updated to support server cipher
suite preference, I recommend using either Tomcat Native (version 1.1.30 or newer) or an
Apache httpd reverse proxy for TLS termination.

Note
Te TLS implementation (JSSE) included with Java 8 has been signicantly im-
proved, addressing all the major shortcomings from Java 7. If you’re running TLS
servers using Java, you should upgrade to version 8 as soon as the new runtime sta-
bilizes and the new features are supported by server soware.

Confguring TLS Handling
To congure TLS,22 you need to set a number of attributes on the Connector element of the
Tomcat conguration. Te protocol attribute determines which of the three supported con-
nectors will be used. Te default value (”HTTP/1.1”) will have Tomcat rst attempt to use
the APR connector. If the APR connector is not available, Tomcat 7 and earlier will fall back
to the BIO connector, whereas Tomcat 8 will use the NIO connector.
You shouldn’t rely on this auto-conguration behavior in production; instead, explicitly
congure the desired connector by entering its name into the protocol attribute, as de-
scribed in the following sections.
To use JSSE with a blocking connector (BIO):

<Connector
    protocol = "org.apache.coyote.http11.Http11Protocol"
    port = "443"

21 Bug #55988: Add parameter useCipherSuitesOrder to JSSE (BIO and NIO) connectors (ASF Bugzilla, retrieved 26 June 2014)
22 SSL Support (Apache Tomcat 8 Documentation, retrieved 2 July 2014)
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    ...
/>

To use JSSE with a nonblocking connector (NIO):

<Connector
    protocol = "org.apache.coyote.http11.Http11NioProtocol"
    port = "443"
    ...
/>

By default, Tomcat will look for Tomcat Native and enable it. Tis is implemented in the
AprLifecycleListener class, whose parameters are described in a later section. If you don’t
want to use Tomcat Native, you can simply disable the class. Or if you only want to disable
the OpenSSL bits, set the SSLEngine parameter to off:

<Listener
    className = "org.apache.catalina.core.AprLifecycleListener"
    SSLEngine = "off"

If, on the other hand, you leave Tomcat Native in and wish to use OpenSSL, specify the
Http11AprProtocol class in the protocol attribute:

<Connector
    protocol = "org.apache.coyote.http11.Http11AprProtocol"
    port = "443"
    ...
/>

External TLS Termination
Some TLS conguration is necessary even if you are not terminating TLS at the Tomcat lev-
el. In this situation, the deployment is secure, but Tomcat is not aware of it, and the applica-
tions running on it won’t be aware, either. Tis might lead to subtle problems and security
issues. For example, session cookies might not be marked as secure, exposing sessions to the
possibility of hijacking.
If you are deploying Tomcat behind Apache using mod_jk or mod_proxy_ajp, both of which
implement the AJP communication protocol, there is actually nothing for you to do. Tis
protocol will transparently communicate the TLS information from Apache to Tomcat.
In all other cases, you will have to invest more eort into conguration and information
exchange. For example, to tell Tomcat that TLS is handled externally, congure the scheme
and secure elds only:

<Connector
    scheme = "https"
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    secure = "true"
    ...
>

For the information exchange, you can use Tomcat’s SSL Valve,23 which can extract infor-
mation from request headers (placed there by the proxy terminating TLS) and use it to pop-
ulate the relevant Tomcat structures.
If none of these solutions work for your case, it’s easy to write a custom extension to do the
same work as the AJP protocol, transparently setting the secure ag, the correct remote
port, protocol scheme, and so on.24

JSSE Confguration
Te following conguration snippet enables TLS on port 443 and explicitly congures all
parameters except client certicate authentication (which is only very rarely used):

<Connector
    protocol = "org.apache.coyote.http11.Http11Protocol"
    port = "443"

    SSLEnabled = "true"
    scheme = "https"
    secure = "true"

    clientAuth = "false"

    sslProtocol = "TLS"
    sslEnabledProtocols = "TLSv1, TLSv1.1, TLSv1.2"
    ciphers = "... omitted for clarity; see below"

    keystoreFile = "${catalina.home}/conf/feistyduck.jks"
    keystorePass = "YOUR_PASSWORD"
    keyAlias = "server"

    sessionTimeout = "86400"
    sessionCacheSize = "10000"
/>

Most of the parameters are self-explanatory, but please note the following:
• You should never need to change the SSLEnabled, scheme, secure, and sslProtocol pa-

rameters.

23 SSL Valve (Tomcat 8 documentation, retrieved 26 June 2014)
24 Tomcat and SSL Accelerators (Paul Lindner’s blog, 9 April 2009)
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• Use the sslEnabledProtocols parameter to control protocol selection. (Ignore
sslProtocol, which interfaces with an internal detail of JSSE and does not let you do
anything useful.) My example does not enable SSLv2Hello and SSLv3, which I think is
reasonable given that these are needed only for very old clients, such as Internet Ex-
plorer 6 on Windows XP.

• I recommend that you always include the keystore along with the web server congu-
ration. Te ${catalina.home} variable is handy to avoid using absolute paths.

• Te keyAlias parameter selects the correct key and certicate chain from the desired
keystore.

• By default, Tomcat does not limit the number of cached TLS sessions, which could
open you up to a DoS attack. Te best approach is to set a xed amount of RAM for the
TLS session cache and congure this parameter accordingly.

Omitted from the conguration example are the cipher suites. I recommend the following
default conguration:

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

I’ve made the following assumptions and choices:
• You are using Java 7, which means that you have access to EC suites.
• You are not using a DSA key (which is eectively limited to 1,024 bits and thus weak).
• You don’t want to use insecure DHE suites that are limited to insecure 768-bit DH pa-

rameters.
• I’ve included suites that work with both ECDSA and RSA keys, which means that the

same conguration will work no matter what keys you have.
Tis conguration uses only suites that support forward secrecy and provide strong encryp-
tion. Most modern browsers and other clients will be able to connect, but some very old
clients might not. As an example, older Internet Explorer versions running on Windows XP
will fail.
If you really need to provide support for a very old range of clients—and only then—consid-
er adding the following suites to the end of the list:

TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
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SSL_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_SHA

Note
Te complete list of supported cipher suites is available as part of the SunJSSE
provider documentation.25

Forward Secrecy
My recommended suite conguration allows for only spotty forward secrecy support. Tere
are two reasons for that, and both stem from the limitations imposed by JSSE.

• JSSE does not allow explicit selection of cipher suite order. At the moment, most clients
prefer ECDHE suites (that provide forward secrecy), but some don’t. One such client is
Internet Explorer, which, until very recently, preferred vanilla RSA suites over ECDHE.

• ECDHE suites are the preferred way to enable forward secrecy, because they’re fast.
Unfortunately, older clients do not support them, and enabling DHE suites is necessary
for robust forward secrecy conguration. In JSSE, all DHE suites are limited to 768
bits, which is insecure; for this reason you can’t have any DHE suites in the congura-
tion, which means no forward secrecy with older clients.

Confguration with Java 8
If you are deploying with Java 8, some of the new features will be available to you automati-
cally:

• Stronger (1,024-bit) DH parameters will be used by default, and you can congure the
JVM to increase the strength to 2,048 bits to make it more secure.

• You can congure the JVM to reject client-initiated renegotiation.
• Deployments that rely on default cipher suite conguration will automatically start of-

fering the new GCM cipher suites.
For everything else, we will have to wait a little while longer until the remaining new JSSE
features are utilized by web servers. Te two most important features are:

• Respecting server-side cipher suite order.
• Support for virtual secure hosting.

Te recommended cipher suite conguration for Java 8 deployments is as follows:

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

25 JDK 8: The SunJSSE Provider (Oracle, retrieved 17 July 2014)
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TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

Te list of recommended suites is now longer, not only because of the new GCM suites but
also because I added back the DHE suites, which are secure when used with Java 8.
If you really need to provide support for a very old range of clients—and only then (see the
discussion in the previous section)—consider adding the following suites to the end of the
list:

TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA

APR and OpenSSL Confguration
To use the APR and OpenSSL combination to handle TLS, use the following conguration
snippet:

<Connector
    protocol = "org.apache.coyote.http11.Http11AprProtocol"
    port = "443"

    SSLEnabled = "true"
    scheme = "https"
    secure = "true"

    SSLVerifyClient = "none"

    SSLProtocol = "All"
    SSLCipherSuite = "... omitted for clarity; see below"
    SSLHonorCipherOrder = "true"

APR and OpenSSL Conguration 449



    SSLCertificateFile = "${catalina.home}/conf/fd.crt"
    SSLCertificateKeyFile = "${catalina.home}/conf/fd.key"
    SSLCertificateChainFile = "${catalina.home}/conf/fd-intermediates.crt"
    SSLPassword = "KEY_PASSWORD"    
        
    SSLDisableCompression = "true"
/>

Compared to the JSSE equivalent, there are many similarities but also some dierences:
• Protocol selection is broken. In the version I tested (7.0.40), Tomcat doesn’t know that

TLS 1.1 and TLS 1.2 exist, which means that the only practically useful value for the
SSLProtocol parameter is All, which enables all protocols from SSL 3 onwards. All my
attempts to disable SSL 3 failed. When Tomcat is updated, the conguration string
TLSv1+TLSv1.1+TLSv1.2 should do the trick.

• Unlike with JSSE, it is not possible to control SSL 2 handshake format compatibility;
this format is always supported.

• You can enforce cipher suite order using SSLHonorCipherOrder.

• Tere is no keystore; keys and certicates are stored as les.

• Tere is a conguration parameter to disable compression, which is necessary because,
unlike JSSE, OpenSSL does support compression. (But you want it disabled neverthe-
less, because otherwise you’d be exposing yourself to the CRIME attack.)

• Tere appears to be no way to control TLS session caching, which is potentially worry-
ing.

For the recommended cipher suite conguration, please refer to the section called “Recom-
mended Conguration” in Chapter 11, OpenSSL. However, do note that ECDSA keys are
not supported by Tomcat Native at this time.

Global OpenSSL Confguration
Some OpenSSL features are congured globally and controlled from the
AprLifecycleListener conguration. For example:

<Listener
    className = "org.apache.catalina.core.AprLifecycleListener"
    SSLEngine = "on"
    SSLRandomSeed = "builtin"
    FIPSMode = "off"
/>

Tere are two situations in which you will want to make some changes:
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• If your OpenSSL installation supports multiple engines (e.g., hardware acceleration),
you can put the desired engine name in the SSLEngine parameter.

• If your OpenSSL installation is FIPS compliant and you wish to enable FIPS mode, set
the FIPSMode parameter to on.

APR and OpenSSL Conguration 451



15 Confguring Microsoft Windows and IIS
Microso is one of the key players in the SSL/TLS and PKI ecosystem. Teir client operat-
ing systems are everywhere, on the desktop and on mobile devices. Teir server and cloud
platforms power a large number of critical systems. Teir development environments are a
popular choice for building web sites.
In the light of Microso’s very long history and the longevity of their platforms, it’s not sur-
prising that the biggest issues I encountered were complexity and lack of good documenta-
tion. Te complexity comes from the fact that the soware codebase is very old, with fea-
tures added over a long period of time. Documentation oen does not exist. When it does,
nding it is not always easy; you will oen run into older, now inaccurate articles online.
Tat said, their cryptographic libraries provide good support for the important features,
with only a few peculiarities here and there.

Schannel
Microso Secure Channel1 (or Schannel, as it’s better known) is a cryptographic component
that implements a set of protocols designed to enable secure communication. Schannel is
the ocial SSL/TLS library on all Windows platforms, which means that most Windows
programs rely on it, especially those developed by Microso.

Features Overview
Schannel has generally always oered good coverage of SSL and TLS protocol features. Mi-
croso was the rst to support TLS 1.2 when it introduced Windows 7 in 2009. For compar-
ison, OpenSSL added support for TLS 1.2 in 2012; most other major desktop browsers start-
ed supporting it only in 2013. But even though TLS 1.2 had been implemented, it was le
disabled by default. Ironically, Microso was subsequently late in enabling TLS 1.2 by de-
fault and did so only with Internet Explorer 11 in November 2013.

1 Secure Channel (Microsoft Windows Dev Center)
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Te biggest problem with Microso’s SSL/TLS implementation is the fact that Windows XP
does not support virtual secure hosting (via the Server Name Indication extension, or SNI).
We can’t blame Microso for not supporting SNI at the initial launch of Windows XP in
2001, because SNI did not exist until 2003. But, for one reason or another, Microso decid-
ed not to add SNI support in the following three service packs even though it was clear that
this operating system was going to be supported for a very long time. Because Windows XP
is still used by a substantial number of users, the lack of SNI makes it very complicated and
costly to deploy web site encryption at scale. Tat said, the support for Windows XP Service
Pack 3 ended in April 2014; there’s hope that users will now start to migrate to other operat-
ing systems.

