


Mastering Wireshark

Analyze data network like a professional by  
mastering Wireshark - From 0 to 1337

Charit Mishra

BIRMINGHAM - MUMBAI



Mastering Wireshark

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book 
is sold without warranty, either express or implied. Neither the author nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1210316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-952-2

www.packtpub.com

www.packtpub.com


Credits

Author
Charit Mishra

Reviewer
Anish Nath

Commissioning Editor
Kunal Parikh

Acquisition Editor
Kevin Colaco

Content Development Editor
Onkar Wani

Technical Editor
Pranjali Mistry

Copy Editor
Neha Vyas

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph



About the Author

Charit Mishra works as a consultant and pentester at Protiviti, one of the top 
global consulting firms. He enjoys his job, which involves helping clients identify 
security vulnerabilities, more than anything. With real hands-on experience in 
security, he has obtained leading industry certifications such as OSCP, CEH, 
CompTIA Security+, and CCNA R&S. He also holds a master's degree in computer 
science. He has delivered professional talks at various institutions and private 
organizations on information security and penetration testing. You can reach him  
at LinkedIn at https://ae.linkedin.com/in/charitmishra, and on Twitter at  
@charit0819.

First of all, I would like to express my deepest gratitude to my 
beloved parents and my lovely sister, Ayushi, for their full support, 
expert guidance, understanding, and encouragement throughout my 
journey of making this possible. Without their incredible wisdom 
and counsel, this would have been an overwhelming pursuit.

I would like to also thank my good friend and mentor Mr. Piyush 
Verma for believing in me and guiding me whenever I needed 
direction. I am also thankful to all my friends and well wishers, 
especially Mr. Siddarth Pandey, Mr. Arham Husain, Mr. Bharath 
Methari, Mr. Dileep Mishra, and a great friend from Pakistan, Mr. 
Haider Ali Chughtai, who all helped me in every possible aspects 
and always motivated me to achieve the best. My apologies if I've 
missed anyone out.

Last but not least, I am grateful to the amazing team at Packt 
Publishing for their constant and incredible support for making  
this happen, and thanks to all the reviewers who helped bring  
this book into the best shape possible.

As the great influential Swami Vivekananda said, "In a day, when 
you don't come across any problems, you can be sure that you are 
traveling on the wrong path".

https://ae.linkedin.com/in/charitmishra


About the Reviewer

Anish Nath has a YouTube channel that you can visit at https://goo.gl/sbJkuX,  
where he loves to post videos on security, hacking, and other cloud-related 
technologies.

https://goo.gl/sbJkuX


www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


[ i ]

Table of Contents
Preface	 v
Chapter 1: Welcome to the World of Packet Analysis  
with Wireshark	 1

Introduction to Wireshark	 1
A brief overview of the TCP/IP model	 2
The layers in the TCP/IP model	 2
An introduction to packet analysis with Wireshark	 5

How to do packet analysis	 7
What is Wireshark?	 7
How it works	 8

Capturing methodologies	 10
Hub-based networks	 10
The switched environment	 10
ARP poisoning	 12
Passing through routers	 14
Why use Wireshark?	 15
The Wireshark GUI	 16

The installation process	 16
Starting our first capture	 20

Summary	 24
Practice questions	 25

Chapter 2: Filtering Our Way in Wireshark	 27
An introduction to filters	 28
Capture filters	 28

Why use capture filters	 33
How to use capture filters	 33
An example capture filter	 35
Capture filters that use protocol header values	 36



Table of Contents

[ ii ]

Display filters	 38
Retaining filters for later use	 41

Searching for packets using the Find dialog	 42
Colorize traffic	 44

Create new Wireshark profiles	 48
Summary	 50
Practice questions	 50

Chapter 3: Mastering the Advanced Features of Wireshark	 53
The Statistics menu	 54

Using the Statistics menu	 54
Protocol Hierarchy	 57

Conversations	 58
Endpoints	 60
Working with IO, Flow, and TCP stream graphs	 63
IO graphs	 64
Flow graphs	 66
TCP stream graphs	 68

Round-trip time graphs	 68
Throughput graphs	 69
The Time-sequence graph (tcptrace)	 70

Follow TCP streams	 72
Expert Infos	 74
Command Line-fu	 80
Summary	 87
Exercise	 88

Chapter 4: Inspecting Application Layer Protocols	 91
Domain name system	 92

Dissecting a DNS packet	 92
Dissecting DNS query/response	 94
Unusual DNS traffic	 96

File transfer protocol	 97
Dissecting FTP communications	 98

Passive mode	 98
Active mode	 99

Dissecting FTP packets	 100
Unusual FTP	 103

Hyper Text Transfer Protocol	 104
How it works – request/response	 105
Request	 105
Response	 108
Unusual HTTP traffic	 109



Table of Contents

[ iii ]

Simple Mail Transfer Protocol	 112
Usual versus unusual SMTP traffic	 112
Session Initiation Protocol and Voice Over Internet Protocol	 116
Analyzing VOIP traffic	 118

Reassembling packets for playback	 120
Unusual traffic patterns	 121
Decrypting encrypted traffic (SSL/TLS)	 122

Summary	 124
Practice questions	 124

Chapter 5: Analyzing Transport Layer Protocols	 127
The transmission control protocol	 128

Understanding the TCP header and its various flags	 128
How TCP communicates	 130

How it works	 131
Graceful termination	 133
RST (reset) packets	 134

Relative verses Absolute numbers	 135
Unusual TCP traffic	 140
How to check for different analysis flags in Wireshark	 142

The User Datagram Protocol	 143
A UDP header	 144
How it works	 144

The DHCP	 145
The TFTP	 146

Unusual UDP traffic	 148
Summary	 150
Practice questions	 151

Chapter 6: Analyzing Traffic in Thin Air	 153
Understanding IEEE 802.11	 154

Various modes in wireless communications	 155
Wireless interference and strength	 158

The IEEE 802.11 packet structure	 161
RTS/CTS	 166

Usual and unusual WEP – open/shared key communication	 167
WEP-open key	 169
The shared key	 170
WPA-Personal	 172
WPA-Enterprise	 177

Decrypting WEP and WPA traffic	 179
Summary	 182
Practice questions	 183



Table of Contents

[ iv ]

Chapter 7: Network Security Analysis	 187
Information gathering	 188

PING sweep	 189
Half-open scan (SYN)	 190
OS fingerprinting	 192

ARP poisoning	 194
Analyzing brute force attacks	 199

Inspecting malicious traffic	 208
Solving real-world CTF challenges	 216

Summary	 228
Practice questions	 229

Chapter 8: Troubleshooting	 231
Recovery features	 232

The flow control mechanism	 236
Troubleshooting slow Internet and network latencies	 239
Client- and server-side latencies	 243
Troubleshooting bottleneck issues	 250
Troubleshooting application-based issues	 253

Summary	 260
Practice questions	 260

Chapter 9: Introduction to Wireshark v2	 263
The intelligent scroll bar	 268
Translation	 270
Graph improvements	 272
TCP streams	 279
USBPcap	 282
Summary	 285
Practice questions	 285

Index	 287



[ v ]

Preface
Almost every device around you is connected to some other device over a network 
with the motive of sharing information or supporting other devices. With this small 
picture in your mind, what do you think is the most critical part of a network? 
Obviously, the channel isn't.

This book is written from a standpoint of using Wireshark to understand and 
troubleshoot commonly seen network anomalies. It can be the start of your journey 
into the world of networks/traffic/packet analysis. You can be the savior of your 
generation or the superhero of your team who helps people with connectivity issues, 
network administration, computer forensics, and so on. If your routine job requires 
dealing with computer networks, then this book can give you a strong head start. 
As the tagline says "From 0 to 1337",that is we will start from the basics gradually 
moving on to the advanced concepts too.

I have tried to cover the most common scenarios that you could come across while 
troubleshooting, along with hands-on practical cases that can make you understand 
the concepts better. By mastering packet analysis, you will learn how to troubleshoot 
all the way down to the bare wires. This will teach you to make sense of the data 
flowing around. You will find very interesting sections, such as troubleshooting slow 
networks, analyzing packets over Wi-Fi, malware analysis, and not to forget, the 
latest features introduced in Wireshark 2.0 in this book. Happy troubleshooting!

What this book covers
Chapter 1, Welcome to the World of Packet Analysis with Wireshark, provides you an 
introduction to the basics of the TCP/IP model and familiarizes you with the GUI  
of Wireshark along with a sample packet capture. Here, you will learn how to set  
up network sniffers for analysis purpose.



Preface

[ vi ]

Chapter 2, Filtering Our Way in Wireshark, talks about different filtering options 
available in Wireshark, namely capture and display filters, and how to create  
and use different profiles. Make yourself comfortable with the rich interface of 
Wireshark and start capturing what you exactly want to.

Chapter 3, Mastering the Advanced Features in Wireshark, helps you look under the 
hood of the statistics menu in Wireshark and work with the different command-line 
utilities that come prepackaged with Wireshark. You will also learn how to prepare 
graphs, charts, packet flow diagrams, and most important of all, how to become a 
command-line fu master.

Chapter 4, Inspecting Application Layer Protocols, helps you understand and analyze the 
normal and unusual behavior of application-layer protocols. Here, we will briefly 
discuss the techniques you can use to understand the cause. We all are aware of the 
basics, but have you ever thought how common application-layer protocol traffic can 
go crazy? In this chapter, you will learn how to deal with them.

Chapter 5, Analyzing Transport Layer Protocols, shows how TCP and UDP protocols 
work, how they communicate, what problems they face, and how Wireshark can be 
used to analyze them. Make yourself a transport-layer doctor who can easily figure 
out common anomalies and prove themselves worthy.

Chapter 6, Analyzing Traffic in Thin Air, shows you how to analyze wireless traffic  
and pinpoint any problems that may follow. We will dive into the new world of 
wireless protocol analysis, where you can become a Wi-Fi ninja.

Chapter 7, Network Security Analysis, shows you how to use Wireshark to analyze 
network security issues, such as malware traffic, intrusion, and footprinting 
attempts. In this chapter, you will learn how to figure out security anomalies,  
catch the hackers red handed and make them cry like a baby, and experience  
how to solve CTF challenges.

Chapter 8, Troubleshooting, teaches you how to configure and use Wireshark to perform 
network troubleshooting. Here, you will master the art of troubleshooting network 
issues such as slow networks. You will also learn how to troubleshoot networking 
problems with the most common daily-life examples.

Chapter 9, Introduction to Wireshark v2, shows you the amazing features launched in 
the latest release of Wireshark with practical examples, such as USBpcap, intelligent 
scrollbar, new graphs, and much more.



Preface

[ vii ]

What you need for this book
You just need a working installation of Wireshark and a basic understanding of 
networking protocols. Basic familiarity with network protocols would be beneficial,  
but it isn't mandatory.

Who this book is for
Are you curious to know what's going on in a network? Do you get frustrated when 
you are unable to detect the cause of problems in your networks? If your answer to 
these questions is yes, then this book is for you.

Mastering Wireshark is for Security and network enthusiasts who are interested in 
understanding the internal workings of networks and have prior knowledge of  
using Wireshark, but are not aware about all of its functionalities.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"Wireshark with an empty checksum field that generates the checksum offloading 
error."

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this: 
"Navigate to Edit | Preferences in the menu bar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ viii ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/MasteringWireshark_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/MasteringWireshark_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringWireshark_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ ix ]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





[ 1 ]

Welcome to the World  
of Packet Analysis  

with Wireshark
This chapter provides you an introduction to the basics of the TCP/IP model and 
familiarizes you with the GUI of Wireshark along with a sample packet capture.  
You will be introduced to the following topics:

•	 What is Wireshark?
•	 How does it work?
•	 A brief overview of the TCP/IP model
•	 An introduction to packet analysis
•	 Why use Wireshark?
•	 Understanding the GUI of Wireshark
•	 The first packet capture

Introduction to Wireshark
Wireshark is one of the most advanced packet capturing software, which makes  
the life of system/network administrators easy and proves its usefulness among  
the groups of security evangelists. Wireshark is also called a protocol analyzer, 
which helps IT professionals in debugging network-level problems. This tool can  
be of great use to optimize network performance.



Welcome to the World of Packet Analysis with Wireshark

[ 2 ]

Wireshark runs around dissecting network-level packets and showing packet details 
to concerned users as per their requirement. If you are one of those who deals with 
packet-level networking everyday, then Wireshark is for you and can be used for 
multiple troubleshooting purposes.

A brief overview of the TCP/IP model
Next, it's time to discuss the most important topic in the world of networking. In 
order to understand how all these things stick together, we need to understand the 
basics of the TCP/IP model. Even the world of computers needs a set of rules and 
regulations to communicate, and this is taken care by the networking protocols, 
which govern the transmission of packets/segments/frames over a dedicated 
channel between hosts.

The TCP/IP model was originally known as the DoD model, and the project was 
regulated by United States Department of Defense. The TCP/IP model takes care of 
every aspect of every packet's life cycle, namely, how a packet is generated, how a 
single packet gets attached with a required set of information (PDU), how a packet 
is transmitted, how it comes to life, how it is routed through to intermediary nodes 
to the destination, how it is integrated back with other packets to get the whole 
information out, and so on.

If you have any confusion regarding the basics of networking protocols, I would 
recommend that you do a quick revision before proceeding ahead, as this book 
requires familiarity with the TCP/UDP protocols. By the time you come back,  
you will be able to visualize and answer all of these questions on your own.

The layers in the TCP/IP model
The TCP/IP model comprises four layers, as shown in the following diagram.  
Each layer uses a different set of protocols allocated to it. Every protocol has  
specific designated roles, and all of them are designed in such a way that they 
comply with industry standards.



Chapter 1

[ 3 ]

The first layer is the Application Layer that directly interacts with users and other 
network-level protocols; it is primarily concerned with the representation of the 
data in an understandable format to the user. The Application layer also keeps track 
of user web sessions, which users are connected, and uses a set of protocols, which 
helps the application layer interface to the other layers in the TCP/IP model. Some 
popular protocols that we will cover in this book are as follows:

•	 The Hyper Text Transfer Protocol (HTTP)
•	 The File Transfer Protocol (FTP)
•	 The Simple Network Management Protocol (SNMP)
•	 The Simple Mail Transfer Protocol (SMTP)

The second layer is the Transport Layer. The sole purpose of this layer is to create 
sockets over which the two hosts can communicate (you might already know about the 
importance of network sockets) which is essential to create an individual connection 
between two devices.

There can be more than one connection between two hosts at the same instance. IP 
addresses and port numbers together make this possible. An IP address is required 
when we talk about WAN-based communication (in LAN-based communication, the 
actual data transfer happens over MAC addresses), and these days, a single system 
can communicate with more than one device over multiple channels which is possible 
with the help of port numbers. Apart from the restricted range of port numbers, every 
system is free to designate a random port for their communication.



Welcome to the World of Packet Analysis with Wireshark

[ 4 ]

This layer also serves as a backbone to the communication between two hosts. 
The most common protocols that work in this layer are TCP and UDP, which are 
explained as follows:

•	 TCP: This is a connection-oriented protocol, often called a reliable protocol. 
Here, firstly, a dedicated channel is created between two hosts and then data 
is transferred. Then, the sender sends equally partitioned chunks, over the 
dedicated channel, and then, the receiver sends the acknowledgement for 
every chunk received. Most commonly, the sender waits for a particular time 
after which it sends the same chunk again for assurance. For example, if you 
are downloading something, TCP is the one that takes care and makes sure 
that every bit is transferred successfully.

•	 UDP: This is a connection-less protocol and is often termed an unreliable form 
of communication. It is simple though because there is no dedicated channel 
created, and the sender is just concerned with sending chunks of data to the 
destination, whether it is received or not. This form of communication actually 
does not hamper the communication quality; the sole purpose of transferring 
the bits from a sender to receiver is fulfilled. For example, if you are playing a 
LAN-based game, the loss of a few bytes is not going to disrupt your gaming 
experience, and as a result, the user experience is not harmed.

The third layer is the Internet Layer, which is concerned with the back and forth 
movement of data. The primary protocol that works is the IP (Internet Protocol) 
protocol, and it is the most important protocol of this layer. The IP provides the 
routing functionality due to which a certain packet can get to it's destination.  
Other protocols included in this layer are ICMP and IGMP.

The last layer is the Link Layer (often termed as the Network Interface Layer) that 
is close to the network hardware. There are no protocols specified in this layer by 
TCP/IP; however, several protocols are implemented, such as Address Resolution 
Protocol (ARP) and Point to Point (PPP). This layer is concerned with how a bit of 
information travels inside the real wires. It establishes and terminates the connection 
and also converts signals from analog to digital and vice versa. Devices such as 
bridges and switches operate in this layer.

The combination of an IP address and a MAC address for both the client and server is 
the core of the communication process, where the IP address is assigned to the device 
by the gateway or assigned statically, and the MAC address comes from the Network 
Interface Card (NIC), which should be present in every device that communicates 
with other hosts. As data progresses from the Application layer to the Link Layer, 
several bits of information are attached to the data bits in the form of headers or 
footers, which allow different layers of the TCP/IP model to coordinate with each 
other. The process of adding these extra bits is called data encapsulation, and in this 
process, a Protocol data unit (PDU) is created at the end of the networking model.



Chapter 1

[ 5 ]

It consists of the information being sent along with the different protocol 
information that gets attached as part of the header or footer. By the time PDU 
reaches the bottom-most layer, it is embedded with all the required information 
required for the real transfer. Once it reaches the destination, the embedded header 
and footer PDU elements are ripped off one by one as it passes through each and 
every layer of the TCP/IP model as it progresses upward in the model.

The following figure depicts the process of encapsulation:

Figure 1.1: Data encapsulation

An introduction to packet analysis with 
Wireshark
Packet analysis (also known as packet sniffing or protocol analyzing) is used to 
intercept and capture live data as it travels over the network (Ethernet or Wi-Fi) 
in order to understand what is happening in the network. Packet analysis is done 
by protocol analyzers such as Wireshark available on the Internet. Some of these 
are free and some are paid for commercial use. In this book, we will use Wireshark 
to perform network analysis, which is an open source software and the best free-
network analyzer available on the Internet.



Welcome to the World of Packet Analysis with Wireshark

[ 6 ]

Numerous problems can happen in today's world of networking; for this, we need 
to be geared up all the time with the latest set of tools that can avail us of the ease of 
troubleshooting in any situation. Each of these problems will start from the packet 
level and can gradually grow up to a high network downtime. Even the best of 
protocols and services running on a system can go bad and behave maliciously. To 
get to the root of the problem, we need to look into the packet level to understand it 
better. If you need to maintain your network, then you definitely need to look into 
the packet level. Packet analysis can be used for the following aspects:

•	 To analyze network problems by looking into the packets and their specific 
details so that you can get a better hold over your network.

•	 To detect network intrusion attempts and whether there are any malicious 
users who are trying to get into your network, or they have already got 
access to something in your network.

•	 To detect network misuse by internal or external users by establishing 
firewall rules in your security appliance and then monitoring each of  
these rules through Wireshark.

•	 To isolate exploited systems so that the affected system doesn't become a 
pivot point for your network for malicious users.

•	 To monitor data in motion once it travels live in your network to have better 
control over the allowed and restricted categories of data. For instance, say 
you want to create a rule for your firewall that will block the access to Bit 
Torrent sites. Blocking access to them can be done from your manageable 
router, but knowing from where the request was originated can be easily 
audited through Wireshark.

•	 To gather and report network statistics by filtering the most specific packets 
as per your requirements and then creating specific capture filters for your 
perusal that can help you in the long run.

•	 Learning who is on the network and what they are doing, is there something 
they are not allowed to do, and is there anyone who is trying to bypass the 
network restrictions. All of these simple day-to-day tasks can be achieved 
easily through Wireshark.

•	 To debug client/server communications so that all the request and replies 
communicated between the peers on our network can be audited to maintain 
the integrity of your network.

•	 To look for applications that are sitting in the corner of your own network 
and eating the bandwidth. They might be making your network insecure or 
making it visible to the public network. Through this unnoticed application, 
different forms of network traffic can enter without any restrictions.



Chapter 1

[ 7 ]

•	 To debug network protocol implementations and any kind of anomalies 
present due to various misconfigurations in the current running devices.

To identify possible or malicious attacks that your network can be a victim of, to 
analyze them, control/supervise them, and make yourself ready for any possible 
malicious activity.

When performing a packet analysis, you should take care of things such as which 
protocols can be interpreted, which is the best software you can use according to 
your expertise, which protocol analyzer will best suit your network requirement. 
Experience does count in this field; once you start working with Wireshark, 
gradually you will come up with new ideas to troubleshoot and analyze your 
packets in a much more advanced way.

Packet sniffers can interpret common network protocols (such as IP and ICMP), 
transport layers (such as TCP and UDP), and application protocols (such as DNS  
and HTTP).

Due to the overwhelming amount of information presented by Wireshark's GUI, it 
might seem complex to some users and might be considered as one of its demerits. 
There are a few CUI/GUI tools that can solve this purpose. They are pretty simple  
to use and also present a simpler interface, for example, TShark, tcpdump, Fiddler, 
and so on.

How to do packet analysis
When traffic is captured, either all raw data is captured or only the header data is 
captured without capturing the total content of the packet. Captured information is 
decoded from raw data to a human-readable form, which allows users to understand 
the exchanged data between the networks in a much more precise manner.

What is Wireshark?
Wireshark is a packet-sniffing software that is used by IT professionals all around 
the world for analysis purpose. You can download it for free from https://www.
wireshark.org/download.html.

Wireshark can be installed on a variety of platforms, including Linux, MAC, and 
Windows (most of the versions). This is open source software, which means that  
the code of the software and its required libraries can be downloaded from the  
same website we mentioned earlier.

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html


Welcome to the World of Packet Analysis with Wireshark

[ 8 ]

One of the important key aspects of packet sniffing is where to place the packet 
sniffer in the physical network to achieve the maximum utilization out of it; packet 
sniffing is often referred to as tapping into the wire.

Tapping into the wire is not just about starting Wireshark on your system; there  
are a couple of things a person should know about before starting the sniffer. For 
instance, placing the sniffer at a proper place in the organization's infrastructure, 
having working knowledge of different networking devices because each of the 
networking devices (hubs, switches, routers, and firewalls) behave differently. 
It is also important to know how each of them work and how network devices 
handle network traffic. Placing the sniffer in the right place can impact your packet 
analyzing experience in a detailed manner, which in the end can lead to drastic 
results if done correctly.

After you have placed your sniffer, you should confirm that your NIC supports 
promiscuous working. By enabling this, your interface card will start learning  
about even those packets that are not destined or routed through your machine.  
A network's broadcasted traffic can be captured and analyzed by every client, which 
is part of the same network. Network devices broadcast multiple types of traffic that 
can be listened to by an interface, which supports the promiscuous mode.

The ARP protocol's traffic is broadcasted. The address resolution protocol is 
responsible for resolving MAC to IP addresses and vice versa. Devices such as 
switches send an ARP packet to all devices asking for the correct device to respond 
with it's MAC address. Gradually, the switch will maintain a list of MAC addresses 
and their corresponding IP addresses, which is even termed as the CAM table 
(content addressable memory). Now, whenever any host wants to communicate 
with its other corresponding peers over the LAN, information required for the 
transfer is communicated to the sender from the switch. Information such as IP  
and MAC addresses for different devices can be easily captured and recorded 
through ARP traffic.

How it works
Wireshark comes with the libcap/Winpcap driver, which lets you switch your NIC 
to the promiscuous mode; the only time you don't want to sniff in the promiscuous 
mode is when the packets are directly, intentionally destined to your device. On a 
Windows-based system, you should have elevated administrator privileges to sniff 
and analyze the packets. There are three common step processes that every protocol 
analyzer follows: collect, convert, and analyze. These are described as follows:



Chapter 1

[ 9 ]

•	 Collect: This is the first step where you choose a certain interface to listen 
on, and through this, you can acquire a certain amount of raw data from 
the network, which can be achieved by switching your interface into 
a promiscuous mode so that, after capturing what ever traffic is being 
broadcasted in your network, it can be displayed in your Wireshark GUI.

•	 Convert: This is to increase the readability of the collected binary form. 
Network packets can be converted by the protocol analyzer, such as 
Wireshark, to simple and easier formats so that people like us can have a 
better understanding of packets and solve our day-to-day problems easily.

•	 Analyze: In this final step, after the collection and conversion of the network 
packets, a step-by-step process of analyzing the data starts where we look 
into the specific details about the protocols and their specific configuration 
details. Then, we move on to host and destination addresses and the kind of 
information they are sharing. Rest of the analysis is left to the user's consent 
and how they filter and review the collected data.

If you want to get a foothold on understanding the process of packet capturing and 
analysis, you really need to be well versed with networking protocols and how they 
work because the whole communication that happens over a network is governed by 
various protocols, such as ARP, Dynamic Host Control Protocol (DHCP), Domain 
Name Service (DNS), Transmission Control Protocol (TCP), Internet Protocol (IP), 
HTTP, and many others.

Protocols are the rules and regulations that govern the process of communication 
between two network devices and control the environment under which they 
operate. Each of these protocols has different complexity levels depending on  
how and where they are being implemented. Majorly, all protocols work in the  
same fashion, where they send a request and wait for the confirmation, and as  
they receive an acknowledgement, they let the devices communicate.

After the data has been successfully transferred between them, the connections 
should be terminated gracefully in order to mark a communication as successful 
without loss of even a single bit. While the data is transferred, protocols need to 
maintain the integrity of the communication as well, that is, if abc information is  
sent from the sender's side, it should be received in the same order and manner.  
If the bits are being tampered during the transition, this means that the protocol  
used isn't reliable. Analyzing all of these tasks is the basic work responsibility of  
any network protocol analyzer.



Welcome to the World of Packet Analysis with Wireshark

[ 10 ]

Capturing methodologies
Network packets can be captured through various techniques. Depending on the 
requirement, a protocol analyzer is placed at a certain place in network with a 
particular type of configuration.

Hub-based networks
Hub-based networks are the easiest ones to sniff out because you've the freedom to 
place the sniffer at any place you want, as hubs broadcast each and every packet to 
the entire network they are a part of. So, we don't have to worry about the placement. 
However, hubs have one weakness that can drastically decrease network performance 
due to the collision of packets. Because hubs do not have any priority-based system for 
device that send packets, whoever wants to send them can just initiate the connection 
with the HUB (central device) and start transmitting the packets. Often, more than one 
devices start sending packets at the same instance. Now, as a result, the collision of 
the packets will happen, and the sending side will be informed to resend the previous 
packet. As a consequence, things such as traffic congestion and improper bandwidth 
utilization can be experienced.

The switched environment
Due to some restrictions present in switched-based infrastructures, packet analysis 
becomes a bit complex. To bypass these restrictions and make the life of administrators 
easy, we will talk about a couple of solutions such as port mirroring and hubbing out.

In port mirroring, once you have the command-line configuration console or web-
based interface to mage you're the access point (router/switch), then we can easily 
configure port mirroring.

Let's make it simpler for you with a logical illustration. For instance, let's assume 
that we have a 24-ports switch and 8 PCs which (PC-1 to PC-8) are connected. We 
are still left with more than 15 ports. Place your sniffer in any of those free ports and 
then configure port mirroring, which will copy all the traffic from whatever device 
we want to the port of our choice, where our protocol analyzer sits, which can see the 
whole bunch of data traveling through the mirrored port.

Once this is completely configured, we will be able to easily analyze each and every 
piece of information going back and forth from the mirrored port. This technique 
is one of the easiest among others to configure; the only thing you should know 
beforehand is how to configure switches with command-line interfaces. These days, 
admins are provided with a GUI for configuration purposes if it is the case for you to 
just go for it. The following figure depicts a simple demonstration of port mirroring:



Chapter 1

[ 11 ]

Figure 1.2: Port mirroring

Hubbing out is feasible when your switch doesn't support port mirroring. To use the 
technique, you have to actually plug the target PC out of the switched network, then 
plug your hub to the switch, and then connect you analyzer and target device to the 
switch so that becomes the part of the same network.

Now, the protocol analyzer and the target are part of the same broadcast domain. 
Your analyzer will easily capture every packet destined to target or originated from 
the target. But make sure that the target is aware about the data loss that can happen 
while you try to create hubbing out for analysis. The following figure will make it 
easier for us to understand the concept precisely:

Figure 1.3: Hubbing out



Welcome to the World of Packet Analysis with Wireshark

[ 12 ]

ARP poisoning
This is an unethical way to capture network traffic where we try to imitate another 
device between two parties. Let's say, for example, we have our default gateway at 
192.168.1.1 and our client is located at 192.168.1.2. Both of these devices must 
have maintained a local ARP cache that facilitates them to send packets without any 
extra overhead over the LAN. Now, the question is what kind information does the 
ARP cache hold, and in which form. Let me tell you, the command to view the ARP 
cache, which displays MAC addresses associated for a particular IP address is arp -a 
. Issuing the arp -a command (the same works for most of the platforms) populates 
a table that holds a device's IP address and its MAC address. Have a look at the 
following diagram which shows a normal scenario of ARP poisoning:

Before ARP Cache

192.68.1.1 – (Server)

192.68.1.2 – AA:BB:EE

192.68.1.3 – AA:BB:DD

192.68.1.2 – (Client)

192.68.1.1 – AA:BB:CC

192.68.1.3 – AA:BB:DD

192.68.1.3 – (Attacker)

192.68.1.1 – AA:BB:CC

192.68.1.2 – AA:BB:EE

Now that we've understood what is stored inside an ARP cache, let's try to poison it.

After ARP Cache

192.68.1.1 – (Server)

192.68.1.2 – AA:BB:DD

192.68.1.3 – AA:BB:DD

192.68.1.2 – (Client)

192.68.1.1 – AA:BB:DD

192.68.1.3 – AA:BB:DD



Chapter 1

[ 13 ]

192.68.1.3 – (Attacker)

192.68.1.1 – AA:BB:CC

192.68.1.2 – AA:BB:EE

Figure 1.4: ARP poisoning (the normal scenario)

Now that you've understood what is the importance of the ARP protocol and how it 
works, we can try to poison the arp cache of both the default gateway and the client 
with the attacker's MAC address. In simple terms, we will replace the client's MAC 
address in the default gateway's ARP cache with the attacker's MAC address. We 
will do the same in the client's MAC address, replacing the default gateway's MAC 
address with the attacker's MAC address. As a result, every packet destined to the 
client from the default gateway and vice versa will be sent to the attacker's machine.



Welcome to the World of Packet Analysis with Wireshark

[ 14 ]

If port forwarding is already configured on the attacker's side, the received packet 
will be forwarded to the real intended destination, without giving any hints to the 
client and the default gateway that the packet is being sniffed.

Figure 1.5: ARP poisoning (the poisoned scenario)

Other than these two techniques, there is a variety of hardware available on the 
market, which are popularly known as taps and can be placed between any two 
devices to sniff and analyze the traffic. Though this technique is effective to capture 
network traffic in some scenarios, it should be practised or deployed in a controlled 
environment because it can prove to be malicious to the internal corporate network.

Passing through routers
When dealing with routed environments, the main aspect of packet analyses is to place 
your sniffer at the right place from where we can gather the required information. 
Dealing with routed structures demands more skills, as sometimes you need to rethink 
about the placement of your sniffer. Consider a routed environment with three routers:

Router 1, router 2, and router 3 are working together; each of them owns 2-3 PCs. 
Router 1 is the acting like a root node while controlling its child networked nodes 
(router 2 and router 3). Router 3 clients are not able to connect to router 1 clients.  
To resolve this issue, the admin of the organization has placed the sniffer inside  
the router 3 area.



Chapter 1

[ 15 ]

After a while, the admin has collected quite a good amount of packets; the admin is 
still not able to detect the anomaly within the network. So, he/she decides to move 
the sniffer to another area in the network. After placing the sniffer in the router 1 
area, the admin can see quite a useful stream of packets that he/she was looking for 
earlier. This is quite a simple illustration of moving the sniffer around, which can be 
helpful in certain situations. The moral is that placing the sniffer in your networked 
infrastructure is quite an important task.

After reading this, I hope you would now like to see how Wireshark actually looks 
like, so let's take a look at the GUI of the software and how we have to initialize the 
process of capturing network packets.

If you do not have Wireshark installed, you can get a free copy from https://www.
wireshark.org/download.html. To go through the illustrations in this book, you 
also need to be familiar with the interface.

Why use Wireshark?
I hope I am not the only one who is obsessed with the simplicity of the packet 
capturing scenario, which Wireshark facilitates for us. I will just quickly point  
out the reasons why most people prefer Wireshark to other packet sniffers:

•	 User friendly: It does count for every GUI we have ever seen or worked 
with, how easily the options are presented, and how convenient it is to 
use (I guess, even the ones who don't know about packet analysis can start 
capturing packets in Wireshark without any prior specialized knowledge).

•	 Robustness: The amount of information Wireshark can handle is 
outstanding; what I actually mean by this is software of this kind may  
hang or crash (because of thousands of packets that are captured and 
displayed every second) when trying to display the packets traveling  
all over the network. However, Wireshark doesn't—a big hand to  
Wireshark creators for how well they have structured it.

•	 Platform independent: Yeah, this one is definitely on the list. This free 
software can be installed on any platform that is used for computing purposes 
by administrators these days, whether Linux-based, Windows-based, or 
Macintosh-based platforms.