Note
Tis section describes the capabilities of Schannel, Microso’s SSL/TLS library. Be-
cause Windows incorporates multiple layers of cryptographic functionality, it can
sometimes be dicult to pinpoint where exactly limitations are coming from.
Schannel inherits all limitations of the underlying lower-level libraries and then
adds some of its own. For example, even though Windows 8 is documented to sup-
port DSA keys of up to 3,072 bits,2 Internet Explorer still refuses to connect to
servers that use keys over 1,024 bits. Te limitation is probably in Schannel.

2 BCryptGenerateKeyPair function (Cryptography API: Next Generation documentation, retrieved 4 February 2014)
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Table 15.1. Evolution of SSL/TLS protocol features in Schannel

 Windows XP,
Server 2003 /
IIS 6

Windows
Vista, Server
2008 / IIS 7

Windows 7,
Server
2008 R2 /
IIS 7.5

Windows 8,
Server 2012 /
IIS 8

Windows 8.1,
Server
2012 R2 / IIS 8

Elliptic curve cryptography - Yes Yes Yes Yes

Client-side SNI - Yes Yes Yes Yes

Server-side SNI - - - Yes Yes

TLS 1.0 Optional Yes Yes Yes Yes

TLS 1.1, TLS 1.2a - - Yes (IE 11)b Yes (IE 11)b Yes

AES suites -c Yes Yes Yes Yes

AES GCM suites - - Yesd Yesd Yese

DH parameters > 1,024 bits - - Yes (IE 11) Yes (IE 11) Yesf

Ephemeral DH with RSA - - - - -

DSA keys > 1,024 bits - - - - -

Session tickets - - - Yes (client) Yes

Secure renegotiation MS10-049 MS10-049 MS10-049 Yes Yes

ALPN - - - - Yes (client)

BEAST mitigation MS12-006 MS12-006 MS12-006 Yes Yes

OCSP stapling - - Yes Yes Yes

Default client handshake for-
matg

v2 v3 v3 v3 v3

a This row describes the default settings of Internet Explorer. Other applications might have different defaults depending on whether they explic-
itly congure SSL and exactly which underlying library they’re using.
b Windows 7 added support for TLS 1.1 and 1.2, but kept them disabled by default until Internet Explorer 11.
c Windows Server 2003 can be updated with KB 948963 (released in 2008) to add support for some AES cipher suites.
d Only in combination with ECDSA keys, which are still a novelty.
e As of April 2014, four additional GCM suites are supported; they can be used with RSA keys.
f Starting with Windows 8, DH parameters up to 4,096 bits are supported.
g There are two client handshake formats: the old one used by SSL 2 and the new one introduced with SSL 3. Not all servers support the old
format, meaning the connections from very old clients will fail.

Protocol Vulnerabilities
Despite their very large user base (even small changes can have a large impact with such a
large pool of users and require extensive testing), Microso has a very good record of ad-
dressing protocol issues as they arise.

Insecure renegotiation
Like most other vendors, Microso initially addressed insecure renegotiation with a
workaround that disables renegotiation; the patch was released as KB 977377 on 9
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February 2010.3 Secure renegotiation (RFC 5746) was implemented later, in
MS10-049, which was released for all platforms on 10 August 2010.4

BEAST
Te BEAST vulnerability was xed across all platforms in MS12-006, which was re-
leased on 10 January 2012. Te x implements the 1/n-1 split when protocols TLS 1.0
and earlier are used.

CRIME
Microso never supported TLS compression in their SSL/TLS stack, which meant
that it was never vulnerable to the CRIME attack.

Interoperability Issues
Schannel does not suer from many practical interoperability issues. Tose aspects that you
will need to be aware of are mainly related to the deprecation of weak and obsolete crypto-
graphic primitives.

DSA
Schannel does not support DSA keys stronger than 1,024 bits and never did. Given
the size of the Microso’s user base, this makes DSA practically dead. Te strength of
DSA keys is roughly equivalent to the strength of RSA keys, which means that 1,024
bits is too weak according to current standards. In practice, this is not an issue, be-
cause there are virtually no servers with DSA keys on the public Internet (and there
never were).

DH parameters over 1,024 bits
Before version 11, Internet Explorer did not support DH parameters stronger than
1,024 bits. But this is a problem only in theory, because the only practical way to use
such parameters is with a DHE and RSA suite combination (DHE_RSA), which IE also
didn’t support until April 2014.

RSA keys under 1,024 bits
RSA keys and certicates weaker than 1,024 bits were initially deprecated with an op-
tional update on 14 August 2012, which then became mandatory on 9 October 2012.5
Tis update applies to certicates issued by both public and private CAs.

MD5
On 13 August 2013, Microso deprecated MD5 signatures in the Microso Root
Certicate Program with the release of KB 2862973.6 Te update applies to Windows

3 Vulnerability in TLS/SSL could allow spoong (Microsoft Security Advisory 977377, 9 February 2010)
4 Vulnerabilities in SChannel could allow remote code execution (Microsoft Security Bulletin MS10-049, 10 August 2010)
5 Update For Minimum Certicate Key Length (KB 2661254, 14 August 2012)
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Vista, Server 2008 and other older platforms but not to the newer Windows 8.1, RT
8.1, and Server 2012 R2, which rejected MD5 signatures from the start.
Because this update aects only the certicates issued under the root certicate pro-
gram, MD5 certicates issued by private CAs are not impacted. Deprecating all MD5
certicates can be done manually, aer installing KB 2862966.7

RC4
Microso was the rst vendor to deprecate RC4. Starting with Windows 8.1, this ci-
pher is not enabled by default. On 13 November 2013, Microso released KB
2868725 for Windows 8 and earlier platforms,8 making it possible for applications to
disable RC4 by requesting strong crypto and for users to completely disable RC4 by
making registry tweaks.
Internet Explorer 11 is hyped as the rst browser to not oer RC4 by default,9 but
although that’s true on Windows 8.1, on my Windows 7 desktop (aer the KB
2869725 update) RC4 is still present.
Removing support for RC4 leads to potential interoperability issues for those upgrad-
ing to IE 11 and Windows 8.1. According to Microso’s research, about 3.9% of the
SSL sites they sampled supported only RC4 in November 2013. SSL Pulse measure-
ments indicate 1.8% in July 2014. When connecting to such sites, IE 11 will fail on the
rst attempt. It will then voluntarily downgrade the connection twice, rst to TLS 1.0
(still without RC4 and failing again) and then to SSL 3, this time with RC4 added.
Tus, for a site that oers only RC4 cipher suites, one of the following two situations
can occur: (1) if the site supports SSL 3, IE 11 will use this protocol version aer
some delay while it determines how to successfully connect; (2) if the site doesn’t sup-
port SSL 3, IE 11 won’t be able to connect at all.
Microso should not be blamed for this problem. Being the rst to disable a major
cipher with such a large user base is a bold move. On the positive side, the introduc-
tion of a small penalty when connecting to RC4-only sites creates a small incentive
for site operators to improve their conguration.

SHA1
On November 12th, 2013, Microso announced their plans to deprecate SHA1 signa-
tures by the end of 2016.10 At the same time, they started to require that new roots
accepted to their Root Certicate Program must use SHA2 and RSA keys of at least

6 Update for Deprecation of MD5 Hashing Algorithm for Microsoft Root Certicate Program (KB 2862973, 13 August 2013)
7 An update is available that improves management of weak certicate cryptographic algorithms in Windows (KB 2862966, 13 August 2013)
8 Update for Disabling RC4 (KB 2868725, 13 November 2013)
9 IE11 Automatically Makes Over 40% of the Web More Secure While Making Sure Sites Continue to Work (IEBlog, 12 November 2013)
10 SHA1 Deprecation Policy (Windows PKI blog, 12 November 2013)
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4,096 bits. Microso was famously bitten when the Flame malware attacked MD5
used past its due date. Tis time, they are not taking any chances.

Apart from the potential issues listed here, the main interoperability worry you will have
related to Schannel is supporting very old clients—for example, Internet Explorer 6—run-
ning on old operating systems such as Windows XP before Service Pack 3.

Microsoft Root Certifcate Program
Te Microso Root Certicate Program11 maintains a collection of certicates trusted in
Windows operating systems. Windows Vista and newer platforms ship only with a small
number of trusted certicates that are required by the operating system. All other root cer-
ticates are securely retrieved from Microso the rst time they are encountered (e.g., while
browsing the Web). Because of this on-the-y update mechanism, Microso users are guar-
anteed to always have the latest trusted certicates.
Windows XP doesn’t support the same update mechanism; updating the trusted roots re-
quires a system update, usually via a manual download from the Microso Update Cata-
log.12

Managing System Trust Stores
If you are running a modern Windows version, you should very rarely need to manually
congure the trust stores; the auto-update processes will take care of everything for you.
Te list of trusted certicates is updated once a week, but the actual roots are downloaded
on demand, as they’re needed. Fraudulent and otherwise invalid certicates blacklisted by
Microso are downloaded daily.13

Note
Windows operates multiple certicate repositories. Tere is the main one associat-
ed with the computer, but there are also separate stores for each service and user
account. As a rule of thumb, it’s best to work with the computer certicate reposito-
ry.

To view and change the system trust stores, use Microso Management Console (MMC), as
explained later in this chapter in the section called “Creating a Custom IIS Management
Console”. Te main trust store is called Trusted Root Certication Authorities; it contains the
roots from the Microso Root Program. By default, this store contains only a small number

11 Introduction to The Microsoft Root Certicate Program (Microsoft TechNet Wiki, retrieved 3 July 2014)
12 How to get a Root Certicate update for Windows (Microsoft, retrieved 2 July 2014)
13 Announcing the automated updater of untrustworthy certicates and keys (Windows PKI blog, 11 June 2012)
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of certicates, but the number grows with usage. For example, aer several years of usage
my Windows desktop trusts 49 root certicates.
If you’re administering a Windows domain, you can manage the entire domain’s trust stores
via Group Policy Management.14

Importing a Trusted Certifcate
Adding a new trusted CA is easy. Once you obtain the correct certicate, you need to follow
the Certicate Import wizard. To start the process, simply double-click the certicate (the
extension should be .cer) and then press the Import Certicate button.

Warning
Te decision to trust a new CA should be made only aer carefully considering the
potential security impact. Once you trust a CA, you trust that it will issue only gen-
uine certicates and that their security practices are strong. Remember, any CA can
issue a certicate for any web site in the world.15

Blacklisting Trusted Certifcates
Because of the auto-update system, if you wish to revoke trust in a particular CA it is not
sucient to delete their certicates from the Trusted Root Certication Authorities store. If
you do, your system will simply download the missing certicates the next time they are
needed.
To ensure that a certicate is permanently blacklisted, place it into the Untrusted Certicates
store. Te next time you visit a web site that depends on the root certicate in question, In-
ternet Explorer (and other programs that depend on the Windows trust stores) will refuse
to connect.

Disabling the Auto-Update of Root Certifcates
If you don’t like the auto-update mechanism for root certicates, you can disable it by fol-
lowing these steps:16

1. Open the Local Group Policy Editor by running gpedit.msc.
2. In the le pane, navigate to Computer Conguration > Administrative Templates > Sys-

tem > Internet Communication Management > Internet Communication settings.

14 Manage Trusted Root Certicates (Windows Server 2012 documentation, retrieved 3 July 2014)
15 There is a feature called Name Constraints, that allows CAs to be restricted to issue certicates for only certain name hierar-

chies, but this feature is not widely used.
16 Certicate Support and Resulting Internet Communication in Windows Vista (Microsoft TechNet, retrieved 3 July 2014)
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3. In the right pane, nd and double-click on Turn o Automatic Root Certicates Up-
date.

4. To disable automatic updates, change the setting to Enabled.
From this moment on, you will need to manually maintain your root certicates.

Confguration
Interestingly for an operating system that is inherently GUI-oriented, Windows doesn’t have
tools for SSL/TLS protocol, suite, and cryptographic algorithm conguration. Te Internet
Information Server (IIS) comes with a basic user interface for key and certicate manipula-
tion, but other conguration changes are made by changing the registry directly.

Note
Te instructions in this section apply to the operating system and programs that
use system libraries. Programs that use their own SSL/TLS and PKI libraries won’t
be aected unless they make an eort to respect Schannel conguration. For exam-
ple, Firefox uses its own libraries and root certicates. Chrome also relies on its
own libraries, but it uses system root certicates.

Schannel Confguration
Schannel conguration can be tuned to decide what protocols and cipher suites should be
used. For protocols, there are separate controls for client and server applications. For every-
thing else, there is one set of registry keys that apply to all application types.
All Schannel conguration options are nested under the following root key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\Schannel

Protocol Confguration
Protocols are congured using a number of registry keys nested under the Protocols sub-
key. Each protocol gets its own key, and there are two further subkeys to allow for separate
conguration for client and server applications. Starting with Windows Server 2008 R2 and
Windows 7, all major protocols are supported, starting with SSL 2.0 and ending with TLS
1.2. Tis is what the entire structure looks like:17

Protocols\SSL 2.0
Protocols\SSL 2.0\Client

17 For brevity, I omitted several subkeys from the list. They are: Multi-Protocol Unified Hello, PCT 1.0, and DTLS 1.0. They refer to

obsolete or rarely used protocols.
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Protocols\SSL 2.0\Server
Protocols\SSL 3.0
Protocols\SSL 3.0\Client
Protocols\SSL 3.0\Server
Protocols\TLS 1.0
Protocols\TLS 1.0\Client
Protocols\TLS 1.0\Server
Protocols\TLS 1.1
Protocols\TLS 1.1\Client
Protocols\TLS 1.1\Server
Protocols\TLS 1.2
Protocols\TLS 1.2\Client
Protocols\TLS 1.2\Server

Each leaf key can contain one or both of the following DWORD entries:
DisabledByDefault

Tis setting is for applications that do not explicitly congure enabled protocols but
use system defaults. If the entry is not present or if the value is 0, the protocol is en-
abled by default. If the value is 1, the protocol is disabled by default. Normally, Win-
dows will disable SSL 2 and leave all other protocols enabled.

Enabled
Tis entry allows you to disable certain protocol versions for all applications, even
those that explicitly enable them. To disable a protocol, set the Enabled entry to 0. If
the entry is not congured or if its value is anything except zero (the documentation
recommends 0xffffffff), the protocol will be enabled.

Aer you make a change to the protocol conguration, you will need to restart any active
programs for the changes to take eect.

Cipher Suite Algorithm Selection
Two conguration methods are available for cipher suite conguration. Cryptographic al-
gorithms that make up suites can be congured individually. Ten, if a particular algorithm
is disabled, all the suites that use it will also be disabled. Tis mechanism ensures that weak
algorithms are not used anywhere, even if conguration elsewhere suggests to do so.
Te following subkeys are available, one per algorithm:18

Ciphers\AES 128
Ciphers\AES 256
Ciphers\DES 56
Ciphers\NULL
Ciphers\RC4 40/128

18 Older Windows versions also supported RC2 40/128, RC2 56/128, and RC2 128/128.
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Ciphers\RC4 56/128
Ciphers\RC4 64/128
Ciphers\RC4 128/128
Ciphers\Triple DES 168
Hashes\MD5
Hashes\SHA
Hashes\SHA256
Hashes\SHA384
KeyExchangeAlgorithms\Diffie-Hellman
KeyExchangeAlgorithms\ECDH
KeyExchangeAlgorithms\PKCS

Note
Te PKCS key refers to the use of RSA for key exchange only. Te use of RSA for
authentication is not aected (e.g., TLS_RSA_* suites will be disabled, but
TLS_ECDHE_RSA_* will not).

To disable an algorithm, create a DWORD entry called Enabled under the correct key and set its
value to 0. To reenable the algorithm, delete the entry or set its value to 0xffffffff. Changes
sometimes take eect immediately, but you should always restart your programs to reliably
change the settings.

Note
Te restrictions on hashes apply only to cipher suites, not to certicate signatures.
To disable, for example, MD5 for certicate signatures, follow the instructions later
in this chapter.

Cipher Suite Confguration
Disabling individual algorithms is useful, but in most cases what you really want to do is
specify exactly which suites are enabled and in which order. Schannel on Vista and newer
systems allows suites to be congured in this way, with the changes aecting client and serv-
er applications equally.
Cipher suite conguration is the only Schannel setting that can be congured via a graphi-
cal user interface:

1. First, start the Local Group Policy Editor by running gpedit.msc.19

2. In the le pane, navigate to Computer Conguration > Administrative Templates > Net-
work > SSL Conguration Settings.

19 Not all Windows operating systems ship with this tool. For example, Windows 7 Professional has it, but Windows 7 Home Premium doesn’t. If

you don’t have it, you’ll have to resort to editing the registry directly, which I discuss later in this section.
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3. Ten, in the right pane double-click on SSL Cipher Suite Order and edit away.

Warning
When editing cipher suite conguration via the policy editor, pay close attention to
the size of the resulting suite string. Te editor will accept only up to 1,023 bytes
and will silently cut o any extra data you put in.

Te list of cipher suites supported by Schannel can be found on Microso’s web site.20 I rec-
ommend the following cipher suite conguration, designed for security and speed:

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA_P256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA_P256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA_P256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA_P256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

I made the following assumptions:
• Use only suites that provide forward secrecy.

• Provide support for RSA and ECDSA server keys in the conguration. At the moment,
RSA keys are dominant by far, which means that ECDSA suites will remain unused in
most cases. But if you do decide to switch, you won’t have to change your suite congu-
ration.

• Te last two suites were added only to Windows 8.1 and Server 2012 R2 in April
2014.21 It’s not clear if these suites will be used in practice because the clients that
might support them already support the faster ECDHE suites.

Tis conguration uses only suites that support forward secrecy and provide strong encryp-
tion. Most modern browsers and other clients will be able to connect, but some very old
clients might not. As an example, older Internet Explorer versions running on Windows XP
will fail.
If you really need to provide support for a very old range of clients—and only then—consid-
er adding the following suites to the end of the list:

20 Cipher Suites in Schannel (Microsoft, retrieved 17 July 2014)
21 KB 2929781: Update adds new TLS cipher suites and changes cipher suite priorities in Windows 8.1 and Windows Server 2012 R2 (Microsoft,

8 April 2014)
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TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_RC4_128_SHA

Note
If you look carefully at the suite names, you will notice that Microso uses extend-
ed cipher suite name syntax, constructed by combining the ocial name (e.g.,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) with a P256 or P384 sux. Tese suf-
fixes refer to the elliptic curves that can be used for the ECDHE key exchange, the
NIST curves secp256r1 and secp384r1, respectively. Although the underlying suite
is the same no matter which sux is used, this naming approach enables you to
have control over exactly which elliptic curve is preferred.

If you want to congure suites by manipulating the registry directly, the key that controls
cipher suite conguration is:22

HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Cryptography\↩
Configuration\SSL\00010002

If the key is empty, create a new entry: Functions of type MULTI_SZ (a list of strings). Te
value must contain the list of cipher suites enabled by default in the order of preference.
Changing this entry is easy using the registry editor. When editing from a command line or
via a registry le, put all suites on a single line separated with commas. Do not use any
spaces. When you’re done, a reboot is required for the changes to take eect.

Key and Signature Restrictions
Microso relatively recently added the ability to restrict the usage of weak cryptographic al-
gorithms during certicate chain validation. Tis capability is available by default on Win-
dows 8.1 and Windows Server 2012 R2 as well as on other Microso platforms that have KB
2862966 applied.7

Te policy framework is quite extensive and supports a wide range of useful functionality:
• Disable weak cryptographic algorithms

• For key algorithms, enforce minimum key length

• Apply policy depending on certicate type (e.g., dierent policies for server authenti-
cation and code signing)

22 It seems that there are multiple keys that infuence cipher suite conguration. Some sources recommend using HKEY_LOCAL_MACHINE

\SYSTEM\CurrentControlSet\Control\Cryptography\Configuration\Local\SSL\00010002 for this purpose, but this key appears to

have lesser priority and will not be used if other keys exist. It is generally best to avoid changing the registry directly, if you can.
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• Specify policy that applies to all certicates or only to public CAs
• Apply policy only to certicates issued aer a certain date (e.g., keep legacy certicates

in use, but do not allow any new certicates with weak algorithms)
• Log policy violations
• Log violations but do not enforce the policy otherwise
• Create per-certicate exceptions

Te recommended approach is to start with a logging-only policy that enables you to moni-
tor the violations but avoids potential disruption due to the mismatch between what is ide-
ally desired and what is used in real life. Aer policy tuning and further monitoring, it will
be possible to safely enable enforcement. Once a policy is tested on a single workstation, it
can be pushed to other users via Group Policy Objects.
At the time of writing, it is possible to restrict the usage of the MD5 and SHA1 signatures
and DSA, ECDSA, and RSA keys. Restrictions are created by manipulating the registry keys
under the following root key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType 0\↩
CertDllCreateCertificateChainEngine\Config

Because the policies can be elaborate, a special approach to key name construction is used
to express the logic in a way that can be stored in the registry. Each key name must be in the
following format:

Weak<CryptoAlg><ConfigType><ValueType>

To construct a key name, replace each option name with one of the possible values, as docu-
mented in the following table.
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Table 15.2. Option values used for registry key name construction

Option Value Description

CryptoAlg Md5 Species the name of the algorithm to which the policy applies.

Sha1

Dsa

Ecdsa

Rsa

ConfigType ThirdParty Applies only to the roots in the Microsoft root program (public CAs).

All Applies to all certicate roots (public and private CAs). Because ThirdParty is a
subset of All, the following also applies:

• Most fags set on All will also be set on ThirdParty; logging fags will
not be affected.

• The earliest AfterTime will apply.

• The largest MinBitLength will apply.

ValueType Flags List of fags that are used to select which certicate types are restricted and how;
see ahead for more information (REG_DWORD).

MinBitLength Species the minimum public key length in bits; applies only to key algorithms
(REG_DWORD).

AfterTime Apply policy only to signatures generated after a certain time; does not apply to
certicate chains used for timestamping (REG_BINARY with an 8-byte
FILETIME).

Sha256Allow List of explicitly allowed weak certicates, specied using their hex-encoded
SHA256 thumbprints (REG_SZ or REG_MULTI_SZ).

Te purpose of key ags is twofold. First, they are used to enable a rule and control if it is
enforced (see following table).

Table 15.3. Flags that control rule activation and enforcement

Flag Description

CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG
(0x80000000)

This fag is required in order for a policy to be activated. If
the fag is disabled, then all other settings (for the same
combination of CryptoAlg and ConfigType) will be ig-
nored.

CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG (0x00000004) Enables logging of certicate chains that violate policy.

CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG
(0x00000008)

Policy violations are recorded, but weak certicate chains
are not rejected. This setting is very useful to test policies
before hard activation.

Additionally, multiple ags are used to control which certicate types the rule applies to, as
documented in the following table.
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Table 15.4. Flags that select certicate types on which rules operate

Flag Description

CERT_CHAIN_DISABLE_ALL_EKU_WEAK_FLAG
(0x00010000)

Applies policy to all certicates.

CERT_CHAIN_DISABLE_SERVER_AUTH_WEAK_FLAG
(0x00100000)

Applies policy to certicates used for server authentication.

CERT_CHAIN_DISABLE_CODE_SIGNING_WEAK_FLAG
(0x00400000)

Applies policy to certicates used for code signing.

CERT_CHAIN_DISABLE_MOTW_CODE_SIGNING_WEAK_FLAG
(0x00800000)

Applies policy to certicates used for code signing, provided
they originated from the Web.

CERT_CHAIN_DISABLE_TIMESTAMP_WEAK_FLAG
(0x04000000)

Applies policy to certicates used for timestamping.

CERT_CHAIN_DISABLE_MOTW_TIMESTAMP_WEAK_FLAG
(0x08000000)

Applies policy to certicates used for timestamping, provid-
ed they originated from the Web.

Note
To specify a weak signature, enable CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG on the
appropriate registry key (e.g., WeakMd5AllFlags for MD5). To specify a weak key al-
gorithm, enable the appropriate ag and congure the minimum key length (e.g.,
set WeakRsaAllMinBitLength to 1,024 if you want to blacklist all RSA keys weaker
than 1,024 bits).

Using CertUtil to Manipulate Cryptographic Policy
Manipulating the registry directly can sometimes be tricky, and it denitely is in this case
because policies can get quite complex. Another way to work with policies is by using the
CertUtil tool, which allows you to display, create and change, and delete policy registry
keys. Tis tool also allows individual manipulation of ags, times, and string lists:

$ CertUtil -setreg -?
Usage:
  CertUtil [Options] -setreg [{ca|restore|policy|exit|template|enroll|chain|PolicyS↩
ervers}\[ProgId\]]RegistryValueName Value
  Set registry value
    ca -- Use CA's registry key
    restore -- Use CA's restore registry key
    policy -- Use policy module's registry key
    exit -- Use first exit module's registry key
    template -- Use template registry key (use -user for user templates)
    enroll -- Use enrollment registry key (use -user for user context)
    chain -- Use chain configuration registry key
    PolicyServers -- Use Policy Servers registry key
    ProgId -- Use policy or exit module's ProgId (registry subkey name)
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    RegistryValueName -- registry value name (use "Name*" to prefix match)
    Value -- new numeric, string or date registry value or filename.
        If a numeric value starts with "+" or "-", the bits specified
        in the new value are set or cleared in the existing registry value.

        If a string value starts with "+" or "-", and the existing value
        is a REG_MULTI_SZ value, the string is added to or removed from
        the existing registry value.
        To force creation of a REG_MULTI_SZ value, add a "\n" to the end
        of the string value.