•	 Filters: There are two kinds of filtering options present in Wireshark:
°° You choose what to capture (capture filters)
°° You choose what to display after you've captured (display filters)

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html


Welcome to the World of Packet Analysis with Wireshark

[ 16 ]

•	 Cost: Wireshark comes free, and is developed and maintained by a dedicated 
community. Wireshark offers some paid professional tools also. For more 
details refer to Wireshark's official website.

•	 Support: Wireshark is being developed very actively by a group of 
contributors scattered around the globe . We can sign up to the Wireshark's 
mailing list or we can get help from the online documentations, which can be 
accessed through the GUI itself; and various online forums are available to get 
the most effective; go to Google paid Wireshark support to know more about it.

The Wireshark GUI
Before we discuss its awesome features, let me take this opportunity to explain the 
history of Wireshark and how it came into existence.

Wireshark was built during the late '90s. Combs, a young college graduate from 
Kansas city developed Ethereal (the basic version of Wireshark), and by the time 
Combs developed this awesome piece of invention, he had landed himself a job  
where he signed a formal contract. After a few years of service, Combs decided to  
quit his job and to pursue his dreams by developing Ethereal further. Unfortunately,  
as per the legal terms, the Combs invention was part of the company's proprietary 
software. Despite this, Combs left the job and started working on the new version 
of Ethereal, which he titled Wireshark. Since 2006, Wireshark has been in active 
development and is being used worldwide. It supports a majority of protocols  
(more than 800), which are implemented in the wild today.

The installation process
Follow these steps to install Wireshark on your system:

1.	 In this book, I am going to you use a Mac PC; for other platforms, the 
installation is the same. Some OSes, such as Kali Linux, come with a 
preinstalled version of Wireshark.

2.	 So, if you are using Macintosh, then first and foremost, you need to download 
X11 Quartz (XQuartz-2.7.7), which will simulate an environment to run 
Wireshark (for Windows just download the respective executable compatible 
with your processor).

3.	 Now, you can install Wireshark (Wireshark 1.12.6 Intel 64), which we 
downloaded earlier in this book.

4.	 Once both of these are successfully installed, we need to restart our computer.



Chapter 1

[ 17 ]

5.	 After the PC has been restarted, start Wireshark. As soon as the packet 
analyzer opens, you will see that the X11 server starts on its own. You don't 
need to worry about it; just leave it in the background.

6.	 Once it is opened completely, it will look as shown in the following screenshot:

Figure 1.6: The Wireshark screen

Before we go ahead and start the first capture, we need to get a bit familiar with the 
options and menus available.

There are six main parts in the Wireshark GUI, which are explained as follows:

•	 Menu Bar: This represents tools in a generalized form that are organized  
in the Applications menu.

•	 Main Tool Bar: This consists of the frequently used tools that can offer 
efficient utilization of the software.

•	 Packet List Pane: This window area displays all the various packets getting 
captured by Wireshark.



Welcome to the World of Packet Analysis with Wireshark

[ 18 ]

•	 Packet Details Pane: This window gives us details pertaining to the selected 
packet in the packet list pane are shown. For example, we can view source 
and destination IP addresses and different protocols used for communication 
arranged in the bottom-top approach (Link Layer to Application Layer). 
Information regarding the packets is listed in different categories of protocols 
that can be expanded to get more details for the selected packet.

•	 Bytes Pane: This shows the data in the packets in the form of hex bytes  
and their corresponding ASCII values; it shows the values in the form  
in which they travel in the wires.

•	 Status Bar: This displays details such as total packets captured.

The following screenshot will help you to identify different sections in the application, 
please make sure you get yourself acquainted with all of them before proceeding to 
further chapters.



Chapter 1

[ 19 ]

Within the toolbar area, we have a few useful tools. I would like to give you a brief 
overview of some of them:

•	 : This gives you the option to choose an interface for listening

•	 : Through this, you can customize the capturing process

•	 : These are to start/stop/restart the capturing process

•	 : This is to open a saved capture file

•	 :This is to save the current capture in a file

•	 : This is to reload the current capture file

•	 : This is to close the current capture file

•	 : This is to go back to the recent most visited packet

•	 : This icon is to go forward to the most recently visited packet

•	 : This is used to go to a specific packet number

•	 : Toggle Color coding for the packets On/Off

•	 : This is used to toggle the autoscroll on/off

•	 : This is to zoom in, zoom out, and reset zoom to the default

•	 : This is used to change the color coding as per requirements

•	 : This is used to narrow down the window in order to capture packets

•	 : This is used to configure display filters to only see what is required



Welcome to the World of Packet Analysis with Wireshark

[ 20 ]

Even after selecting a working interface, sometimes, you won't be able to see any 
packets in your packet list pane. There can be multiple reasons for this, some of 
which are listed as follows:

•	 You do not have any network traffic
•	 The packets traveling in the network are not destined to your device
•	 You do not have the promiscuous mode activated or do not have an option 

for the promiscuous mode

After launching the Wireshark application, you will see something like the following 
screenshot on our screens. Although it doesn't look so interesting at first glance, what 
makes it interesting are the packets that are flowing around. Yeah, I am talking about 
capturing packets.

Figure 1.7: The Wireshark capture screen

Starting our first capture
As you've been introduced to the basics of Wireshark and since you have learned 
how to install Wireshark, I feel you are ready to initiate your first capture. I will 
be guiding you through the following series of steps to start/stop/save you first 
Wireshark capture:

1.	 Open the Wireshark application.
2.	 Choose an interface to listen to.



Chapter 1

[ 21 ]

Figure 1.8: The interface window

3.	 Before you click on Start, we have the Options button, which gives us the 
advantage of customizing the capture process; but as of now, we will be 
using the default configuration.

Make sure that the Promiscuous mode is activated so that we can 
capture the traffic that is not destined to our machine.

Figure 1.9: The capture customization screen



Welcome to the World of Packet Analysis with Wireshark

[ 22 ]

4.	 Click on the Start button to initiate the capturing process.
5.	 Open your browser.
6.	 Visit any website you want to.

Figure 1.10: The Wireshark website

7.	 Switch back to the Wireshark screen; if everything goes well, you should 
be able to see a numerous packets getting captured in your Wireshark GUI 
inside the packet list pane.
To stop the capture, you can just click on the stop capture button in the 
toolbar area or you can click on Stop under the Capture menu bar.



Chapter 1

[ 23 ]

Figure 1.11: Stopping capture

8.	 I know there is an overwhelming amount of information you will see by 
now, but don't worry about it. I am here to make it simple for you.

9.	 The real process of packet analysis starts when you have captured packets— 
I mean packet filtering. We will be discussing packet filtering in detail in the 
upcoming chapters.

10.	 Now, the last step is to save the capture file for later use:

11.	 Save your file with the default .pcapng extension in you folder.



Welcome to the World of Packet Analysis with Wireshark

[ 24 ]

If you have read all the steps all the way up to this point, I would encourage you to 
create your first capture file.

Summary
This chapter lays the foundation of basic networking concepts along with an 
introduction of the Wireshark GUI. Wireshark is a protocol analyzer that is used 
worldwide by IT professionals to capture and analyze network-level packets.

The TCP/IP model has four layers: the Application Layer, Transport Layer, Network 
Layer, and Link Layer. Data gets encapsulated as it passes on from one layer to 
another; the resulting packet at the bottom is called a complete PDU, which actually 
travels over the channel.

To install Wireshark, you just need to visit http://www.wireshark.org and then 
download the appropriate version of this open source software. The Wireshark 
community is governed by real-world geeks; this can be a good source of learning 
and for troubleshooting purposes.

The Wireshark GUI is user friendly, robust, and platform independent; even new IT 
professionals can easily adapt the tool.

One important aspect of protocol analyzing is to place the sniffer at the right place; 
every organization's infrastructure is different from another, where we might need  
to apply different techniques in order to get the right packets to use.

Hubbing out, port mirroring, ARP poisoning, and tapping are some of those useful 
techniques that can be used to monitor and analyze traffic in different situations.

There are six main parts in the Wireshark tool window: Menu Bar, Main Tool Bar, 
Packet List Pane, Packet Details Pane, Bytes Pane, and Status Bar.

Using the back/forward key during a packet analysis scenario can be really useful. 
One should know about all the tools that are displayed in the main toolbar area.

In the next chapter, you will learn how to work with different kinds of filters 
available in Wireshark.

http://www.wireshark.org


Chapter 1

[ 25 ]

Practice questions
Q.1 How many layers are there in the TCP/IP? Name them.

Q.2 Which layer in the TCP/IP model handles Layer 2 addresses?

Q.3 The Link Layer is also called?

Q.4 The HTTP protocol uses TCP or UDP?

Q.5 IP, ICMP, and _________ are the protocols in the Internet Layer

Q.6 How many parts of the Wireshark window do you know?

Q.7 ARP is a Layer 3 protocol—true/false?

Q.8 Does the TCP protocol follow a three-way handshake?

Q.9 The Port Mirroring technique is possible through switches only—True/False?

Q.10 The Hubbing out technique uses a router to isolate a PC from it peers— 
true/false?

Q.11 TCP is an unreliable protocol—true/false?

Q.12 Install Wireshark and start a sample capture using your wireless interface. Save 
your capture file on the desktop with the name first.pcap, and close Wireshark.

Q.13 Open your first.pcap capture file in Wireshark and check how many packets 
you captured in total.

Q.14 Which pane displays information in the HEX and ASCII form for each packet 
we've captured?

Q.15 Switch off the promiscuous mode from the capture options window and observe 
whether you are still able to receive packets from other devices or not.





[ 27 ]

Filtering Our Way  
in Wireshark

This chapter will talk about different filtering options available in Wireshark, 
namely, capture and display filters. We will also look at how to create and use 
different profiles. The following are the topics we will cover in this chapter:

•	 An introduction to capture filters
•	 Why and how to use capture filters
•	 Lab up—capture filters
•	 An introduction to display filters
•	 Why and how to use display filters
•	 Lab up—display filters
•	 Colorizing traffic
•	 Creating a new Wireshark profile(s)
•	 Lab up—profiles

I hope you are ready to start analyzing packets using different filtering options present 
in Wireshark and to reuse the filters that we previously created in a user-defined 
profile. I will be guiding you with a technique to filter packets based on certain 
expressions, which we will create using different primitives that are available.

Before we go ahead and start creating awesome filters, I want to mention one more 
interesting tool that is used to find packets: the find utility.



Filtering Our Way in Wireshark

[ 28 ]

An introduction to filters
In the world of Wireshark, there are two kinds of filters that can be used over live 
traffic, and on saved capture files. Filters enhance the flexibility of packet analysis, 
where a certain user is given the privilege of seeing what he/she wants to see to 
capture what they want to capture.

The two types of filters are capture filter and display filter. Now, let's have look at 
each one of them in detail.

Capture filters
This gives you the facility to capture what you want to capture—others will be 
discarded. Capturing packets is a processor-intensive task, and Wireshark will 
acquire a quite good amount of primary memory as well. So, sometimes, we will 
have to save the resources for other processes, which can be utilized to analyze 
packets, and in some cases, we would like to capture only that data which meets  
our expression—rest of it will be dropped.

Wireshark offers some interesting options to configure an interface, which will be 
capturing traffic that meets only a certain expression, and this is achievable through 
the Capture Options window, as shown in the following screenshot:

Figure 2.1: The Capture Options dialog



Chapter 2

[ 29 ]

Here, points list various capture options dialog related details

•	 Capture: In this window, you can choose the interface you want to capture 
packets from, and you can even select multiple interfaces at once to listen 
on all of them. The details for every interface are listed under separate 
columns such as Capture, Interface, the name of the interface, whether the 
promiscuous mode is enabled or not, and so on. Under the Capture dialog, 
you will see a checkbox to toggle the promiscuous mode, and you can even 
choose the promiscuous on all interfaces option to activate what you require 
in just one click.

•	 Manage Interfaces: This button facilitates addition or removal of a new 
interface for listening purposes you intend to. You can add even remote 
machine interfaces, where you would be required to have root level privileges.

°° Capture Filter: By clicking on this Capture Filter button, you will 
be able to see a dialog similar to what is shown here. The already 
configured capture filters are listed by default, and here, we can 
create and save our custom capture filters as well.

Figure 2.2 :Default Capture filters

To start off, users can use these default filtering profiles and get an idea about how 
to create custom filtering strings. Once you are well versed with the basics, you can 
go ahead and use the same window to create your own custom filters, but make sure 
that you have followed the Berkley Packet Filtering (BPF) syntax. The BPF syntax is 
an industry standard and is used by multiple protocol analyzers, which make your 
filter's configuration file portable.



Filtering Our Way in Wireshark

[ 30 ]

Let's create one together to get a better hold over it; consider a scenario where we 
have to capture packets originating from a web server that is located at 192.168.1.1 
(change the IP address to the web server's address that you are monitoring), and follow 
the next steps:

1.	 Open the Capture Options dialog.
2.	 Click on Capture Filter.
3.	 Click on New.
4.	 Write Web server 192.168.1.1 inside the Filter name textbox.
5.	 Write host 192.168.1.1 and port 80 inside the Filter String text-box

6.	 Once you've done this, click on OK; if you've entered everything correctly, 
the textbox followed by the Capture Filter button will be displayed with a 
green background, as shown in the following screenshot:

Figure 2.4 :Creating a sample capture filter

•	 Capture Files: This option gives you the flexibility to save your captured 
packets into the file(s) that already exists on your system. The captured 
packets will be added to the file of your choice if you don't choose any.  
A temporary file will be created, and data will be written to it, which can  
be saved to a user-specified location. To achieve this, write the name of the 
file that uses absolute path referencing or click on Browse followed by the 
File textbox to choose a location.



Chapter 2

[ 31 ]

If you select the multiple files option, then you can save your packets in 
multiple files, where we can customize more options, which are stated  
as follows:

°° Next File Every: After capturing a certain amount of data, Wireshark 
will create a new file and your data will be added to it. For instance,  
I want to create a new file after Wireshark captures 2 MBs of data.

°° Next File Every: After a certain amount of time, Wireshark will create 
a new file and your packets will be added to it. For instance, I want to 
create a new file after every 5 minutes of the capturing process.

°° Ring buffer: Using this option, you can restrict the creation of a new 
file. Wireshark uses the First in First Out (FIFO) option to write 
data to multiple filesets. For example, you have selected the Ring 
buffer option and increased the number of files to 5, and you have 
configured that after every 5 MBs, a new file should be created.

Now, according to this configuration, once you start capturing packets,  
after every 5 MBs of data, a new file will be created and the packets will  
be written to it. Once the limit that you specified in the Ring Buffer area  
is exceeded, Wireshark will not create a new file; instead, it will roll back  
to the first file and append data to it. The following screenshot shows a 
similar kind of configuration:

Figure 2.5 : The Capture Files option

•	 Stop Capture Settings: This option lets you stop the capturing process after 
a certain condition is triggered; we have four different kinds of triggers. 
Activating these can stop Wireshark from capturing new packets, and they 
are stated as follows:

°° Packet(s): Stop capturing after a certain count of packets is reached
°° File(s): Stop capturing after the creation of a certain number of files
°° Megabyte(s): Stop capturing after capturing a certain amount of data
°° Minute(s): Stop capturing  after running for a certain period of time



Filtering Our Way in Wireshark

[ 32 ]

There might be one question that you may want to ask: what if we select more 
than one option at a time? For instance, as shown in the following figure.
You can activate more than one option at a time; Wireshark will stop capturing 
whichever condition is met first.

Figure 2.6 : The Stop Capture options

•	 Display Options: There are a few options available in this section that can be 
configured to restrict how the packets and their corresponding information 
will be displayed in the Packet List Pane option and the Protocol hierarchy 
window. Refer to the following figure to see this.
If you select Update list of packets in real-time, you will observe that  
Packet List Pane is updated as soon as Wireshark captures a new packet,  
and the pane will be scrolled upwards automatically. Choose these options  
if needed; otherwise, the resources acquired by these two tasks can be used 
for other processes.
If you check the Hide capture info dialog box, the Protocol Hierarchy 
window, that shows the statistics (in percentage) , will be hidden. If you  
don't have any specific purpose, I would recommend that you uncheck  
all these options.

Figure 2.7: Display Options

•	 Name Resolution: If selected, this feature can resolve the Layer 2, Layer 3, 
and Layer 4 addresses to their corresponding names; for better understanding, 
refer to the following screenshot:



Chapter 2

[ 33 ]

Figure 2.8: Name Resolution

Why use capture filters
Capturing only traffic that meets your requirement is really useful when you have a 
large volume of packets flowing around. Creating your own custom capture filters 
can come in really handy while you analyze a production environment. Capture filters 
are applied before you initiate the actual capture process. In general, every packet 
captured by Wireshark is passed to the capturing engine so that it gets translated to a 
human-understandable format, but if you have applied a capture filter, Wireshark will 
drop the packets that don't meet your expression. All these dropped packets won't be 
passed to the capturing engine, . In comparison, display filters are much more specific 
and powerful; while using capture filters, you should be careful, because there is no 
way of recovering dropped packets that do not meet the expression that you created.

The Berkley Packet Filter (BPF) syntax is used to create capture filters, and several 
protocol analyzers use it as well, thus maintaining industry standards. It is significantly 
easy to learn and practice, just use the basic format to structure an expression.

How to use capture filters
Using the BPF syntax earlier, we created a simple capture filter through the capture 
filter dialog; let's discuss it in detail because it is really crucial to know about BPF,  
as it is used by a variety of analyzers.

If you're using the BPF syntax, you have to follow a certain format structure, which  
is a combination of two arguments: identifiers and qualifiers, which are explained  
as follows:

•	 Identifiers: This is the value that you are looking for in your packets. For 
example, if you are filtering the packets for a certain IP address, then your 
capture filter will look something like host 192.168.1.1, where the value 
192.168.1.1 is an identifier.



Filtering Our Way in Wireshark

[ 34 ]

•	 Qualifiers: These are categorized into three different sections:
°° Type: There are three types of type qualifiers: host, port, and net. 

In short, a type qualifier refers to the name or the number that your 
identifier refers to. For example, in your host 192.168.1.1 filter, 
host is the type qualifier.

°° Direction: Sometimes, when you need to capture packets from a 
particular destination or source, we can specify direction qualifiers 
as well. For example, in the src host 192.168.1.1 capture filter, 
src specifies that we've to capture packets originating from a specific 
host only. Likewise, if you specify dst host 192.168.1.1, would 
capture packets only destined to host 192.168.1.1.

°° Proto: This refers to protocol qualifiers that give us the feature  
where we can mention the specific protocol that we want to add  
in our expression for capture purposes. For example, if you want  
to capture http traffic coming from your host 192.168.1.1, then 
your expression will look something like src host 192.168.1.1 
and tcp port 80.

In the previous example, we combined two expressions together using the 
concatenation operator (&/and). Similarly, we've the alteration operator (|/or) and the 
negation operator (!/not), which can be used to combine and create complex filters.

For example, as per our previously created filter src host 192.168.1.1 and  
tcp port 80, all the packets originating from 192.168.1.1 and going to port 80 
will be captured.

If you add the or operator between src host 192.168.1.1 or tcp port 80,  
then when an expression in your filter matches, then the packet will be captured. 
This means that every packet originating from 192.168.1.1 or any packet associated 
with port 80 will be captured regardless of the second condition.

In the case of the not operator, a capture filter such as not port 80 states that any 
packet associated with port 80 should not be captured.

Once you start working in a production environment, you will see how common it is 
to combine filters using the AND, OR, and NOT operators.



Chapter 2

[ 35 ]

An example capture filter
Though you have a variety of filters available in Wireshark itself, which can give you 
an overview of the BPF syntax, to access the present filters by default, go to Capture 
| Capture Filers or click on the Capture Options button in the main toolbar and then 
click on Capture Filter. From the same window, we have an option to create new 
filters that we already discussed.

Refer to the following table for sample capture filters:

Filters Description
host 192.168.1.1 All traffic associated with host 192.168.1.1
port 8080 All traffic associated with port 8080
src host 192.168.1.1 All traffic originating from host 192.168.1.1
dst host 192.168.1.1 All traffic destined to host 192.168.1.1
src port 53 All traffic originating from port 53
dst port 21 All traffic destined to port 21
src 192.168.1.1 and tcp port 21 All traffic originating from 192.168.1.1 and associated 

with port 21
dst 192.168.1.1 or dst 192.168.1.2 All traffic destined to 192.168.1.1 or destined to  

host 192.168.1.2
not port 80 All traffic not associated with port 80
not src host 192.168.1.1 All traffic not originating from host 192.168.1.1
not port 21 and not port 22 All traffic not associated with port 21 or port 22
tcp All tcp traffic
Ipv6
tcp or udp
host www.google.com
ether host 07:34:aa:b6:78:89

All ipv6 traffic
All TCP or UDP traffic
All traffic to and from Google's IP address
All traffic associated with the specified MAC address

It is essential to know about the BPF syntax. As and 
when you get into Wireshark in more detail, you will 
feel its importance. I would suggest that you practice 
it once when you are comfortable with the syntax.



Filtering Our Way in Wireshark

[ 36 ]

Capture filters that use protocol header values
Capture filters can be created on the basis of offset values present in protocol header 
fields. The syntax to create such filters looks like proto[offset:size(optional)]
=value. Here, proto is any protocol that you want to filter, offset is the position of 
the corresponding value in the header, size is the length of the data you are looking 
for, and value is the data you want to find.

Say, for instance, we want to capture only ICMP reply packets; now, if you observe 
the following figure, you will note that the ICMP header type is located at the first 
place and the offset counting starts from 0. So, the offset value will be 0 in this case, 
and the size of the field is 1 bytes. We have all the required information to create a 
capture filter, so now, the resulting expression will look like icmp[0:1]=0.

Figure 2.9: ICMP reply

Let's try to apply the same to Wireshark; we will then ping www.google.com to check 
whether it works.

Figure 2.10 : ICMP capture filter

Let's ping www.google.com and check whether it works.

Figure 2.11: Browse google.com

www.google.com
www.google.com


Chapter 2

[ 37 ]

As a result, Wireshark will capture only the ICMP reply packets. Using the same 
technique, you can filter out traffic on the basis of the protocol header value:

The following table lists some sample bytes-based capture filters for TCP and ICMP; 
try practicing them too:

Filter Description
icmp[0] = 0 ICMP request packets
icmp[0:1] = 8 ICMP reply packets
icmp[0:1] = 3

tcp[13] = 2

ICMP destination host unreachable packets
TCP SYN flag packets only

tcp[13] = 18 TCP SYN/ACK flag packets only
tcp[13] = 32 TCP URG flag set packets only



Filtering Our Way in Wireshark

[ 38 ]

Display filters
Display filters are much more flexible and powerful when compared to capture 
filters. Display filters do not discard any packets; instead, the packets are hidden to 
make viewing convenient or convenience. Discarding packets is not a very effective 
practice because, once the packets are dropped, they cannot be recovered. When 
you apply the display filter, only those packets that meet the specification of your 
filter will be displayed. In the the second column of the status bar of the Wireshark 
window, you will see a number of packets displayed after you apply a filter.

A display filter can be used for a capture file in the Filter dialog box located above 
the Packet List Pane. Display filters are more popular than capture filters. The syntax 
used for display filters can be easily adapted and applied. For new users, a display 
filter is like a super power that gives you the functionality of hiding inappropriate 
packets in run-time that do not meet your requirements as per the current scenario.

Display filters can be created on the basis of several different constraints such as the 
IP address, protocols, port numbers, and header values in specific protocols. There 
are lot of conditional tools and concatenation operators that can be used to create 
complex expressions. You can combine different sets of expressions to get more 
specific sets of packets that we are looking for. Each and every packet shown in the 
Packet List Pane can be filtered using the fields that a packet contains.

Display filters do not delete data; instead, packets are hidden, which can be made 
visible again once the filter in the Filter dialog above the list pane is cleared. For 
instance, to display only ICMP packets, just enter ICMP in the filter dialog and click 
on Apply; it's really simple, isn't? If you want to see all packets again, just click on 
the Clear button and everything will be back to normal.

Wireshark has a very awesome feature that can assist you while creating your filter. 
Just click on the Expression button at the end of the Filter dialog box, choose the 
protocol you want to filter, and specify the value if there is one.

Using the filter expression dialog is really easy, and if you are a beginner, then this  
is a boon for you. Let's learn how to use the expression dialog.

Figure 2.12 : The filter expression

1.	 As show in the preceding screenshot, click on the Expression button.



Chapter 2

[ 39 ]

2.	 Now, you will be presented with the Expression window like the one shown 
in the following screenshot:

3.	 For example, if you want to see only packets associated with ip:192.168.1.1, 
then just scroll down in the Field Name to find IPv4. Then, expand the section 
and choose the ip.addr option.

4.	 Then, from the Relation box next to it, choose the operator you wish to add 
in your expression.

5.	 At last, write the IP you are looking for in the Value (IPv4 address) box.
6.	 At last, just click on OK. If you've followed all the steps up to here correctly, 

then you would be able to see the packets originated from the ip that you 
mentioned (change 192.168.1.1 to your IP address).

7.	 Below the Value box, there is a Predefined value box that is used when 
a certain protocol restricts us to use only a specific set of values. You can 
choose a value form here.

8.	 Below the Predefined Value box, there is a Range box that allows us to  
enter a range of values such as 1-78, 0-5, 120-255 if the protocol allows 
the same.

This is one of the easiest ways to create a display filter; there is one more way 
following which we can also create such filters. Entering filters manually can 
drastically increase the speed of your work, but it requires a bit more skill than  
there are in a novice user.



Filtering Our Way in Wireshark

[ 40 ]

Before we start digging into creating filters manually, I want you to know about a 
few more things, such as comparison and logical operators. These can be used to 
create simple and the most complex filters for Wireshark.

The following table lists the comparison operators used to create display filters:

Operator Description
==/eq Equal to
!=/ne Not equal to
</lt Less than
<=/le Less than equal to
>/gt Greater than
>=/ge Greater than equal to

Next, let's have a look at the logical operators that are used to combine different 
conditions together. The following table lists all of them:

Operator Description
AND/&& The AND logical operator is used when we want both 

parts of the expression to state true. For example, the 
ip.src==192.168.1.1 and tcp filters would only 
display packets originated from ip 192.168.1.1 and 
associated with the tcp protocol. Only the packets that 
match both the expressions will be shown.

OR/|| The OR logical operator is used when we just focus on 
one condition to be true at a time; if both are true, even 
then it's ok. For example, the port 53 or port 80 
filters would display all packets associated with port 
53 (DNS) along with all packets associated with port 80 
(http).

NOT/! The NOT logical operator is used when we want to 
exclude some packets from the list pane. For example, 
the !dns filter would hide all the packets associated 
with the DNS protocol.



Chapter 2

[ 41 ]

Retaining filters for later use
Sometimes, you will have a requirement where having access to previously created 
filters would make your work easy and fast enough. Wireshark gives you the facility 
where you can retain your display filters through their saved names and use them at 
a later point of time whenever required. This option will save you the great amount 
of time and effort required to type some of the complex display filters. To create one 
for yourself, follow the given steps:

1.	 Go to Analyze | Display filters; this will give you a window like the one 
shown in the following screenshot:

Figure 2.13: Adding Display Filters

2.	 Now, click on New, enter the values in the Filter name and Filter string 
fields. For instance, we want to create a display filter for no ARP packets. 
Then, the values will look something like the following screenshot:

Figure 2.14 : Creating a new filter

3.	 After entering the same, click on Apply. Now, in the list of default filters 
present you would be able to see NO ARP, which can be used later.



Filtering Our Way in Wireshark

[ 42 ]

4.	 Make sure that the Filter String box is shown with a green background, 
which denotes that your expression is correct; if it is in red color, then you 
need to recheck it, and if it is in yellow, this denotes that the results can be 
unexpected. Now, you can click on Apply and then click on Ok.

5.	 If you need assistance to create any filter you want, simply click on the 
Expression button next to the Filter string box, where all the protocols  
and majorly used filter expressions can be found.

6.	 The Delete button will assist you in deleting an existing filter from the list.
7.	 The Cancel button will discard any unsaved changes and close the window.
8.	 The Ok button commits Save and will close the window.
9.	 Now, let's try applying the filter we just created. Navigate to Analyze | 

Display Filter | (Scroll and select ) Display Filter | Apply.

Try following the same and create your own display filter that you might want  
to reuse.

Searching for packets using the  
Find dialog
If you want to find a packet for a particular criterion, you can use the Find dialog.  
It has a couple of useful search techniques that can be applied easily and effectively on 
an already captured file or on a live running capture. You can access the Find utility by 
navigating to Edit | Find packets or using the shortcut Ctrl + F.

Figure 2.15: The Find Packet dialog



Chapter 2

[ 43 ]

Let's see some more configurable options in it:

•	 The display filter: After capturing the traffic, while analyzing whether you 
just want to see some specific packets based on a certain IP /Port/ Protocol, 
those packets that meet a certain criteria will be displayed in the list pane,  
for example:

°° The ip.addr == 192.168.1.1 (based on an IP address)
°° The port 8080 (based on a port number)
°° http (based on a protocol)

•	 The Hex value: If you have the hex value for a certain packet that you are 
looking for, then this option can be selected. Just write the physical address 
separated by colons, for example:

°° 0A:C4:22:90:45:00

°° AA:BB:CC

•	 String: The next and last option is a text-string-based search where you can 
enter the name of the DNS server, name of the machine, and any resolved 
name that you know about (enter any string or word), for example:

°° Cisco
°° An administrator
°° A web server
°° Google

•	 Search In: This feature gives us the ability to search in a specific pane. For 
instance, if you are looking for a packet in the bytes pane, which matches the 
value Google (the ASCII value in the packet bytes pane will be matched), then 
we can go ahead and first choose the String option and then check the Search 
In box and choose Packet Bytes.

•	 String Options: To use this, first select the String option and then select 
Case-Sensitive and then if you want, choose the character width as well  
(but I would suggest not changing this unless until you have a specific  
reason to do so).

°° Direction: This last option changes the direction of a search; you can 
change it to upward or downwards.

Once you have customized the options, enter the text and click on Find. This will 
give you the first exact capture that matches your criterion. To move back and forth 
between the matched packets, you can use Ctrl + N (next) and Ctrl + B (previous).



Filtering Our Way in Wireshark

[ 44 ]

Colorize traffic
For better and convenient viewing experience, Wireshark gives us a feature where 
we can colorize a certain type of traffic that we want to highlight. Colorization of 
traffic is done in order to distinguish between different sets of traffic. Coloring a 
specific set of traffic with a different rule other than the default one will be like 
finding a needle in a haystack.

The default profile for most protocols is already created because of which we are able 
to see traffic in the packet list pane in different colors. You can access it by navigating 
to View | Edit coloring rules or clicking on the Edit coloring rules button from the 
main toolbar to open a window as shown in the following screenshot:

Figure 2.16: Coloring rules

All rules that are currently saved as part of your global configuration file to colorize 
traffic with certain foreground and background colors are listed in this dialog. Every 
packet listed in the packet list pane follows a certain rule, which gives them a unique 
and distinguished look and feel.



Chapter 2

[ 45 ]

Let's use this feature and color the http error packets with a color of our choice. 
Say, for instance, I've a web server running on my machine that is used by the clients 
connected for file accessing purpose. Now, one of the clients in my network is trying 
directory listing and gets HTTP 404 error messages. These error messages will pop 
up in my packet list pane but will be colored using the same http coloring rule that 
makes these errors less visible to me. To make this more visible, I want to colorize 
the HTTP 404 error messages with a black background and with a cyan foreground. 
Follow the steps shown here that will achieve the same:

1.	 I have configured a Linux box running on 172.16.136.129, and my Mac OS 
is running on 172.16.136.1 that serves as a web server for Linux, as shown 
in the following screenshot:

Figure 2.17: The web server running on 172.16.136.1

Normal traffic from a Linux-accessing web server looks something like the 
screenshot here:

Figure 2.18: Normal traffic on a web server running on 172.16.136.1



Filtering Our Way in Wireshark

[ 46 ]

2.	 Now that everything is up and running, we will try to do some directory listing 
manually from Linux, which will give eventually HTTP 404 error messages.

The traffic generated through this request is captured, which can be seen in 
the following screenshot:

Figure 2.19: HTTP 404 Traffic

We can see, in the preceding captured traffic, that the client requested  
the abc.jpg resource, which was not available; thus, the client received  
a 404 Not found error.



Chapter 2

[ 47 ]

3.	 We figured out easily because there is just one client requesting a single 
resource. Consider a production environment where thousands of clients  
are present and they might do the same. In such cases, coloring a specific  
set of packets with a different rule is a game changer.

4.	 Navigate to Edit Coloring Rules | New. Type HTTP 404 in the Name box. 
Type http.response.code==404 in the String box. Choose the Foreground 
Color option as Cyan, and choose the Background Color option as Black. 
Then, click on OK and navigate to Apply | OK.

5.	 Once you click on Apply, you will see that only the HTTP 404 error packets 
will be colored according to your new coloring rule.

Figure 2.20: After applying the new coloring rule

Try the same using a virtual environment to give yourself more insight into the topic.



Filtering Our Way in Wireshark

[ 48 ]

Coloring rules listed in the Edit Coloring Rules dialog will be checked in a  
top-to-bottom manner. With every packet, there is coloring rule information  
attached that can be listed from the Packet Details Pane under the Frame section. 
Consider the following screenshot illustrating the same:

Figure 2.21: Coloring info in a frame header

Create new Wireshark profiles
Profiles in Wireshark are like customized environments, which can save a significant 
amount of time while auditing a network. A profile is a set of different components, 
such as capture filters, display filters, time preferences, column preferences, protocol 
preferences, color profiles, and so on, that fit together and give you a case-specific 
scenario, which you might require instantly.

Importing and exporting profiles is very easy in Wireshark, which is pretty useful 
while auditing a network where you don't have your preinstalled tools. Just copy 
and paste the Profile configuration files in a certain directory to use them. To create  
a profile, follow these steps:

1.	 Right-click on the Profile column in Status Bar.



Chapter 2

[ 49 ]

2.	 Click on New... in the pop-up dialog.

3.	 Now, choose any profile you wish to use as a template and type the name of 
the new profile.

4.	 And then, click on OK.

Now, in the status bar, you will see the the same profile has been activated.  
The changes that you are going to make in this profile stay here, for example,  
you can create capture/display filters, change protocol preferences, and change  
color preferences. This means that any changes in a profile do not alter the contents 
of other profiles that are saved.

This way, we can create different profiles for case-sensitive scenarios that can save 
time and make the task easy.



Filtering Our Way in Wireshark

[ 50 ]

Summary
Using the Find utility can be pretty useful sometimes, and can be accessed from 
the Edit menu in Wireshark. The Find utility gives us various vectors to search the 
packet content.

Filtering traffic lets you see only those packets that you are interested in; there are 
two types of filters: display filters and capture filters.

Display filters hide the packets, and once the expression you made is cleared,  
all packets can be seen again. However, capture filters discard the packets that  
do not meet the expression that you created. Discarded packets are not passed  
to the capturing engine.

Capture filters use the BPF syntax, which is an industry standard and is used by 
several other protocol analyzers.

Coloring preferences can be really useful while filtering a certain set of traffic based 
on a specific expression. Distinguishing packets will be become easy, as the matched 
packets will be shown with a different coloring scheme.

Profiles are like case-sensitive scenarios that can save your time and workload. 
Changes made to the profiles with respect to its different components, such as 
display/capture filter and color/protocol/time preferences, stay within the same.

Exporting profiles and various settings from Wireshark is very simple, which make 
the software more portable.

In the next chapter, you will learn how to work with Wireshark's advanced features 
such as graphs and statistical options.

Practice questions
Q.1 Explain the difference between display filters and capture filters, and which is 
more efficient in terms of system resource utilization.

Q.2 Explain the difference between Find Utility and Filters. Use the Find utility to 
search using hex values.

Q.3 Create a capture filter to capture only ARP broadcast packets.

Q.4 Create a capture filter to capture all packets except the packet destined to and 
originated from your physical address.



Chapter 2

[ 51 ]

Q.5 Create a capture filter to capture only TCP SYN packets and TCP ACK packets.

Q.6 Create a capture filter to capture HTTP traffic sent only from you machine.

Q.7 Create a display filter to show packets originating only from your IP.

Q.8 Create a display filter to see packets that are only related to the protocol Secure 
Socket layer.

Q.9 Create a display filter to see only the ICMP destination host's unreachable packets.

Q.10 Create a display filter to see only TCP packets with a FIN and ACK flags set.

Q.11 Create a display filter to show TCP packets with header length greater than 40.

Q.12 Change the coloring scheme for all the DNS query Type A packets to the color  
of your choice.

Q.13 Change the coloring scheme of all HTTP error messages to the color of  
your choice.

Q.14 Create a profile with the name DNS using a default profile, and create a capture 
filter in this profile that will capture DNS traffic. Then, change the coloring scheme of 
all DNS response packets to the color of your choice.





[ 53 ]

Mastering the Advanced 
Features of Wireshark

In this chapter, we will look under the hood of the Statistics menu in Wireshark and 
work with different command-line utilities that come pre-packaged with Wireshark. 
Here, we will cover the following topics:

•	 Collecting network stats using Wireshark's Statistics menu
•	 LabUp—Summary, Protocol Hierarchy, Conversations, and Endpoints
•	 Mapping overall traffic in graphical form
•	 LabUp—Graphs
•	 View network traffic in plain-text form
•	 LabUp—TCP Streams
•	 Learn how to view logged anomalies in your trace file
•	 LabUp—Expert Infos
•	 Using command-line tools for protocol analysis
•	 LabUp—CommandLine
•	 Practice questions

With Wireshark, you can access a variety of statistics about the packets and 
protocols involved in the communication between two hosts. We can collect basic 
as well as advanced and specific information about protocols that are involved  
in the communication process. We will discuss most of the useful tools available  
in this menu, which can give us a better insight into dealing with day-to-day 
complex situations.



Mastering the Advanced Features of Wireshark

[ 54 ]

The Statistics menu
Statistics in Wireshark are not presented to you just through recorded figures; there 
are graphical features too, which can present the figures in terms of graphs. Using 
this, the analysis process becomes easier and much efficient. Multiple types of graphs 
are available, which we can use to collect valuable information.

Command-line tools are like a samurai's sword, which will enhance the capability of 
a moderate user to become and act like an advanced user. In this chapter, we will see 
a couple of inbuilt tools that are command based.

Using the Statistics menu
A wide range of tools related to network stats is available in the menu, which 
facilitate users in gaining information ranging from general info to specific protocol 
related info in detail.

The general details with respect to the packets captured, filters applied, marked 
packets, and various other stats can be checked in the Statistics menu. Though this 
option is just for informational purpose, at times this can be pretty much useful.

To access the summary stats, click on Statistics | Summary; now, you will be able  
to see a window, as shown in the upcoming screenshot.

The Summary dialog is partitioned into a couple of sections, which are as follows:

•	 File: General information, such as the name of the file, location of the file, 
format used, and encapsulation, is listed under this

•	 Time: This section will tell you the time when the first and the last packets 
were captured and the time elapsed (total capture duration)

•	 Capture: This lists the name of the OS along with the version used and the 
interface used to dump packets from the live network traffic

•	 Comments: This shows any comments that the user mentioned for reference
•	 Interface(s): This lists the details of every interface, using which the traffic  

is captured



Chapter 3

[ 55 ]

•	 Display: This section gives statistics regarding any display filter that has 
been used and the percentage of ignored packets after a filter was applied

Figure 3.1: Summary dialog



Mastering the Advanced Features of Wireshark

[ 56 ]

Just below the Display section, you must see a few columns listing various details, 
which include a summary in a tabular format that is grouped on the basis of different 
categories, such as average packet size, total number of packets captured, time 
elapsed between the first and last packet captured, and so on.

Figure 3.2: Without display filter(screenshot 1)

Let's say, for instance, we have a capture file over which we have applied the display 
filter http. After this, we can access the Summary option. Take a look at the following 
screenshot and try to compare them in order to understand the difference a display 
filter would make in the representation of the packets related summary.

Figure 3.3: With display filter(screenshot 2)

Now, after applying the filter, the variance among the values listed in the stats can be 
observed. That is, after applying the display filter http, the Displayed% column has 
a different set of values as compared to the previous one without display filter.



Chapter 3

[ 57 ]

Protocol Hierarchy
The Protocol Hierarchy window provides us with an overview regarding 
distribution of protocols used in the communication process and how to  
spot unusual activities in your network that do not follow the benchmark  
as expected. By distribution of protocols, I mean in what percentage a certain 
protocol has been used in the communication between two hosts, and statistics, 
for example, how many bytes and packets are being sent and received for every 
protocol, are collected easily. Any form of unusual activity can be easily figured  
out by matching our current traffic with the baseline created.

Figure 3.4: Protocol Hierarchy window

If you want to check the protocol distribution for a specific host, then before 
you open the Protocol Hierarchy window, apply a display filter, for example, 
ip.addr==172.20.10.1. The same filter will be visible at the top of the Hierarchy 
window just below the title bar. This makes it easy for us to figure out what kind  
of traffic is actually generated from a certain host, and any malicious traffic from  
a certain host can be easily figured out.



Mastering the Advanced Features of Wireshark

[ 58 ]

Refer to the following screenshot:

Figure 3.5: Protocol Hierarchy window after applying display filter

Using the Protocol Hierarchy window, you can create filters too. Just right-click on 
the protocol you wish to use and then go ahead and specify the expression, as shown 
in the following screenshot:

There will be situations when a certain host in your network has been breached and 
you might be observing some unusual traffic associated with a particular host. In 
such situations, the Protocol Hierarchy window will prove worthy.

Conversations
When two devices are connected to each other on the network, they are supposed 
to communicate; this is considered normal behavior. However, suppose you have 
thousands of devices connected to your network and you want to figure out the 
most active device that is generating too much traffic, then in that instance, the 
Conversations window will be quite useful.



Chapter 3

[ 59 ]

To access this nice tool, click on Statistics | Conversations. After this, you will be 
presented with a window like the one shown in the following screenshot, which lists 
various details in terms of several columns listing the packets that were transferred, the 
bytes that were transferred, the flow of traffic, devices' MAC addresses, and various 
other details. At the top, you will observe various protocols displayed individually in 
separate tabs, and along with each active protocol tab, you will notice a number that 
denotes the number of unique conversations.

Figure 3.6: Conversations window

For example, if you are looking for the devices that generated a lot of packets and 
from where major data transfer has happened, then open the Conversations dialog, 
go to the IPv4 tab, and sort the packets column in a descending order. Here, the 
device listed in the first row is your answer. Take a look at the following screenshot 
that illustrates the same.

Figure 3.7: Busiest devices



Mastering the Advanced Features of Wireshark

[ 60 ]

In the first row, we can see how many packets/bytes have been sent and received 
by each endpoint and the total elapsed duration. If you wish to create a filter for the 
same, right-click on the first row and then create the respective expression you are 
thinking about. I chose the first option, A<->B, which only shows packets that are 
associated with Address A and Address B:

The respective filter will be inserted in the Display Filter dialog, as shown in the 
following screenshot:

The Conversations dialog will let us collect and analyze details in a more granular 
form, which can be used in various scenarios while troubleshooting and auditing 
networking infrastructures.

Endpoints
Two devices that share data with each other are often referred to as endpoints with 
reference to Wireshark. As we have noticed and observed, if a host intends to talk to 
another host on the network, they would require some form of address to send and 
receive packets—yes, I am talking about the physical address that every device holds.

Every host is able to communicate with the help of an Network Interface Card 
(NIC) that holds a physical address (often termed as a MAC address), and the same 
address is used for communication over a local network. Devices that communicate 
in this kind of infrastructure are termed as endpoints. Wireshark gives us the facility 
of analyzing and collecting information regarding these two devices.



Chapter 3

[ 61 ]

Let's say, for example, that we are observing heavy network traffic flowing across 
a network, which is kind of unusual according to our daily traffic pattern. Now, 
we want to figure out due to which device(s) the traffic pattern differs. For us, the 
Endpoints dialog comes to the rescue, which can be accessed from the Endpoints 
menu under Statistics, which looks something like the following screenshot. Before 
you go ahead and open the Endpoints dialog, simply click on any TCP packet from 
the Packet List pane. What you will see is a list of tabs visible at the top, each stating 
a different a protocol. Some of them will be shown as active, and some of them will 
be shown as inactive because if in your traffic you have a packet relating to a certain 
protocol, the tab listing that particular protocol will be shown as active; otherwise,  
it will be shown as inactive.

By default, you will be presented with the Ethernet tab (lists the Layer-2 MAC 
address) in most cases. Along with the protocol, you must observe a number that 
states the number of endpoints captured for that specific protocol. As in our case,  
we are seeing 3 and the same number of rows are visible in the Main pane.

In the Main pane, many more specific details can be seen for every endpoint, such  
as the total number of packets transferred, total number of bytes transferred, and 
total bytes and packets received and transmitted for an individual endpoint.

Figure 3.8: Endpoints window



Mastering the Advanced Features of Wireshark

[ 62 ]

Now, if you want to analyze other protocols, then simply click on any tab of your 
choice. I clicked on the IPv4 tab and sorted the main pane using the Packets column, 
which looks like the one shown in the following screenshot:

By just looking at the Endpoints dialog, I can now easily figure out that maximum  
data was transferred from IP 172.20.10.7. This could be a one single IP talking to  
some server or probably a server talking to multiple machines on our network at  
a moderate rate.

Figure 3.9: Endpoints dialog—IPv4v tab

If you would like to dig more into it, we have an interesting option that can be taken 
advantage of; simply create a display filter for the same. To do so, right-click on the 
first row with most packets transferred and choose Selected under Apply as Filter,  
as shown in the following screenshot:

You will be able to see a display filter for the same Endpoint in the Display Filter 
dialog above the List pane, like the one shown here:



Chapter 3

[ 63 ]

This facilitates us to quickly analyze traffic for a certain endpoint and hence increases 
the speed of analysis for users. Once you click on Clear, you will be presented with 
the same Endpoint dialog. At the bottom of the window, you will see two check 
boxes and a few buttons. The purpose of each is listed in the following:

•	 Name Resolution: This resolves the name of each of the Ethernet  
addresses listed in the Ethernet tab. But in some scenarios, it might  
affect the performance of the application adversely too, for example,  
when trying to resolve the unique IP addresses from a huge pcap file.

•	 Limit to display filter: This limits the results of the Endpoint window on 
the basis of a display filter that you already applied before accessing the 
Endpoints window.

•	 Copy: This copies the content of the current Endpoints window tab in a  
CSV format (comma-separated values).

•	 Map: This maps the selected endpoint's location in your browser on the  
basis of its actual geographical location.

Working with IO, Flow, and TCP stream graphs
Among various other reporting tools, Wireshark offers graphing capabilities too, 
which can present captured packets in an interesting format that makes the analysis 
process much more effective and easy to adapt. The graphing feature is much more 
effective in comparison to scrolling thousands of packets to figure out the cause of 
any network-related problem. If you have an overwhelming number of packets to 
be analyzed, then graphs can be seriously productive. There are multiple types of 
graphs available that we will discuss, starting with the IO graph.



Mastering the Advanced Features of Wireshark

[ 64 ]

IO graphs
This is one of the basic graphs that are created using the packets available in the 
capture file. To create the IO graph, select any TCP packet in your capture file and 
then click on IO Graph under Statistics. Refer to the following screenshot:

Figure 3.10: IO graphs

This way, you can see the highs and lows in your traffic, which can be used to rectify 
problems or can even be used for monitoring purpose. In the preceding graph, the 
data on the x axis represents the time in seconds and the data on y axis represents 
the number of packets per tick. The scale for the x and y axis can be altered if needed, 
where x axis will have a range between 10 and 0.001 seconds and y axis values will 
range between packets/bytes/bits.

From the preceding graph, we can easily depict that between sixtieth to eightieth 
second of the capture process, the network was most active, which generated 
approximately 1000 packets each second of the capture process. Now, you will  
be realizing how easy it was to gather that specific information from thousands  
of packets in merely 4-5 seconds; this is what graphing makes you capable of.



Chapter 3

[ 65 ]

Just below the plotted area, you can see the Graph section, which lists various tools, 
such as Graphs 1-5, several filters, and the line format, and various other details. 
Let's take an example and try to understand the functioning of each of them.

The preceding graph displays the generalized form of our network traffic. Now, my 
requirement is that I just want to see the frequency of the UDP traffic separately in the 
same graph plotted with a red line. For such specifications, follow these steps:

•	 Write UDP as a filter in the second filter box from the top
•	 Click on the Graph 1 button to deactivate it
•	 Click on the Graph 2 button to activate it
•	 Now, you will see the same window as shown in the following screenshot:

Figure 3.11 : IO graph-UDP traffic only



Mastering the Advanced Features of Wireshark

[ 66 ]

Analyzing specifically UDP traffic becomes easier in just a few steps. It is clearly 
visible from the preceding graph that most of the UDP traffic was generated between 
the seventieth to eightieth second of the capture process, and more than 250 packets 
were received during the capture process. If you want to compare both TCP and 
UDP traffic in the same graph, take a look at the following screenshot:

Figure 3.12: IO Graphs—TCP and UDP together

Comparing two things gives us a new angle to view regular things, and generally 
speaking, the learning process becomes better when we start comparing.

Flow graphs
This is one of the nicest features in Wireshark, where we are assisted with 
troubleshooting capabilities in scenarios like facing a lot of dropped connections,  
lost frames, retransmission traffic, and more. Flow graphs let us create a column-
based graph, which summarizes the flow of traffic between two endpoints, and it 
even lets us export the results in a simple text-based format. This is the easiest way  
of verifying the connection between client and server.



Chapter 3

[ 67 ]

For instance, I have a web server running at 172.16.136.1 and a client running at 
172.16.136.129. The client will request the web server for a certain resource. Let's see 
what the flow graph looks like for such kind of requests. There will be hundreds of 
packets generated, but we will look only at HTTP packets, just to make the results 
more confined and understandable. Click on Flow Graph under Statistics, and 
then from the pop-up dialog, choose Displayed Packet. Click on OK. Refer to the 
following screenshot that illustrates the same:

Figure 3.13: Flowgraph

Now, from the Graph Analysis window, we can see at what time a certain request 
was made and what response did we receive, which TCP port was used, along with 
some plain English comments, and the flow of traffic is also marked. This makes it 
simple for us to understand how TCP packets flow around.



Mastering the Advanced Features of Wireshark

[ 68 ]

TCP stream graphs
There are a couple of graphs that come in this section. Each of them depicts the 
network traffic in a graphical form differently. Let's start by taking a look at each  
one of them.

Round-trip time graphs
Round-trip time (RTT) is the duration in which the ACK for a packet that is sent is 
received, that is, for every packet sent from a host, there is an ACK received (TCP 
communication), which determines the successful delivery of the packet. The total 
time that is consumed from the transfer of the packet to the ACK for the same is 
called round trip time. Follow these steps to create one for yourself:

•	 Select any TCP packet in your packet list pane.
•	 Navigate to Statistics | TCP Stream Graph | Round Trip Time Graph.
•	 The x axis represents the TCP sequence number and the y axis represents the 

RTT in seconds.
•	 Each plotted point on the graph represents the RTT of a packet. If you are 

not seeing anything in your graph, then you might have selected an opposite 
directional packet.

•	 RTT graphs are often used by network admins to identify any congestion or 
latency that can make your network perform slowly.

•	 To investigate further, just click on any plotted RTT dot in your graph, and 
Wireshark will point you to that specific packet in the list pane.

The following RTT graph represents normal web traffic, and at some points in the 
graph, latency can be observed:



Chapter 3

[ 69 ]

Figure 3.14: Round Trip time Graph

Bottleneck and latency can often be identified with a vertical line of plotted RTT dots, 
which depicts whether the packet from the sending device is first queued up and 
then sent all at once or whether the packets are suffering with duplicate ACKs or 
packet loss, where retransmission was required, thus increasing the RTT time.

Throughput graphs
This graph is very similar to the IO graph that depicts the traffic flow. However, it is 
different in one important aspect that Throughput graphs depict the unidirectional 
traffic whereas IO graphs depict the traffic in both directions. For every TCP packet 
that you select in the list pane, the Throughput graph can be different. If you are 
seeing a blank graph, then just select another TCP packet and try to create the graph 
again. Follow these steps to create one for yourself:

1.	 Open the trace file that contains your packets.
2.	 Apply a display filter if required.
3.	 Select any TCP packet from the list pane.
4.	 Navigate to Statistics | TCP Stream graphs | Throughput graph.
5.	 Voila! It's done.



Mastering the Advanced Features of Wireshark

[ 70 ]

In the title bar, the IP address of the communicating hosts is present, along with 
the direction of traffic. The x axis represents the time in seconds, and the y axis 
represents throughput in bytes/seconds. Refer to the following graph (Figure 3.15) 
that illustrates the same:

Figure 3.15: Throughput Graph

The Time-sequence graph (tcptrace)
This graph depicts the stream of TCP data over time. The traffic that will be presented 
is unidirectional (moving in one direction). Time-sequence graph gives us an idea 
about the segments that are currently traveling, the acknowledgements for segments 
that we've received, and the buffer area that the client is capable to hold. To create this 
graph, follow these steps:

1.	 Open the capture/trace file you want to work with.
2.	 Click on any TCP packet from the list pane.
3.	 Navigate to Statistics | TCP Stream Graphs | Time sequence  

graph (tcptrace).



Chapter 3

[ 71 ]

4.	 You must now see something like the following:

Figure 3.16 : Time Sequence graph (tcptrace)

The x axis of the graph represents the time in seconds and the y axis represents the 
TCP sequence number. TCP sequence numbers are incremented by the bytes of data 
sent with every packet, that is, if the sequence number is 1 and the packet we are 
sending holds 10 bytes of data, then the sequence number will be incremented by 10. 
Hence, the sequence number for the next packet to be sent will be 11. The throughput 
of the data is more when we have steeper lines plotted, normally, the graph plotting 
starts from the lower-left corner to upper-right corner.

There are actually three lines plotted on every graph. The line with multiple I written 
is the TCP data segment, and the longer the I stream, the more the data in the packet. 
The line below the TCP segment is the ACK stream for data sent, and the line at the 
top represents the calculated client-receiving window.



Mastering the Advanced Features of Wireshark

[ 72 ]

The distance between the client-receiving window line and the TCP segment line is 
the window size. The closer the line, the less data can be buffered, and vice versa. 
Consider the following zoomed-in screenshot for more understanding:

Figure 3.17: Throughput graph

Let's suppose that at 1.38 seconds Host A is sending byte 995,000, and at the same 
time, host A received an ACK for byte 990,000, which states that 5,000 bytes are  
still unacknowledged (in-flight). A point to be noted here is that the dark grey  
lines denote the ACKs received.

Follow TCP streams
Wireshark provides the feature of reassembling a stream of plain text protocol 
packets into an easy-to-understand format.



Chapter 3

[ 73 ]

Figure 3.18: Follow TCP Stream window

For instance, assembling an HTTP session will show you the GET requests sent from 
the client and the responses received from the server accordingly. There is specific 
color coding that is followed by the requests and responses shown in the Follow TCP 
stream dialog. Any text in red color denotes a request that a client has sent, and any 
text in blue color denotes the response received from the server. If the protocol is 
HTTP, then you can view almost everything in plain text; if the protocol is HTTPS, 
then most of the things will be encrypted, hence giving ambiguous text on the screen 
(there is a way to decrypt HTTPS traffic too, which we will discuss in the upcoming 
chapters). The Follow TCP stream option can be of great help while troubleshooting 
any HTTP session, which is the same with most of the application layer protocols.

At the bottom of the dialog, you have a drop-down menu from where you can choose 
to view either side of communication or you can choose the entire communication, 
consisting of requests and responses that are shared between the client and the server 
at the same time. Instead of just viewing the data in RAW format, you can choose 
between ASCII, EBCDIC, Hex dump, and C arrays format.



Mastering the Advanced Features of Wireshark

[ 74 ]

If you wish to save the content shown in the dialog, then click on Save as, which will 
save the content in a simple text format. Similarly, to print, you can click on Print. 
And if you want to view everything except the Follow TCP stream packets that you 
are viewing currently, then click on Filter out this stream. To close the dialog, click 
on Close.

To view the TCP stream, follow these steps:

1.	 Open the capture/trace file.
2.	 Apply the display filter if required.
3.	 Select any packet from the list pane.
4.	 Right-click on the selected packet and click on Follow TCP stream.

Following the preceding steps gives a simple view of viewing data. Now, figuring 
out who initiated the connection will be quite easy.

Expert Infos
The information in the Expert Infos dialog is populated by the dissectors that 
enable the translation of every protocol that is well known to Wireshark. The Expert 
Infos dialog keeps you aware of the specific states that users should know about. 
Presently, expert infos is available only for TCP-based communication. Maybe for 
other protocols, the Expert Info dialog will be available by the time you read this.

You can access the Expert Info dialog by clicking on Expert Info under Analyze, or 
you can click on the bottom-left corner on the colored dot just before the status bar. 
Refer to the following screenshot, which illustrates the same:



Chapter 3

[ 75 ]

The red dot at the bottom-left corner can be colored with different colors, such as 
cyan, yellow, green, blue, and grey, where each of them has a specific meaning, 
which is listed as follows:

•	 Red: This indicates errors
•	 Yellow: This refers to warnings
•	 Cyan: This refers to a note
•	 Blue: This refers to chats
•	 Green: This refers to comments
•	 Grey: This means none



Mastering the Advanced Features of Wireshark

[ 76 ]

Now, let's have a look at the Expert Infos dialog and discuss various other elements 
residing within. Refer to the following screenshot for illustration purposes:

Figure 3.19: Expert Infos dialog

As you can observe, there are multiple tabs listed just below the title bar that consist 
of packets listed depending on their severity level and category of information. There 
are mainly four sections in the Expert Infos dialog that point to the likely cause of 
the problem, so double-checking it will be helpful. Each tab contains the name of the 
section and two numbers: one inside the parenthesis and one outside. The number 
inside the parenthesis denotes the total number of packets that have been flagged for 
the containing category, and the number outside denotes the total number of unique 
categories for the packets flagged.

We will go through each section one by one, and we will also summarize the criteria 
by which packets are flagged and listed under different categories, such as chat, note, 
warnings, details, and so on:

•	 Chat: These are general messages concerning the current communication.  
A packet that falls under this section is listed as follows:

°° Window Update: This makes the sender aware that the TCP receive 
window size has been updated.



Chapter 3

[ 77 ]

•	 Note: These are unusual messages that may or may not be part of the current 
normal communication. Packets that fall under this section are listed as follows:

°° The Zero Window Probe: Suppose that the server receiving the 
packets from the client is not able to process the packets received at 
the same speed that the client is sending them, thus causing packet 
loss. In such cases, a server will send a Zero Window packet to the 
client to halt the process of sending packets for sometime while 
keeping the connection alive.

°° The Keep Alive ACK: The receiver of the Keep Alive packets sends 
this ACK as a response.

°° The Zero Window Probe ACK: This relates to the Zero Window 
Probe example. The Zero Window Probe ACK will be sent by the 
client in response to the server's request.

°° Window is full: This notifies the sending host that the TCP-receiving 
window is currently full.

°° TCP retransmission: The TCP packet is retransmitted again because 
of a duplicate ACK, packet loss, or if the timer for retransmission 
expires.

°° The duplicate ACK: If you think about the TCP three-way 
handshake communication, for every packet received at the other 
end, the sender should get an ACK packet. If the receiver gets the 
packet with the sequence number that has already been received, 
then duplicate ACKs will be generated. This will happen in case  
of packet loss as well.

•	 Warning messages: These are unusual messages that are probably not a part 
of your general communication. Packets that fall under this section are listed 
as follows:

°° Zero Window: These messages have been observed when the 
receiving side tries to notify the sender to stop sending for a while  
as the TCP-receiving window is full.

°° Keep Alive: These messages will be observed when any Keep Alive 
messages have been captured in the communication.

°° ACKed Lost Packet: These messages will be observed when an ACK 
for some lost packet is received.

°° Previous Segment Lost: These messages will be observed when an 
unexpected packet is received out of sequence.

°° Out of Order: These messages will be observed when are packets 
received in some random sequence, thus signifying no sequence.



Mastering the Advanced Features of Wireshark

[ 78 ]

°° Fast Retransmission: These messages will be popped up when,  
in a short time of 20 milliseconds, duplicate ACKs have been 
transmitted again.

•	 Error: These are general error messages in the packets or are thrown by the 
dissector of a specific protocol translating it. There is no specific category in 
error messages.

•	 Details: Collectively, all Expert Info dialogs can be viewed in the details  
tab. However, it is advisable to look into each tab individually on the basis  
of their severity level. Pointing out the problems can be sometimes easy 
because the entries made in the details tab are lined up in the sequence as  
they were captured. Viewing anomalies through the details tab can be a bit 
time consuming and disadvantageous.

•	 Packet Comments: This refers to any annotations given regarding the 
trace file that can be used to share any interpretations further. Adding 
comments to the trace file can be really useful while documenting for future 
references. To add a comment to any packet of your choice, just right-click 
on the selected packet and click on Packet Comment. You will be presented 
with a dialog where you can add a comment of your choice, and the same 
comment will be visible in the Packet Comments section of the Expert Infos 
dialog. Adding a comment will also affect how a certain packet is shown in 
the Details pane. Generally, an extra field will be added to the details pane 
highlighted with a green background color.

Figure 3.20: Create filter using Expert Infos dialog



Chapter 3

[ 79 ]

Unique categories presented in every section can be expanded to get more information 
about a specific packet. When you expand and click on the packet listed in the Expert 
Infos dialog, Wireshark will point you to the corresponding packet in the list pane that 
can be investigated further. Creating a display filter for every category is also possible; 
just right-click on the selected category and choose the type of filter you want to create. 
Refer to the following screenshot for illustration purposes:

The main motive of the Expert Infos dialog is to find the anomalies present in a trace 
file. Finding the network problems in the trace file for a novice user becomes a lot 
easier and faster. Viewing the Expert Infos dialog can give a better idea about the 
unusual behavior of network packets. As we already discussed, the Expert Infos 
dialog is available for protocols based on TCP/IP; for the rest, there is not much  
info available.

The best way to figure out juicy info is to look into the tabs separately instead  
of looking into the details tab because, as we discussed, it can be time consuming 
and can lead to various misunderstandings. Users like you are not supposed to rely 
completely on Expert Infos; sometimes, the file you trace will contain anomalies that 
won't be listed in the Expert Infos dialog. May be, manual analysis will be required 
as well.



Mastering the Advanced Features of Wireshark

[ 80 ]

The protocol field that is shown in the details pane of the selected packet will 
be colored as per the severity level of the Expert Infos dialog; take a look at the 
following screenshot for further reference:

Figure 3.21: Colorization rules in protocol field

We can easily identify from the preceding screenshot that for this particular packet, 
there is an entry in the Error and Chat sections (red color denotes Error and blue 
denotes Chats). It is also possible that a single packet is listed in two sections of the 
Expert Infos dialog.

Command Line-fu
With the default installation of Wireshark, there are couple of command-line tools that 
get installed. These command-line tools are some sort of protocol analyzers, which 
can be taken advantage of when you don't have a GUI interface to work with or you 
don't have an option to install the GUI. There are good number of tools available in 
Wireshark to do this, which are Capinfos, Dumpcap, Editcap, Mergecap, Rawshark, 
Reordercap, Text2pcap, and Tshark.

The most common and widely used command-line tool for protocol analysis purposes 
is Tshark, which is capable of capturing data through listening to a live wire, and it can 
even analyze your already saved trace files. The captured packets are translated into an 
understandable form and printed to the standard output, or you can save them to the 
file of your choice. Dissectors that are used by Wireshark the same Tshark utilizes.

Tshark uses the pcap library to capture and translate the packets from the live wire 
or from the already saved files. Just like Wireshark's filtering option, we can enable 
filters in Tshark. There are multiple customizable options present in Tshark that can 
be leveraged to use it in a more advanced fashion.



Chapter 3

[ 81 ]

Wireshark has a CLI version, which is almost similar to Tshark in terms of the syntax 
and various options that both of them support equally. Let's understand this topic 
better with an example. Say, for instance, we have an Apache web server and FTP 
running on a Windows XP box located at 172.16.136.128 and a Macintosh client 
running at 172.16.136.1. Using our custom infrastructure, we will generate some 
network packets and try to use Tshark for capturing and analysis purposes.

When working on a Windows PC, you might have to create the environment 
variable before you can start using Tshark. The following screenshot belongs to 
Tshark, displaying tshark –h (help options) within the CLI:

Figure 3.22: Tshark help



Mastering the Advanced Features of Wireshark

[ 82 ]

We will start with the basics and eventually move toward the creation of filters, and 
then we will collect statistics using the CLI-based tool Tshark:

•	 The first thing we should know is how many interfaces do we have available 
to capture packets. Use the following command to check tshark -D:

Figure 3.23: Interfaces available

If you do not specify any interface for capturing, tshark will choose the first 
interface that is available on its own. Interfaces can be chosen by their names 
and also by the sequence number they appear in. Refer to the preceding 
screenshot, which shows all the interfaces that are available.

•	 I have a custom interface pktap0 that will listen to the connection between 
my client and the server. So, the command to initiate the capture process will 
be tshark –i pktap0 or tshark –i 5:

•	 Now, let's generate some HTTP traffic by visiting the web page hosted  
on our server from the client (I am using the curl command-line tool for 
browsing purpose):

•	 As soon as the preceding command has been issued, a couple of packets are 
captured by tshark on the pktap0 interface. And a summary of translated 
packets for better understandability can be seen. Refer to the following 
screenshot that illustrates the same:



Chapter 3

[ 83 ]

Figure 3.24: Packets captured at pktap0

If you want to stop the capture process at any point, press Ctrl + C.

•	 To save the translated packets to a file, we need to specify the –w switch, 
along with the command that will save the raw data packets to the  
specified file:

A total of 11 packets have been captured, and a text file is being created on 
the desktop with the name http.txt, which will contain raw data as shown 
in the following screenshot:

Figure 3.25: Raw data stored in file



Mastering the Advanced Features of Wireshark

[ 84 ]

•	 If you want to save the normal translated form (like the one shown in the 
list pane in Wireshark), as shown in the standard output, then just redirect 
the output of the tshark command to a file of your choice, as shown in the 
following screenshot:

As you can see, 11 packets are captured and redirected to the text file http2. 
Let's see what is stored in the http2.txt file:

Hopefully, by now you must have clearly understood the difference between 
both ways of saving the raw data packets and translated packets. Both of the 
techniques can be used in multiple scenarios.