        If the value starts with "@", the rest of the value is the name
        of the file containing the hexadecimal text representation
        of a binary value.
        If it does not refer to a valid file, it is instead parsed as
        [Date][+|-][dd:hh] -- an optional date plus or minus optional
        days and hours.
        If both are specified, use a plus sign (+) or minus sign (-) separator.
        Use "now+dd:hh" for a date relative to the current time.

    Use "chain\ChainCacheResyncFiletime @now" to effectively flush cached CRLs.

Options:
  -f                -- Force overwrite
  -user             -- Use HKEY_CURRENT_USER keys or certificate store
  -GroupPolicy      -- Use Group Policy certificate store
  -gmt              -- Display times as GMT
  -seconds          -- Display times with seconds and milliseconds
  -v                -- Verbose operation
  -privatekey       -- Display password and private key data
  -config Machine\CAName    -- CA and Machine name string

CertUtil -?              -- Display a verb list (command list)
CertUtil -setreg -?      -- Display help text for the "setreg" verb
CertUtil -v -?           -- Display all help text for all verbs

Warning
Changes to cryptographic policy take eect immediately if you’re changing the reg-
istry directly or using the CertUtil tool. As always, it is recommended that you
make a backup of your registry before you begin.

Recording Weak Certifcate Chains
Weak certicate chains can be recorded for later analysis. To activate this feature, rst con-
gure the WeakSignatureLogDir key with the desired storage location:
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$ CertUtil -setreg chain\WeakSignatureLogDir C:\Log\WeakCertificateChains

Ten, when creating individual policies ensure that CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG
is set. Alternatively, to record certicate chains without enforcing policy set
CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG instead.

Complete Policy Example
To illustrate, I will put together a simple policy that enforces restrictions, with logging, on
any certicate chain containing:

• MD5 signatures

• RSA keys below 1,024 bits

• DSA keys below 1,024 bits

• ECDSA keys below 160 bits
Te initial policy will assume logging without enforcement:

$ CertUtil -setreg chain\WeakSignatureLogDir C:\Log\WeakCertificateChains
$ CertUtil -setreg chain\WeakMd5AllFlags 0x80010008
$ CertUtil -setreg chain\WeakRsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakRsaAllMinBitLength 1024
$ CertUtil -setreg chain\WeakDsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakDsaAllMinBitLength 1024
$ CertUtil -setreg chain\WeakEcdsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakEcdsaAllMinBitLength 160

Te 0x80010008 value is made of the following three ags:

CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG (0x80000000)
CERT_CHAIN_DISABLE_ALL_EKU_WEAK_FLAG (0x000010000)
CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG (0x000000008)

Te equivalent registry le is:

Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType 0\↩
CertDllCreateCertificateChainEngine\Config]
"WeakSignatureLogDir"="C:\\Log\\WeakCertificateChains"
"WeakMd5AllFlags"=dword:80010008
"WeakRsaAllFlags"=dword:80010008
"WeakRsaAllMinBitLength"=dword:00000400
"WeakDsaAllFlags"=dword:80010008
"WeakDsaAllMinBitLength"=dword:00000400
"WeakEcdsaAllFlags"=dword:80010008
"WeakEcdsaAllMinBitLength"=dword:000000a0
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To change from logging only to enforcement, you can re-set the conguration later on,
changing 0x80010008 to 0x80010004 (replacing CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG
with CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG). Alternatively, you can change individual ags
as you see t:

$ CertUtil -setreq chain\WeakMd5Flags -0x00000008
$ CertUtil -setreq chain\WeakMd5Flags +0x00000004

Confguring Renegotiation
Tere are two or three aspects of renegotiation that you might want to congure on your
Windows systems. Te most important one is adding support for secure renegotiation,
which is something you will want to do for all your servers and workstations alike. On all
platforms before Windows 8, patching with MS10-049 is required.
However, adding support for secure renegotiation doesn’t fully resolve the root issue. For
compatibility reasons, most servers are congured to accept clients that do not support se-
cure renegotiation; MS10-049 calls it Compatible Renegotiation. In this mode, when either a
client or the server requests renegotiation Schannel will not refuse it, even if it can’t be per-
formed securely.
If you don’t need server-initiated renegotiation, the issue is easy to x. Before the secure
renegotiation feature, Microso released a workaround in KB 977377 that added the ability
to disable renegotiation. When you fully disable renegotiation in a server, even clients that
do not support secure renegotiation can’t be exploited. To do this, set the following key to
any nonzero value:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\DisableRenegoOnServer

Note
Early versions of IIS had allowed client-initiated renegotiation, but all versions
from IIS 6 onwards don’t. Strictly speaking, this means that if your server never ini-
tiates renegotiation (e.g., if you are not requiring client certicates), then it won’t be
possible to exploit insecure renegotiation. Still, I recommend that you take the ex-
tra step and explicitly disable renegotiation; other programs might be vulnerable.
For example, Microso’s Forefront Treat Management Gateway (TMG) is known
to allow client-initiated renegotiation.

If, on the other hand, you do need server-initiated renegotiation, your only choice is to
switch to Strict Renegotiation. In this mode, your servers will accept secure connections only
from clients that implement secure renegotiation. Tis too adds security, but at the expense
of rejecting unpatched browsers.
To enable the strict mode, set the value of the following key to zero:
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HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\AllowInsecureRenegoClients

In my tests, changes take eect immediately without even requiring a program restart.
Te nal decision to make is whether to allow your clients (e.g., browsers) to connect to
servers that do not support secure renegotiation. Tis is the default, but it can be dangerous
because such servers can be attacked, and yet clients have no way of detecting the attacks.
Te tradeo is the same as for the servers: aer enabling strict mode you won’t be able to
connect to a sizable portion of the Web. According to the SSL Pulse results from July 2014,
about 11.6% of the monitored servers do not support secure renegotiation.
If you decide to change your clients to the strict mode, change the value of the following key
to zero:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\AllowInsecureRenegoServers

Note
Te workaround from KB 977377 also makes it possible to completely disable rene-
gotiation in clients, but doing so doesn’t improve their security. Insecure renegotia-
tion is exploited by tricking servers to accept renegotiation, not clients.

Confguring Session Caching
SSL and TLS use session caching to avoid repeating slow cryptographic operations on every
connection. Schannel maintains a server-wide memory store of session information. Dier-
ent default settings are used on dierent platforms, which is why explicitly conguring the
values on all servers is the best approach.23

All session caching parameters reside in the main Schannel registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\Schannel    

• To congure the server session retention period, set the ServerCacheTime entry to the
desired duration in milliseconds.

• You are unlikely to ever need to change the retention period for client applications, but
if you do, then use the ClientCacheTime entry. Te value is also in milliseconds.

• To change the maximum number of stored sessions, create or change the
MaximumCacheSize value. If you use a zero, session caching will be disabled.

As a rule of thumb, you should allocate as much RAM as you can for the session cache. Un-
der ideal conditions, you want each session to stay in the cache until it expires (and not be

23 How to congure Secure Sockets Layer server and Client cache elements (Microsoft Support web site, 7 July 2008)
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evicted due to RAM shortage). Each session consumes 2 to 4 KB of RAM. Tus, to arrive at
the maximum number of stored sessions you can support, divide the amount of RAM re-
served for this purpose by 4 KB.
However, the problem with this approach is that Schannel’s session caching is implemented
in a way that allows it to grow over the specied memory limit. Tis is because new sessions
are created as needed, but old sessions are deleted only periodically (at intervals that match
ServerCacheTime), even when the cache is at maximum capacity. With normal trac, even
with spikes, such behavior is unlikely to be a problem; however, it does create a new DoS
attack vector. For example, an attacker could start creating a very high number of SSL ses-
sions per second. Tey will all remain in memory (each consuming about 4 KB) until the
cache is pruned.
Normally, I would recommend that you set the session retention period to 24 hours. In light
of Schannel’s session cache behavior, it’s prudent to reduce this value to something much
lower: for example, one hour. Consider allocating more memory to the cache to serve as a
buer.

Note
Starting with Windows 8.1, Schannel supports server session tickets, which are a
stateless session resumption mechanism. However, at the time of writing, this fea-
ture is not yet documented. Some hints are available in the PowerShell documenta-
tion.24

Monitoring Session Caching
Schannel exposes several performance counters that you can use to monitor the session
cache as well as the session resumption success rate. On older platforms, the resumption
rate will be inuenced only by the server-side session cache. Presumably, session tickets will
contribute to the success rate on systems that support this feature.
Te performance counters (see the following table) are in the Security System-Wide Statistics
category; you can view them by using the Performance Monitor tool (run perfmon on the
command line).

24 Transport Layer Security Cmdlets in Windows PowerShell (Microsoft TechNet, 17 October 2013)
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Table 15.5. Schannel performance counters

Performance counter Description

Active Schannel Session Cache
Entries

This counter tracks the number of Secure Sockets Layer (SSL) entries that are cur-
rently stored in the secure channel (Schannel) session cache and that are currently
in use. The Schannel session cache stores information about successfully estab-
lished sessions, such as SSL session IDs. Clients can use this information to recon-
nect to a server without performing a full SSL handshake.

Schannel Session Cache Entries This counter tracks the number of SSL entries that are currently stored in the
Schannel session cache. The Schannel session cache stores information about suc-
cessfully established sessions, such as SSL session IDs. Clients can use this infor-
mation to reconnect to a server without performing a full SSL handshake.

SSL Client-Side Full Handshakes This counter tracks the number of SSL full client-side handshakes that are being
processed per second. During a handshake, signals are exchanged to acknowledge
that communication can occur between computers or other devices.

SSL Client-Side Reconnect
Handshakes

This counter tracks the number of SSL client-side reconnect handshakes that are
being processed per second. Reconnect handshakes allow session keys from previ-
ous SSL sessions to be used to resume a client/server connection, and they require
less memory to process than full handshakes.

SSL Server-Side Full Handshakes This counter tracks the number of SSL full server-side handshakes that are being
processed per second. During a handshake, signals are exchanged to acknowledge
that communication can occur between computers or other devices.

SSL Server-Side Reconnect
Handshakes

This counter tracks the number of SSL server-side reconnect handshakes that are
being processed per second. Reconnect handshakes allow session keys from previ-
ous SSL sessions to be used to resume a client/server connection, and they require
less memory to process than full handshakes.

FIPS 140-2
Te Federal Information Processing Standards (FIPS) is a group of standards developed by
the United States National Institute of Standards and Technology (NIST) for use in nonmili-
tary government systems. Tere’s a variety of standards, and not all are focused on security.
Among the security ones, FIPS 140-2 is of special interest to us because it denes the guide-
lines for the use of cryptography. For simplicity, I will refer to FIPS 140-2 simply as FIPS.
Any system designed for US government use must comply with FIPS. In general, ensuring
compliance is quite complicated. First, you must ensure that the systems are running only
validated cryptographic components. Ten, for every deployed application you must also
ensure that its use of cryptography complies with the standard.
Microso makes this process easier because it maintains compliance for the core libraries
and components. Most diculties lie in ensuring compliance of third-party applications
and soware developed in house.
On all Windows platforms, FIPS is eectively implemented in ve layers:
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Low-level libraries
Microso actively maintains FIPS 140 certications for their two core cryptographic
libraries: Cryptographic API (CAPI) and Cryptographic API: Next Generation (CNG).
Tese libraries are not necessarily FIPS aware; they provide support for approved and
unapproved algorithms alike. It is the responsibility of upper layers to comply with
standards when needed.

FIPS registry indicator
Tere is a single registry key that is used to indicate that a particular system is re-
quired to comply with FIPS. All deployed applications must ultimately adjust their
behavior to comply with this setting.

Higher-level libraries
Some higher-level cryptographic libraries are FIPS aware. Tey read the FIPS registry
key and adjust their behavior accordingly. In particular, Schannel and Mi-
croso .NET Framework will comply with the FIPS setting.

Operating system components
Key operating system components are declared to rely on and respect FIPS. Tis
makes FIPS deployments much easier. For example, the Remote Desktop Protocol
(RDP), lesystem encryption (EFS, BitLocker), and IPSec are on the compliant list.

Applications
Applications are the actual consumers of cryptographic algorithms and have the ulti-
mate responsibility to comply with FIPS. Applications that work with low-level li-
braries (CAPI and CNG) have the tedious job of ensuring that those components are
used in a compliant fashion. On the other hand, applications that rely exclusively on
higher-level libraries are compliant by default.

Confguring FIPS
Te easiest way to enable FIPS is by making changes using the Local Security Policy man-
agement console:

1. From the command prompt or the Run menu, invoke secpol.msc.
2. In the le pane, navigate to Local Policies > Security Options.
3. In the right pane, nd and double-click the System cryptography: Use FIPS compliant

algorithms for encryption, hashing, and signing entry.
4. A property window will appear; choose Enabled or Disabled, and press Apply (see the

following gure).