•	 The next big thing you will learn is the different filters (Capture, Read, and 
Display) available in Tshark. We know about Capture and Display filters 
already, but here we have one more category, that is, the Read filter. The 
Read filter is closely similar to the Capture filter, as both of them can filter 
packets from the live network. However, the Read filter is also capable of 
filtering packets out of a saved file. Using the Read filter could be processor 
intensive, and things like packet loss can happen, so think twice before using 
it. To display the filter, the –f switch is used; –R is used for the Read filter; 
and –Y is used for the display filter. Now, I am going to capture only FTP 
packets using the following syntax:



Chapter 3

[ 85 ]

While applying a filter, there is a restriction that the filter expression must be 
specified as a single argument if it has spaces in between. Then, we need to 
write the expression within double quotes. Refer to the preceding screenshot 
that illustrates the same.

•	 Now, let's try to create one display filter using the http.pcap file. I want to 
filter all packets originating from the web server located at 172.16.136.128 
using the http protocol.

•	 First I captured the communication between the client and server. And save 
the traffic in file HTTP.pcap.
Once I have enough packets to work with, I will apply display filters,  
as shown in the following screenshot:

Figure 3.26: Tshark display filter



Mastering the Advanced Features of Wireshark

[ 86 ]

•	 Suppose you want to quickly collect statistics about the http protocol from 
the http.pcap file. For such a requirement, we can use this command: 
tshark –r <file-name> -q –z <expression>

The -q switch keeps it silent over the standard output (this is generally used 
while working with statistics in Wireshark) and the –z switch for activating 
various statistics options available. Both of these switches are often used 
together.

•	 Let's take one more simple example before wrapping this up; from the http.
pcap file, I want to figure out how many hosts there are in total during the 
whole capture time. For such a requirement, refer to the following screenshot:

Here, you learned about the basic theoretical and practical concepts of the CLI 
utility Tshark, along with how to capture and filter data as per our requirements. 
With the help of Tshark, it becomes really easy to understand how protocols work; 
we saw various techniques to collect and analyze the packets. Statistical features 
in Tshark are rich, which helps a moderate user become advanced with an better 
understanding of how to analyze network packets.



Chapter 3

[ 87 ]

Summary
The Statistics menu in Wireshark contains options that can give us insight from a 
unique perspective. In this chapter, we've discussed features such as Summary, 
Conversations, Endpoints, and Graphs.

Summary is an informational feature, which offers a granular form of data, filters, 
and the trace file that you are working with. The Conversations window details 
data regarding the communication that happens between two or more hosts. The 
Endpoints dialog gives an overview of the devices connected to the network and 
communicating. The Protocol Hierarchy window gives an idea about the protocols 
being used in the communication, that is, it gives us a picture of the distribution of 
protocols used by the hosts for communication.

Graphs are a pictorial way of representing the statistics regarding packets. We can 
easily figure out if something is wrong with our network; we can match network 
performances and troubleshoot general day-to-day problems that occur.

IO graphs tell us the basic status of a network, and let us create filters. Matching 
network performances and differentiating a specific protocol becomes easy due to 
these. The Flow graph depicts the flow of data in a column-based manner and creates 
a simple interface to understand the flow of packets in a network. TCP stream graphs 
are a couple of types, but their objective is to depict the throughput of our network, 
that is, to know how much data is traveling over a particular period of time.

Using the Follow TCP Stream option, you can reassemble the packets listed in a raw 
data form, which can be easily read. There are different options that are available to 
change the form to ASCII, Hex, and many others.

The Expert Infos dialog tells you the information that can be usual and unusual. 
All of them are related to your packets; information is generated with the help of 
protocol dissectors, which translate the packets to a normal form, and if they find 
something unusual, then it will be listed in a section and under a category inside  
the dialog.

Command-line tools also get installed when you install Wireshark. The most 
common tool used is Tshark, which works in a similar way to Wireshark and 
tcpdump. It uses the pcap library that is used by other major protocol analyzers. 
With tshark, you can listen to live networks or work along with an already saved 
capture file. The Filtering and Statistical features are really efficient when dealing 
with any network analysis process. In the next chapter, we will dive into analyzing 
the commonly used application layer protocols.



Mastering the Advanced Features of Wireshark

[ 88 ]

Exercise
Q.1. What is the purpose of the Statistics menu and what tools does it contain?

Q.2. Using the Conversations dialog, can you figure out the busiest host on the 
network? If yes, how?

Q.3. Think of a scenario where using the Endpoints window can be useful.

Q.4. Is it possible to create a display filter using the Endpoints window?

Q.5. Switch the name resolution feature off while viewing the conversations window. 
What difference does it make if it is switched on?

Q.6. Can using the Summary option from an already saved capture file help you 
figure out the total number of ignored packets after you apply a display filter?

Q.7. Describe the benefits of using different graphing techniques while analyzing data.

Q.8. Using an IO graph, create a filter to plot the DNS traffic in a green line.

Q.9. Create an IO graph and show UDP traffic in red along with general TCP traffic. 
Then, change the y axis unit to per bytes.

Q.10. Create a display filter for FTP packets, and apply the same in a Flow graph. 
Then, customize it to check the SEQ number and ACKs instead of details.

Q.11. Using a previously captured file, create a Round Time Trip graph and figure 
out the packet whose RTT is the highest. Then, check the sequence number of that 
packet and verify its sequence number by comparing it with the graph.

Q.12. Create a Throughput graph between a server and your client. Try to figure 
out at what time the throughput was at its peak and also try to check the average 
throughput in bytes/seconds.

Q.13. If you have a requirement to view TCP packets in a raw data form, then which 
option will you opt for to customize the same window in order to view just the 
responses from the server side?

Q.16. Point out at least 5 benefits of using the Follow TCP Stream dialog.

Q.17. Explain the significance of the Expert Info dialog and figure out how many 
categories are there in a Warnings section.

Q.18. Using a command-line protocol analyzer, start sniffing your currently working 
network interface and save all traffic to a file named traffic.pcap (capture traffic at 
least for a minute).



Chapter 3

[ 89 ]

Q.19. Capture only DNS traffic using tshark and save all the capture packets to a file 
named DNS.pcap.

Q.20. Create a display filter to filter HTTP and SSL traffic from the traffic.pcap file we 
created earlier and save the filtered traffic to a new file called HTTP.txt.

Q.21. Using the statistical features available in tshark, figure out the total number of 
hosts in the traffic.pcap file and save all the IP addresses that belong to one single 
host of your choice (Google, Yahoo, Apple, and so on) to a file named hosts.txt.

Q.22. Using the statistical feature available in tshark, check the Ethernet address of 
the hosts participating in the communication process from the traffic.pcap file 
and figure out the most communicating host from the list.

Q.23. View the protocol distribution using tshark statistical functions for the 
traffic.pcap file.





[ 91 ]

Inspecting Application  
Layer Protocols

This chapter will lead you through the common application layer protocols and 
will make it easy for you to find any anomalies. You will understand and analyze 
the normal behavior of application layer protocols by looking at the most common 
protocols and understand their usual and unusual behaviors.

•	 DNS—normal and unusual
•	 Lab Up—DNS
•	 FTP—normal and unusual
•	 Lab Up
•	 HTTP—normal and unusual
•	 Lab Up—HTTP
•	 SMTP—normal and unusual
•	 Lab Up—SMTP
•	 SIP—normal and unusual
•	 Lab Up—SIP
•	 VoIP—normal and unusual
•	 Lab Up—VoIP
•	 Decrypting encrypted traffic 
•	 Practice questions

We will cover some of the most common application layer protocols that govern 
today's networks, whether small or big. Without spending too much time, let me 
take you on this wonderful journey of protocols.



Inspecting Application Layer Protocols

[ 92 ]

Domain name system
Imagine a world of Internet where you have to type a random numerical value  
(IP address), instead of a name, to visit a website. Also, assume that each numerical 
figure is different. Considering this, how many IP addresses can you memorize? 5? 
10? Perhaps, 50 at max? So, now, you are confined to visiting just 50 websites. This 
doesn't really sound feasible.

Suppose instead of just memorizing the IP addresses, you note down each of them, 
followed by the name that you want to give to the website to figure out which website 
is for what purpose. Now, you can create an Excel file for yourself, consisting of the IP 
addresses written next to the name of the website you gave. This way, probably, you 
can collect more than a thousand website addresses for later use.

For the sake of your unlimited web experience, DNS comes to your rescue, and it 
does exactly what you did in the preceding example. DNS creates a database of 
websites with their IP addresses, along with the name of the domain, A single row 
of record is often termed as resource records in a zone file. Each entry in the zone file 
is termed as a resource record. DNS uses TCP and UDP, both for different purposes, 
over the port 53 by default.

As a client, when you try to visit a website from your LAN environment, your 
request is being sent through an internal DNS server that looks up the resource 
records it contains. The request is termed as a DNS query. If your DNS server 
has already saved the IP address for the domain you are looking for, your client 
machine will get a reply from the internal DNS server that contains the IP address 
of the website you are trying to visit. Thus, you can form IP packets and start 
communicating. This reply is termed as a DNS response.

Dissecting a DNS packet
A DNS packet consists of a couple of unique fields that are briefly discussed here:

•	 Transaction ID: This is a number that keeps the dots connected between a 
particular domain query and it's corresponding response.

•	 Query/response: Every DNS packet is marked as a query or a response, 
depending on the details it contains.

•	 Flag bits: Each query and response contains different flag bits set, which are 
as follows.

°° Response: The message is a query or a response.



Chapter 4

[ 93 ]

°° Opcode: This determines the type of query contained. Opcode ranges 
between 0–15. Refer to the following table:

Opcode Description
0 Standard query
1 Inverse query
2 Server status request
3 Unassigned
4 Notify
5 Update
6-15 Unassigned

°° Truncated: This determines whether the packet is truncated if its size 
is large (greater than 512 bytes).

°° Recursion desired: The query sent by your client is supposed to go 
on a recursive search procedure from one DNS server to another if 
the resource record you are looking for is not present.

°° Recursion available: If this bit is set, then it means the recursion that 
your client requested is available, and if what you are looking for is 
not present on one server, then your query would be transferred to 
another DNS for lookup procedure.

°° Reserved (z): .As defined by RFC 1035; Reserved for future use, must 
be set to zero for all queries and responses.

°° Response code: The values in this field signifies the response.

•	 Response code: This field is used to signify whether errors and the type of 
error. Here are the possible code values that you can receive:

Code Description
0 No error
1 Format error
2 Server failure
3 Name error
4 Not implemented
5 Refused

•	 Questions: Indicates the number of queries present in the packet.
•	 Answers: Indicates the number of answers in response to the query sent.



Inspecting Application Layer Protocols

[ 94 ]

•	 Authority RRs: Indicates the number of authority resource records sent  
as response.

•	 Additional RRs: Indicates the number of additional resource records sent  
as response.

•	 Query section: The query sent to the DNS Server, it should be the same in 
the response received as well.

•	 Answer section: The answer that came as a response to our query. The 
response can be multiple too. The answer basically consists of the resource 
records that came in response to our query.

•	 Type: This field indicates the type of query sent. Refer to the following table 
for common query types.

Type Description
A Host address
NS Name server
MX Mail exchange
SOA Start of zone authority
PTR Pointer record
AAAA IPv6 address
AXFR Full zone transfer
IXFR Incremental zone 

transfer

•	 Additional info: This field includes additional info containing resource 
records. It is not required to answer the query.

Dissecting DNS query/response
A client sends a query to the DNS server that possesses the name resolution 
information. Using this information, the client can start IP-based communication. 
Sometimes, the information the client is looking for is not available with the DNS 
server it requested. In this case, the DNS server itself transfers the query to any 
neighbor DNS it knows about, if recursion is desirable. The whole query and 
response thing is completed within two packets only. Refer to the following Figure 
4.1 where I am trying to visit https://www.google.co.in. A request from my  
client located at 192.168.1.103 is sent to the default gateway at 192.168.1.1.  
This gateway will forward my query to the DNS server it knows about:

https://www.google.co.in


Chapter 4

[ 95 ]

Figure 4.1: DNS query

If you notice, here, DNS is using UDP as an underlying protocol. If you want to 
know more about the DNS query being generated, just expand the flags section. 
This section will list various details such as whether recursion is available, whether 
recursion is desired, whether the query is truncated, what the response code is, what 
the Opcode for the query is, and so on. Please refer to the following screenshot.

The expanded Flags section depicts that the type of DNS packet is a query, the packet 
data is not truncated, and recursion is desirable if available.

In response to this query, you will be seeing one more packet with the same 
transaction ID that denotes the association of a particular query. It is the response 
packet. Response for our query will usually consist of IPv4 address for the domain 
we are trying to look for. We'll be returned with a single IP, or maybe multiple IPs 
available to it. If the domain we are looking for is not available, then its probable 
CNAME's will be returned in as favor.



Inspecting Application Layer Protocols

[ 96 ]

Refer to Figure 4.2 to understand this:

Figure 4.2: DNS response

As I said, we could get multiple replies. If you notice the Answer RRs section, we 
have received 5 replies for the www.google.com domain. For verification that the 
response received belongs to the previous query only, just match the Transaction 
ID. Expand any section in the answers category to view more details. Refer to the 
following image:

Unusual DNS traffic
Name resolution problems can have a significant impact on the performance of a 
network. One of the most common DNS problems you can face is when looking 
for something that does not exist in the DNS server's database. Sometimes, you are 
trying to visit a website that exists, but your DNS server is not able to resolve the 
domain you gave. It could also be a timed-out situation where your client waited 
more than the expected time for a DNS response.

www.google.com


Chapter 4

[ 97 ]

In the following Figure 4.3, I am trying to check the type A record for the  
http://google.com domain, which is actually an incorrect syntax.  
Hopefully, it won't be resolved:

Figure 4.3: Type A record for http://google.com

As expected, we got a Not Found error. I only tried once, but the client tried it twice 
to resolve the domain given. What got captured is depicted in Figure 4.4 here:

Figure 4.4: DNS Response-No Such Name

There can be multiple situations where you can get stuck. The best option is to first 
have a benchmark set for your own network, and then try comparing your problem 
with the benchmark you created. For example, check the name you are trying to 
resolve, launch a protocol analyzer, and dig into the name resolution queries and 
responses. Understand how long it is taking to complete the query, the response 
process, and so on. Every device on the network maintains a local DNS cache (host 
file), which is initially used to resolve any domain you request. If the local DNS cache 
does not have the entry for that domain, then the request will be forwarded to the 
local network's DNS server, which will perform the lookup. If found, their response 
will be sent. Otherwise, the request from the local DNS server will be forwarded to 
an external DNS server, which the local DNS server is configured to look for.

File transfer protocol
Since the Internet came into existence, we have been working with FTP. It was in the 
limelight even when the Internet was still a closed network used by the government 
and other corporate organizations.

FTP uses the TCP protocol to initiate and transfer files over a designated channel. 
There will be two channels created; one is the command channel, and the other one 
is specifically a data channel. The command channel will be used to send and receive 
the commands and their responses. The data channel is used to send data between 
the client and the server.

http://google.com
http://google.com


Inspecting Application Layer Protocols

[ 98 ]

Commonly, port 21 is used by the FTP server to listen for the connection, and any 
random port on the client to send and receive data. As per the standard, port 21 will 
be used for the command channel and port 20 for the data channel. However, you 
will observe random port numbers used to transfer TCP data segments.

Dissecting FTP communications
There are two types of mode a client uses to communicate with the server: active and 
passive. Both of them have a different approach to send and receive data. In earlier 
versions, active mode was in use by default, but these days, you can see passive 
mode in use by default. I will discuss each of them using my own virtual network 
where I have a FTP server (VSFTPD) configured on the 172.16.136.129 IP and a 
client at 172.16.136.1. The following sections described the flow and show how  
the client and server will behave in the active and passive modes.

Passive mode
•	 The client sends a SYN request to the server running at port 21.
•	 The client receives SYN/ACK from the server over a temporary port used.
•	 The client sends ACK to the server to confirm that the channel will be used  

for sending commands. Refer to the following screenshot:

•	 Now, the client will be shown a welcome banner and will be asked for the 
assigned credentials:

Figure 4.5: Server showing welcome banner and asking for credentials

•	 Normally, passive mode must be on by default. Performing a directory 
listing will tell you that the Extended passive (ESPV) mode is in use. In this 
mode, the client requests the server to listen on the data port and wait for 
the connection. In return, the server informs the client about the TCP port 
number used for the connection. Please refer to the below screenshot.



Chapter 4

[ 99 ]

Figure 4.6: client sends ACK to the server

In frame 42, the server informs about the IP address and the port number 
that the client has to use while creating any data connection to the server.

•	 In frame 42, the server informs us about the IP address and the port 
number that the client has to use while creating any data connection to the 
server. Followed by a sequence of SYN, SYN/ACK, and ACK, packets which us 
required to create a data channel between both the devices. After this, the 
LIST command is executed as seen in frame 46. Then data is transferred 
using the temporary ports used by both the client and the server.

•	 As soon as the data transfer is complete, the sending host closes the connection 
by transmitting a FIN packet which is addressed by the receiving side using an 
ACK packet. The receiving side also sends a FIN packet that is acknowledged 
too. If both the devices want to share more data, then a new data channel will 
be created using random port numbers.

Active mode
•	 The client sends a SYN request to the server running at port 21.
•	 The client receives SYN/ACK from the server over a temporary port used by 

the client.
•	 The client sends ACK to the server to confirm that the channel will be used  

to send commands. Refer to the following screenshot:

•	 Now, the client will be shown a welcome banner and will be asked for the 
assigned credentials:

Figure 4.7: Client is shown a welcome banner and asked for credentials



Inspecting Application Layer Protocols

[ 100 ]

•	 Now, we have to turn passive mode off, because, as usual, it will be on by 
default. Once done, we can create a data channel for transferring purposes, 
refer to the following screenshot:

Figure 4.8 Creating data channel for transferring purpose

Frame 40 shows that the client is requesting to switch the passive mode 
off using the EPRT |1|172.16.136.1|57197|  command. Extended Port 
(EPRT) helps in specifying an extended address that can be used for data 
connection. The command accepts three arguments: network protocol, 
network address, and the port number.

•	 Now, whenever the client tries to initiate a connection, it has to be destined 
for the particular address specified by the EPRT command. Before, every data 
connection server informed the client about the temporary port to be used.

You learned about the active and passive modes of communication that the FTP 
servers support. You also learned how they behave. Whenever troubleshooting  
any FTP connection, checking the mode will be useful and saves time.

Dissecting FTP packets
In general, every request sent from the client is a specific command set to which 
the server responds with a numerical value followed by a text message. See the 
following screenshot:



Chapter 4

[ 101 ]

As you can see, the server requested for the password, which the client provides.  
It can be seen over the wire in plain text in the list pane itself. Once the server receives 
and verifies that the password is correct, the respective message will be shown. In our 
case, the password is correct, so the client receives 230 as a response code followed by 
a Login Successful message.

The command issued from the client side can have arguments or no arguments, and 
the data flowing across between the devices can be simply seen in the TCP header of 
the packet. Refer to the following Figure 4.9:

 

Figure 4.9: FTP-DATA returned

Frame 43 shows that the client issued the LIST command that was processed by 
the server, and 262 bytes of data was returned back to us. Select frame 50 to further 
investigate the contents of the TCP header. One of the biggest disadvantages of using 
FTP is that all data travels in plain text, even the usernames and passwords.



Inspecting Application Layer Protocols

[ 102 ]

Reassembling the FTP data stream is easy because except the data, there is nothing 
that travels around. There is no code or command that gets appended to the packets 
travelling, thus making it easy for Wireshark and the user to understand things 
easily. To reassemble the TCP stream of FTP packets, just right-click on the selected 
packet, choose the Follow TCP Stream option, and view it in raw form. Refer to the 
following Figure 4.10:

Figure 4.10: FTP stream

The entire communication between the client and the server that happened over the 
data and command channels is translated into human-readable format. Text in red 
color is what the client sent, and text in blue color is what the client received. These 
days, we have a couple of advanced protocols that can create an encrypted channel. 
One of them is Secure File Transfer Protocol (SFTP).



Chapter 4

[ 103 ]

Unusual FTP
There can be multiple scenarios, which generate FTP traffic of an unusual type.  
I will use a couple of scenarios to explain this and will show you how a certain  
traffic type looks. An example would be brute force attacks where a malicious user 
tries different passwords again and again, until the exact password is matched. This 
is the most common traffic type that you will see while working with FTP. Applying 
a ftp.request.command=="PASS" filter will show all the password attempts that 
have been made to your server. If you see an unusual number of attempts in a short 
span of time, then it can be a brute-force attempt against your server. Refer to the 
following screenshot:

Figure 4.11: FTP brute force

I applied the same display filter mentioned earlier, and you can see the results. 
Someone was trying to brute force my FTP server. To secure your server from 
such brute force or dictionary attacks, you can limit the server to maximum login 
attempts, after which the server should lock down the respective account for a 
particular amount of time.

You could also colorize the brute force traffic if you want. This will eventually give 
you a better overview of your capture file or live traffic. Try it out using the code  
that the server sends back to the clients in response.

Another example is a malicious device that is infected by some malware. Due 
to the malware, the device is trying to contact a command and control-center 
server to download some payload, perhaps for privilege escalation purpose or to 
launch further attacks. There is even a possibility where an attacker sitting on the 
other side is trying to download or upload something. Let me take an example to 
explain. I have a Kali Linux box running at 192.168.1.105 and a Windows box at 
192.168.1.104. Through Kali, I created a small malware that was downloaded and 
installed by the victim (Windows). Once executed, we will get the shell from the 
device. Then, we can launch FTP from within the shell to connect our Kali box for 
privilege escalation purposes.



Inspecting Application Layer Protocols

[ 104 ]

Refer to the following screenshot that captures the FTP traffic between the attacker 
and the victim:

Figure 4.12: victim FTP capture

As you can clearly see, the attacker connected to the FTP server and downloaded the 
payload.txt file, which might be used to gain root privileges over the box.

If something of this nature is able to bypass your firewalls and other security 
appliances in place, then consider improvising the configuration you created and  
try to avoid these things in future. Sometimes, activity of this kind can be legitimate 
as well, but it should not stop you from investigating further. A small file of a few 
kbs is enough to compromise your whole network.

Hyper Text Transfer Protocol
Data on the web is transferred using the HTTP application layer protocol. Normal 
communication in HTTP is a request/response model where the communication 
between a client and a server is coordinated by a set of rules. The client requests 
for a certain resource to the server and then receives a status code that specifies the 
current status of the requested resource. If available then, the resource is also sent 
along with the status code. HTTP is one of the most popular and most widely used 
protocols to transfer data requested by browsers from the respective servers. The 
world of Internet is mostly governed by HTTP that runs on the transport layer.



Chapter 4

[ 105 ]

How it works – request/response
Every time you visit a website, this smart protocol takes care of your web-browsing 
experience. Web server utilizes the HTTP protocol to serve web pages they contain 
to the requesting clients. At the beginning of every HTTP session, the TCP three-way 
handshake takes place. It creates a dedicated channel between the communicating 
hosts followed by HTTP and data packets, which are sent in and received 
while the session is active. For instance, you are visiting a web server located at 
http://172.16.136.129 and the client at 172.16.136.1. Using our client-server 
infrasrtucture, we will try to capture the requests sent and responses received.

I will try to visit the home page located at the server mentioned earlier and will 
capture the traffic generated for the whole session, that is, requests sent and 
responses received. Follow the actions mentioned here to replicate the scenario.

Request
•	 Open your browser, and type the Uniform Resource Locator (URL) of 

any website that you want to visit. In my case, the website is located at 
http://172.16.136.129 (Don't get confused because of the IP address  
I am using to visit a webserver. While studying DNS remove, we discussed 
that it is just a way to locate a webserver that is assigned with an IP address.). 
Press Enter to go to the home page. Here is the screenshot of the home page  
I am visiting:



Inspecting Application Layer Protocols

[ 106 ]

•	 Due to the our preceding actions, a couple of packets are generated that 
are captured by Wireshark. Let's have a look at the list pane shown in the 
following screenshot:

Figure 4.13: Packets captured by Wireshark

All these packets get generated as soon as you press Enter. As you can see, 
the first three packets are TCP three-way handshake packets where our 
client is requesting the server to create a dedicated channel. In our case, the 
connection was successful. However, if the server daemon wasn't running  
or because of any reason the server is not accepting our requests, then we 
could have seen RST   ACK packets, like the one shown here:

Figure 4.14:RST and ACK packets, as server not accepting the requests

This error states that the server is out of service or perhaps the server is not 
supposed to respond to our requests.

•	 After the TCP packets, you can see the first HTTP request sent by our client. 
Every request comprises a couple of elements that are sent to the server:

Figure 4.15: HTTP request



Chapter 4

[ 107 ]

•	 This is how a request looks. In the first line, there are three things passed 
on to the server as the arguments, which are HTTP method and requested 
resource location "/" (root directory)

•	 The second line specifies the Host argument that is required by the HTTP/1.1 
protocol requests. The value of this field is the webserver's address that you 
typed in the address bar of the browser.

•	 The fourth line is the ACCEPT parameter that mentions what kind of content is 
acceptable by the requesting client in response.

•	 The If-modified-since parameter is sent from the client to the server, which 
includes the date and time of your previous request made to the server. If the 
server contents have been changed since your previous request, then you will 
receive the new updated page. Otherwise, your system will present you with 
the locally cached page that will eventually save some resources.

•	 The next field is User-Agent, which specifies the browser-related 
information that you are using to visit the webpage. This information will be 
used by the server to present you with browser-compatible content.

•	 Parameters such as Accept-Language and Accept-Encoding are passed on 
to the server to inform us of what type of content is acceptable to the client. 
So, while the server prepares the response material, these things should be 
taken into consideration.

•	 The Connection-Alive parameter specifies that the client wishes to keep the 
connection working after this particular request has been processed.

All the HTTP packets are sent most commonly to the webserver at port 80 (other 
common webserver ports are 8080, 3132, 8088 and so on. which are being dissected 
by Wireshark as per HTTP protocol preferences).



Inspecting Application Layer Protocols

[ 108 ]

Response
•	 As you can see, after the fourth packet, the server acknowledges the 

client's request to get to the server's web root directory. The server starts 
transmitting the resource that client requested for. The sixth packet in the  
list pane is what the client received, a status code followed by a short 
message, including the content of the resource requested. Refer to the 
following Figure 4.16 illustrating the HTTP response:

Figure 4.16: HTTP response

•	 As a part of TCP communication, the client will acknowledge every packet 
sent by the server. It can be seen in the seventh packet that the client is trying 
to send an ACK for the resource it received.

•	 Let's dissect the response elements for packet number six. The first line 
consists of three arguments sent in response. They denote the HTTP  
protocol version in use, the status code (304 in our case, which specifies  
that the requested resource did not change since the time mentioned in  
the Date parameter), and finally, a brief description about the status code 
(Not Modified in our case).

•	 In the third line, the Server parameter mentions the name and version of  
the web server running. We can see that Apache/2.2.22 is the server that  
is located at 172.16.136.129.

•	 The fourth and fifth lines state that the server wishes to keep the connection 
alive. The duration for which the server wishes to do so is also mentioned in 
the next line of the parameters sent in response to us. Rest of the content is 
mentioned in the next few lines are some configuration parameters.



Chapter 4

[ 109 ]

This is a very basic example to check out the request and responses exchanged 
between the client and the server. However, this basic thing is what actually happens 
every time you visit a website. As stated earlier, we receive a status code followed 
by a brief description in response. With every tab you open in your browser, there 
will be a new socket created between a client and a server connected through an IP 
address and the port number on which the web server runs.

Unusual HTTP traffic
All the details mentioned earlier are part of a normal traffic pattern. What we are 
about to witness is some unusual traffic pattern that you might face while dealing 
with HTTP. I will try to mention some do's and don'ts, which might prove helpful to 
you while troubleshooting and analyzing HTTP. Most of the HTTP problems revolve 
around errors such as 404, some kind of redirection, DNS resolution problems, and 
server-related issues. Let me explain each scenario in detail.

For instance, you are visiting a web server, and you are looking for something that is 
currently not available or the requested resource's location has been changed. In such 
cases, you will receive a 404 status code, which denotes that the requested resource 
is not found on the server. Refer to the following screenshot where I tried to request 
for a file named abc.txt on a web server that does not exist:

Figure 4.17 : HTTP 404

On the list pane, you can see that the requested resource is not available. So, we get 
404 Not Found Error. Such errors could be malicious too if someone is trying to 
perform directory listing on your webserver. Changing the coloring rules of such  
404 packets to something different other than the normal HTTP packets rules will  
get our attention quickly. As you can see, packet number eight is a HTTP packet, 
applied with a different coloring scheme.



Inspecting Application Layer Protocols

[ 110 ]

Redirection of the user's request is often done when a certain requested resource 
location has been changed to another address or the resource isn't available. Now, to 
make you understand redirection, I have made some changes in our infrastructure 
that can be easily seen in the diagram shown here:

Now, the request from the client sent to the original server at 192.168.1.104 will be 
redirected to a new server located at 192.168.1.103 without any further efforts by 
the client. To configure redirection, you have to modify your server's configuration 
file. The following captured packets depict the redirection happened. Refer to the 
next list pane in Figure 4.18:

Figure 4.18: HTTP redirection



Chapter 4

[ 111 ]

As you can see, a TCP handshake was initiated with the old server at 104 followed 
by an HTTP GET request. The server at 104 responded with a 302 Found response 
in packet 21, which is an indication of redirection. Our request was sent to the new 
server located at 103 with whom we again initiated the TCP three-way handshake 
(packet 31). After packet 31, the destination field was changed to the new server's 
address.

On investigating packet 21 further, we can see the content that redirected our  
request to the new server. Expand the Line-based text data section under the 
HTTP section of the details pane for packet 21. Refer to the following screenshot:

We have already discussed DNS resolution problems in the DNS protocol section.  
For example, if the requested web server is not able to resolve your request using your 
internal DNS server as well as other external servers, then you won't be able to visit 
the website. Even if the DNS servers are working fine and you are not able to visit the 
site, then congestion can be the problem, where a server is not able to process multiple 
requests at the same time. This will result in errors such as 408 time-out requests, 
429 Too Many requests, or even 404 not found. The world of HTTP is enormous, 
and day-to-day situations can differ from person to person. The most important fact 
that you should keep in mind is that if all your basic-level concepts are clear, then only 
it would be an easy to do the job you have been assigned. Nothing can beat common 
sense with out-of-the-box thinking.



Inspecting Application Layer Protocols

[ 112 ]

Simple Mail Transfer Protocol
SMTP is used widely to send and receive emails over small, as well as large, 
infrastructures (can be public or private). The protocol uses the Sender-SMTP process 
to send e-mails and the Receiver-SMTP process to receive emails. This makes SMTP 
a client-server-based protocol that runs over port 25. However, many mail server 
admins follow the secure practice of changing the default port number for SMTP to 
any other random port that prevents the server from sending any spams out there in 
the wild and even keep the server out-of-reach from malicious users.

Most commonly, an SMTP channel for mail transfer is created using a TCP three-way 
handshake that happens between two hosts, which is followed by a series of SMTP 
packets. For illustration purpose, I configured one SMTP server on 192.168.1.105 
and a client on 192.168.1.104. The client will request the server to send an e-mail 
to an address known to the client. The server will respond to this request with 
numerical code, followed by a brief response parameter. For understanding the  
real functioning of the protocol, I will be using the following architecture.

Usual versus unusual SMTP traffic
Using the netcat client from Kali Linux, I will try connecting to the SMTP mail 
service running on a Windows machine. Once a dedicated channel is created 
between the server and the client, the server indicates that it is ready to accept any 
commands sent in. Also, the server will respond with numerical codes with a short 
summary. I followed these steps to connect and send an e-mail:

1.	 Open a connection using netcat nc –nv 192.168.1.105 25.
2.	 Initialize an SMTP session using the HELO testmail command.



Chapter 4

[ 113 ]

3.	 Specify the from address using the MAIL FROM:<abc@charit.com> command.
4.	 Specify the recipient's address using the RCPTS TO:<efg@charit.com> 

command.
5.	 To enter data into the mail body, type DATA and press Enter. Now, type the 

message you wish to send. Once you are finished writing your email, type a 
. to mark the ending and press Enter.

6.	 Now, your message will be sent. If you wish to send more emails, follow the 
same procedure; or else, you can close your connection with the mail server. 
Type QUIT to do so.

The series of commands I followed generated a couple of packets that contain details 
about the session in a very granular form. I also created a capture filter, which 
captured only the packets associated with the client and server that would help me 
in closely analyzing the packets related to the session; and preventing other packets 
entering the list pane. All of these commands mentioned will only work when 
the server is configured to permit clear text message communication without any 
authentication, refer to the following screenshot depiction for similar behavior.

Figure 4.19: SMTP session



Inspecting Application Layer Protocols

[ 114 ]

Packets from 1-3 are TCP-handshake packets. The handshake is happening between 
the client and the server. In the fourth packet, the client receives a message stating 
220 as the response code. This means the server is ready and available to respond 
to the client's request. In the sixth packet, the client initializes the standard SMTP 
session using the HELO command (You must be wondering why most of the packets 
listed in the list pane start with C or S. Requests sent from the client are marked with 
the character C, and server responses are marked with character S.). Then, enter the 
sender's and recipient's e-mail addresses, which were confirmed to be correct by 
the server, with response code 250 in packets 10 and 13. After that, enter the e-mail 
body using the DATA command, which was successfully received by the server in 
packet 23. In the end, the user gracefully closes the connection by issuing the QUIT 
command, which the server confirmed in packet 26, thus sending the FIN, ACK. 