Note
You should reboot aer making any changes that might aect the FIPS status.
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Figure 15.1. Conguring FIPS using the Local Security Policy management console

If you prefer to work with the registry directly, you need to set the value of the FIPS registry
key to 1 for enabled or 0 for disabled. Te location of the key diers depending on the oper-
ating system. On Windows Vista and later platforms, the key is at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled

On Windows XP and Windows Server 2003, the key is at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy

Third-Party Utilities
You might know all the Schannel registry keys, but that does not mean that you want to
work directly with the registry every time. Nartac Soware’s IIS Crypto (shown in the fol-
lowing gure) is an IIS conguration utility that allows you to congure enabled cipher
suites and their order. It comes with predened templates and also has a handy link to the
SSL Labs web site that allows you to test your new conguration.
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Figure 15.2. Nartac Software’s IIS Crypto conguration tool

Securing ASP.NET Web Applications 
In this section, I discuss several topics related to the secure deployment of ASP.NET web
applications. Tese topics cover several ways in which applications can subvert encryption,
for example, by allowing plaintext access or using insecure cookies.

Enforcing SSL Usage
To prevent misconguration, applications that expect to be run under TLS should actively
check for its presence on every request. Te check can be made in the code, like so:

if (Request.Url.Scheme.Equals("https") == false) {
    // Error, access without SSL.
}
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However, it is generally not advisable for each execution unit (script) to check for SSL indi-
vidually. A better approach is to write the code once and invoke it whenever necessary.
ASP.NET supports authorization lters, which is a way of executing a common chunk of
code on every request. Tis lter is the ideal location for your TLS checks.

Securing Cookies
Every cookie you use in your application should be separately secured. All you need to do is
set the Secure property to true. If the cookie is not intended to be accessed from JavaScript,
also set the HttpOnly property to true:

// Create a new cookie and initialize it.
HttpCookie cookie = new HttpCookie();
cookie.Name = "CookieName";
cookie.Value = "CookieValue";
cookie.Expires = DateTime.Now.AddMinutes(10d);

// Secure the cookie.
cookie.HttpOnly = true;
cookie.Secure = true;

// Add the cookie to the response.
Response.Cookies.Add(cookie);

Securing Session Cookies and Forms Authentication
In the ASP.NET conguration le, the <httpCookies> element25 controls how the session
cookies are secured. For example, to congure the session cookies to use the httpOnly ag
(prevents access to the session cookie value from JavaScript) and the secure ag (ensures
the cookies are sent only over SSL), do the following:

<configuration>
    <!-- other configuration options -->

    <system.web>
        <httpCookies
            domain = "www.example.com"
            httpOnlyCookies = "true"
            requireSSL = "true"
            lockItem = "true"
        />
    </system.web>
</configuration>

25 httpCookies Element (.NET Framework 4 documentation, retrieved 3 July 2014)

Securing Cookies 477



Te purpose of the lockItem attribute is to prevent other parts of the conguration from
overriding the values congured here. Despite that, there is still a catch. If your congura-
tion also contains the <forms> element (in other words, you are using forms authentication),
you will need to ensure that the requireSSL attribute on <forms> is also set to true:

<forms
    requireSSL = "true"
    cookieless = "UseCookies"
    <!-- Your other attributes here. -->
/>

You will notice that I also congured the cookieless attribute to UseCookies. Forms authen-
tication supports two modes of session token transport: the main approach is to use cook-
ies, but there is also the URI-based method, which embeds session tokens in the page links.
Te URI-based method is interesting because it allows your application to work even for
those users that do not support cookies. However, it comes with a signicant security prob-
lem: because browsers embed URIs in the Referer request header as they follow links to ex-
ternal sites, the session tokens may be exposed in other sites’ logs. If an attacker can trick
one of your users into following a link to a web site under the attacker’s control, he will be
able to hijack that user’s session.

Deploying HTTP Strict Transport Security
HTTP Strict Transport Security (HSTS) is a recent standard that allows web applications to
request that browsers use only encrypted access for them. Tis fact alone makes HSTS work
as a defense-in-depth measure, even in the face of application design errors (e.g., insecure
session cookies). In addition, the handling of invalid certicates is improved so that end
users can no longer override warning messages. Deploying HSTS is easy, but before you do
it make sure to fully understand its advantages and disadvantages.
Te following code example enables HSTS with a long-term maximum age of about one
year (specied in seconds), active on the main hostname as well as all subdomains:

Response.AppendHeader(
    "Strict-Transport-Security", 
    "max-age=31536000; includeSubDomains"
);

Alternatively, you could congure the header in conguration, using the following snippet:

<configuration>
    <!-- other configuration options -->

    <system.webServer>
        <httpProtocol>
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            <customHeaders>
                <add name="Strict-Transport-Security"
                     value="max-age=31536000; includeSubDomains" />
            </customHeaders>
        </httpProtocol>
    </system.webServer>
</configuration>

Te IIS Manager GUI also supports custom response headers. However, using any of these
methods can be tricky, because the HSTS specication doesn’t allow for sending the Strict-
Transport-Security header on plaintext responses. Te easiest and cleanest approach is to
use a third-party module that will take care of all the details for you.26

Internet Information Server
Internet Information Server (IIS) is the main web server used on Windows operating sys-
tems. It comes in several avors (e.g., desktop and server versions), but the underlying code
is usually the same in all cases. And of course, all avors ultimately rely on Schannel for
their SSL/TLS needs.
Because Schannel is a reasonably well-rounded TLS library, IIS also provides decent features
in this area. Te biggest practical problem comes from the fact that IIS exposes no user in-
terfaces to congure TLS but relies on the underlying Schannel conguration. Schannel, in
turn, can be congured only by working with the registry directly, which can be dicult.
In the rest of this section, I will highlight some of the issues with running secure sites on the
Internet Information Server.

Forward secrecy
With IIS, you will be unable to provide robust support for forward secrecy, because
Schannel doesn’t support ephemeral Die-Hellman (DHE) key exchange in combi-
nation with RSA keys. Te majority of clients support the faster ECDHE key ex-
change, but, according to Twitter, about 25% don’t.27

In April 2014, Microso released an update that added two new DHE_RSA suites (used
with 1,024-bit DH parameters) to Windows 8.1 and Server 2012 R2. However, these
suites won’t provide better support for forward secrecy, because they use GCM au-
thenticated encryption that’s not supported by older clients.

GCM suites
At the time of writing, authenticated GCM suites are the only suites thought to be
completely secure. Even though the issues in other suites are largely mitigated, if
you’re keen to have the best possible security, GCM suites should be your priority.

26 HTTP Strict Transport Security IIS Module (CodePlex, retrieved 2 July 2014)
27 Forward Secrecy at Twitter (Twitter’s Engineering Blog, 22 November 2013)
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Schannel does support GCM suites, but largely in combination with ECDSA keys. At
this point, virtually all sites use RSA keys, and only the adventurous experiment with
ECDSA.

OCSP stapling
Starting with Windows 2008, IIS enables OCSP stapling by default. Because most
other web servers require manual conguration, 96% of all stapled responses are cur-
rently served by IIS.28 Te only catch is that your IIS server needs to be able to com-
municate with the CAs that issued the certicates in order to obtain OCSP responses
and cache them locally. If you have a very restrictive outbound trac policy (re-
wall), such trac might be blocked. To deal with this, you can either relax your re-
wall policy or use a forward proxy for the OCSP trac.29

Lack of per-site conguration
IIS allows for only partial SSL/TLS conguration on per-site basis, which means that
for things such as protocol support and cipher suite order you will be forced to nd
one conguration that suits all your sites. It shouldn’t be a problem in practice, but it
might prove to be constraining if you’re hosting sites with special needs (e.g., FIPS).

Managing Keys and Certifcates
IIS Manager comes with a GUI that supports basic key and certicate operations. It’s some-
times unintuitive, but it gets the job done. My instructions and examples here will be for
Windows Server 2012 and IIS 8, but the workow with the earlier (IIS 7 and 7.5) and later
(IIS 8.5) versions should be the same.

Note
Te language used in the IIS user interface is not accurate. Most labels and action
names refer to certicates, whereas you will almost always be managing keys and
certicates at the same time. For simplicity, in this section I will use the IIS termi-
nology.

Creating a Custom IIS Management Console
Before you start to do any actual certicate work, I recommend that you create a custom
Microso Management Console (MMC).

1. On the Run menu, type mmc to create an empty console.
2. From the File menu, select Add/Remove Snap-in. A new window will appear; the le

pane will contain the list of available snap-ins.

28 Microsoft Achieves World Domination (in OCSP Stapling) (Netcraft’s blog, 19 July 2013)
29 OCSP Stapling in IIS (Ryan Hurst’s blog, 12 June 2012)
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3. Add the Certicates snap-in. On the rst screen, select Computer account; on the sec-
ond, select Local computer.

4. Add the Internet Information Server snap-in.

5. Again from the File menu, select Save to save this console for later. If you save it to the
desktop, your custom console will be only a double-click away when you need it.

Now you have a custom console that gives you access to the web site certicates as well as to
IIS Manager.

IIS Certifcate Management
To start managing IIS certicates, open the IIS Management Console and click on the server
name. A new pane will open with many conguration options; one will be Server Certi-
cates.

Figure 15.3. Server certicates in the IIS Management Console
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Creating a Self-Signed Certifcate
Creating self-signed certicates is trivial: simply select the Create Self-Signed Certicate...
action from the right pane and provide a friendly name for it. You also have the ability to
choose where the new certicate will go, to the Personal store or to the Web Hosting one. It’s
not clear what the dierence is between the two, but I tend to choose the latter.

Importing a Certifcate
If you already have a certicate, you can import it using the Import action. Te only sup-
ported format is PKCS#12, or PFX. If you are transitioning from a web server that uses dif-
ferent formats, you can use OpenSSL to convert the keys and certicates, as explained in the
section called “Key and Certicate Conversion ” in Chapter 11.

Warning
When you’re importing the certicate, it’s best to disable the Allow this certicate to
be exported option. Doing that makes it more dicult to extract the key from the
server. Of course, if you disable, make sure to have a backup of the key elsewhere.

Requesting Certifcates from a Public CA
To obtain a certicate signed by a public CA, you rst need to create a Certicate Signing
Request (CSR). To do this, use the Create Certicate Request action, which activates a wizard
that consists of three steps:

1. On the rst page, enter your information. Ensure that the information about your or-
ganization is accurate. You should use your web site’s primary domain name for the
Common name eld.

2. On the second page, choose key type and strength. For the type, the default (Microso
RSA SChannel Cryptographic Provider) is the only practical choice at the moment and
needs no changing. For the strength, select 2,048 bits. (In my case, the default was
1,024, but that’s weak and bordering on insecure.)

3. On the third page, specify the location of the CSR le.
Now that you have the CSR, you need to submit it to your selected CA. In most cases, you
will need to open up the CSR le in a text editor and copy the contents into the form on the
CA’s web site. Once the CA veries your right to hold a certicate in the requested domain
name (a short and automated process for domain-validated certicates but a long one when
extended validation is used), your certicate will be issued.

Warning
When you generate a CSR, you also create a private key that is stored on that com-
puter and nowhere else. Because your certicate is not useful without the matching
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key, you should ensure that both are safely kept in backup. It’s best to create your
keys and CSRs on the server on which they will be used, and export them for back-
up using the Export action.

Completing Certifcate Signing Requests
More oen than not, your CA will send you several certicates in response to your CSR.
Te main one will be your site’s certicate, but you will oen need one or more intermediate
certicates and, in some cases, even the root. If you get the certicates as a single le, im-
porting will be easier. If you have them as separate les, you will need them to import them
one by one, usually like this:

1. If the CA’s root certicate is not already in your main trust store (called Trusted Root
Certication Authorities), import it.

2. Import all the intermediary certicates to the Intermediate Certication Authorities
store.

At this point, you can nally use the Complete Certicate Request action to import the site
certicate and match it to the private key that’s stored on your computer. If you’ve correctly
congured the CA’s root and intermediate certicates, this step will complete without a
warning. Otherwise, IIS will complain that it is unable to construct a complete trusted cer-
ticate chain.

Note
Completing CSRs sometimes fails with Failed to Remove Certicate or Access De-
nied error messages. When this happened to me, I discovered that the process actu-
ally completed successfully and that I was able to use my certicates despite the er-
ror messages.

Confguring SSL Sites
Assuming you already have a certicate, to enable TLS on a web site you need to add SSL
bindings to it. Tis translates to conguring the following:

• Protocol; always https
• IP address and port
• Hostname
• Te correct setting for the Require Server Name Indication option (more about this in a

minute)
• Te desired SSL certicate

Tere are three ways in which you can congure secure web sites:
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One SSL site per IP address and port combination
Traditionally, secure sites require a unique IP address and port combination. Because
specifying ports is not practical for public services, this really means a unique IP ad-
dress. Tis approach is straightforward for small hosting operations, but it requires
that you procure a sucient number of IP addresses.

Certicate sharing
Even though virtual secure hosting is not yet practical, it is possible to host more than
one site on the same IP address, but only if you don’t mind all of them using the same
certicate. You can do this by obtaining a certicate that lists all the site names or by
obtaining a wildcard certicate that supports an unlimited number of subdomains.
(Or both, for that matter.) Tis option is fully supported in IIS 8; when conguring
SSL bindings for a site, select the desired IP address and certicate and enter the cor-
rect hostname. You can repeat the process on as many web sites as you want. Te SNI
option should remain disabled.
Before version 8, the IIS user interface allowed only one secure site to be congured
on the same IP address and port combination. However, it is still possible to achieve
the same eect by making conguration changes directly from the command line and
by using an asterisk as the rst character in the certicate’s friendly name.30

Virtual secure hosting
Because the support for virtual secure hosting was not available in TLS from the
start, some older platforms still don’t support it. And because one such older plat-
form—Windows XP—remains quite popular, we must still continue to bind secure
sites to IP addresses. Virtual secure hosting is supported by IIS starting with version
8; you enable it by checking the Require Server Name Indication option. However, if
you have any users who still rely on Internet Explorer on Windows XP, they won’t be
able to connect to your web site securely. If you are sure that you have no such users,
SNI is safe to deploy today.

Advanced Options
Te instructions in this section are generally adequate for small deployments, such as when
you have servers that are serving only a few sites, but they get increasingly dicult when
you have to deal with complex architectures. If you fall into this category, there are some
advanced options that you might want to consider:

Centralized SSL certicates for web server clusters
Starting with IIS 8.0, web server cluster management is much easier because it is pos-
sible to store keys and certicates in a single location on a le share.31

30 SSL Host Headers in IIS 7 (SSL Shopper, 26 February 2009)
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Active Directory integration with a public CA
Public CAs have recently developed products that simulate a private CA but ulll re-
quests using their own (public) infrastructure. With this approach, many tasks (e.g.,
certicate renewal) are simplied and automated. Te advantage of this approach is
that you control certicate issuance via Active Directory policies, but your certicates
ultimately chain to a public CA.

31 IIS 8.0 Centralized SSL Certicate Support: SSL Scalability and Manageability (IIS.Net, 29 February 2012)
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16 Confguring Nginx
Nginx is a web server and reverse proxy that’s become very popular because of its eciency
and frugal use of system resources. Nginx generally has good TLS support in the current
stable branch (1.6.x), which means that you shouldn’t experience any problems in this area.
Because Nginx is a relatively young project, features are added at a fast pace. If you’re an
advanced user, I recommend that you keep an eye on the improvements in the development
branch.

Table 16.1. Nginx TLS features across recent stable and development versions

Feature 1.4.x 1.6.x 1.7.x (development)

Strong default DH parameters Barely; 1,024 bits Barely; 1,024 bits Barely; 1,024 bits

Congurable DH and ECDH parameters Yes Yes Yes

Elliptic curve (EC) support Yes Yes Yes

OCSP stapling Yes Yes Yes

Distributed TLS session caching - - -

Congurable session ticket keys - Yes Yes

Disable session ticket keys - Yes Yes

Backend certicate validation - - Yes

Te stable version provides everything you need to deploy a well-congured standalone TLS
server. Te strength of ephemeral DH parameters (1,024 bits) is perhaps weaker than it
should be, but that can be addressed in the conguration. One thing to watch is that this
version doesn’t perform backend certicate validation when Nginx operates as a reverse
proxy. Tis might not be a problem when the backend is local (e.g., on the same network),
but it’s denitely insecure with backend servers that are reached over public networks.
Tis chapter is designed to cover the most important and interesting aspects of Nginx’s TLS
conguration, but it’s not a reference guide. For other information, please refer to the o-
cial documentation.

487



Installing Nginx with Static OpenSSL
Unless told dierently, Nginx will detect and use system OpenSSL libraries during installa-
tion, linking to them dynamically. Sometimes you don’t want to use the system libraries,
however. For example, they could be an older version and missing some essential features.
It’s possible to compile Nginx statically against any compatible OpenSSL version. To do this,
when conguring Nginx for compilation, use the --with-openssl parameter to point to the
OpenSSL source code:

$ ./configure \
--prefix=/opt/nginx \
--with-openssl=../openssl-1.0.1h \
--with-openssl-opt="enable-ec_nistp_64_gcc_128" \
--with-http_ssl_module

Unlike some other programs, which compile against an OpenSSL installation, Nginx wants
access to the source code so that it can congure and compile OpenSSL itself. Tis creates a
level of indirection, because you don’t congure OpenSSL yourself. If you do need to pass a
conguration parameter to OpenSSL, use the --with-openssl-opt Nginx parameter (as in
my example, in which I activated EC optimizations that are disabled by default).

Warning
Be careful when compiling soware from source. Unlike with operating system
packages, it is your responsibility to keep the soware up-to-date and recompile
aer a security issue is discovered.

Enabling TLS
To enable TLS, you need to tell Nginx that you want to use a dierent protocol on the de-
sired port. You do this with the ssl parameter to the listen directive:

server {
    listen 192.168.0.1:443 ssl;

server_name www.example.com;
    ...
}

Another parameter that you might want to use here is spdy, which enables the SPDY proto-
col.1 To enable TLS and SPDY at the same time, do something like this:

server {
    listen 192.168.0.1:443 ssl spdy;

1 SPDY is not compiled-in by default. You have to use the --with-http_spdy_module conguration parameter to enable it.
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    server_name www.example.com;
    ...
}

Confguring TLS Protocol
Once you enable TLS, you need to tweak the protocol conguration. I don’t believe in using
default settings; they change over time and you end up not knowing exactly what your
servers are doing. For protocol conguration, there are three directives that you should use.
Te rst is ssl_protocols, which species which protocols should be enabled:

# Enable all protocols except SSL 2 and
# SSL 3, which are obsolete and insecure.
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

Te second is ssl_prefer_server_ciphers, which tells Nginx that we want the server to se-
lect the best cipher suite during TLS handshake instead of letting clients do it:

# Have the server decide what suites to use.
ssl_prefer_server_ciphers on;

Finally, ssl_ciphers controls which suites are going to be enabled and in which order; it
takes an OpenSSL suite-conguration string. For example:

# This cipher suite configuration uses only suites that provide
# forward security, in the order that provides the best performance.
ssl_ciphers "ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ↩
ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES128-SHA256 ↩
ECDHE-ECDSA-AES256-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-RSA-AES256-GCM-SHA384 ↩
ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA ECDHE-RSA-AES128-SHA256 ↩
ECDHE-RSA-AES256-SHA384 DHE-RSA-AES128-GCM-SHA256 DHE-RSA-AES256-GCM-SHA384 ↩
DHE-RSA-AES128-SHA DHE-RSA-AES256-SHA DHE-RSA-AES128-SHA256 DHE-RSA-AES256-SHA256 ↩
EDH-RSA-DES-CBC3-SHA";

Note
Te cipher suite conguration from this example is secure, but depending on your
preferences and risk prole you might prefer something slightly dierent. You’ll
nd a thorough discussion of TLS server conguration in Chapter 8, Deployment
and examples for OpenSSL in the section called “Recommended Conguration” in
Chapter 11.

Confguring Keys and Certifcates
Te nal step in conguring a secure server is to specify the desired private key and certi-
cates, for which you need two directives:
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# Server private key.
ssl_certificate_key server.key;

# Certificates; server certificate first, followed by all
# required intermediate certificates, but excluding the root.
ssl_certificate server.crt;

Nginx uses one directive for certicate conguration. If you have the server certicate and
the intermediate certicates as separate les, you’ll need to make a single le out of them.
Just make sure you put the server certicate rst; otherwise you will get a conguration er-
ror. Of course, you also need to ensure that all intermediate certicates are correctly or-
dered; not doing so might lead to subtle interoperability issues that are dicult to trou-
bleshoot.2

Note
Although Nginx supports password-protected private keys, the only input mecha-
nism it supports is interactive, on server startup. For this reason, the only practical
approach in production is to congure a private key without a passphrase, which is
not ideal. However, version 1.7.3 (in the development branch at the time of writ-
ing) added a new directive, ssl_password_file, which can be used to supply the
password for encrypted keys.

Confguring Multiple Keys
Nginx does not currently allow sites to have more than one private key. Tere had been
some work done on this feature in November 2013, so we might see it in a future release.3

Wildcard and Multisite Certifcates
If you have two or more sites that share a certicate, it is possible to deploy them on the
same IP address despite the fact that virtual secure hosting is not yet feasible for public web
sites. No special conguration is required; just associate all such sites with the same IP ad-
dress and ensure that they are all using the same certicate.4

Tis works because TLS termination and HTTP host selection are two separate processing
steps. When terminating TLS, Nginx serves the certicate of the default server (the server

2 The ssl_certificate directive also allows the server private key to be included in the same le. However, storing private and public data in

the same le is dangerous because it could lead to accidental disclosures of the keys.
3 [PATCH] RSA+DSA+ECC bundles (Rob Stradling, 17 October 2013)
4 Technically, the restrictions are per IP address and port combination (a TCP/IP endpoint). You could, for example, host one secure site on

192.168.0.1:443 and another on 192.168.0.1:8443. In practice, public sites can be hosted only on port 443, so the restrictions are effec-

tively per IP address.
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that appears rst in the conguration) for that IP address. When processing HTTP, Nginx
examines the Host request header and looks for the correct site based on the server_name
conguration. If the requested hostname cannot be found, the default web site is used.
Te best approach when reusing certicates is to place them in the http scope so that the
conguration is inherited by the servers that follow:

# Configure one key and certificates for all subsequent servers.
ssl_certificate     server.crt;
ssl_certificate_key server.key;

# site1.example.com
server {
    listen          443 ssl;
    server_name     site1.example.com;
    ...
}

# site2.example.com
server {
    listen          443 ssl;
    server_name     site2.example.org;
    ...
}

Tis approach simplies maintenance and keeps only one copy of the certicate and key in-
formation in memory.

Virtual Secure Hosting
Unlike the setup discussed in the previous section, true virtual secure hosting takes place
when multiple unrelated web sites, each with its own certicate, share one IP address. Be-
cause this feature was not in the SSL and TLS protocols at the beginning, there are still
many older clients that do not support it. For this reason, it is not yet feasible to use virtual
secure hosting for public web sites that are targeted at a wide general audience, but it could
possibly be used for sites whose users have access to modern browsers.
Nginx supports virtual secure hosting and uses it automatically when needed. Te only
question is: what happens if you do deploy with virtual secure hosting but then encounter a
client that does not support this feature? Normally, Nginx will serve the certicate belong-
ing to the default site associated with the requested IP address. Because that certicate is
unlikely to match the desired hostname, the user will receive a certicate warning. However,
if they are able to bypass the warning, they will get through to the site they wanted to see.5
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Reserving Default Sites for Error Messages
It is never a good idea to deliver web site content in response to an incorrectly specied re-
quest. For example, you don’t want a search engine to index a web site under an incorrect
hostname. More importantly, lax checking of hostnames can lead to security issues from
one site being transferred to other sites. To avoid this, I suggest that you always deploy de-
fault sites to deliver error messages and nothing else.
Here’s an example conguration you could use:

# This default web site will be used to deliver error
# messages to those clients that request a hostname
# we don't have a site for.
server {
    listen 443 ssl default_server;

    # There is no need to specify server_name, because we
    # never actually want it to match. We want this site
    # to be delivered when the correct site cannot be found.
    # server_name "";
       
    root /path/to/site/root;

    location / {
        return 404;
    }

    location /404.html {
        internal;
    }

    error_page 404 /404.html;
}

With this conguration, users who request a hostname that isn’t congured on your server
will see the contents of 404.html. In most cases, they will need to click through a certicate
warning rst, although it’s possible that a server has a valid certicate for a name but doesn’t
have a virtual host for it. Tis is a potential issue with wildcard certicates, for example.
At the time of writing, Nginx doesn’t support strict SNI checking that could detect a user
that doesn’t support SNI and refuse to serve the host specied at the HTTP level, even if the
hostname is correct. Because all non-SNI users have to click through certicate warnings
when accessing SNI-only sites, this feature would be very useful to inform such users why
they’re experiencing problems.6

5 Assuming, of course, that the requested hostname exists as a virtual site at the HTTP level. If it doesn’t, they will get the default web site.
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Forward Secrecy
You won’t have any trouble conguring robust forward secrecy with Nginx, given that it has
had full support for the necessary key exchanges (DHE and ECDHE) since version 1.1.0,
which was released in August 2011. Te only thing to watch for is the support for EC cryp-
tography in OpenSSL; not all versions have it, for two reasons:

Older OpenSSL version
If the underlying OpenSSL installation does not support newer features (such as EC
crypto), then it does not matter that Nginx does. Older versions of OpenSSL are still
prevalent on older installations, and even some newer operating system releases use
them. For example, OS X Mavericks, released in November 2013, ships with
OpenSSL 0.9.8y (that’s the most recent version from the old 0.9.x branch). For EC
cryptography, you need version 1.0.1 or newer.