Now, I will introduce you to the dark side of SMTP that you might have witnessed, 
or you will someday. By dark side, I meant the packets that are not supposed to pop 
up inside the list pane usually. However, if they do, then you have to look into your 
protocol configuration. For this, I would like to introduce you to some quite common 
scenarios that you should be aware of.

The first and foremost case I can think of is when the server and the client are not 
able to create a dedicated channel for communication; in short, the TCP handshake 
did not go well. This can happen because of many reasons, such as the mail server 
daemon is not running, the mail server is not running on the default port, the mail 
server daemon has reached the maximum simultaneous client connections allowed or 
connections from a particular subnet are not allowed there can be multiple scenarios 
related to this. The following list pane depicts two kinds of traffic abnormalities:

Figure 4.20: SMTP unusual traffic



Chapter 4

[ 115 ]

The first two packets were generated due to an error, which stopped the TCP 
handshake from occurring. This error can be generated due to many factors,  
some of which are mentioned here:

•	 Mail server daemon is not running
•	 Mail server daemon default port is changed
•	 Mail server daemon has reached the maximum simultaneous connections 

limit (DDoS attack).
•	 Mail server's configuration has been tampered with

Let's suppose now, that the client came to know about the correct port number 
to which the connection should be initiated, but still, the session was not created 
successfully. Observe the traffic starting from packet 3 to the packet 10, the last 
packet. A TCP three-way handshake happened, but then, suddenly, the client was 
kicked off from the session. What could be the possible reason for such a response 
from the server? Perhaps the client is not allowed to get connected because of some 
restrictions in place, such as IP or MAC filtering.

Figure 4.21: Client not allowed to get connected due to some restrictions

Another type of abnormal traffic that can be seen widely these days is harvesting of 
e-mails used by spammer and spamming botnets roaming in the wild. A spammer 
tries to harvest emails from the publicly accessible mail servers to verify which 
email address is valid and which isn't. For example, look at the following screenshot 
(Figure 4.15) where a malicious user tries to verify the existence of an e-mail ID 
using the E-mail From field, verification of e-mail addresses can alos be done using 
VRFY command. Depending on the response, the user will come to know whether 
the email is valid or not. Observe packet number 13 for the server's response. These 
kinds of attacks are done using a custom-made dictionary file, which matches the 
current domain requirements. Once an email is verified, the spammer can perform 
various forms of social-engineering attacks. A response code greater than 350 
in SMTP protocol is probably some kind of error that can reduce your network 
performance, thus increasing the latency.



Inspecting Application Layer Protocols

[ 116 ]

Session Initiation Protocol and Voice Over 
Internet Protocol
SIP is a part of the VOIP protocol family that is just a signaling protocol used to create, 
manage, and terminate voice over IP sessions in a networking environment. Examples 
of SIP can be a two-way phone call or a conference call, including multimedia sessions 
where multiple hosts can be present. This protocol is generally discussed in regards 
to the initiation of the session between the remove parties ; hosts/nodes that intend 
to communicate. After the initiation is completed, the data is transferred over the 
dedicated channel where the Real time Transport Protocol (RTP) helps. Basically,  
the family of RTP governs the transport and the flow control of all of the multimedia 
items (RTCP controls the flow).

The two most used tools while working with this protocol are the Statistics menu, 
under which we will cover Protocol Hierarchy, Packet Lengths, and flow graphs, 
which will give you an idea of data travelling back and forth between two hosts. 
Under the Telephony menu, you will see the RTP and VOIP Calls options that  
can facilitate us in assembling the VOIP call streams. We can then play them back  
to hear the conversation, this is what makes me really excited about Wireshark.

SIP runs over the UDP protocol and commonly uses port 5060. All of this together in 
an IP-based environment makes it possible for us to dial instantly to our friends over 
a VoIP-enabled device. SIP makes it easy for the VOIP telephony server to establish 
user locations. It facilitates us with different call-managing features such as initiating 
calls, disconnecting calls, adding someone to a conference call, transferring calls, 
and various others. SIP is not going to help you maintain the quality of calls, yet SIP 
is one of the most important standards used by various services. Before we jump 
directly into looking and listening to the traffic, let's get ourselves acquainted with 
how the traffic moves in a voice over IP call.

There will be three parties we will consider: two of them are clients and one is the  
IP telephony server that helps in transferring the required and necessary packets 
back and forth between the two communicating hosts. The following figure depicts  
a small infrastructure telephony architecture and lists the various steps taken:



Chapter 4

[ 117 ]

•	 Client 1 sends an Invite request to initiate the session using SIP.
•	 The telephony server in between, transfers the request to Client 2.
•	 The telephony server acknowledges Client 1 with the 100 TRYING packet.
•	 Client 1 receives a 180 RINGING packet as soon as Client 2 starts ringing. 

When Client 2 on the other side received the call, it sends the 200 OK packet, 
which is forwarded to Client 1.

•	 Now, the client sends the ACK packet to acknowledge the receipt of the  
200 OK packet.

•	 Now, both parties are connected with a dedicated channel over which the 
RTP/RTCP packet starts flowing back and forth.

•	 Once both of them are done, there will be a BYE packet sent from by the 
hosts communicating, which is acknowledged by the other end.

•	 If you observe, most of the packets are passing through the telephony server. 
Because the telephony server only knows about the exact location of the 
connected hosts.

•	 Once the connection is successfully created, all the packets are sent and 
received directly by the clients without the server's intervention.

I have configured a small VoIP telephony infrastructure using Asterisk PBX  
that you can download freely from the vendor's website. VOIP server is located  
at 192.168.1.107, client 1 at 192.168.1.104, and client 2 at 192.168.1.107.  
Then, I downloaded X-Lite client using which, I tried calling client 2 from client 1. 
Now, using the real SIP traffic captured, it becomes easy for us to analyze and learn. 
Interestingly, there is an option using which, we can play back the communication 
captured (this can be really dangerous and more amazing).



Inspecting Application Layer Protocols

[ 118 ]

Here is example traffic captured as seen in the list pane of Wireshark:

Figure 4.22: SIP traffic

One thing you should consider is place the analyzer close to the telephony server 
so that you can easily capture every bit of packet-level information moving around. 
While capturing, if you cannot see any SIP packets, then you won't be able to capture 
VOIP packets as well. You would end up capturing UDP packets only in the list 
pane, which won't prove very fruitful for your analysis.

Analyzing VOIP traffic
Just for the sake of curiosity, I want to show you the protocol distribution for SIP 
traffic that can be seen using the Protocol Hierarchy dialog from the Statistics menu. 
Refer to the following Figure 17:

Figure 4.23: Protocol Hierarchy



Chapter 4

[ 119 ]

Major traffic generated during the session is UDP based, and as seen in the preceding 
screenshot, SIP traffic is a very small part of it. If you observe closely, it is just 1 
percent roughly, whereas RTP has a major role here with 82 percent. This gives an 
overview about the session we captured and tells us which protocol participates 
in what percentage. As we already know, SIP is used only to create and manage 
sessions that occur between two users, or it can be a multiuser conference call.

Flow graphs are one more way of getting a summary of the traffic. They help in 
understanding the movement of request and acknowledgements sent or received. 
Refer to the following Figure 4.24:

Figure 4.24: Flow graph

There are three IPs listed just below the title bar in the center section. These IPs 
belong to the server and the two clients that are trying to communicate. The entire 
request and the responses with their status codes and summary messages can be 
seen clearly here. Requests sent are colored in orange and the responses with green. 
This makes every element look more precise and easy to understand.



Inspecting Application Layer Protocols

[ 120 ]

Reassembling packets for playback
Yes, this is possible. You can assemble the VOIP packets back to listen to either, or both 
sides of the communication in parallel. Let's suppose I want to listen what message 
client 1 sitting at 192.168.1.104 sent to the client 2. We can use the Telephony menu 
in Wireshark to reassemble the packets and choose the VOIP Calls option from the list. 
The following screenshot illustrates the resulting dialog.

Figure 4.25 : VOIP Calls dialog

Now, choose which side of communication you want to listen to. Then, click on 
the Player button, which will then ask you to provide maximum Jitter (Jitter is the 
variance in packet rate at which the packets are being sent and received. If jitter is high, 
then there is a chance your network is dealing with congestion. Calls having high jitter 
values are not feasible to listen to.) in our communication session. The maximum jitter 
value is 22. So, by default, there will be 50 ms value given in the box. You can change 
this value if your jitter is higher than that; otherwise, just click on Decode:

Figure 4.26: Player dialog

I did not change the default value and clicked directly on the Decode button, which 
reassembled all the VoIP packets for the side of communication I chose. Refer to the 
following screenshot:



Chapter 4

[ 121 ]

Figure 4.27: RTP Player

If you want to play the message, check the box just below the scrollbar  and click on 
Play. Various useful details related to the assembled VOIP stream are listed.

Unusual traffic patterns
Wireshark has numerous tools that help a user in maintaining QS for a certain 
networking infrastructure and also consists of a tool that helps in identifying various 
day-to-day traffic anomalies. A common type of traffic when dealing with an SIP 
server is INVITE requests that are sent from one client to initiate the connection with 
another client. As you might already know, this process is a three-way handshake 
where the client who initiated the request is supposed to acknowledge when the 
session creation is completed. What if the client who requested does not respond 
with ACK and sends another INVITE request? Normally, the server will try to connect 
the client to the requested client machine, meanwhile waiting for the ACK response 
for the previous request. Now, let's suppose the client sent 100 INVITE requests 
through different clients on the network and did not even bother to send ACK for any 
one of those sessions created. This can result in a DOS attack (INVITE flood attack) 
where the SIP server won't be able to process any further requests (the buffer size 
for INVITE is 100). To resolve this, you can apply a display filter to view the INVITE 
requests sent from a client or apply a filter where the status code is 200:OK.

Other than DOS attacks, there is a chance that your network may slow down due 
to packet congestion, or you might not be able to get connected to another client on 
your network. In other words, your call cannot get through, if there is lag in setting 
up the call (the average call setup time is high). You will witness multiple cases once 
you work in a production environment. So, Wireshark and the various powerful 
tools it contains comes to our rescue.



Inspecting Application Layer Protocols

[ 122 ]

For instance, if some client is trying to make a call to an invalid extension, they will 
get an error, and the call won't get through. Such a scenario will generate packets as 
shown here:

I would suggest that you filter SIP packets consisting of error codes greater than 
399 and create a display filter using sip.Status-Code > 399. See the following 
screenshot that lists multiple errors generated while client 1 was trying to call:

Figure 4.28: SIP error

Decrypting encrypted traffic (SSL/TLS)
Yes, it is possible to decrypt your online TLS traffic into a plain text SSL stream using 
Wireshark. Google Chrome and Firefox look for a log file, which stores the TLS 
session keys. Follow these steps to decrypt encrypted traffic:

1.	 Create an environment variable with the name SSLKEYLOGFILE that will 
point to a text file. Your browser will look for this file every time it starts 
up. To create environment variables, right-click on My Computer | Go 
to Advanced Settings | Environment Variables | New | Specify Name: 
SSLKEYLOGFILE and Value: C:/Users/username/sslkeylog.txt and  
click on Ok.

2.	 I have created a blank text file, C:/Users/username/sslkeylog.txt  
(make your new environment variable point to this file).

3.	 Now, open your browser and visit a website enabled with TLS/SSL.  
For demonstration purpose, I have my own SSL webserver located  
at 192.168.1.105 and a client located at 192.168.1.105.



Chapter 4

[ 123 ]

The certificate I created is self-signed; that's why you are seeing a red 
diagonal line across https in the address bar. After you visit any secure 
website enabled with SSL, your sslkeylog.txt will be populated with some 
random numbers, as shown in the following screenshot. If not, cross check 
your settings before moving on:

4.	 I captured the whole traffic between my client and server in Wireshark.  
Now, go to Edit | Preferences | Protocol tree | SSL | (Pre)-Master-Secret 
log filename | /path/to/sslkeylog.txt | Ok. Then, right-click on the SSL 
packet (Make sure you select Decrypt packet data. The option should be 
present in the bytes pane) and follow the SSL stream. Now, you will see 
something like Figure 4.29 here:

Figure 4.29: Decrypt SSL traffic



Inspecting Application Layer Protocols

[ 124 ]

This is one of the easiest ways by which you can go ahead and decrypt SSL traffic 
with just a few clicks. One more way is to feed the RSA private key of the server  
into the Wireshark SSL preferences, which will give you the same result.

Summary
Domain name system/Service is a protocol used to resolve website names to an  
IP address. Using this domain name service, your machine can communicate on  
an IP-based network. Using zone transfer (if enabled), unauthenticated malicious 
users can ask for zone data form name servers, which is considered highly malicious 
and dangerous.

File transfer protocol has been used to transfer files from one machine to another 
since the Internet came into existence and is still being used in today's modern 
networks. The most unsecure part about FTP is that the data is passed in plain  
text and can be easily captured using protocol analyzers, unless you are using  
some encrypted form of the FTP client-server infrastructure.

The web browsers are used to present and transfer the web-based content back and 
forth uses hypertext transfer protocol. It is commonly also referred to as the request/
response model, where a host requests for a certain resource and the server responds 
with a status code and the resource if available. Status codes greater than 399 should 
be watched closely, I would suggest is to apply different colorization schemes.

SMTP protocol is used to send e-mails. It is an unencrypted protocol where 
commonly authentication mechanism is not used. Every SMTP command and its 
corresponding arguments are passed over the wire in plain text that can be easily 
sniffed using Wireshark.

VoIP traffic is made up of two things: RTP for data transfer and SIP protocol  
used to create the session. Signaling protocol creates and manages a session where 
real-time transport protocol is used to carry the voice itself. Using Wireshark, anyone 
can capture and reassemble the packets back to listen to a communication session. 
One should take care of congestion, jitter, lag, and echoing problems while dealing 
with these protocols in order to maintain the quality of service.

Practice questions:
Q.1 What is the significance of the DNS protocol while you surf the Internet?

Q.2 How would you define zone transfers and recursive DNS queries?

Q.3 What is the difference between recursion desired and recursion available in  
DNS queries?



Chapter 4

[ 125 ]

Q.4 How many DNS record types exist? Explain the purpose of the AAAA record 
type and what does non-authoritative answer mean?

Q.5 Differentiate between active and passive modes of FTP. Explain which mode  
is better.

Q.6 What solution can you come up if you are being asked to make your FTP session 
encrypted? Explain the difference it would make.

Q.7 Using a virtual infrastructure or a physical one, install the FTP server on any  
of the machines and then try to communicate with it while capturing live packets  
in Wireshark.

Q.8 Find out how you can limit the maximum number of login attempts. How can 
such limitation affect the overall security of your FTP server?

Q.9 Why do we refer to HTTP communication as a request/response approach and 
what is the purpose of the three-way handshake while initiating the connection?

Q.10 Which version of HTTP are we currently using and what is the difference 
between the old and new ones?

Q.11 While your browser makes an HTTP request, various other parameters are also 
sent in your request. Why is it so? What is the purpose of Accept-Encoding and 
Accept-Language parameters sent with your request?

Q.12 Visit websites of your choice and browse a couple of pages while capturing 
all the packets in Wireshark. Then, create a display filter to check whether any 
redirection was present in your whole session.

Q.13 For what purpose is SMTP on client side used? To send e-mails or receive them? 
Which protocols are popularly used to receive e-mails?

Q.14 Is it possible to perform a brute force attack on an SMTP server? If yes, then 
how and how do you identify such traffic pattern?

Q.15 What do you understand by e-mail harvesting and how you can perform an 
e-mail harvesting attack on an SMTP server? Is there any kind of specific response 
you will look for?

Q.16 Read about the difference between various email protocols and SMTP?

Q.17 What is the significance of SIP in a VOIP session? What percentage of traffic do 
you think SIP will have in a whole VOIP session?

Q.18 What is the difference between RTP and RTCP protocols?



Inspecting Application Layer Protocols

[ 126 ]

Q.19 Download a SIP traffic capture file (sippcap) from Wireshark's website and 
analyze the session using a flow graph. Are you able to the see the process flow  
we discussed?

Q.20 Filter out all the wrong password attempts using specific code for such 
responses and apply a different coloring scheme (use the aaa.pcap capture file).



[ 127 ]

Analyzing Transport  
Layer Protocols

This chapter will help you understand TCP and UDP protocols, how they 
communicate, the problems you can face with these protocols, and how you  
can use Wireshark to assist them. You will also learn how to analyze TCP and  
UDP protocols and look for any anomalies that may follow. The following are  
the topics that we will cover in this chapter:

•	 Understanding the TCP header and how it communicates
•	 Understanding the TCP analysis flags
•	 Lab up—TCP
•	 How to check for different analysis flags in Wireshark
•	 Understanding UDP traffic
•	 Lab up—UDP
•	 Practice questions

We will discuss TCP and UDP protocols using various practical examples that can 
give you an insight about how low-layer protocol packets communicate and travel 
in your network in order to transmit data successfully. We will also look at some 
common anomalies that you might witness in your day-to-day operations.



Analyzing Transport Layer Protocols

[ 128 ]

The transmission control protocol
A TCP is a connection-oriented protocol used by various other application-layer 
protocols to ensure data delivery without any loss of packets during transition. On 
the basis of sequence numbers and acknowledgement numbers, a TCP ensures fail-
proof delivery of packets between the hosts that intend to communicate. A TCP is 
supposed to provide an end-to-end, reliable form of communication, which should 
be robust at all times. It sits in between the network layer and the application layer 
and uses the IP datagram to transfer data packets between the sender and receiver. 
Because of this approach, the TCP and IP are used by various application layer 
protocols for their reliable delivery.

A TCP is like a two-way communication process where not only the sender is involved 
in the communication, but even the receiver actively works to make it a successful 
connection. You can imagine it to be like a landline connection, where you dial a 
number; if the number you dialed is correct, you will hear a ringtone (if the other  
side is open to communicate). Only when the receiver responds by picking up the 
receiver, you can start talking. Likewise, in TCP-based communication, a process  
called three-way handshake takes place between the parties that are involved in  
the communication to create an independent channel between the two hosts.

Understanding the TCP header and its  
various flags
The TCP header is normally 20 bytes long, but at times, due to the presence of the 
options field, the TCP header size can vary up to 60 bytes. Refer to the following 
illustration of a simplified TCP header:

Source port Destination port
Sequence number

Acknowledgement number
Data offset Flags Window size

Checksum Urgent pointer
Options

Now, let's get acquainted with the header fields to get a stronger grasp over the 
basics of a TCP:

•	 Source port: This is the port number associated with the sender side of  
the communication or you can say the port responsible for listening on  
the sender side.



Chapter 5

[ 129 ]

•	 Destination port: This is the port number associated with the recipient side 
of the communication or you can say the port responsible for receiving the 
transmitted packets.

•	 Sequence number: These are the unique values that are used to ensure 
reliable delivery of data. TCP tracks each segment using sequence numbers.

•	 Acknowledgement number: These values are sent in response from 
the receiver side as part of the confirmation process that the packet was 
successfully received.

•	 Data offset: This indicates where the data packet begins and the length of the 
TCP header. The size can vary due to the presence of the options field.

•	 Flags: There are various types of flag bits present; each of them has its own 
significance. They initiate connection, carry data, and tear down connections, 
and on the basis of their assigned purpose, we've named them as follows:

°° SYN (synchronize): These are the packets that are used to initiate a 
connection that is commonly known as the handshake process.

°° ACK (acknowledgement): These packets are used to confirm that the 
data packets have been received, and this also confirms the initiation 
and tear down of the connections.

°° RST (reset): These packets signify that the connection you were  
trying to create has been shut down or may be the application we 
were trying to communicate with is not accepting connections.

°° FIN (finish): These packets indicate that the connection is being  
torn down after the successful delivery of data packets. Both the 
sender and receiver send the FIN packets to gracefully terminate  
the connection. If they want to communicate again, they will start 
from the beginning, that is, from the three-way handshake process.

°° PSH (push): These packets indicate that the incoming data should  
be passed on directly to the application instead of getting buffered. 
To state this simply, the other host should receive data without 
waiting for it.

°° URG (urgent): Marked packets indicate that the data that the packet 
is carrying should be processed immediately by the TCP stack and 
the urgent pointer field should be examined if it is set.

°° CWR (congestion window reduced): These packets are used by the 
sender to inform the receiver that due to the transmit, the buffer is 
getting overfilled, and because of congestion, both the parties should 
slow down the transmission process to avoid any packet loss that 
might happen.



Analyzing Transport Layer Protocols

[ 130 ]

•	 Window size: This field in the header indicates the amount of data that  
the sender can send, . The amount is decided during the handshake process 
where both the hosts that communicate match the buffer size compatible for 
transmission. Flow control can be achieved through this field.

•	 Checksum: To cross check the integrity of the data that is being received,  
this field is used, where the contents of the TCP segments are validated.

•	 Urgent pointer: This field tells us about the value that the urgent pointer 
contains. It specifically indicates the sequence number of the octet that lies  
before the data.

•	 Options: This field length can vary due to the presence of various options. 
This field has three parts: the first part specifies the length of the option 
field, the second part denotes the options being used, and the third actually 
contains the options in use. One of the important options maximum segment 
size (MSS) is also part of this field.

•	 Data: The last part in the TCP header is the real data that travels around.

The preceding information gives us an overview regarding TCP headers and the 
significance of various parts of the header. While analyzing TCP sessions, it becomes 
quite important to know about these details.

How TCP communicates
To understand and analyze the packets in real time, I have configured a server that 
runs at 172.16.136.129 and a client that runs at 172.16.136.1, as shown in the 
following figure. Using Wireshark, I will try to illustrate the three-way handshake 
process, which happens before the actual data transfer as well as the tear down 
process (graceful termination). The three-way handshake ensures that the server  
and client are open to making connections and are ready with resources to create  
a dedicated channel between each other for a reliable delivery of packets.



Chapter 5

[ 131 ]

How it works
The server runs an HTTP server daemon at port 80. On the client, I will visit the 
default webpage hosted at http://172.16.136.1 while capturing all the packets 
taking part in the communication process.

For the sake of visibility and ease, I've created a display filter to 
display the traffic between these two hosts specifically.

Figure 5.1: Connection Process:Three-way handshake, data transfer and tear down process

In the packets 282, 283, and 284, it is clearly visible that the client and server are 
trying to create a dedicated channel. The client initiated the creation by sending a 
SYN packet in the 282 packet with the SEQ set to 0. Since the server was open for 
communication, the server responded with a SYN/ACK packet with ACK set to 1 and 
SEQ set to 0. This is followed by a confirmation sent from the client side that is seen in 
the packet number 284 with SEQ=1 and ACK=1. This is what a three-way handshake 
process looks like. This can be seen before any real data transfer that happens that 
follows the TCP approach.

After the successful completion of channel creation, the client sends a GET request 
to access the contents of the web-root directory. The server acknowledged this in 
the packet number 287 and sent the requested content to the client's machine with 
the 200 OK status message, which is acknowledged by the client in the next packet. 
As seen in the list pane again, the client was requesting a new resource, which the 
server wasn't able to find and thus sent a 404 Not Found status message, which was 
acknowledged by the client in the the packet 295.



Analyzing Transport Layer Protocols

[ 132 ]

After all the data transfer takes place, when the client has nothing left to request, 
or when the server has nothing left to send, the client sends FIN/ACK packets to 
properly terminate the connection. The server acknowledges this and sends its  
own FIN/ACK packets, which are acknowledged by the client as well in the packet 
number 302. This way of termination is often referred to as the teardown process. 
Take a look at the following screenshot that illustrates this process:

This was a small and sweet conversation that we captured and through which you 
learned about the process flow. I think I've one more interesting way to illustrate the 
process flow using graphs that we've already seen in the previous chapters. Refer to 
the preceding screenshot.

From this flow graph, it becomes more clear and concise to view the requests and 
responses shared between the two communicating hosts. The most interesting part 
that I like in the preceding screenshot is the comment section that lists out the SEQ 
and ACK numbers, which are sent and received by the hosts.

You must be wondering how these are generated and incremented. Let me tell you 
the trick behind this amazing world of numbers that is used while transferring data. 
The host that initiates a new connection uses Initial Sequence Numbers (ISN) that 
are generated by the host's operating system. It can be any random number that has 
no significance with respect to the data. The sequence number we see in the packet 
one is zero is actually a relative referencing technique used by Wireshark to ease the 
numbering system for the sake of users. First of all, you should know that the numbers 
are used to keep track of how much data is being transferred between the two hosts.



Chapter 5

[ 133 ]

Starting from the packet 1, where SEQ=0 (the relative sequence number in real is 
704809601), which is received by the server and in return replies with its own SEQ=0 
and ACK=1 for the client's SEQ=0. At the end of this three-way handshake, the client 
replies with SEQ=1 and ACK=1 without any further increments as no data is being 
transferred during the process.

Then, by the fourth packet, the client sends a GET request with SEQ=1 and ACK=1 where 
the data payload length equals 323 (refer to the following figure), which the server 
receives and acknowledges with SEQ=1 and ACK=324. Did you see what just happened? 
The server replied by adding a total data payload length into ACK to denote that the 
data was successfully received. Hence, it sends the requested resource to the client 
with data payload length equals 451, which in return gets acknowledged by the client 
with ACK=452 and SEQ=324. In the same way, the transmission goes on until the tear 
down takes place using FIN/ACK packets at the end.

Graceful termination
We saw, in detail, the process of TCP three-way handshake using the captured 
packets and the flow graph that gave us insight about the process. Similarly, 
we should be comfortable about the teardown process, which indicates proper 
termination of a session between two hosts.

Considering the same scenario that we discussed here, let me show you the packets 
that were generated to terminate the connection in a proper standardized format. 
Refer to the following screenshot for this:



Analyzing Transport Layer Protocols

[ 134 ]

After the successful delivery of all the required packets, the server initiated the 
teardown process (as there was nothing left to send or the client was just sitting idle 
and doing nothing). In the beginning, the server sent its own FIN and ACK packets to 
the client with SEQ=452 (the client acknowledged the same with ACK) and ACK=324 
(this is the client SEQ number when the data transfer was completed). These were 
acknowledged by the client in the next packet. Following the same approach, the 
client issued its own FIN and ACK packets (using SEQ and ACK numbers used in the 
second round of communication, where the client requested something that wasn't 
available. Refer to the preceding flow graph to know more) to end the connection 
from its own side (as the connection was bi-directional), which was received and 
acknowledged by the server. As soon as the client received ACK from the server,  
the connection between the two hosts was closed completely, and the sockets and 
other resources involved during the communication were freed up.

RST (reset) packets
Often times, there will be situations when the server daemon is not available, it is 
not able to process your request due to overload, you are restricted to interact with 
the server, or the port you are trying to connect to is not open for connections (not 
associated with any service). There can be a lot of reasons why you will see a RST 
packet. Let me replicate the scenario and capture the traffic between the client and 
server I have, which will surely make it easy for you to understand this. An RST packet 
basically denotes that the connection you were trying to initiate got closed abruptly.

In this scenario, the server daemon is not running and the client is trying to 
communicate; as a result, it receives RST packets in return for every SYN request sent. 
I tried visiting the web server just once, but you will notice more than one SYN and 
RST packets because every browser performs a different number of attempts over a 
non-responding or a closed socket at a particular interval of time. Hence, in our case, 
I am using the Apple Safari browser, which made at least three attempts to connect 
back in a max time of 3-4 minutes. I tried requesting Google Chrome as well, which 
made approximately 7 attempts to connect back in merely 10 minutes (the browser 
will continue to make a request at a particular interval of time). Refer to the following 
screenshot that illustrates the packets captured in the process:



Chapter 5

[ 135 ]

Figure 5.2: RST packets captured

Relative verses Absolute numbers
Wireshark purposefully translates real SEQ/ACK flag numbers to a simpler format, 
which makes it significantly easier for us to keep track of data sent across the wire. 
For instance, I've a web server at 172.16.136.129 and a client at 172.16.136.1. 
Using a web browser, I will try to visit the server that will generate a couple of 
packets, which will be captured by Wireshark. Refer to the following screenshot 
illustrating the same packets generated for the session.

I have selected the first packet generated for the session in the list pane and its 
corresponding details in the packet. The details pane and bytes pane can be seen 
highlighted as follows:

•	 1: In the list pane, it can be observed that the SEQ number assigned for the 
SYN packet to begin communication is zero.

•	 2: In the details pane, we can see that the number 0 is a relative sequence 
number, which is not the real SEQ number and has been changed for our 
perusal by Wireshark.

•	 3: In the bytes pane, we can see that the corresponding hex value for  
SEQ=0 is 0x2a028a81, which is equivalent to 704809601 in decimal.



Analyzing Transport Layer Protocols

[ 136 ]

So, the real SEQ number is 704809601, which was converted to 0 to make our 
analysis easy.

According to our analysis, the ACK value that we must receive should be 704809602 
(incremented SEQ value with 1). Let's verify the same using the next packet and its 
corresponding related information using the details and bytes pane. Refer to the 
following screenshot for illustration:



Chapter 5

[ 137 ]

Refer to the following list to understand what each pointers highlights:

•	 The second packet I selected is the SYN, ACK packet that the client received 
from the server. It contains the SEQ=0 and ACK=1 (relative numbers) servers.

•	 The related information for the packet 2 in the communication is shown in 
the details pane and the bytes pane. If you observe, in the details pane, the 
ACK server sent for the client's request is 1.

•	 The hex value for the ACK received is 0x2a028a82, which is equivalent to 
704809602 in decimal. This is the same value that we should be expecting.

Now, it would be easy for you to check the absolute numbers translating them from 
their given hex values. There is one more interesting way by which we can customize 
the numbering system, where we can view the real absolute numbers directly in the 
list pane and the details pane. Follow these steps to activate and deactivate it:

1.	 Navigate to Edit | Preferences in the menu bar.
2.	 Expand the Protocol tree and look for TCP.
3.	 Remove the checkmark from the Relative sequence numbers option,  

as shown in the following figure:



Analyzing Transport Layer Protocols

[ 138 ]

4.	 Navigate to Apply | Ok. That's it. Refer to the following screenshot:

As we analyzed, the first packet in the TCP handshake process has an SEQ number 
704809601 as an decimal equivalent. Now, after deactivating the Relative sequence 
numbers options, we can observe the same in the list and details panes.

There are a few more options that are enabled by default in the TCP Protocol 
Preferences window, which makes the analyses more systematic and advanced.  
For example, validating the checksum whenever possible and A=analyzing the  
TCP sequence numbers.

Checksums are generally used during the transmission to ensure the integrity of 
the data being sent and received. As discussed, there is an extra field in the TCP 
header. What actually happens is when the sender prepares the packet that needs to 
be transmitted, the checksum of the packet that contains data is calculated and sent 
along with the packet. Now, the receiving side will receive the packet and recalculate 
the checksum using the same algorithm used by the sender. If the checksum value 
that came along with the packet is identical to the one that the receiver calculated, 
then the packet is accepted; otherwise, the packet that contains the error (checksum 
not matched) is discarded and the sender side is not even informed about the 
error that has taken place. The sender is supposed to know about this by himself. 
The validation of the checksum is not 100% guaranteed, and even this reduces the 
performance as TCP packets reassembly won't take place now.



Chapter 5

[ 139 ]

Checksum offloading is a feature that only new network drivers support, where the 
packets that are ready to be transmitted are passed on to the network hardware that 
are captured by Wireshark with an empty checksum field that generates the checksum 
offloading error. The reason is that, even before the actual packet transfer happens, 
Wireshark captures the packet (the packets will contain the valid checksum once the 
actual transfer happens). This might lead to several confusion. So, the best approach 
would be to switch off the offloading feature from your interface if available, or to 
disable the Validate checksum feature for TCP protocol preferences. Refer to the 
following figure that illustrates this:

The packets with invalid checksums are displayed with a black background and 
red foreground color. Look at the error highlighted in red color in the details pane; 
this states that the checksum is incorrect, and this might be because the checksum-
offloading feature is activated. The packets with an invalid checksum cannot be 
reassembled, and it doesn't look nice (a lot of invalid errors on the screen), so the  
best option is to deactivate this feature if not required.

Another option that you should know about is the Analyzing TCP sequence 
numbers feature, which keeps track of the SEQ and ACK numbers and keeps you 
aware of the various types of errors that can take place during transmission, for 
example, lost frames, duplicate ACK, retransmissions, window scaling, and several 
others. Turning this feature off will also affect the Expert Info dialog, where any  
of the warnings related to transmission errors and other useful information won't  
be populated.



Analyzing Transport Layer Protocols

[ 140 ]

Unusual TCP traffic
One of the scenarios that commonly falls under this category is the lost connection 
or unsuccessful connection attempt scenario, which we have already analyzed in 
the RST packets section. You might observe several other examples, such as high 
latencies, due to long-distance communications or queuing up of the traffic. To make 
the analysis easy and to sort out such problems, use the time column by sorting it, 
and then, you will be able to figure out large time gaps between the packets at the 
top of the list pane.