OpenSSL version without EC support
For a long time, operating systems built by Red Hat used to ship without support for
EC cryptography, because their lawyers wanted to play it safe when it came to certain
EC patents. Tis made it very dicult for anyone using Fedora and Red Hat Enter-
prise Linux distributions (and the derivatives) to deploy forward secrecy. Te only
way to do it well had been to recompile OpenSSL and all the packages that depend on
it.
Tis changed in October 2013, when Fedora 18 and later versions were updated with
OpenSSL packages that do have EC crypto enabled.7 In November 2013, Red Hat En-
terprise Linux 6.5 shipped with EC crypto enabled.8

OCSP Stapling
Nginx supports OCSP stapling starting with the 1.4.x branch. At this time, Nginx treats this
feature as an optimization, and this approach is reected in the implementation. For exam-
ple, Nginx does not prefetch OCSP responses on startup. Instead, it waits for the rst con-
nection and only then initiates its own OCSP request. As a result, the rst connection is
never going to have an OCSP response stapled. Further, OCSP responses are not shared
among all worker processes, which means that each worker needs to obtain an OCSP re-
sponse before the entire server is fully primed.

6 Version 1.7.0, currently still in development, introduced a new variable called $ssl_server_name, which contains the SNI hostname when one

is provided. This variable is empty for a client that doesn’t support SNI. You can detect this situation in the virtual host conguration and

respond with a different error message. The only catch is that you have to include the check in the conguration section of each virtual host.
7 Bug #319901: missing ec and ecparam commands in openssl package (Red Hat Bugzilla, closed 22 October 2013)
8 Red Hat Enterprise Linux 6.5 Release Notes (Red Hat, 21 November 2013)
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In practice, because obtaining OCSP responses from the responders takes some time it is
reasonable to assume that there will be a period immediately aer server startup during
which OCSP stapling will not be fully operational. Te busier your server, the shorter this
period will be.
Te delay will not create problems in practice, because OCSP stapling is not mandatory;
browsers will use a stapled response when one is provided, but will obtain their own other-
wise. If you really want OCSP responses to be used on every connection, it is possible to
provide them to Nginx manually. I discuss this feature later in this section.

Warning
Due to a bug,9 Nginx might sometimes send expired OCSP responses. It appears
that the OCSP response refresh process is triggered only by the internal response
timeout (one hour), but not by the cached response’s expiration time (set by the
CA). Tus, if the server ever receives an OCSP response that expires in less than
one hour, there will potentially be a period during which invalid responses will be
served.

Confguring OCSP Stapling
To use OCSP stapling, you just need to tell Nginx that you want to use it:

# Enable OCSP stapling.
ssl_stapling on;

# Configure a DNS resolver so that Nginx can convert
# domain names into IP addresses.
resolver 127.0.0.1;

Note
OCSP requests are submitted over HTTP, which means that your web server needs
to be able to make outbound requests to various OCSP responders across the Inter-
net. If you’re operating an outbound rewall, ensure that there are exceptions to
allow this type of trac.

I recommend that you also enable OCSP response verication, which is disabled by default.
Tis requires a bit more work to congure trusted certicates, but you can then be sure that
only valid responses are served to your users:

# Verify responses before consdering them for stapling.
ssl_stapling_verify on;

9 ocsp stapling may send expired response (Nginx bug #425, retrieved 10 July 2014)
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# OCSP response validation requires that the complete
# certificate chain is available. Provide here all intermediate
# certificates including the root, which is normally not
# included when configuring server certificates.
ssl_trusted_certificate trusted-for-ocsp.pem;

Notably absent from the OCSP stapling conguration are directives for cache conguration
and various timeouts. Te cache does not need to be congured because OCSP responses
are not shared among workers; every worker has its own memory cache that grows as need-
ed. As for timeouts, Nginx relies on hardcoded values: valid responses are cached for one
hour, and errors are cached for ve minutes. Networking timeouts are set to 60 seconds.10

Using a Custom OCSP Responder
Normally, OCSP requests are submitted to the OCSP responder hardcoded in each certi-
cate. However, there are two cases in which you might want to use a dierent responder:

• In a heavily locked-down environment, direct outbound trac from the web server
might not be allowed at all. In this case, if you want to support OCSP stapling, you will
need to congure a forward proxy for OCSP requests.

• Some certicates might not actually contain OCSP responder information even though
the issuing CA operates one. In this case, you can provide the OCSP responder URI
manually.

You can override the OCSP responder information globally or on per-site basis, using the
ssl_stapling_responder directive:

# Use a forward proxy for OCSP requests originating from this server.
ssl_stapling_responder http://ocsp.example.com;

Manual Confguration of OCSP Responses
If you want reliable and consistent OCSP stapling for all secure connections, you’ll have to
manually handle OCSP response fetching and refreshing, leaving Nginx only to pass on the
responses to clients.
For the Nginx part of the setup, use the ssl_stapling_file directive to specify a le that
contains an OCSP response in DER format:

# Tell Nginx that it should not try to fetch
# OCSP responses; we will handle that ourselves.
ssl_stapling_file ocsp-response_www.example.com.der;

10 OCSP stapling patches (Maxim Dounin, 5 September 2012)
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Te simplest way to obtain an OCSP response is to use the OpenSSL command-line tools.
Before you begin, you will need both the server certicate and the issuing CA’s certicate.
Te issuing certicate should be among your intermediate certicates. It is also possible that
the issuing certicate is a root (but that’s getting increasingly rare these days), in which case
you should obtain it directly from the CA.
Your next task will be to nd the address of the OCSP responder. You can do this by exam-
ining the Authority Information Access (AIA) extension in the server certicate. For exam-
ple:

$ openssl x509 -in server.crt -noout -ocsp_uri
http://rapidssl-ocsp.geotrust.com

With the URL and the two certicates, you can submit an OCSP request to the responder:

$ openssl ocsp -issuer issuer.crt -cert server.crt -url http://rapidssl-ocsp.geotru↩
st.com -noverify -respout ocsp-response_www.example.com.der
server.crt: good
    This Update: Jan 10 08:15:33 2014 GMT
    Next Update: Jan 17 08:15:33 2014 GMT

Note
Obtaining OCSP responses manually works without problems most of the time,
but it can sometimes get messy because of edge cases. You will nd more informa-
tion about the possible issues in the section called “Checking OCSP Revocation” in
Chapter 12.

You should now have a valid OCSP response in the designated le. Although this approach
is good enough for a proof of concept, for deployment in production you will need to han-
dle error cases and run continuously in order to keep all OCSP responses fresh. Reload Ng-
inx whenever one of the les changes.

Confguring Ephemeral DH Key Exchange
When it comes to the strength of the Die-Hellman (DH) key exchange, Nginx normally
delegates all the work to OpenSSL. Tat will give you 1,024 bits of security, which is on the
weak side, but not yet critically weak.
Fortunately, it’s easy to tune the strength of the DH key exchange. Just use the ssl_dhparam
directive and provide the name of the le containing stronger parameters:

# Use stronger DH parameters rather than the default 1024 bits.
ssl_dhparam dh-2048.pem;

Use the following OpenSSL command to generate the parameter le:
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$ openssl dhparam -out dh-2048.pem 2048

Increasing DH parameter strength might negatively reect on interoperability with some
clients. For example, Java 6 and Java 7 don’t support DH parameters stronger than 1,024
bits. Anything over that means that they might not be able to connect. In practice, Java 7
clients should be able to connect if you ensure that you always oer ECDHE suites rst. For
Java 6 clients, there is no workaround.

Tip
From the security point of view, you should choose the strength of DH parameters
to match the strength of the private key used by the server. In practice, most sites
use 2,048-bit private keys, which means that a 2,048-bit DH key exchange is going
to be adequate for virtually everyone. Using stronger DH parameters is not recom-
mended, as they signicantly slow down the TLS handshake.

Confguring Ephemeral ECDH Key Exchange
Te default strength of the ephemeral ECDHE key exchange is 256 EC bits, using the
secp256r1 curve (OpenSSL prefers to call it prime256v1). Tat is suciently strong (equiva-
lent to a 3,072-bit RSA key), and you probably won’t need to change it. If you do want to
change it, use the ssl_ecdh_curve directive:

# Use a stronger curve to give us 192 bits of
# security (equivalent to a 7680-bit RSA key).
ssl_ecdh_curve secp384r1;

At this time, there is little choice when it comes to curve selection. Even though OpenSSL
and some other platforms might support a number of curves (for OpenSSL, you can obtain
the complete list with openssl ecparam -list_curves), only secp256r1 and secp384r1 are
widely supported by browsers at this time. You should know that secp256r1 is currently op-
timized to run fast in OpenSSL, whereas secp384r1 isn’t.

TLS Session Management
Nginx provides good support for TLS session resumption on standalone servers, supporting
both server-side state caching and session tickets. But although there is support for dis-
tributed session tickets, distributed server session caching isn’t supported.

Standalone Session Cache
For standalone server deployments (which typically operate multiple workers), you should
congure a shared memory cache so that TLS session information is shared among all the
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processes. Te default for Nginx is to operate without a TLS session cache, which results in
less than optimal performance.
To congure a cache, you need to allocate a certain amount of RAM to it and specify the
maximum duration of a single session:

# Configure a shared memory cache of 1 MB.
ssl_session_cache shared:ssl_session_cache:1M;

# Expire individual sessions after 24 hours.
ssl_session_timeout 1440m;

It’s dicult to recommend one default conguration that will work for everyone, but the
values I used in this example will satisfy most sites. Te 1 MB of RAM should accommodate
about 4,000 sessions.
Te default session timeout is only ve minutes, which is too short. I used 24 hours instead.
Tere is generally little reason to limit the session timeout, because you want to ensure that
your cache runs at maximum capacity. If it runs out of space, the oldest session will be evict-
ed to make room for a new one. Tat said, values over 24 hours are not recommended for
security reasons.
Nginx provides a lot of exibility for the cache conguration. For example, it’s possible to
have a hierarchy of caches within the same site. It’s also possible to have many sites use the
same cache. For best security, each site should be congured with its own session cache. Ses-
sion cache sharing is safe only among sites that are logically part of the same application
and share the certicate. For a complete discussion of the potential problems refer to the
section called “Deployment Weaknesses” in Chapter 6.

Standalone Session Tickets
By default, session tickets are handled by OpenSSL, and no Nginx conguration is neces-
sary. For standalone servers, this approach tends to “just work,” although there are some as-
pects of it that you should be aware of:

• Session tickets are protected using 128-bit AES encryption. A throwaway key is gener-
ated when the web server is initially started. Depending on the server conguration,
multiple ticket keys might be in use.

• Te key size is xed, but 128 bits is suciently strong for most use cases.
• A new private key is generated every time the server is restarted. Tis means that all

connections that arrive aer the restart will have to negotiate new TLS sessions. Tere
will be a performance penalty, but it’s unlikely to be noticeable.
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• If you leave the server running without restarts for extended periods of time, all tickets
will be protected with the same AES key. Tis is not recommended,11 which is why you
should ensure that your servers are regularly restarted: for example, daily.

When it comes to session ticket security, for best results allocate a dierent ticket key to
each site.

Distributed Session Cache
Distributed session caching is currently not supported. In 2011, a patch for Nginx 0.8.x was
released to add this functionality,12 but there are no patches for modern versions. Further-
more, according to one of the Nginx developers,13 the patch operates in blocking mode,
which breaks the event-based model on which Nginx is built. In practice, this means that a
lookup in the network cache can suspend all processing of an entire Nginx process (aect-
ing all ongoing requests), which translates to a serious performance penalty.
Because Nginx does not support distributed session caching, your cluster design options are
limited; you cannot deploy a cluster in which new connections are freely distributed among
the nodes. Instead, you have to design a sticky mode in which clients are always forwarded
to the same node.14 Ten, on that node you can operate a standalone, shared memory
cache.

Distributed Session Tickets
Starting with version 1.5.7, Nginx supports manually congured session ticket keys. With
this feature, you can implement your own rotation scheme on a single server or, more inter-
estingly, share the same ticket in a web server cluster.
Te relevant directive is ssl_session_ticket_key, which you use to specify the ticket key:

# Explicit configuration of the session ticket key.
ssl_session_ticket_key ticket.key;

A session ticket key le consists of 48 bytes of cryptographically random data. Te data is
used for three 16-byte (128-bit) fragments, one each for key name, HMAC secret, and AES
key. Tis isn’t the same format as used by OpenSSL, which means that the keys probably
can’t be shared with other web servers.15

11 With session tickets, the AES key is used to encrypt all session data (which includes the master secret, which can be used to decrypt all

communication), after which that information is sent over the network to the client. This approach makes the AES key a new attack point. It also

defeats forward secrecy, if the AES key is compromised.
12 SSL Session Caching (in nginx) (Matt Palmer, 28 June 2011)
13 Re: Distributed SSL session cache (Maxim Dounin, 16 September 2013)
14 This is typically done by a load balancer, which remembers the origin of each session ID and directs subsequent visits belonging to the same

ID to the same web server node.
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Use the following OpenSSL command to generate a new key le:

$ openssl rand -out ticket.key 48

In practice, you will need at least two keys in your conguration: your main key to generate
new tickets and the previous key, kept around to use for decryption only:

# Specify the active session ticket key, which will
# be used for both encryption and decryption.
ssl_session_ticket_key current-ticket.key;

# Keep the previous key around so that we can
# resume the sessions protected by it.
ssl_session_ticket_key previous-ticket.key;

With the two-key setup, no tickets will be dropped because of key rotation.
Rotating session ticket keys in a cluster can be dicult to do reliably, because it requires that
a new key is introduced simultaneously to all nodes. If one node uses a new key before oth-
ers, other nodes will not be able to decrypt its tickets, forcing a full handshake. But this is
probably not going to be an issue, unless you’re reloading your keys very frequently. Fur-
thermore, many clusters are designed to send the same client to the same node, which
means that this scenario is unlikely to happen.
Still, if you want to implement session ticket keys rotation absolutely right and don’t mind
reconguring the cluster two times, here’s what you can do:

1. Generate a new session ticket key.

2. Introduce the new key to the conguration as a decryption-only key and recongure
the cluster. With this step, you’ve prepared all your nodes for decryption.

3. Change the conguration once more, promoting the key from the previous step to be
your active key. Move the previously active key to be your decryption key. Ten recon-
gure the cluster again. Because all nodes have the new active key in the previous con-
guration, session resumption will work irrespective of any timing issues.

Disabling Session Tickets
Starting with version 1.5.9, Nginx allows session tickets to be disabled. Tis could be useful
if you’re running a cluster of servers but don’t want to set up a distributed ticket key:

# Disable session tickets.
ssl_session_tickets off;

15 NGINX SSL Session Ticket Key (ZNV, 25 February 2014)
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If you’re running an earlier Nginx version, a patch for this feature can be obtained from the
development list archives.16

Client Authentication
Using client authentication requires enabling it in conguration, providing all the CA cer-
ticates needed to form a complete certication path, and pointing Nginx to a certicate
revocation list. Here’s a complete example:

# Require client authentication.
ssl_verify_client on;

# Specify the maximum depth of the certification path,
# from the client certificate to a trusted root.
ssl_verify_depth 2;

# Allowed CAs that issue client certificates. The
# distinguished names of these certificates will be sent
# to each user to assist with client certificate selection.
ssl_client_certificate sub-ca.crt;

# Additional CA certificates that are needed to
# build a complete certification path.
ssl_trusted_certificate root-ca.crt;

# The list of revoked certificates. A reload is required
# every time this list is changed.
ssl_crl revoked-certificates.crl

With these changes, Nginx will accept only requests accompanied by a valid client certi-
cate. If a certicate is not provided or if the validation fails, it will send with a 400 response
instead.
In addition to enabling strict client authentication, there are also two further settings for
ssl_verify_client that are useful in some situations:

optional
Requests a client certicate during TLS handshake but doesn’t require it. Te status of
the validation is stored in the $ssl_client_verify variable: NONE for no certicate,
FAILED for a certicate that failed validation, and SUCCESS for a valid certicate. Tis
feature is useful if you want to provide a custom response to those users who fail
client certicate validation.

16 [PATCH] SSL: ssl_session_tickets directive (Dirkjan Bussink, 10 January 2014)
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optional_no_ca
Requests a client certicate during TLS handshake but doesn’t attempt validation. In-
stead, it’s expected that an external service will validate the certicate (which is avail-
able in the $ssl_client_cert variable).

Note
Using optional client authentication can be problematic, because some browsers
don’t prompt the user or otherwise select a client certicate if this option is cong-
ured. Tere are also issues with some browsers that won’t proceed to the site if they
can’t provide a certicate. Before you seriously consider optional client authentica-
tion for deployment, test with the browsers you have in your environment.

Mitigating Protocol Issues
Nginx users have little to worry about when it comes to SSL and TLS protocol issues. Tey
have been as quickly addressed as they have arisen, in one case even before the public an-
nouncement.

Insecure Renegotiation
Insecure renegotiation is a protocol aw discovered in November 2009 and largely mitigat-
ed during 2010. Nginx addressed this issue in version 0.8.23, which was released within a
week of discovery. Since then, client-initiated renegotiation is not accepted.
Additionally, Nginx does not use server-initiated renegotiation. Tis feature is typically used
when the same site operates multiple security contexts. For example, you might allow any-
one to visit the home page of your web site but require client certicates at a deeper level.
Nginx supports client certicates, but only at the server level (no subfolder conguration),
which means that renegotiation is unnecessary. Technically, Nginx supports and advertises
secure renegotiation when compiled against a capable version of OpenSSL, but refuses to
renegotiate when asked.

BEAST
Technically, the predictable IV vulnerability in TLS 1.0 and earlier protocols aects both
client and server sides of the communication. In practice, only browsers are vulnerable (the
so-called BEAST attack), because exploitation requires that the attacker is able to control
what data is sent (and subsequently encrypted) by the victim. For this reason, there is noth-
ing for server code to do about it.
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CRIME
Te 2012 CRIME attack exploits information leakage that occurs when compression is used
at the TLS protocol level.17 No work has been done to address this issue and keep compres-
sion in the protocol. Instead, the advice is to disable compression altogether. For perfor-
mance reasons, Nginx developers started to disable compression in 2011, but the initial
changes (in versions 1.0.9 and 1.1.6) covered only OpenSSL 1.0.0 and better. Nginx disabled
compression with all OpenSSL versions during 2012, in versions 1.2.2 and 1.3.2.18

Deploying HTTP Strict Transport Security
Because HTTP Strict Transport Security (HSTS) is activated via a response header, congur-
ing it on a site is generally easy. However, there are certain traps you can fall into, which is
why I recommend that you read the section called “HTTP Strict Transport Security” in
Chapter 10 before you make any decisions.
Once HSTS is deployed on a web site, your users will arrive on port 443 on their subsequent
visits. But you still have to ensure that those who arrive on port 80 get redirected to the right
place. For that redirection, and because the HSTS response header is not allowed on plain-
text sites,19 you should have two dierent servers in the conguration. For example:

server {
    listen 192.168.0.1:80;
    server_name www.example.com;

    return 301 https://www.example.com$request_uri;
    
    ...
}

server {
    listen 192.168.0.1:443 ssl;
    server_name www.example.com;
    
    add_header Strict-Transport-Security "max-age=31536000; includeSubDomains";
    
    ...
}

17 TLS is not the only affected protocol; information leakage depends on how compression is implemented and might exist at other networking

layers. For example, HTTP response compression using the gzip algorithm is also vulnerable.
18 crime tls attack (Igor Sysoev, 26 September 2012)
19 If this were allowed, a man-in-the-middle attacker could inject HSTS information into plaintext-only sites and perform a DoS attack.
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Tere are two Nginx add_header behaviors that you need to watch for. First, headers are
added only to responses with non-error-status codes (e.g., from the 2xx and 3xx range).
Tis shouldn’t be a problem for HSTS, because most of your responses should be in the cor-
rect range. Second, the conguration directive inheritance behavior is sometimes surpris-
ing: if a child conguration block species add_header, then no directives of this type are
inherited from the parent block. In other words, if you need to add a header in a child block,
make sure to explicitly copy all add_header directives from the parent block.

Tuning TLS Buffers
Starting with version 1.5.9, Nginx allows you to congure the size of the TLS buer using
the ssl_buffer_size directive. Te default value for the buer is 16 KB, but that might not
be optimal if you want to deliver the rst content byte as fast as possible. Using a value of
1,400 bytes is reported to substantially reduce the latency.20

# Reduce the size of the TLS buffer, which will result
# in substantially reduced time to first byte.
ssl_buffer_size 1400;

You should be aware, however, that reducing the size of TLS records might reduce the con-
nection throughput, especially if you’re transmitting large amounts of data.21

Logging
Default web server logging mechanisms care only about errors and what content is being
accessed and thus don’t tell you much about your TLS usage. Tere are two main reasons
why you might want to keep an eye on your TLS operations:

Performance
Incorrectly congured TLS session resumption can incur a substantial performance
penalty, which is why you will want to keep an eye on the session-resumption hit ra-
tio. Having a log le for this purpose is useful to ensure that your server does resume
TLS sessions and also to assist you with the tuning of the cache.
Starting with version 1.5.10, Nginx supports the $ssl_session_reused variable, which
allows you to track session reuse directly. If you are using an earlier version, you’ll
have to rely on log postprocessing to count the number of times the same session ID
appears in the logs. From that, you can get a decent idea about the performance of
your TLS session cache.

20 Optimizing NGINX TLS Time To First Byte (TTTFB) (Ilya Grigorik, 16 December 2013)
21 Optimizing NGINX TLS Time To First Byte (TTTFB) (Discussion on the Nginx development list, 16 December 2013)
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Protocol and cipher suite usage
Knowing what protocol versions and cipher suites are actually used by your user base
is important, for two reasons: (1) you want to be sure that your assumptions about
your conguration are correct and (2) you need to know if some older features are
still required. For example, SSL 2 remained widely supported over many years be-
cause people were afraid to turn it o. We are now facing similar problems with the
SSL 3 protocol and the RC4 and 3DES ciphers.

It is best to use a separate log le for TLS connection information. In Nginx, this means
using two directives, one to dene a new log format and another to generate the log les:

# Create a new log format for TLS-specific logging. The variable
# $ssl_session_reused is available only from v1.5.10 onwards.
log_format ssl "$time_local $server_name $remote_addr $connection $connection↩
_requests $ssl_protocol $ssl_cipher $ssl_session_id $ssl_session_reused";

# Log TLS connection information.
access_log /path/to/ssl.log ssl;

Warning
Due to a bug in Nginx versions before versions 1.4.5 and 1.5.9, the
$ssl_session_id variable did not contain TLS session IDs. If you want to deploy
this type of TLS logging, you’ll need to upgrade to a newer release.

Tis type of log will create one entry for every HTTP transaction processed. In a sense, it’s
wasteful because the TLS parameters are determined only once, at the beginning of a con-
nection (Nginx does not allow renegotiation, which would potentially change the parame-
ters). On the other hand, connection reuse is the most ecient mode of operation, so track-
ing its usage is important. For this reason, I added $connection and $connection_requests
variables to the log format.

Note
Tere is currently no way to log connections with successful TLS handshakes but
without any requests. Similarly, it is not possible to log TLS handshake failures.
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17 Summary
Congratulations on making it all the way through this book! I hope you’ve had as much fun
reading it as I did writing it. But with so many pages dedicated to the security of TLS, where
are we now? Is TLS secure? Or is it irreparably broken and doomed?
As with many other questions, the answer is that it depends on what you expect. It’s easy to
poke holes in TLS by comparing it with an imaginary alternative that doesn’t exist; and it’s
true, TLS has had many holes, which we’ve been repairing over the years. However, the suc-
cess of a security protocol is measured not only in pure technical and security terms but also
by its practical success and usefulness in real life. So, although it’s certainly not perfect, TLS
has been a great success for the billions of people who use it every day. If anything, the
biggest problems in the TLS ecosystem come from the fact that we’re not using enough en-
cryption and that, when we do, we haven’t quite made up our minds if we really want proper
security. (Tink about certicate warnings.) Te weaknesses in TLS are not our biggest
problem.
Tereore, we’re discussing the security of TLS because it’s been so successful. Otherwise, we
would have long ago replaced it with something better. However, chances are that even if we
replaced TLS with something else, years of steady use would have led us to the same situa-
tion we have now. I’ve come to realize that you can’t have perfect security at world scale. Te
world, with its diversity, moves slowly and prefers avoiding breakage to enhanced security.
And you know what? Tat’s ne. It’s the cost of participating in a global computer network.
Te good news is that TLS is improving at a good pace. At some point a couple of years ago,
we started to pay more attention to security, especially encryption. Tis process accelerated
during 2013, when we discovered the harsh reality of widespread mass surveillance. Te
TLS working group is busy working on the next protocol version; it’s not going to be funda-
mentally dierent, because it doesn’t have to be—but it will take our security to the next
level. I’ll write about it in a future edition of this book.
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