Another example can be where a malicious user is trying to perform a port scan on 
your network and your firewall responds with RST packets to the user to avoid such 
attacks, or it might also be possible that the port that the malicious user is looking  
for is closed. A normal scan can generate a lot of traffic and which is quite noisy.  
This can be easily observed in the list pane of Wireshark. Refer to the following 
screenshot where I've tried scanning my machine using nmap from another device, 
and it seems quite visible and hence is easy to track:



Chapter 5

[ 141 ]

Observe Frame 19, where the port scan initiated by the malicious user sent a SYN 
packet in order to check whether the port is open or closed. As a result, in our case, 
port 21 (FTP) was closed; hence our machine sent a RST packet, which will be used 
by the port scanner on the other side to display statistics. If the port was open, the 
malicious user will be notified with SYN and ACK (refer to the following screenshot), 
which signify that our machine is open to a connection over the port 21, and this 
might become an entry point to the user's malicious attacks.

Figure 5.3: Port 21 open, an entry point for malicious attacks

Take a look at Frame 45, where the client sent a SYN request to the server at 
172.16.136.1, and by this time, the port was open so our server sent SYN and  
ACK packets (Frame 46), acknowledging the connection initiation attempt with  
a positive confirmation that the server is open to connection over port 21.

There can be various scenarios other than this half-open scan (the scan shown in 
the preceding screenshot is called half open because the client who initiated the 
connection attempt, would never complete the connection by sending ACK, which the 
server will be expecting). If your basics regarding the packet behavior, connection 
initiation, completion process, TCP headers, flags in packets, and SEQ-ACK numbers 
are clear, then it would be quite easy for you to point out any unusual form of traffic 
that is flowing around. There is no such automated tool that can point out these 
abnormalities until you customize your environment about how to react or alarm 
you to such traffic anomalies. These are some traffic patterns that you can expect to 
happen on a regular basis.



Analyzing Transport Layer Protocols

[ 142 ]

How to check for different analysis flags  
in Wireshark
The analysis of the flags present in TCP packets is quite simple while using 
Wireshark, there is an individual section that is available in the details pane for  
every TCP packet. Let's take a TCP packet from our previous handshake process  
that we captured and see how flags are presented in the details pane. Then, we 
will try to create a display filter corresponding to the same. Refer to the following 
screenshot that illustrates this:

Now, we will see what each pointer signifies:

•	 Here, the SYN packet sent from the client to the server to initiate the  
three-way handshake can be seen in the list pane.

•	 Here, the flags related to the same packet are set and the hex equivalent  
of 000000000010 is set to 0x002.

•	 For the corresponding TCP packet, the SYN flag bit is set to 1; the same  
can be seen in the details pane. The rest of them are still 0.



Chapter 5

[ 143 ]

Now, if you wish to create a display filter to see only the SYN packets that you have 
in the trace file, then apply the filter shown here. As a result, you will see only SYN 
packets present in your trace file. The following figure illustrates the same:

Let's try to create one more filter to view the SYN and ACK packets only in the list 
pane. Follow these steps to create the filter:

1.	 Open your trace file.
2.	 Choose any TCP SYN, or ACK packet.
3.	 Note the corresponding SYN and ACK hex equivalent values for the flags set.
4.	 Create your filter using the hex equivalent that you have. Your filter must 

look something like what is shown here.

The User Datagram Protocol
As defined in RFC 768, a UDP is a connection-less protocol, which is great for 
transmitting real-time data between hosts and is often termed as an unreliable form 
of communication. The reason for this is that UDP doesn't care about the delivery of 
packets, and any lost packets are not recovered because the sender is never informed 
about the dropped or discarded packets during transmission. However, many 
protocols such as DHCP, DNS, TFTP, SIP, and so on rely only on this. The protocols 
that use a UDP as a transport mechanism have to rely upon other techniques to ensure 
data delivery and error-checking capabilities. And these protocols are inbuilt with such 
features, which can provide some level of reliability during the transmission. A point 
that we should not to forget is that a UDP provides faster transmission of packets as it 
is not concerned about the initiation of the connection or graceful termination as seen 
in the TCP. That's why a UDP is also referred to as a transaction-oriented protocol and 
not a message-oriented protocol like a TCP.



Analyzing Transport Layer Protocols

[ 144 ]

A UDP header
The size of a usual UDP header is 8 bytes; the data that is added with the header  
can be theoretically 65,535 (practically 65,507) bytes long. A UDP header is quite  
small when compared to a TCP header; it has just four common fields: Source  
Port, Destination Port, Packet Length, and Checksum. Refer to the UDP header 
shown here:

•	 Source port: This is the port number used by the sending side to receive 
any replies if needed. Most of the time, in a TCP and UDP, the port number 
chosen to be the part of the socket is ephemeral. On the other side of the 
communication, the port number comes in the category of well-known port 
numbers.

•	 Destination port: This field of the header identifies the port number used by 
the server or receiving side, and all data will be transmitted to this port. This 
port number is assigned to a particular service by IANA, and definitely, it is 
permanently assigned to the same service specifically. For example, port 53  
is for DNS and cannot be assigned to any other service (not advisable).

•	 Packet length: This field specifies the length of the packet, starting from the 
header to the end of the data; the minimum length you will observe will be  
8 bytes every time, that is, the length of the UDP header.

•	 Checksum: As discussed earlier, checksum is performed over data, that is, 
the packet of the packet to ensure data integrity that is what is sent from 
the sender side is the same what receiver got and to verify this there are 
couple of checksum algorithms which comes to the rescue. Sometimes, while 
working with a UDP, you will see that the checksum value is 0 in the packet 
we received. This means that the checksum is not required to be validated.

How it works
To understand the way a UDP works, let's go ahead and analyze some of the protocols 
that use a UDP as a delivery protocol. First, I would like to discuss DHCP, and then we 
will see DNS traffic as well. We actually saw UDP traffic before as well while we were 
going through VOIP and SIP analysis.



Chapter 5

[ 145 ]

For analysis purpose, I have a default gateway configured at 192.168.1.1 and a 
client at 192.168.1.106. Using the client, I will try to generate DHCP and DNS 
traffic, which will be captured in Wireshark, and then, I will try to dissect each 
protocol's communication process as well as the different components utilized 
during the whole session. Refer to the following network architecture that I have:

The DHCP
The most common and important protocol that assigns IP addresses to devices and 
makes them network compatible is Dynamic Host Configuration Protocol (DHCP). 
Now, from the client, I will try to release the IP address that the client already holds, 
which will generate a DHCP packet, and the same will be captured by our sniffer. 
Look at the following figure to understand this:

In the list pane, we can see a DHCP release packet that was generated implicitly 
by the client in order to release the current IP address (I used the dhclient –v –r 
command on the Linux terminal to release the IP address, but be careful while 
using this command as it may disconnect your machine from the network, hence 
making it incompatible for network communication). The client from the IP address 
192.168.1.106 to the server at 192.168.1.1 initiates the request. The port numbers 
used by the client and server in case of DHCP are permanent, these won't be changed 
in your case either unless they are manually configured.



Analyzing Transport Layer Protocols

[ 146 ]

The DHCP server port number is 67 and the DHCP client port number is 68 by  
default; you can see the same in the preceding figure (highlighted as 3). There is a 
fourth field that I have highlighted, the packet length field, which specifies the length 
of the packet starting from the first byte until the end of data in the packet. However, 
out of 308 bytes, 8 bytes show the length of the UDP header and the remaining 300 
bytes represent the application data that is appended. Interestingly, if a machine is 
power cycled, it will request the DHCP server to allocate an IP address. This, as a 
result, will generate a couple of packets related to the DHCP request, release, and  
offer and various others that will also use the UDP as a transport mechanism.

I filtered the packets listed to show only DHCP packets using the udp.port==67 
filter; as a result, only DHCP packets will be listed in the list pane.

The TFTP
The Trivial File Transfer Protocol (TFTP) is a lightweight version of the FTP that is 
used to transfer between hosts. Unlike the FTP protocol, TFTP does not ask users for 
any credentials. A TFTP uses a UDP as a transport mechanism. Most commonly, a 
TFTP is used in LAN environments, and when dealing with manageable devices such 
as switches and routers, network administrators do use TFTP servers to take a back up 
of configuration files and to update the firmware running in those devices. A TFTP is 
also used by security professionals to transfer files from their system to yours in order 
to escalate the privileges (gaining more rights on a compromised system).

I have a TFTP server running at 192.168.1.106 and a client running at 
192.168.1.104. There is a text file abc.txt that I've created on the server, and the 
client will try to download the same. And our sniffer in place will capture the traffic 
that is generated.



Chapter 5

[ 147 ]

The traffic generated due to the transaction that takes place between two hosts  
is successfully captured and the packets corresponding to it are shown in the 
following figure:

Now, let's see what each pointer signifies:

•	 This shows that the transfer of the packet is initiated as soon as the client 
requests the abc.txt file. The request frame can be seen in the list pane.

•	 As discussed, a TFTP uses a UDP for a transport mechanism. The related 
details for the request are shown in the details pane, which states that the 
request was initiated from a ephemeral port number from the client destined 
to port 69 on the server (69 is a well-known port to the TFTP protocol).

•	 The request was specific to the abc.txt file that is also shown in the details 
pane in the TFTP protocol section.



Analyzing Transport Layer Protocols

[ 148 ]

You must be wondering about the acknowledgement packets that are shared between 
the two hosts. As we discussed, a UDP is an unreliable form of communication, so why 
are we seeing ACKs in a UDP? The reason is that the TFTP server I am using has some 
kind of inbuilt reliability feature. Even on the client side, over the standard console, 
after initiating the request, I received quite interactive messages from the server, such 
as the file of size 3 bytes has been transferred successfully, and various other details 
were listed along with the message. The interesting thing to know here is that port 69 
was only involved in the first packet, and the rest of the packets were sent and received 
by the acknowledging feature that the server is embedded with. So, the statement that 
some protocols use a UDP as a transport protocol and have their own inbuilt feature to 
ensure delivery is true, as we have just witnessed.

Unusual UDP traffic
Suppose that the resource we are looking for is not available on the server. How will 
traffic look like then? Refer to the following screenshot to understand this:

As seen in the preceding screenshot, the client requested an invalid resource that the 
server wasn't able to locate and hence returned with an error code and the summary 
message File not found. The same message was shown over the standard console 
to the client.

Sometimes, it is also possible that the server daemon may not run and the client 
may request a certain resource. In such cases, the client would receive the ICMP 
destination unreachable error with the error code 3. Refer to the following  
figure for the same:



Chapter 5

[ 149 ]

Now, we will see what each pointer signifies:

•	 The server returned with an ICMP destination unreachable message 
when the TFTP server daemon was not functional

•	 The client received an error code of type 3
•	 The details regarding the request were mentioned in the reply under the 

UDP protocol section, which stated that the request was sent to port 69, 
which was currently nonfunctional

•	 The requested resource was shown under the TFTP protocol section

Unusual DNS requests are also very often seen when a client initiates a request to 
look for name servers associated with an address. It would look similar to the one 
shown in the following figure:



Analyzing Transport Layer Protocols

[ 150 ]

Now, we will see what each pointer signifies:

•	 1: As seen in the list pane, the client at 192.168.1.106 initiated a request to 
look for the address 8.0.0.0 and received a response in Frame 2

•	 2: The request was sent to the default gateway that holds the DNS cache
•	 3: The gateway responded with a No such name error

There can be multiple scenarios where you will see unusual traffic related to a UDP. 
The most important thing to look for is TFTP traffic, which might be generated because 
of a the TFTP client in your network. It may be malicious traffic that you would like to 
make a note of.

Summary
TCP is a reliable form of communication that has features like a three-way handshake 
and a tear down process ensures the connection is reliable and interactive.

A TCP header is 20 bytes long and consists of various fields such as source and 
destination port, SEQ and ACK numbers, offset, window size, flag bits, checksum,  
and options. The presence of various flags and header fields let the sender and 
receiver be sure about the delivery as well as the integrity of the data being sent.

The SEQ and ACK numbers are used by TCP-based communications to keep track of 
how much data is being sent across between the hosts taking part.

A UDP is a connection-less protocol that is a nonreliable means of communication over 
IP, where the lost and discarded packets are never recovered. A UDP does provide  
us with faster transmission and easier creation of sessions. A UDP header is 8 bytes 
long, which has very few fields such as source and destination port, packet length,  
and checksum. At the end application, the data is appended.

Common protocols such as DHCP, TFTP, DNS, and RTP mostly use a UDP as a 
transport mechanism, and these services are some of the major services that we deal 
with in our everyday life. To make the connection reliable, some of these protocols 
support their own version of acknowledging features that comes inbuilt.

In the next chapter, you will learn the basics of wireless traffic, how to decrypt 
wireless traffic, and the anomalies that may follow.



Chapter 5

[ 151 ]

Practice questions
Q.1 List at least five differences between TCP and UDP protocols.

Q.2 Capture a three-way handshake and tear down packets using your own  
FTP server.

Q.3 Explain the purpose of window scaling and checksum offloading and state their 
corresponding significance in terms of TCP communications.

Q.4 In what way can TCP-based communication can recover from a packet loss or 
unexpected termination? Imitate any scenarios that can generate such traffic.

Q.5 Create a display filter to show only TCP FIN and ACK packets sent to your machine 
from your default gateway in the list pane.

Q.6 What is the difference between the absolute and relative numbering system used 
by Wireshark in order to keep track of packets?

Q.7 What is the purpose of the options field at the end of the TCP header and what 
kind of arguments does it contain?

Q.8 There is one more way through which you can create filters to view a packet 
with a specific flags set. Without providing the HEX equivalent, figure out what it is 
and how you can filter a packets set with a PSH flag set using the same technique.

Q.9 Find out why the length of data can only be 65507 bytes while working with  
a UDP.

Q.10 What kind of packets you will see in a list pane if the server daemon for a TFTP 
is not running?

Q.11 Try performing a zone transfer on your locally configured DNS and capture  
the traffic for analysis. What interesting facts did you notice about the packets? 
Explain them in brief.





[ 153 ]

Analyzing Traffic in Thin Air
In this chapter, you will learn how to analyze wireless traffic and pinpoint any 
problems. You will also learn how to analyze wireless traffic using Wireshark.  
The following are the topics we will cover in this chapter:

•	 Understanding IEEE 802.11 traffic
•	 Analyzing normal and unusual behavior
•	 Lab up—wireless communication
•	 Decrypting encrypted wireless traffic
•	 Lab up—decrypting WEP and WPA traffic
•	 Practice questions

We start from the basics such as how WLAN traffic gets generated and various 
essential elements responsible for handling the wireless transmission between 
hosts. Then, moving ahead, we will analyze the usual and unusual forms of packets 
that can be seen in Wireshark. Side by side, we will identify anomalies and regular 
traffic patterns. We will also discuss how you can decrypt wireless (WEP) traffic 
using Wireshark, which can definitely give an advantage while auditing WLAN 
environment.

What we are going to witness is not much different from the wired networking that we 
saw earlier; here, we will be quite concerned with the medium through which packets 
are flying around us. The two layers at the bottom of the OSI model are important as 
they represent the data link and the physical layer. The data link layer is divided into 
two parts: Logical Link Control (LLC) and Media Access Control (MAC).



Analyzing Traffic in Thin Air

[ 154 ]

Understanding IEEE 802.11
At the Institute of Electrical and Electronics Engineer (IEEE), there are several 
committees working together on several projects, and one of these is 802, which is 
responsible for developing LAN standards. A free white paper can be downloaded 
from the IEEE website based on 802 standards. Specifically, 802.11 contains WLAN 
standards. If you want to analyze what normal traffic looks like, you should be 
aware of the standards and the present working technologies within 802.11.

There are a couple of 802.11 standards, but the few important ones that we should 
know about are 802.11b, 802.11a, 802.11g, and 802.11n, which are explained in the 
following list:

•	 802.11: This only supports a network bandwidth of 1-2 Mbps. This is  
the reason why many 802.11-compatible devices have become obsolete. 
Hence, it became necessary to develop other 802.11 standards.

•	 802.11b: This specification uses a signaling frequency of 2.4 Ghz that is 
similar to the 802.11 standard. A maximum of 11 Mbit transmission rate 
can be achieved over a 2.4 Ghz band using b specification. As most of the 
home appliances (microwave, cordless phones, and so on) work over a 2.4 
Ghz spectrum, it causes quite dense interference and congestion during 
WLAN packets transmission. To avoid the interference, the access points 
can be installed at a reasonable distance. The 802.11b band is divided into 
14 overlapping channels, where every channel has 22 Mhz widths. In 
one instance, there can be a maximum of three non-overlapping channels 
operating at the same time. This space separation is necessary and required 
in order to let the channels operate individually. One device can be part 
of one channel at a time; the same follows when you listen to the packets. 
Practically, it is possible now to sniff more than one channel at a time, which 
is facilitated through various tools that are now available; one of them is 
Kismet, which can sniff up to 10 channels at regular short intervals.

•	 802.11a: This is based on Orthogonal Frequency Division Multiplexing 
(OFDM) that was released in 1999 and supports a maximum transmission 
rate up to 54 Mbps, which also gives us an advantage over 802.11b congested 
bands. This specification was developed as a second standard to 802.11 
standards. It is commonly used in business environments, but because of 
its high cost, the b specification is not best suited for home environments. 
Though it supports higher speeds around 5 Ghz spectrums than 802.11b, 
the range of devices falls short if it is configured with a specification. The 
capability of bypassing the obstructions that comes in between is not better 
than 802.11b. There is no channel overlap that happens in 802.11a. A higher 
regulated frequency helps in preventing the interferences caused by devices 
that work on 2.4 Ghz spectrums.



Chapter 6

[ 155 ]

•	 802.11g: Somewhere around the middle of 2002, this specification came into 
existence, and this tried combining the best features of 802.11a and 802.11b. 
The signaling frequency used here is 2.4 Ghz, and the bandwidth it supports 
is upto 54 Mbps. Due to the 2.4 Ghz frequency in use, the range parameter 
that suffered a decline was improvised. The 802.11g also supports backward 
compatibility, which means that all 802.11g access points will support network 
adapters using 802.11b and vice versa. A strong point in this specification is:  
it won't get easily obstructed.

•	 802.11n: To improve further, the wireless N was introduced. The key 
area where the improvement was carried on is the range and the transfer 
rates. The base technology that is implemented to make all this possible 
is Multiple-Input Multiple-output (MIMO) communication. There are 
multiple antennas fitted into the access point that are used to send, receive, 
and bounce off the signals. This enables a channel frequency of 40 Mhz.  
The final version of this specification, which was released in 2007, stated  
a transfer rate up to 600 Mbps. It can be configured with 2.4 or 5 Ghz (if  
the access point is compatible with both); it can use both frequencies at the 
same time, thus enabling backward compatibility with network adapters.  
A maximum of four antennas can be used with the MIMO technology.  
Once all of this starts working together, users can experience fastest speed 
and maximum signaling range, and it's not much affected by another device 
working on the same frequency band. If this network type gets inferred,  
then it will other specifications such as 802.11b/g.

Various modes in wireless communications
WLANs uses the Carrier Sense Multiple Access and Collision Avoidance protocol 
(CSMA/CA) to manage the stations sending data, where every host that wants to 
send data is supposed to listen to the channel first, that is, if it is free, then the host 
can go ahead and send the packet; if not, then the host has to wait for its turn. This is 
because the same medium is being shared by every host, thus avoiding collisions that 
might happen if two hosts start transmitting at the same time, as a result making the 
performance of the network go slow and more prone to errors. The 802.11 architecture 
is composed of several components such as a station (STA), a wireless access point 
(AP), basic service set (BSS), extended service set (ESS), independent basic service 
set (IBSS), and distribution system (DS).



Analyzing Traffic in Thin Air

[ 156 ]

There are four common modes of association between the STA and the AP,  
which are as follows:

•	 Infrastructure/managed mode: A wireless network environment where 
two devices wish to connect an STA and an AP to share data and network 
resources is termed as the infrastructure mode. An AP is defined with a 
Service Set Identifier (SSID), which is actually just a name given to the 
access point for identification purpose (for security reasons, sometimes, 
broadcasting an SSID can be disabled, which will prevent your wireless 
network from being discovered by unintended users). For example, once you 
start scanning for available Wi-Fi networks around you to connect to, you'll 
be shown multiple network names, from which you are supposed to choose 
a network that you know about. All these names of networks are called SSID. 
Another useful term to know is Base Service Set Identifier (BSSID), that is, 
the access point's MAC address. By default, every access point is supposed 
to broadcast the SSID and transmit a beacon frame 10 times in a second 
to let devices know that they are ready to accept connections. Refer to the 
following diagram that illustrates this example:

•	 Ad Hoc mode: In this kind of network, a peer-to-peer network is formed 
where two clients are connected to each other. The packets sent and received 
by the wireless clients are not relayed to the access point. The clients taking 
part in this communication now handle the process of sending beacons and 
processing authentication that a WAP handles in normal scenarios.



Chapter 6

[ 157 ]

•	 Master mode: When the NIC card in your machine lets you become an  
AP, this is what the master mode is all about. Higher-end devices have  
a capability to act like access points, and this is possible when NIC cards  
start working together with a special driver.

•	 Monitor mode: For the purpose of this chapter, this mode is very important. 
This mode is used to listen to the packets that are flying around; when the 
monitor mode is activated, your device will stop transmitting and receiving 
any packets and it will just sit silently and sniff live traffic. If you want to 
capture packets from the wireless network concerning 802.11 protocols, then 
your NIC and the driver that is being used must support the monitor mode. 
It is quite easy to activate the monitor mode on an OS, such as Linux and 
MAC; however, with Windows, it becomes quite troublesome to activate the 
monitor mode. This mode is often termed as the Radio Frequency Monitor 
Mode (RFMON).

After learning the basics of different forms of wireless networking infrastructures 
that you might note in a production environment very casually, it would definitely 
become a bit easier for you to choose between the various modes available as per 
your requirements.



Analyzing Traffic in Thin Air

[ 158 ]

Wireless interference and strength
To better understand the normal traffic pattern, we should be aware of the various 
usual factors that govern the performance of a wireless network. For example, data 
packets, associations, and disassociations, signal strength with/without interferences. 
Our objective while analyzing preceding parameters is to form a baseline that can 
prove worthy when comparing the traffic patterns with unusual ones. The factor that 
affects the network performance the most is a different form of interference, which is 
caused due to various factors such as physical obstructions such as thick walls, roofs; 
and electronic appliances, such as microwave, cordless phones, and so on.

While dealing with wireless networks, the integrity of data becomes more important 
because the packets are simply traveling in the air, and anyone with some basic 
hardware and knowledge of how wireless networks work can sniff and capture 
these packets easily. Wireless networks don't have any rescue options to protect the 
integrity, so using them, you cannot be 100% assured regarding the security of data.

Let's say, for example, you are listening to a particular channel in the spectrum. 
Normally, you can sniff only one channel at a time, but if the channels start 
overlapping each other, than it is quite possible that you will see other channel 
packets in the list pane. As per the normal functioning of a wireless spectrum, the 
networks that operate close to each other are supposed to choose non-overlapping 
channels such as 1,6,11,14 to avoid any issues. Refer to the following figure that  
best illustrates channel overlapping (I used from the same from Wikipedia):

The strength of the wireless network is totally dependent on Radio Frequency (RF) 
signals that carry the traffic. Once the wireless signal starts traveling, the strength is 
supposed to lessen eventually, as it travels farther because of the obstructions that 
come in between. The device that works over the same RF energy is also responsible 
for reducing the wireless signal strength. If you are also dealing with such issues, then 
just using Wireshark to listen on an interface in the monitor mode won't solve the 
purpose. You need a spectrum analyzer, such as Wi-Spy+Channelyzer, that is paired 
with a USB (refer to http://metageek.com) adapter and gives you an extra eye over 
the RF energy form; otherwise, you won't be able to see them. Most of the time, the 
device emitting high RF energy can be the cause of poor network performance.

http://metageek.com


Chapter 6

[ 159 ]

To inspect the environment for RF energy, you need to walk down the office on 
your own with your laptop running a spectrum analyzer, which would be able to 
detect the RF anomalies that can affect your wireless network performance. The 
placement of these analyzers does play an important role in solving the problem. 
If a host in your office is not able to connect then the best option is to place your 
analyzer as close to the host as possible in order to perceive the situation from the 
host's perspective. If various hosts in your office experience a similar problem, then 
the best option would be to place the analyzer near the access point they are trying 
to connect to. Depending on the scenario you are dealing with, you can dynamically 
decide and even manually scan through the office premises to get to know whether 
there is any RF energy interfering.

I don't have any special hardware to show you RF energy, but I will use an inbuilt 
tool from the Kali Linux OS, which will help us fetch various granular details 
regarding different WLANs available around my premises and all the devices that 
are connected to Wi-Fi (if paired with a hardware used for spectrum analysis, this 
can prove really useful). The name of the tool is Kismet, and it is quite efficient 
in representing details in graphical and various available statistical formats, thus 
enabling us to know more about the neighborhood (use it for ethical purposes). 
Follow these steps to use the Kismet tool on Kali Linux:

1.	 First I enable the monitor mode using the airmon-ng start wlan0 
command (wlan0 is my wireless interface).

2.	 Open the terminal and type Kismet. You will be asked to set various 
customization options—do not change any default settings.

3.	 Once you're asked for the source (interface name) for the Kismet server  
to capture the packets, specify your interface running on the monitor  
mode (in my case, this is mon0. You can check your interface using the 
iwconfig command).

4.	 Now, let the tool run on its own for a few minutes; gradually, you will  
start noticing that a graph is getting plotted for the live traffic captured.  
You will see various wireless networks around you and most of the 
associated devices connected with it.

5.	 In the network section, you will see specific details for the wireless network, 
such as BSSID, SSID, encryption algorithm used, and so on.



Analyzing Traffic in Thin Air

[ 160 ]

6.	 The clients' section will show various devices associated with the network. 
Refer to the following figure of the tool that lists my network and various 
clients connected to it:

Now, let's see what does each pointer in the preceding screenshot signifies:

•	 In this part, just below the menu bar, the number of networks that my  
Wi-Fi adapter is able to scan is shown. The first row shows my home 
network Anonymous and its BSSID, when the network was last seen,  
the algorithm used, and the manufacturer of the device.

•	 In this second section, Kismet lists out various devices that are currently 
associated with the Anonymous network, their type (is it an access point or  
a wireless client), the frequency that the devices are using for transmission, 
the total number of packets a particular device has transmitted, the size of  
all packets, and the manufacturer of the device (interestingly, Kismet was 
able to identify one device manufacturer that is currently associated with  
my network, as shown in the first row). Refer to the following screenshot  
that shows the device section separately:



Chapter 6

[ 161 ]

•	 In the third section, there is a graph that shows the current rate at which the 
packets are traveling around and the total amount of data packets that are 
shown with red bars.

•	 In the fourth section, we can see a lot of details that are listed, such as the 
hostname (Kali), total number of networks my NIC is able to see, for how 
long Kismet is running, the total number of packets captured, and an average 
rate of packets seen per second. Using such simple tools without any special 
configuration, we were able to collect a good amount of specific details.

In the bottom-right corner of the window, the interface used to capture details is 
shown: mon0 (a monitor mode activated interface). Through this tool, we are not able 
to capture any RF energy that can distort the traffic shape, which lessens our network 
performance. But the same tool, when paired with Wi-Spy or Ubertooth hardware, 
will show the RF energy spectrum. If you are one of those professionals who needs to 
deal with Wi-Fi troubleshooting in day-to-day working, then you should use this—if 
not now, then someday you will.

The RF energy emitted from the devices won't be the problem every time; sometimes, 
you would be required to look at the packet level like checking authentication and 
association packets, that is, you can match your normal traffic pattern with the 
anomaly you might be facing.

The IEEE 802.11 packet structure
The medium used by the packets to travel from one host to another is changed for 
now, but the basic protocols that work on the preceding layers are still the same. As 
we already discussed, layer 2 (data link) is of great importance here. Understanding 
packets traveling in detail is obviously a good thing; we will discuss various types of 
frames, header structures, and information an 802.11 packet contains.



Analyzing Traffic in Thin Air

[ 162 ]

There are basically three types of frames that you will see while analyzing wireless 
packets. All the packets listed are almost similar to the one we saw earlier; the only 
difference here is the extra information that is appended because of the 802.11 header. 
The following are the header types that you will see:

•	 Management: To form a connection between the hosts at the data link layer, 
these frames are used. These frames are used to join or leave a network, 
associations/disassociation/reassociation and to broadcast beacon packets 
and a few administrative tasks. Management frames are responsible for a lot of 
activities that take place while the connection between the hosts is established.

°° The beacon frame: The AP sends beacon frames every 10th of a 
second to let the STA know that the AP is available for connection.

°° The authentication frame: This type of frame is sent by the STA 
to the AP containing its identity. If the AP follows an open system 
authentication, then STA would send just one authentication frame 
that AP acknowledges to understand whether the connection is 
accepted or rejected. If the AP follows shared key authentication, 
then the STA sends a request to the AP to get connected. Now, AP 
sends a challenge text to the STA. After this, STA completes the 
challenge and encrypts the challenge text requested using the same 
algorithm that the AP is using, and then it sends it to the AP. AP 
receives and decrypts the text using it's own key value, and no matter 
what the result is, it determines the status of the connection request.

°° The association request frame: This frame is sent from the STA  
to the AP to provide details of the allocation of resources and for 
syncing purpose.

°° The associate response frame: This frame is sent in response to the 
AP for the STA request that is sent.

°° The deauthentication frame: This is sent by the STA to terminate the 
connection with the AP/STA.

°° The disassociation frame: This frame is a graceful way of terminating 
the connection so that the AP can free up the resources allocated for  
the STA.

°° The probe request frame: This frame is sent by the STA to another 
STA/AP to request for its details; this is basically used to find  
nearby APs.



Chapter 6

[ 163 ]

°° The probe response frame: This frame is sent in response to the 
request that AP/STS might have received from another device in  
the network.

°° The reassociation (request/response) frame: This frame is sent  
to the new AP when an STA's association with the current AP  
gets dropped. In response, the AP acknowledges the acceptance/
rejection for the reassociation request.

Monitoring the time gap between each beacon frame sent from the  
hosts can be useful when dealing with high latencies. Due to these  
beacon packets broadcasted from the AP, the devices know that they  
are available to connect to.

•	 Control: This is to ensure that the delivery of the packets between the hosts 
manages the level of congestion in your channel and uses packets such as 
clear-to-send and request-to-send. In short, we can say that these frames are 
used for maintenance tasks. These control packets ensure the integrity of the 
packets that are transmitted. Likewise, the management frame several kinds 
control frame has just three kinds:

°° Request-to-send (RTS): This frame is sent by the STA to request for 
gaining the control of the medium for a particular duration.

°° Clear-to-send (CTS): This frame is sent by the AP from where it 
received the RTS to specify when the medium will be allocated to  
the STA for transmission. This frame is often used for protection  
from older stations that want to gain access to the medium again.

°° Acknowledgement (ACK): This frame is sent by the receiving STA to 
tell the sending station that the data packet was received successfully. 
If the sending station does not receive this packet, then after a definite 
period of time, the sending station will resend the data packet to the 
same recipient to ensure the delivery of the packet.

•	 Data: These frames contain the data that is actually sent between the hosts. 
These are the only frames that get transmitted between the wireless and the 
wired domain.



Analyzing Traffic in Thin Air

[ 164 ]

The 802.11 packets are similar to the wired network packets that we saw; the 
terminologies do differ a little bit, but the basic concept is identical. Let's take  
a look at a beacon frame. Refer to the following screenshot for that:

Now, let's see what all the pointers in the preceding figure signify:

•	 1: The packet describes it all; the beacon frame is sent to the broadcast address 
from the Wi-Fi-enabled device or any device that is currently listening can 
connect to it using the right credentials.

•	 2 and 3: Here, the type of the frame is management and the subtype is beacon.
•	 4: As we discussed earlier, beacon frames are transmitted every 10 seconds. 

You can verify the same from the packet itself, to be precise; the next beacon 
frame was sent after an average time of 0.102385000 seconds (this is just the 
time gap I calculated between the two packets seen in the list pane).

•	 5: The SSID broadcast is enabled, and hence, the packet is shown with the 
broadcasted SSID Anonymous, which will be visible when you try to scan 
nearby Wi-Fi hotspots that you wish to connect to (you need to use the 
monitor mode to capture this packet). Various other details are included in 
the beacon frame that is part of the header and is quite necessary to know 
about. Refer to the following frame structure that shows how a layer 2 
datagram looks like in theory and in Wireshark:

Frame 
Control Duration/ID Address1 Address2 Address3 Sequence 

Control Address4



Chapter 6

[ 165 ]

Let's take a look at the fields present in the frame in detail:

This is the first section in the frame header that lists out quite a good amount of info 
in it.

•	 Frame Control
•	 Protocol Version: This represents a 2-bit value that is used to verify the 

version of the protocol in use; the current version is 0 at the time of writing.
•	 Type: This identifies the type of the frame; in our case, we are dealing with  

a management frame (beacon).
•	 Subtype: This represents the subtype of the header; for us, it is a beacon 

frame for which we are seeing a numerical code 8.
•	 DS Status: This represents whether a data frame is heading to a distribution 

system (DS) or working in which mode. If the bit is set to 1, then this must 
be a data frame; if this is set to 0, then this frame is probably a management/
control frame.

•	 More Fragments: If this bit is set to 1, this means that the frame has been 
distributed into couple of parts and is being sent one by one.

•	 Retry: This bit is set to 1 when there is a requirement upon retransmission  
of the frame.

•	 PWR Management: If this is set to 1, it represents the current power management 
state of the STA whether it is active:0 or in the power-save:1 mode.



Analyzing Traffic in Thin Air

[ 166 ]

•	 More Data: This bit is set to 1 if the AP is trying to tell the STA in the  
power-save mode that it has more frames to send. In case of control frames, 
this will always be 0.

•	 Order: If this bit is set to 1, this means that the frame is forcefully lined up 
and would be sent in a sequence. Usually, this bit is not set because it might 
cost transmission performance.

•	 Duration ID: This denotes the time the sender might require for frame 
exchange; this is usually seen in an request-to-send (RTS) frame, which 
requests to occupy the medium for a certain amount of time.

•	 Address 1/2/3: This is the physical address of the communicating device 
(receiver, transmitter, and destination address).

•	 Sequence Control: This is composed of two subfields: a 12-bit sequence 
number and a fragment number of 4 bit. A sequence number field is used to 
identify the sequence of the frames that arrive and for their proper reassembly 
(this ranges between 0-4,095). The fragment number field is used to denote the 
number of fragments for each frame (this ranges between 0-15).

•	 Address 4: This represents the sender's physical address and would only be 
present in a wireless distribution mode.

•	 Data/Payload: This field is not part of the header, but at the end, it will be 
appended when data is being sent across. The size of this field can be up to 
2,324 bytes.

•	 FCS: The frame check sequence field is used to perform a data integrity test; 
you must have heard about the cyclic redundancy check (CRC), which helps 
in calculating a value related to the data we received. If the FCS value is 
identical to the one we calculated, then the packet is received without errors.

RTS/CTS
These are one of those essential components of WLAN data transfers that avoid 
collisions from happening and ensure the integrity of the data that is sent. The 
following illustration determines the four-step process that takes place to follow  
a 100% fail-proof delivery:



Chapter 6

[ 167 ]

First, the AP sends a request to the STA to gain medium access; once the STA 
approves the AP's request, the AP starts sending data. As soon as the data transfer  
is completed, the STA sends an ACK packet to acknowledge error-free delivery.  
If the ACK is not sent, then then the AP will start retransmission after some time.

Usual and unusual WEP – open/shared 
key communication
Here, we will discuss two types of Wired Equivalent Privacy (WEP) authentication 
procedures: open and shared keys. As a matter of fact, discussing WEP is really 
unnecessary, but we should be aware of how it works because you never know  
when you might be asked to troubleshoot an old router whose firmware is still  
not upgraded and just supports WEP as an authentication mechanism.

WEP-open is way better than WEP-shared because even when the password that 
you provide turns out to be wrong, you will get connected to the network; here, it 
reduces the chance of getting the router brute forced. If you are using WEP-shared 
communication, then an experienced hacker won't take more than 2 minutes to crack 
your strongest key, and because of the small pool of keys that WEP supports, your 
password won't last long.

So, to begin with, we need the infrastructure to capture packets that are required for 
WEP-open. A key point to note here is that the infrastructure I am using consists of 
three different machines: the access point on the 192.168.1.1 IP, the station on the 
192.168.1.105 IP, and Kali Linux running Wireshark on the 192.168.1.104 IP. 
Refer to the following illustration to understand this:



Analyzing Traffic in Thin Air

[ 168 ]

1.	 First, let's activate the monitor mode over my interface:

In the bottom-right corner of the preceding screenshot, you can see  
the message that the monitor mode is enabled over the mon0 interface.  
This is the same interface that we will use to capture 802.11 packets  
from our AP and STA.

2.	 Next, to confirm the channel over which my channel is working, I used the 
airodump-ng mon0 command.

3.	 Now, once we have figured out that the channel is 6, we can go ahead and 
make our interface listen specifically to this channel, thus avoiding any 
noise from other channels. To do so, I used the iwconfig mon0 channel 6 
command.

Figure 1: Configuring mon0 interface to channel 6

4.	 Once you have completed all these steps, go ahead and launch Wireshark.  
If the output of the commands you issued gives any error, then please rectify 
it before you proceed.



Chapter 6

[ 169 ]

WEP-open key
Once the interface starts working fine and you are able to see the beacon frames 
broadcasted from your access point and probe request or response to and from  
your station, then you can simply launch a WEP-open authentication session.  
When asked for a password, just give any random password which will let you  
get connected to the network, but it might be possible that you won't be able to 
access the Internet connection shared by the AP with other STAs. Refer to the 
following screenshot depicting a WEP-open authentication session.

To capture the normal traffic pattern, I will use a Linux distribution (Kali) running on 
an independent machine that has a feature to activate the monitor mode (without the 
monitor mode, you can not capture 802.11 packets.) First, activate the monitor mode 
on our WLAN adapter using a basic set of commands, and we will also configure the 
same adapter to listen to a specific channel.

After launching Wireshark, make sure that you choose the mon0 interface only; then, 
you will be able to capture relevant traffic (keep the promiscuous mode on as well).

As clearly visible in the details pane of the first authentication frame selected in the 
list pane, the authentication system is Open-System (numeric code 0) and the 
connection attempt is successful as well. Following this, we can see an association 
request/response and then some QOS and Null function data frames.

An association request/response is sent and received by the STA/AP to associate  
a dropped connection, which the client was already a part of before, and to allocate 
the resources STA might require for communication over the channel.



Analyzing Traffic in Thin Air

[ 170 ]

A QOS data packet is a subtype of the control frame types, which depicts the quality 
of service and the over all performance.

Null Function packets are used to inform AP that the STA is going in the power-save 
mode. This packet does not carry any data, just some flag information.

And for every kind of information being shared between hosts, there are ACK packets 
that are sent across to determine the delivery of every packet in the communication.

The shared key
Before we start configuring, I want you to understand the process of WEP-shared 
key authentication, that is, the steps involved in the whole session. Refer to the 
following illustration to understand this:

In short, the STA tries to connect to the AP by sending an authentication request, 
which the AP acknowledges by sending a text challenge that the STA is supposed 
to complete and before sending an encrypt using the key algorithm AP knows 
about. Once STA has completed the challenge process over his end, STA sends the 
challenge response which is being evaluated by the AP and determines the success 
or failure of the connection and the same is acknowledged to the STA in another 
authentication frame.



Chapter 6

[ 171 ]

So, for a normal WEP authentication session, you will observe at least four 
authentication frames. If the authentication is successful, then the authentication 
frames will be followed by an association request/response along with some data 
transfer. And if the authentication is not successful, then after four authentication 
frames, the session between the STA and the AP will end. Follow the next steps to 
capture WEP management, control and data frames from your WLAN.

As discussed, you will note that the same pattern of packets is captured. Refer to the 
following screenshot depicting a successful WEP authentication session that was 
captured by Wireshark:

•	 For the fourth authentication frame, I have expanded the details section to 
confirm whether the connection attempt was successful or not. And from the 
preceding screenshot, we can verify that it was successful. The authentication 
type used for the communication can also be seen here.

•	 As we know, now if the connection attempt between the STA and AP fails, 
the whole session will be terminated after the fourth authentication frame 
and we will see a failure message. To verify the same, I tried duplicating the 
scenario while Wireshark was listening through an interface in the monitor 
mode on an individual system.



Analyzing Traffic in Thin Air

[ 172 ]

•	 Refer to the following figure that illustrates a failed WEP connection attempt. 
In the list pane, we can see the same authentication frame pattern (just four 
authentication frames), but the last frame that the STA received from the AP 
acknowledges the connection status. As is clearly visible in the details pane,  
the connection attempt failed due to an incorrect challenge response text sent  
by the STA.

We witnessed two types of authentication procedures that WEP supports, but what is 
really important to know is that WEP is now obsolete, so I would never recommend 
to any of you to use this as an authentication protocol. If you have any old devices 
that only support WEP, then kindly upgrade to the latest hardware.

WPA-Personal
We talked about a crappy authentication algorithm that has been used since the 
birth of wireless networking, but when we have a better option, why not use it. I am 
talking about the Wi-Fi Protected Access (WPA) security algorithm that is stronger 
than WEP when we add the corrective measures required. In 2003 when WPA was 
launched by Wi-Fi Alliance as a measure to make WLAN communication stronger 
than the previous protocol, WEP. Nowadays, almost every WNIC supports WPA 
authentication mechanism, thus enabling you to take advantage of using a better 
security protocol. The Temporal Key Integrity Protocol (TKIP) lets the existing legacy 
hardware upgrade easily to implement WPA. The key size used by WEP was 40/104 
bits, whereas WPA uses a key size of 256 bits, and the interesting thing to know is that 
every packet transmitted between the AP and STA is encrypted using the 256-bit key, 
which makes the situation quite tight for malicious users. One more advance was done 
in WPA that let the devices communicate with more assurance about the integrity of 
the message.



Chapter 6

[ 173 ]

In WEP, the traditional CRC was implemented, but here, the popular Michael 64-bit 
Message Integrity Check (MIC) was introduced to address the issue. WPA also uses 
the RC4 algorithm to build a session based on dynamic encryption keys (you would 
never end up using the same key pair between two hosts). If compared to WEP, it has 
a larger IV size of 48 bits. Refer to the following illustration of how the cipher text is 
formed that is transmitted over the medium:

The preceding illustration depicts how the whole process starts by appending the IV 
and the dynamically generated 256-bit key. Then, is passed on to the RC4 algorithm, 
which encrypts the packets with keys, and then the resulting encrypted key stream 
is appended with the data and voila! We have the cipher text. Now, I will introduce 
you to the normal authentication session between an AP and an STA. Refer to the 
following figure for the same:



Analyzing Traffic in Thin Air

[ 174 ]

In the case of the Enterprise WPA configuration, first, the  Master Key Exchange takes 
place. I will later give you a brief about it. As of now, we have an AP that sends its 
nonce (random value) to the STA (initiation of connection) that will use the AP's 
nonce value and its own nonce to calculate the Pairwise Transient Key (PTK) along 
with the Pre Shared Key (PSK), which was established during the initial connection 
process. The resulting value will be sent to the AP. Then, the AP will calculate the 
PTK over its end and append the MIC with the receive sequence counter (RSC) that 
helps in identifying the replayed messages. The resulting value will be passed on to 
the STA. Now, the STA will first verify the MIC in the message to ensure the integrity 
and install the keys. Then, a response will be sent to the AP regarding the status. If the 
status shows success, the AP then installs the same keys (dynamic keys) that will be 
used in further communication between the hosts.

After configuring WPA-Personal on my AP, I had sent an authentication request 
from my client and the corresponding communication was captured by Wireshark, 
which is shown in the following screenshot:

You need the same infrastructure that we used while capturing 
WEP communication that is an interface in the monitor mode 
that is listening on a separate machine.



Chapter 6

[ 175 ]

This is what a normal WPA successful handshake (authentication) process looks 
like, that is, four EAPOL packets. To analyze the session specifically between the 
AP and STA, I applied a display filter to see only EAPOL packets (authentication 
frames). Before the authentication frames, AP's beacon frame, and STA's probe, we 
looked at authentication and association request/response packets that led to the 
authentication session, following which PSK was used to generate the dynamic keys. 
Because of a software package error that I installed on my machine, the fourth packet 
says Message 2 of 4, whereas it should be Message 4 of 4.

Getting into more detail, I would like to show you the flags marked in all of these 
four authentication packets that will definitely clear your thoughts regarding the 
WPA handshake process. Refer to the following screenshot that illustrates this:

Here is the description of the preceding authentication packets:

•	 Packet 1: The pairwise master key (pre-shared key) and the ACK bit are set 
(probably because of the association request/response exchanged earlier ), 
which was sent by the AP to STA to initiate the connection along with the 
nonce value that was chosen randomly.



Analyzing Traffic in Thin Air

[ 176 ]

•	 Packet 2: The pairwise master key and the MIC flag is set, which STA sent to 
the AP to for acknowledging the request received, along with its own nonce 
value appended to the AP's nonce and the MIC for integrity check.

•	 Packet 3: The pairwise master key, install, key ACK, and MIC flags are 
set, which the AP tries to send to the STA. The STA will fulfill the challenge 
text values received and will confirm to the AP along with the encrypted 
challenge text which AP is going to be crosschecked.

•	 Packet 4: Here, the pairwise master key and the MIC flag are set, which  
the STA sends to the AP to make the connection complete. Now, the AP  
is mutually ready to perform data transfer with the STA.

I hope these flags help you understand the four-way handshake process in an easy 
and realistic manner.

Next, we are going to see what happens when the AP receives an incorrect challenge 
text from the STA, what the packets look like in the list pane, and whether there 
would there be any difference in the pattern of packets that are captured.

The STA will try to connect to the AP and the AP will request the challenge text. The 
STA this time is not aware of the secret keys used by other clients in the network, 
so ending with an incorrect pass key which won't be accepted by the AP, or please 
check acknowledged by the STA. The STA will try again to send the challenge text 
and the same process goes on. After this, you will notice a couple of similar packets 
in the list pane. Refer to the following figure for the same:

Figure 2: WPA Failed authentication



Chapter 6

[ 177 ]

As you can see in the preceding screenshot, EAPOL Message 1 and 2 can only be 
seen because when the STA provides the challenge text response, the AP rejects 
it and again the process starts from beginning. The same thing will continue for a 
couple of times, but a packets pattern of such kind denotes unsuccessful connection 
attempts (may be a brute force attack). The packets listed can be associated with  
each other using the replay counter listed that we saw earlier in the key nonce in 
details section.

WPA-Enterprise
I promised we would be discussing the enterprise mode in brief, so here it is. In the 
corporate infrastructure, the key and passwords are not kept with the AP, and even 
the AP is not responsible for authentication with the STA. There is an extra entity, the 
RADIUS server, that takes care of authentication here. Before the four-way handshake 
takes place, the RADIUS server and the access point are supposed to go through a 
Master Key Exchange, which gives an assurance to both the communicating devices 
that the other part is legitimate. Let's have a look at the following figure:

Afterwards, the pairwise master key is created and passed on to the AP, which 
will lead on and complete the four-way handshake process and complete the 
authentication session.



Analyzing Traffic in Thin Air

[ 178 ]

I've scrolled down the packet list and look what I found for you: Disassociation and 
Deauthentication packets in action captured by our sniffer. So, before we wrap up, 
you should take a look at them.

The wireless stations/access points use disassociation packets in order to notify the 
access point that the client is now going offline and the resources that have been 
allocated by the AP to wireless clients can now be released. Refer to the following 
figure that illustrates the same:

Figure 3: The disassociation packet

As you can observe, at first, the STA sends a disassociation frame and receives 
ACK (318,319) for the same. Now, for better understanding of the packets, we can 
take a look at the details pane (select the disassociation packet first), where the 
Reason Code parameter states that the STA is leaving or has already left. This gives 
us a feature through which we can view and understand packet behavior efficiently.

The wireless stations or the access points use the deauthentication frames to notify 
the other side of the communication that the other device is leaving. There can be 
several reasons for it. Refer to the following figure to understand this:



Chapter 6

[ 179 ]

Figure 4: The deauthentication packet

First, the STA sends a deauthentication frame to the access point, which gets 
acknowledged in the next packets (467,468). After expanding the details section for the 
deauthentication packet, we can easily note that the Type/Subtype field is verifying 
the same. And at the bottom, we get to understand why the deauthentication packet 
was generated. In our case, it is Previous authentication no longer valid, 
which the STA tried to notify the AP about, and if they wish to communicate again 
in the future, then the process of authentication has to start over, from the probe and 
association frame, following the four-way handshake.

Decrypting WEP and WPA traffic
The technique to decrypt WEP and WPA traffic is available with the use of 
Wireshark. As we know, WEP is the weakest security encryption protocol and  
it has been exploited for a long time. Once you have the key for the wireless  
network, it becomes a matter of a few clicks to decrypt the traffic.



Analyzing Traffic in Thin Air

[ 180 ]

To demonstrate the same, I have sanitized the wireless traffic between my access 
point and a client that is connected to it. Refer to the following screenshot where  
the normal IEEE802.11 traffic is captured using Wireshark:

Figure 5: WLAN traffic before decryption

I hope that by now you must be aware of the kind of packets that we see in the list 
pane, but still, it does not make much sense in terms of network-activity-related 
traffic. This is why you need to learn the technique to make the entire traffic more 
readable. Before you proceed, you need to make some changes in the preferences 
section of the IEEE 802.11 protocol.

Go to Edit | Preferences, expand protocol section and select IEEE 802.11 and  
make the changes. Refer to the following screenshot and make the changes that  
are highlighted:

Once you have set the configuration as shown in the preceding screenshot, click on 
the Edit button next to Decryption Keys (to add the WEP/WPA key). Refer to the 
following screenshot:



Chapter 6

[ 181 ]

Click on New and you will be presented with the same dialog where you can add  
the WEP/WPA key in order to decrypt the preceding communication that we saw. 
After all the changes have been made, click on OK under Apply. Now, you will be 
shown the decrypted traffic similar to the one shown here:

Figure 6: WLAN traffic after decryption

The same list pane that we saw in the beginning of this section for this capture file 
is shown in a decrypted format now. Here, we are able to see the ICMP and DNS 
packets (normal network traffic); this is the normal traffic I was talking about. To 
manage the keys, there is a more effective way where you are not required to open 
the Decryption keys dialog from the Preferences section under IEEE 802.11. Just 
navigate to View | Wireless toolbar; this will add a new toolbar just below the 
display filter area.



Analyzing Traffic in Thin Air

[ 182 ]

Once added, you can easily mage the WEP/WPA keys. The dropdown showing 
Wireshark is really helpful and will enable you to toggle encryption on/off. If you 
choose None from the list, the decryption will be disabled and your traffic will be 
back to normal from just 802.11 wireless traffic. If you choose Wireshark, as in the 
preceding screenshot, then the decryption will be applied.

Summary
What we discussed here is not going to facilitate you with every scenario that can be 
seen in wireless communication, but definitely, it will give you a jump start.

The IEEE 802.11 standard works over radio frequencies for communication purpose. 
The protocol that works behind WLANS is CSMA/CD, which facilitates a collision-
free environment that is required for a wireless infrastructure. Under 802.11, there 
are multiple standards that have been developed, and this provides a robust solution 
for different infrastructure-based requirements.

Sometimes, you need to look at the RF energy level too, which can really play a 
big role in performance upgrade. Due to various devices that work over the same 
spectrum of 2.4 Ghz, it is possible that your WLAN signals may get distorted. What 
you need in such cases is a spectrum analyzer, which lets you analyze and monitor 
the RF energy flowing around you. To do so, you need special hardware that can be 
purchased from an online tech store, and you need to pair the same hardware with 
software that lets you use the same, for example, Metageek's Wi-SPY hardware paired 
with Channelyzer.

Kismet is a graphical tool available in Kali Linux that lets you collect various 
advanced details about the wireless networks that are available around you and 
the devices connected to those networks. Kismet comes with various customization 
options that can be really helpful while you look for specific information. Kismet also 
facilitates users with several graphical features to plot live traffic over a graph for a 
particular duration.

In a conventional WLAN environment, there is an AP and an STA that communicate 
with each other. Before the actual data transfer takes place, both the devices are 
supposed to negotiate the session over a key (password and encryption algorithm), 
which will be used by both the devices that are communicating to maintain the 
integrity of the data that is sent.

There are commonly three types of frames that you will see while working with 
Wireshark: management, control, and data frames. These are the packets that you 
can see in the details pane once a packet is selected. Management frames control the 
establishment of the connection, control frames control the transfer of management, 
and data frames simply consist of the actual data that is sent.



Chapter 6

[ 183 ]

Authentication protocols such as WEP and WPA take care of how an AP and STA 
negotiate to start communicating.

EAP is used to let the exchange of master keys take place. As defined in RFC 3748, 
EAP is an authentication framework that supports multiple kinds of authentication 
methods, and to execute EAP, you do not require an IP because it runs over data-link 
layer.

EAP with LAN becomes EAPOL, which is used in 802.11 infrastructures (RADIUS/
AAA) for the exchange of master keys. As per the normal pattern, an AP broadcasts 
beacon frames that STAs listen for. If not, then the STAs will send a probe request 
to get connected by themselves. Then, the AP and STA conduct an authentication 
session and negotiate until both the hosts are convinced with each other. Once this  
is done, the AP would send a success message to the STA.

Using Wireshark, it is possible to decrypt WEP communications by simply adding 
wireless network keys with the protocol in use and modifying the preferences for  
the IEEE 802.11 protocol.

The monitor mode used to capture the relevant packets can be configured easily  
over a Linux-based system, and it is essential for Wireshark 802.11 analysis.

RTS/CTS are used in contrast to CSMA/CA in 802.11, which keeps the medium 
collision free and easy to work with.

Using the hash function, Password-based key derivation function (PBKDF2),  
the 256-bit preshared key is evaluated using the passphrase.

Practice questions
Q.1 After reading the IEEE 802.11 section in this chapter, make an extensive note 
regarding this protocol and whatever you have understood—take help from the 
respective RFC if you want to.

Q.2 Install any Linux-based system live on an individual machine and try to enable 
the monitor mode using the commands mentioned in this chapter.

Q.3 Capture the packets with the monitor mode off and the promiscuous mode on 
first, and then capture with the monitor mode on and the Promiscuous mode on. 
Analyze the difference.

Q.4 Install the Aircrack tool on your Windows machine and try capturing the 802.11 
traffic around you.



Analyzing Traffic in Thin Air

[ 184 ]

Q.5 What is the difference between the various standards available in 802.11  
(b/a/g/n/i.)?

Q.6 Suppose you have a router, and over to one end of the router you have a switch 
connected, which further connects to multiple wired clients. Over the other end of 
the router, you have a wireless access point connect, which serves as a medium to let 
various wireless devices connect to the corporate network. Now, send a packet from 
the wireless domain to the wired domain and analyze the packets while they transit 
between the domains. What difference would it make in the 802.11 header?

Q.7 What can be happen when your wireless NIC does not support the monitor mode 
or the promiscuous mode? Explain the importance of each.

Q.8 To view the availability of the probe requests that your device has sent to the 
access point, which display filter would you use?

Q.9 Configure your AP with the WEP-Open authentication and then try to connect 
to it using the AP while capturing the traffic, and do the same with WEP-Shared and 
analyze the difference in the pattern of the packets that appear.

Q.10 Which one is better: WEP-Open or WEP-Shared key and why?

Q.11 Use a capture filter to capture traffic only from your host, access point, and the 
broadcast address. Does this help you to decrease the noise?

Q.12 Configure your wireless interface in the monitor mode to a specific channel and 
capture the WLAN traffic then.

Q.13 What is the difference between the WPA-Shared key and WPA-Enterprise 
authentication protocols? Elaborate the same.

Q.14 Duplicate the scenario where you have a WEP-Shared key configured access 
point capture, with quite a good amount of traffic for the same, and try to decrypt 
the traffic you have using the WEP key.

Q.15 Why is WEP-Open better than the WEP-Shared key authentication mechanism?

Q.16 Can you figure out a way that you can forcefully disassociate a wireless client 
from it's own currently connected network?

Q.17 For deauthentication packets, how many types you do think exist? Modify 
the coloring rule for the same to view the packets uniquely. In what way are they 
different from the disassociation packets?

Q.18 While analyzing the WPA handshake, do you observe any open-system-based 
authentication before the actual handshake? If it is there, then analyze the traffic and 
explain what is it for?



Chapter 6

[ 185 ]

Q.19 Configure your access point with the WEP protocol encryption capture normal 
802.11 wireless frames. Then, using the same approach that we discussed, try to 
decrypt your traffic using the key for your network.

Q.20 Is it possible to decrypt the traffic using the ASCII format key or you can you 
also mention the key in HEX format? If yes, in which case can writing the key in  
HEX format prove worthy?





[ 187 ]

Network Security Analysis
This chapter will teach you how to use Wireshark to analyze network security  
issues, such as analyzing malware traffic and foot printing attempts. You will  
learn how to use Wireshark for network security analysis. This chapter will  
cover the following topics:

•	 Analyzing port scanning, foot printing, and attack activities
•	 Lab up—port scanning with Nmap
•	 Analyzing brute force attacks
•	 Lab up—analyzing brute force attacks 
•	 Inspecting malicious traffic
•	 Lab up—inspecting malicious traffic
•	 Solving real-world CTF challenges
•	 Practice questions

Up to this chapter, I have tried to make you aware of how one should use Wireshark 
to analyze the packets flowing around. We have just focused on how to use this 
sniffing tool for basic analysis purposes. However, what I am about to tell you is that  
in most of the places, Wireshark is used for security-analysis purpose, ranging from 
basic footprinting attacks to advanced Trojan-based attacks.

Using a couple of scenarios in my virtual lab, I will try to duplicate the most common 
one, along with capturing the live traffic between the attacker and the victim. Later 
on, we will dissect the trace file to get an idea of how malicious traffic looks like. We 
will use this knowledge base to create IDS/IPS or firewall signatures in an attempt to 
protect our internal critical infrastructure by analyzing the traffic shown in Wireshark.



Network Security Analysis

[ 188 ]

To achieve all this, you need to change your perspective a little bit. In other words, 
you need to act and think like a security professional who is in charge of the 
corporate network and constantly working to tighten the perimeter that will make 
the attack process more complex for bad users. We can start all of this by analyzing 
the packets captured for our daily usual traffic and also duplicate certain scenarios.

Information gathering
The primary step in the exploitation process is to collect as much information as 
you can. In today's world, gathering specific and relevant information about a 
person or an organization is not so difficult (using search engines), and this is where 
everything begins. A lot of security professionals will start launching attacks directly 
on the targets, which is not appropriate in the beginning. Let's say, for example, 
there is an ABC Corp. Ltd. located in the next block, and an XYZ attacker is planning 
to exploit it in terms of physical security (to get entry to the server rooms or any 
high-valued target available inside). To do so, the first thing the attacker should 
know is the working hours and the non-working hours. Then, they should know 
about the working days in the targeted company. The attacker should also know 
about the physical layout of the building the company is located in, and they should 
have some basic knowledge about the security policy. With all this information, the 
attacker should be able to identify the weak points inside the premises that might be 
an easy target and can give access to what they are looking for. Did you notice what 
just happened in the preceding scenario? We assumed that the attacker is collecting 
useful information and then planning and figuring out the easy targets to attack, 
because following this approach will improve the chances of success. Footprinting 
and reconnaissance are synonyms for the term information gathering. The chances of 
success would be higher if you are following the planned approach. 

Let's use the same approach in targeting an organization using networks. The first 
step would be to identify the public IP address of the organization, the subnet it 
belongs to, and the range of IP addresses allocated to the organization. This basic 
information can be passively (without directly interacting with the company's 
network) collected through the use of DNS lookup services available online. We 
can try to check whether zone transfer is available, which can give some juicy and 
granular details regarding the organization's infrastructure we are targeting. After 
you have collected the basic information and have mapped the basic layout, you are 
ready to perform a port scan. I would prefer that you do a ping sweep first, which 
will tell you about the live machines over the network, and from where you will get 
to know more about the network (while performing a ping sweep, you can modify 
the TTL value to figure out the internal LAN architecture).



Chapter 7

[ 189 ]

Before we go ahead and try duplicating the most common scenarios, I want you 
to visualize the local virtual computer infrastructure I have created for practice 
purpose. Refer to the following figure:

Hopefully, now you have a rough idea about my internal network that I'll be 
working with. The access point located at 192.168.1.1 assigns the IP address to 
all these devices using DHCP (the DHCP range starts from 192.168.1.100 and 
continues up to 192.168.1.110; it means I can have a maximum of 10 DHCP clients 
at one instance). For this chapter, the IP address for our attacking machine is static 
assigned to 192.168.1.106.

PING sweep
Let's begin with our first scenario where an attacker would try to perform a ping 
sweep attack over the subnet, and the traffic generated is captured by our sniffer 
listening through its interface in the promiscuous mode Refer to the following figure 
that displays the traffic pattern that was generated after running a bash script the 
script pings each IP starting from 100 to 110):

Figure 7.1: Ping sweep



Network Security Analysis

[ 190 ]

Starting from packet 1–4, the Kali box started generating an ARP request because of 
the ICMP ping command issued, but none of those IP's are allocated. Hence, we did 
not receive any replies. In packet 5, Kali box sent a ping request to 105, and the reply 
for it was received in packet 14, which means the device is on. Then, in packet 7, an 
ARP request was sent to 103, but this IP might also be unallocated for the instance, so 
no reply again. In packets 8–10, Kali box sent an ICMP request packet to IP's 102, 101, 
and 100. The reply for the same can be seen in packets 13 and 15 from IP's 101 and 
100. For 102, we did not receive any reply. It might be any device blocking our ping 
probes or some mobile device not responding to the ping probes. Finally, in packet 
number 17, we can see that the access point is informing the Kali Machine about its 
physical address. If you scroll down through your trace file, you would see various 
replies from online devices describing their physical addresses.

Half-open scan (SYN)
The next step in the process would be to scan any specific device that you would 
like to target. Let's suppose I want to target my Win7 machine running at IP 
192.168.1.105. My next step should be to check for available services running on 
that box. By services, I mean HTTP daemons, mail server daemons, FTP server, and 
so on. You might be wondering what a half-open scan is? Look at the process of a 
TCP three-way handshake we discussed, where the client initiates the connection by 
sending a SYN packet if the server is available. Then, the client receives the SYN, ACK 
packet, and in return, the client sends an ACK packet to the server for completing the 
handshake process.

Now, what would happen if the ACK packet sent in the last step of the TCP 
handshake is never sent to the server? The server will wait for a specific period 
before terminating the handshake process initiated by the client, and the connection 
to the specific TCP service would never be completed. That's why this type of scan 
is called half-open scan. This is a very common scanning technique used by the 
majority of users who are involved in malicious activities, being aware of such traffic 
pattern could help us in identifying future risks. I initiated the half-open scan from 
Kali box to target Win7 box. I am using Nmap, which is an open source tool available 
for every platform and can be downloaded for free from http://nmap.org (to use 
the tool, you can refer to various tutorials available online). The traffic generated 
because of the SYN scan is captured and shown in the following screenshot:

http://nmap.org


Chapter 7

[ 191 ]

Figure 7.2: Half-open scan

There are three kinds of replies that you can see after the scanning is completed: 
Open, Closed, and Filtered. Now, the point to discuss is what these states mean 
and what relation do these states have with the packet shown in the preceding 
screenshot. Let's look at the states in more detail here:

•	 Open: If a service is open, then a SYN, ACK packet will be sent back to  
your machine for taking the TCP handshake process to the next step  
of completion. In packet 26, Kali sent an SYN request to port 135 and  
received a SYN, ACK reply in packet 28.

•	 Closed: If a service is not available to respond, then you would receive an 
RST packet that confirms that the service/daemon is currently not running. 
In packet 22, a SYN request was sent destined to port 113. In packet 25, the 
RST packet for the same is received. It states that the service is not available 
at this moment.

•	 Filtered: Sometimes, a firewall might be configured between you and your 
target that might be intercepting your requests and would be dropping them 
without forwarding them to the target. In such scenarios, you might be seeing 
port states such as open|filtered, closed|filtered, or just filtered.

•	 Let's suppose you are trying to scan an HTTP webserver that is outside  
your VLAN and is restricted by the firewall from your machine. Then,  
the handshake process would never move to the second step, that is, you  
will never receive a reply of any kind. You will not receive any SYN, ACK  
or RST packet.



Network Security Analysis

[ 192 ]

Using this scan type, you can identify the state of the services running. However, 
using this kind of scan type will generate a hefty amount of traffic too. The scan 
I initiated was completed in 1.76 seconds, and in such a short time, it generated 
2024 packets between the two machines. Now, this proves disadvantageous. Any 
well-configured IDS/IPS can figure out such activity very easily, which will in turn 
trigger an alert to notify the security admins. Nmap has configurable switches that 
can help you out in these situations too.

OS fingerprinting
Being aware of the operating system running on the target takes the scanning 
process to the next step in the methodology. If the attacker knows about the OS you 
are running, the patch level of your OS, and the version of your OS, then it would be 
quite simple to structure the attack process and will increase the chances of success.

There are a couple of tools available in Kali that will let you identify the target's OS. 
It is not 100 percent accurate, and it is correct most of the times. Now, how do you 
think a simple tool is available to identify the remote machine's OS? I will tell you 
the secret. Every OS has a different way of implementing the TCP stack. So, a packet 
received from the remote machine will have certain fields in it such as TTL, fragment 
offset, and most importantly window size. By comparing the values in the packet 
with the database we have, it will tell you the OS. For example, if you try to ping a 
Windows machine, the TTL value returned would be 128, and if you ping a Linux 
machine, the TTL value would be 64 most of the time. Simple, isn't?

There are two types of fingerprinting: active and passive. They are described here:

•	 Active fingerprinting: When you are directly interacting with the system, 
the requests and responses are directly shared between you and the target. 
This kind of scan can be really dangerous and is not stealthy. The captured 
packets will give you values that can be matched with the signature we have 
to identify the OS running on the remote machine.

•	 Passive fingerprinting: When you are just listening for the packets originated 
or destined to the target, the values in the packets can be examined in order to 
identify the OS running. A disadvantage off passive type scan is that it is not 
as accurate as active fingerprinting. But the process would be stealthier than 
active scans.



Chapter 7

[ 193 ]

Using the nmap scan, I will try to fingerprint a machine at IP 192.168.1.109 and 
192.168.1.104 and see what kind of traffic is generated due to such requests. The 
type of scan we will witness is active scanning, and we will be directly interacting 
with the systems. We won't just rely on Nmap's output to confirm the OS. The 
packet that would be returned to our attacking machine is the base of all necessary 
information, which I will try to dissect for your better understanding.

I will use the nmap –O 192.168.1.109,192.168.1.104 command for active OS 
fingerprinting, where the –O switch is for checking the OS and its version. Refer to 
the following two screenshots to compare the outputs they present to us:

Using just the TTL field, we can verify that the first traffic we captured is from 
some Linux/Macintosh-based machine, as the TTL value is 64. The second traffic 
screenshot belongs to a Windows machine as the TTL value is set to 128.

Secondly, the maximum segment size highlighted at the bottom can also be a 
deciding factor for OS fingerprinting. In both cases, it is 1460. The value is correct  
if you are talking about a Linux-based machine, but if it is a Windows machine,  
then you might observe that the value is 1440 most of the time.

For both Linux and Windows platforms, the Fragment Offset field should be 0  
(not set). See how, simply by observing basic fields in the TCP header and IP header, 
we were able to fingerprint on our own. Now let's see what nmap has to say.

Refer to the following screenshots for illustration:

Figure 7.3: nmap output for 192.168.1.104



Network Security Analysis

[ 194 ]

The nmap output for the machine IP 192.168.1.104 detects that the machine might 
be one of these OSes running (in the red box). I think what we figured out and it is 
quite close. OS detection by nmap is done by analyzing the requests and responses 
traffic that the target machine generates.

The nmap output for the machine at 192.168.1.109 says that it is a Windows server 
machine, may be SP1 or SP2. This time, the result is more accurate than the previous 
one. We also presumed that it would be a Windows OS, and it is.

The traffic generated from both these scans would be quite similar to the SYN scan 
traffic where the TCP handshake request and ICMP request/replies can be seen.  
Once the attacker's machine running nmap receives the replies for the requests made, 
it will start analyzing and comparing the results with the database of the results it 
already has. Thus, in the end, after comparing the values, Nmap will present you 
with the most accurate results. 

So, if you are seeing a lot of RST or RST, ACK packets sent from one of your internal 
LAN machines, then it is something that you should be worried about. Better create 
signatures for such traffic in your firewall so that they can alert you.

ARP poisoning
As we all know, the function of the ARP protocol is to translate an IP address to 
its corresponding MAC address. By doing so, the devices are able to communicate 
effectively in a LAN-based network. Any device that wishes to get connected with 
the other device on the same network requires the MAC address of the other hosts. 
Every OS maintains a list of communicating devices that can be populated in the 
terminal window using the arp –a command. The same command is used on every 
platform. We have also seen the ARP requests and reply packets that are used by the 
devices connected to the local network to gain the MAC addresses of other devices.



Chapter 7

[ 195 ]

For instance, I have a local network too, which is being governed by the router 
(gateway) located at 192.168.1.1, and there are 3 devices connected to it. The 
following table lists all the required information specific to the devices connected, 
which we will use later:

Device IP Address MAC Address

Router (default gateway) 192.168.1.1 D0:5B:A8:07:73:6C

Apple (victim) 192.168.1.103 D8:BB:2C:B9:53:EC

Windows server (victim) 192.168.1.109 00:0C:29:B3:CB:B6
Kali Linux (attacker) 192.168.1.106 00:0C:29:5D:A7:F7

This preceding information is listed in the ARP cache of every host connected to 
the local network. You must be thinking exactly how this is being populated in the 
local cache. Whenever any device intends to communicate with the other device, the 
requesting device sends a broadcast to the whole subnet. Then, the device to which 
the IP address belongs replies with it's MAC address using a unicast packet. For 
example, if the Apple machine wishes to communicate with the Windows machine 
located at 192.168.1.109, Apple will send a broadcast asking for the Windows MAC 
address stating Who has 192.168.1.109? Tell 192.168.1.103. Then, as soon as 
the Windows machine gets to know about the request, the ARP reply unicast packet 
stating 192.168.1.109 is at 00:0C:29:B3:CB:B6 will be broadcasted. This is how 
the process works.

The preceding packets transfer will only happen if the Apple machine has the 
Windows MAC address in it's local cache. After searching in the local cache, the 
request is sent to the default gateway. If the default gateway knows about it, an ARP 
reply packet is sent by the gateway itself. If not, then the request will be forwarded to 
the subnet from where the destination PC will reply with the physical address using 
a unicast packet. After this, the conversation can happen using TCP/IP.



Network Security Analysis

[ 196 ]

ARP poisoning is used to poison the local cache of the victim that enables the 
attacker to sniff the data that is travelling between the two victims. The attacker 
intercepts the traffic and then forwards it to the other side. Refer to the following 
illustration:

We can poison the local ARP cache of both the victims and can achieve the same. 
There is one more thing you need to configure: IP forwarding on Kali so that your 
attacking machine would be able to transfer the traffic back and forth without any 
loss or without letting the victims get suspicious. Follow these steps to achieve  
ARP poisoning:

•	 First, configure IP forwarding using the echo '1' > /proc/sys/net/ipv4/
ip_forward command.

•	 Once this is configured, you can go ahead and send unsolicited ARP reply 
packets to both the victims for poisoning the cache. Before we poison it, let's 
take a look at how they look in normal form, for both the victim machines:

Figure 7.4: Windows server cache

To populate entries in linux arp cache use similar commands; refer to the 
following screenshot for reference.



Chapter 7

[ 197 ]

Figure 7.5: Apple cache 

•	 Now, let's start sending unsolicited ARP reply packets to the Windows server 
machine that Apple machine is located at 00:0C:29:5D:A7:F7. The same 
packet would be sent to the Apple machine that the Windows server machine 
is located at 00:0C:29:5D:A7:F7. If you notice, the MAC address specified 
in the packets sent to the Windows and Apple machines belongs to Kali (the 
attacker). Refer to the following screenshot to check out the command I used 
for the spoofing fake MAC addresses:

Figure 7.6: ARP reply packets sent to the Windows server on behalf of the Apple device

Figure 7.7: ARP reply packets sent to Apple device on behalf of the Windows server

Using a one-liner command with few parameters, we were able to poison the 
victim's cache by sending numerous ARP reply packets.

•	 The traffic generated due to the preceding command was also captured at  
the same time. Let's see how it looks. Refer to the following screenshot:



Network Security Analysis

[ 198 ]

•	 Once multiple number of such packets are received by both of the victims, they 
will start believing it and accordingly will update the cache. Let's have a look 
at both the machine caches to verify this. Refer to the following screenshots:

Figure 7.8: Poisoned window's cache

Figure 7.9: Poisoned Apple's cache

•	 Now, whatever traffic is sent between these two devices will be forwarded 
through the attacking box. For verification purposes, I turned off the 
Windows server machine and tried sending ICMP packets from the Apple 
machine. Refer to the following output shown for the ICMP destination host 
unreachable replies coming from 192.168.1.106 (Kali):

The preceding output assures that the packets are being forwarded through 
192.168.1.106, hence making our ARP poisoning attack a success.

•	 Now, the question is how to secure yourself from such attacks. The best thing 
I would suggest is to make manual entries for the device's MAC address 
in the local cache of the communicating client. This will definitely ignore 
unsolicited ARP reply packets while modifying the local cache. Refer to the 
following screenshot:



Chapter 7

[ 199 ]

Figure 7.10: Adding a static entry to local ARP cache

Once you add a static entry in every possible host in your network, it won't be possible 
then to modify the local cache using the arp spoof tool. Similarly, for HTTPS traffic, 
you can use the SSL strip tool available online in order to sniff secure traffic.

Analyzing brute force attacks
Most of you must be aware of the popularity of brute force attacks. The chances of 
success are not high. Yet, many security professionals and malicious users implement 
their password-guessing ability with the help of modern tools. Brute force attack is 
just a way in which you try to log on to a particular service/application using the 
password dictionary that might have been created on the basis of the target's profile. 
Tools such as Cewl, Crunch, and John let you create dictionary files. Even you can salt 
the passwords. Discussing how to create one for yourself is out of the scope of this 
book, but I would recommend that you have a look at these tools (all of them come 
preinstalled with Kali Linux).

To analyze these common and malicious attacks, I will attempt to brute force two 
important services: Telnet and FTP. You might be aware of these two services and 
how much they are being used in corporate networking infrastructure. Telnet is used 
to perform administration of devices such as routers, switches, and different kinds  
of web servers remotely. FTP is used to transfer files efficiently with the assurance  
of integrity and confirmed delivery of the data.

First, take a look at most widely used protocol for remote administration that is  
often overlooked from a security standpoint. Using simple brute force techniques, 
any script kiddie can gain access to your network, and the consequences of such acts 
can be really destructive in terms of money and availability of the service. If dealing 
with consumers, then their records that might be worth millions, leading to full 
remote code execution of the administrative systems.



Network Security Analysis

[ 200 ]

For this illustration, I have a Windows server machine running at 192.168.1.109 and 
an attacker at 192.168.1.106. The attacker will first prepare its dictionary file and 
then will proceed to use an automated tool to attack over the Telnet administration 
service running under the Windows server machine. The traffic generated for such 
activities will be logged in through our wonderful sniffer for our analysis. I tried 
connecting to the Telnet service like a normal user using these steps:

•	 Using the Telnet command followed by the IP address, I was able to get 
connected to the service. In return, it printed a banner for me: Welcome  
to Microsoft Telnet service.

•	 Then, I supplied the wrong user credentials, which was not accepted by  
the server. Hence, it showed a login error, which stated bad username  
or password.

•	 Then, I supplied a legitimate set of credentials, which were identified and 
accepted by the service.

•	 Once the user is authorized, the Windows command prompt with certain 
authorization is presented along with a banner. Welcome to Microsoft 
Telnet Server.

•	 After I got connected, I was able to issue remote commands (Windows) from 
my machine itself.

•	 Then, at the end, to terminate the connection gracefully and to free up all 
resources that were allocated to use for smooth functioning, I issued the exit 
command that gave a message connection closed by foreign host.



Chapter 7

[ 201 ]

Here is the screenshot illustrates the normal functioning of a Microsoft Telnet server:

Figure 7.11: Telnet normal session



Network Security Analysis

[ 202 ]

The traffic generated was also captured by Wireshark. Instead of showing the traffic, 
I decided to show you the whole communication in plain text format that you can 
achieve by assembling the TCP stream by right-clicking on the list pane and choosing 
show TCP stream (the Telnet server is configured with an echo option, so there is 
a chance we might see some characters echoed back from the server to the client). 
Refer to the following screenshot:

Figure 7.12: Telnet follow TCP stream

Everything we typed and received in response from the server is being shown in 
simple plain text readable form by just following the TCP stream.

Now, after seeing how a normal session looks, if you want to learn how to perform  
a brute force attack, follow these steps:

•	 Create a virtual pen-testing lab that consists of at least two machines:  
one will be an attacker (Kali) and the other machine can be of your choice 
(make sure you can install Telnet on it).

•	 Try pinging the target to test the connectivity. Issue the Telnet command to 
create a normal session and test whether everything is working fine.



Chapter 7

[ 203 ]

•	 Now, open Kali and issue the medusa –h <target ip> -U <usernames 
file> -P <password file> -M telnet command. Refer to the following 
screenshot:

Figure 7.13: Brute force—Telnet

At last, using a different set of combinations, we were able to brute force the 
server. The traffic generated because of all these attempts made one after 
another is of special interest to us.

•	 There is a lot of TCP and TELNET traffic generated in the file, which include 
traffic patterns such as the three-way handshake and transfer of data between 
the server and client through Telnet. However, not everything is of interest to 
us. Refer to the following screenshot:

Figure 7.14: Telnet and TCP traffic between the server and our client



Network Security Analysis

[ 204 ]

•	 To view only the malicious traffic, I applied another display filter that will 
show only the various connection attempts between the two hosts. Refer to 
the following screenshot:

•	 Now, observe the display filter  telnet.data==Welcome to Microsoft 
Telnet Service along with the Time column. The string I applied in as 
the filter is the same as the one we received as a banner while connecting to 
the service. The banner is printed approximately 15 times in a span of 100 
seconds (less than a minute).

•	 Does this now seem suspicious to you now? If it is, then you can take 
preventive measures to protect your infrastructure by creating useful 
signatures for the same traffic pattern that will help you in getting alarmed.

Next, it's time to look at another popular service, FTP, that we discussed in earlier 
chapters in detail. Let's look at how a brute force attack would look like against the FTP 
service. FTP is a very crucial service. If attacked by any means, the service will crash 
or become unusable for the legitimate users. It can cause big trouble to the network 
admins with serious downtime. To deal with such activity that happens in day-to-day 
operations, you need to be prepared by being aware of the malicious traffic patterns 
that you can compare with the baseline traffic pattern we created earlier.



Chapter 7

[ 205 ]

For testing and analysis purpose, I configured one FTP server at 192.168.1.108 over 
a Windows 7 machine and the attacker is at the same place over IP 192.168.1.106. I 
used a Kali Linux operating system to duplicate the attack and normal traffic pattern 
scenario. Follow these steps if you want to duplicate it for educational purpose only:

•	 Configure the client and the server using whatever platform suits your needs 
best and make sure the connection between the FTP server and the client 
works freely without a single glitch.

•	 Now, first, we will try to visit the server using a legitimate user and will record 
the traffic. Later, we will use the Follow TCP stream option in Wireshark to 
view the traffic details in easy to understand plain text format.

•	 Refer to the following screenshot where I initiated the connection between  
the server and the client using the netcat client available over the Kali platform.  
I then logged in using the wrong credentials in the first attempt, and then used 
the correct ones in the second attempt:

•	 After I successfully logged in, I issued the help command to view the 
commands available for execution. Then, I issued the quit command to 
terminate the connection gracefully. Refer to the preceding screenshot.



Network Security Analysis

[ 206 ]

•	 Our sniffer captured the whole conversation. Instead of viewing the traffic 
in the list pane, we are again seeing the assembled TCP stream. Refer to the 
following screenshot:

Figure 7.15: FTP assembled stream

•	 Now, as we have seen the normal traffic patterns that you would witness in 
every day operations, it's time to look at something malicious, such as the brute 
force attack attempts executed against your FTP servers. I used a different 
brute force tool that is it also popular among the category THC-hydra.

•	 Before you issue the command, make sure you have you own custom-made 
dictionary file that suits you well for your target (refer to the openwall website 
at http://www.openwall.com/wordlists/ to get the best dictionary files 
available).

•	 Once you have the dictionary file and the target up and running, issue the 
hydra –l <username> –P <password file> ftp://<you target's IP 
address> command. Refer to the following screenshot:

http://www.openwall.com/wordlists/


Chapter 7

[ 207 ]

•	 The traffic generated was also captured by our sniffer. Instead of displaying 
all the traffic, I used a display filter ftp.request.command==PASS in order 
to view only traffic that might be malicious. The following screenshot shows 
what display filter I used to query malicious repetitive packets.

Figure 7.16: FTP Brute Force attack traffic pattern

•	 It is easily identifiable that the traffic is malicious because, in a span of 
maximum 85 seconds (calculated using the time column), there were 
approximately 10 password attempts made. This does look dangerous,  
and activities of such kind should be monitored closely in order to protect 
your resources facing the Internet.

There is one more way through which you can point out such traffic patterns.  
The best advisable option using Wireshark is to create a different coloring scheme 
using the same display filter expression that we used in order to point out the 
malicious traffic even faster. Refer to the following screenshot where I did the  
same and created a different coloring scheme for both TELNET and FTP traffic:

Figure 7.17: Coloring scheme for malicious traffic



Network Security Analysis

[ 208 ]

There are various other application layer protocols (HTTP, SSH, SMTP, and so on) 
that fall prey to these brute forcing techniques and might result in heavy losses 
for corporate infrastructures. In order to make these services secure, you can force 
encryption over the service that you are configuring and use strong password policies, 
such as an alphanumeric password with minimum length. You can also enforce a 
password change policy at a regular intervals, such as 30 days or something. Last but 
not least, you can make the employees aware of such activities. Any form of social 
engineering attacks executed against an employee can leverage the attacker to gain 
access to the infrastructure more easily.

Inspecting malicious traffic
In some previously mentioned topics, we have witnessed a few scenarios that 
generated malicious traffic. Some of the common protocols, such as HTTP, DNS, 
ARP, IRC, that are seen in the list pane can carry malicious traffic. So, knowing 
about the malware traffic analysis is definitely an important skill every network and 
security professional should be well versed with. In today's digital world, various 
advance have been made. Yet, threats including malware infection persist. Every 
organization should consider threats of such nature to be critical. For illustrating 
the threats that are caused due to various malicious traffic, I have configured a few 
things in my virtual lab. The traffic generated because of the activities between the 
client and the server would be captured in parallel, which we will use to analyze 
later. Refer to the following screenshot:



Chapter 7

[ 209 ]

Malwares are supposed to perform a couple of tasks once installed on the victim's 
machine, such as passing on the secret content to the person in command, receiving 
commands from the server, and infecting and corrupting systems. Even if you have 
the best security solutions installed in your infrastructure, you are still open to wide 
attack vectors, including malware infections.

Now, we have understood the basics of how malicious traffic is being generated, and 
we also have a clear image of the infrastructure that we will work with. So, without 
wasting even a second more, let's go ahead and start the process. Follow these steps 
if you want to replicate the scenario in your own virtual lab:

•	 You require three machines connected to the same LAN. Make sure they  
are able to talk to each other, that is, verify the connectivity.

•	 On the IP address 192.168.1.106 stays a legitimate website, which the  
client is habituated to visit. However, this time, the client is not aware of  
the infection that causes redirection to another webserver. Refer to the 
following screenshot of the legitimate server:

Figure 7.18: Legitimate website

•	 To simulate the redirection, I have configured my Apache server running on 
106 to redirect every request coming to IP 192.168.1.100 and download the 
efg.exe malware from there.



Network Security Analysis

[ 210 ]

•	 So, next time the client visits the website running at 192.168.1.106, it gets 
redirected to a new webserver address, which directly asks the client to run  
a file named efg.exe. Refer to the following screenshot:

Figure 7.19: Client gets redirected to IP 192.168.1.100 and is asked to run the application.

•	 If the client clicks on Run they might not be aware of the dangerous effects 
the malware can pose to the client's machine and the network client is a part 
of. The publisher of the application is not verified, so the browser is not able 
to verify it. This results in giving an unknown publisher error. If the client 
still proceeds and clicks on Run, the malware will be installed. Refer to the 
following screenshot:

Figure 7.20: Unknown publisher error

•	 Now, let's suppose that, if the client hits run, then the malware will be 
downloaded to the client's machine. It will be executed later on, thus  
creating a connection back to the command and control center.



Chapter 7

[ 211 ]

•	 If the connection back to the attacker was successful, then without the 
knowledge of the client, the attacker can copy files, delete files, take 
screenshots, take webcam snaps, record voice through the mic, corrupt 
system files, and so on. You might have heard of various malwares such  
as ransom wares, spywares, and adwares.

•	 The whole traffic generated because of all these activities is being captured. 
Let's take a look at it. Instead of showing you the traffic, I assembled the  
TCP stream first between the client and the legitimate server.

•	 To understand the way our malware works, we need to look at more details, 
which can be presented to us by Wireshark. Refer to the following screenshot 
that shows the assembled TCP stream:

Figure 7.21: TCP stream between the client and real (compromised) server

As you can clearly see, the client is trying to visit the webserver, and the 
request is being forwarded with HTTP redirection to the new address 
192.168.1.100, trying to download the malicious file.



Network Security Analysis

[ 212 ]

•	 Once the client gets a redirection response, the client again initiates a three-
way handshake with the new server and tries to download the file. After a 
couple of packets were exchanged between the hosts in the later frames, the 
clients received a 200 OK status message, suggesting successful download  
of the malware.

In the following screenshot, you can see that the malware signature can be easily 
recognized by any IDS/IPS in place:

Figure 7.22: Malware signature



Chapter 7

[ 213 ]

The GET request was initiated by the client in search of efg.exe, to which the server 
responded with a 200 OK status message. Later, you can see the known malware 
signature starting with the characters MZ followed by some random character.  
A quick Google search regarding the same will reveal its behavior and pattern.  
Our search also reveals that it is an executable file, as Wikipedia states 16/32 bit  
DOS executable files can be identified by the letters MZ at the beginning of the file  
in ASCII. Refer to the following screenshot:

Until this point, its clear that the is a Windows executable file is clear which might  
be malicious.

Moving on with our investigation regarding the malicious file, I would like to  
export the efg.exe file using Wireshark.

1.	 Go to File | Export Objects | HTTP. You will see a dialog similar to the one 
shown here:

Figure 7.23: Exporting HTTP objects

2.	 Now, to export the file, you need to select the conversation that states the 
name of the file along with it. Then click on Save As and save the file at a 
location of your choice.



Network Security Analysis

[ 214 ]

3.	 The best option would be to upload this file to websites such as http://
www.virustotal.com, which will cross examine the PE-executable file with 
numerous antivirus software online and will show you a detailed analytical 
report. Refer to the following screenshot:

Figure 7.24: Uploading efg.exe to virustotal.com

4.	 Now, click on Scan it! to let the website examine the file and wait for  
the results:

Figure 7.25: efg.exe examination completed

31 out of 56 antivirus software detected the executable file as malicious, 
which is quite alarming.

http://www.virustotal.com
http://www.virustotal.com


Chapter 7

[ 215 ]

5.	 Further, I manually examine the conversation between the infected  
machine and the command and control center by looking at the hex  
dump in the following TCP stream window. I observe something.  
Refer to the following screenshot:

Figure 7.26: Hexdump in TCP stream dialog

It seems that the server machine that has taken the control of the victim issues some 
command to gather quick information regarding the machine. The highlighted content 
on the right-hand side of the window states strings such as Get File Information, 
Get full PC name, Get Current directory, Adjust token Privileges, and so on.

As per my analysis, the file that got installed to the windows box is definitely 
malicious. It might have caused some serious damage to the individual machine  
as well as the network. The best advisable solution is to isolate the machine from  
the network, unless it is being disinfected using specialized tools.

To conclude this section, I have one more thing to depict using the list pane in 
Wireshark. Refer to the following screenshot:

Figure 7.27: Unusual behavior noticed in list pane



Network Security Analysis

[ 216 ]

Observe the behavior of the packets from the beginning, as it started with the ARP 
request sent by the Windows machine because it was trying to look for a legitimate 
web server locally configured. Followed by the three-way handshake, the client 
initiates a GET request in frame 6, which the server acknowledged in the following 
packet. Then, the server states that the resource the client is looking for has been 
moved to another location, and the client is required to go there. After this, the client 
generates an SYN request in frame 9. Then, the command and control center generates 
the ARP packets asking for the client's physical address in order to get in touch with 
it and to transfer the file. Then, at last, in frames 12 and 13, the three-way handshake 
is completed, which ends in generating a GET request from the victim's machine in 
order to start the transfer of the exploit as seen in frame 13. The consequences of such 
traffic patterns can be highly devastating. A good network/security admin should 
be aware of such traffic patterns and can use such traffic behavior to create firewall/
IDS-IPS signatures that can generate quick alerts. They can help in avoiding and 
making their infrastructures ready to fight with these malicious traffic.

Solving real-world CTF challenges
Capturing the flag events is the most common thing that happens in security 
conferences. The objective is to learn and play with the challenges based on real-
world scenarios that can assist you quite well in learning the methodology. Popular 
conferences such as DEF Con, PlaidCTF, CSAW, and Codegate can be searched for  
if you are interested in cracking flags. Basic programming, networking, forensics, 
and common sense are the skills required to take part in these challenges.



Chapter 7

[ 217 ]

I have made a couple of challenges for you and we will be solving them as well in a  
step-by-step approach. I have made all of them pretty simple in order to give you an 
idea of how the CTF thing works and definitely the approach you are supposed to 
follow. So, let's begin and capture some flags.

First CTF: Leverage the weakness in remote administration services

Figure 7.28: CTF1 trace file



Network Security Analysis

[ 218 ]

•	 Solution: We have a telnet-flag.pcap file that lists multiple packets in the 
list pane. The question is asking us to take advantage of remote administration 
services. How many services do we know which are used for remote 
administration RDP, Telnet, and SSH? To better understand the scenario,  
let's open our trace file in Wireshark first. Refer to the following screenshot:

As you can see, there are more than two thousand packets in our trace file. It would 
be practically impossible to scroll to the bottom to see each packet. The best option 
would be to look into the protocol hierarchy window, which will give us a brief 
regarding all protocols involved in the whole trace file. From here, it would be easy 
for us to identify the remote administration services. The protocol hierarchy window 
can be accessed from the Statistics menu. Refer to the following screenshot:



Chapter 7

[ 219 ]

Figure 7.29: Protocol hierarchy CTF1

Among all the protocols listed, I can see only one that is used for remote administration, 
and we can use it to move on with our CTF process. So, I applied the display filter 
telnet in order to see only relevant traffic. Refer to the following screenshot:

Figure 7.30: Telnet traffic CTF1

Now, the next step would be to follow the TCP stream of these packets, which will 
reveal more information regarding the Telnet session.



Network Security Analysis

[ 220 ]

This is what the question was about: leveraging the weakness in a remote 
administration service. Telnet sessions can be viewed in plain text format, and 
we finally leveraged the weakness to take advantage of viewing the session's 
information in plain text format. The flag is the password used by the user to  
log in to the Windows machine to perform maintenance activities.

FLAG : Sup3rs3cr3t

The following screenshot illustrates how the TCP stream windows will look after the 
packets are assembled. Also, the Telnet session's password can be seen clearly.

Figure 7.31: TCP stream dialog CTF1

I hope you have understood the basic approach of CTF solving. We would follow 
similar approach in solving further CTF challenges.

This time I have designed a CTF that utilizes another common protocol and will let 
you learn the basics of the CTF challenge approach.



Chapter 7

[ 221 ]

Second CTF: Image magic

Solution is in the title of this CTF and it is pretty small and attractive, though we 
have no idea what we are looking for, but for sure there is something related to 
images. Wireshark performs magic every time; this is what my perspective tells  
me about the challenge.

Following an approach similar to the one we talked about first, we would open the 
trace file in order to learn basic stats related to the traffic capture that will give us an 
overview of the protocols used during the session. Refer to the following screenshot:

Figure 7.32: Trace file CTF2



Network Security Analysis

[ 222 ]

The trace file starts with a lot of DNS packets, which don't look very useful for our 
analysis. Looking at the following status bar in Wireshark, we can say that there are 
around 4,800 frames definitely captured. This one is not something that we can inspect 
element by element, so we need the help of our best guy: protocol hierarchy dialog 
(now I hope, without any specific instruction, that you can open the dialog):

Figure 7.33: Protocol hierarchy CTF2

In the list of various protocols, I spotted JPEG, which is an image extension, and is 
listed under the HTTP section in the dialog. We can conclude from this that there is 
some relation between these two ,so our display filter could become HTTP, which 
will keep us moving in the right direction.

As soon as I type HTTP in the display filter box and press enter, I am presented with 
just four packets. One of those listed is a .jpg file with the name flag. Refer to the 
following screenshot:

Figure 7.34: Display filter HTTP—CTF2



Chapter 7

[ 223 ]

Frame number 4,696 lists a GET request for a alg.jpg file. Investigating, further  
by looking at the TCP stream of this packet, confirms that there was a .jpg file 
requested by the client at 192.168.1.108. Refer to the following screenshot:

Figure 7.35: TCP stream—CTF2

The request made by the client is now confirmed and verified. The next step would 
be to export this object from the stream. Go to File | Export Objets | HTTP.



Network Security Analysis

[ 224 ]

The window just lists one flag.jpg file. Follow the mentioned steps in order to 
export the image object. First select the row one showing the images object then  
click on save as and save the file at any desired location. When finished, open the  
file to view the flag content. Refer to the following screenshot to see the content of 
the exported object.

Figure 7.36: CTF2

This challenge was pretty interesting, because you learned about a different idea 
behind CTF challenges.

Our final challenge also introduces us to a new idea behind CTF's. 

Third CTF: Are you Pro Enough!!

Title of the challenge is pretty challenging in itself. However, we will solve this 
together. So, let's open the trace file first.

At first glance, it looks like other trace files we have seen with numerous useless 
packets filled in. Without getting ourselves confused with the overwhelming 
amount of information there, let's follow the approach that we have been  
following so far. Refer to the following screenshot:



Chapter 7

[ 225 ]

Figure 7.37: Packet list pane—CTF3

Look at the protocol hierarchy window that can help us in revealing more about the 
CTF challenge we are dealing with. Refer to the following screenshot:

Figure 7.38: Protocol hierarchy—CTF3



Network Security Analysis

[ 226 ]

As expected, we get a new insight about the trace file, and we can observe that  
the UDP traffic percentage is about 89 percent, which is quite a big number.  
It lists Real Time Protocol under it. So, let's go ahead and create a display filter  
for RTP traffic, which can take us to the next step in solving the riddle. Refer to  
the following screenshot:

Figure 7.39: RTP display filter—CTF3

It seems like a call session is in progress between the two hosts at 192.168.1.107 and 
192.168.1.105. Next, using the playback feature in Wireshark, I will reassemble the 
stream and will try to play back. Go to Telephony menu | VoIP Calls and select the 
SIP call in row 1 and click on Player. Refer to the following screenshot:

Figure 7.40: VoIP calls dialog—CTF3

Once the call session is visible, select it and click on the player where you will be 
asked to give the jitter value. Specify 200 as the value and click on Decode:

Now, you should be able to see the assembled VoIP stream available for playback. 
Select the first part of the communication and click on Play. The person communicating 
from Side A side says, Start the transfer of the rabbit and playing Side B's part we can 
observe that it is just an echo of Side's A message. Refer to the following screenshot:



Chapter 7

[ 227 ]

Figure 7.41: Reassembled VoIP call for playback—CTF3

We did not get many clues from this message. Let's look at the protocol hierarchy 
dialog once again and see what we have in the TCP section. Other than the HTTP 
protocol, there isn't much useful information. Under the HTTP tree, there is a media 
type, which means something got transferred between the hosts on the network (as 
the person on VOIP call said start the transfer). We applied HTTP as a display 
filter, we got the following screenshot:

As is clearly visible, a flag.rar file got transferred. Let's export this to a .rar file 
for extraction. Go to File | Export Objects | HTTP, select the first row, and click 
on Save as to save the .rar file. The file got successfully saved, but when we tried 
opening the file, it asked for a password, which we don't know have:

Figure 7.42: Flag.rar ask password



Network Security Analysis

[ 228 ]

Did you notice what the person said over the call "start the transfer of the rabbit",  
so why don't we check therabbit as password to this archive file.

Luckily, our first guess worked. This might not happen every time we solve  
CTF challenges. There is a file inside it called flag.txt that reads You Gotcha!! 
Refer to the following screenshot:

This section was particularly real fun! I enjoyed solving it for you. I hope the 
approach and flow we followed would prove useful for other CTFs that you might 
start solving after reading this chapter. Best of luck to you for your independent 
analysis, and remember that using out-of-the-box thinking and a bit of common 
sense is also required.

Summary
Use Wireshark to keep your network secure by defending against the most common 
form of infiltration attempts. Analyzing the packets with security perspective will 
give you a new insight into how to deal with malicious users.

Activities such as port scanning, footprinting, and various active information-
gathering attempts are the basis of attacking methodologies that can be taken 
advantage of to bypass your security infrastructure.

Guessing passwords for a legitimate service is called a brute force attack. If the same 
form of attack is combined with dictionaries, which consist of millions of passwords, 
the chances to break in get higher. Through Wireshark, you can view such attempts 
made against a service in your network.

Using a legitimate looking piece of software, a malicious user can gain entry into 
your network. These days, the most common form through which malwares are 
being distributed is emails. Another attack form, such as phishing, when combined 
with malwares, becomes seriously dangerous.

Wireshark can help you in analyzing malware behaviors, and using the behavior 
analyzed, you would be able to create the necessary signatures for your IDS/IPS 
firewalls in place.



Chapter 7

[ 229 ]

Capture the flag events are commonly conducted at security conferences. Multiple 
educational exercises are provided to the participants to experience real-world 
scenarios. The real CTF is where a TEAM A tries to penetrate into TEAM B's network 
and vice versa at the same time. Both the teams are responsible for securing against the 
malicious attacks sent in. There are multiple categories in CTF events, such as reverse 
engineering, protocol analysis, programming, cryptanalysis, and so on. Mastering 
Wireshark can ease your way while dealing with protocol analysis related CTFs.

Observing things scattered around with a security professional's perspective will let 
you see things differently. From a person inside the corporate infrastructure, things 
might feel OK. However, from outside, you might be very vulnerable. Security 
professionals are like immunity to the IT industry, and analyzing the packets using 
Wireshark is one of their weapons in the arsenal.

Practice questions
Q.1 What is the difference between the active and passive information  
gathering techniques?

Q.2 Which information-gathering technique is stealthier and why?

Q.3 What do you understand by the term banner grabbing?

Q.4 Use the netcat utility in Linux to connect to a running HTTP service.

Q.5 What is the difference between the –sT and –sS switches used in nmap scans? 
Can you use both at the same time?

Q.6 Use nmap to perform OS fingerprinting on a machine and then redirect the 
output of the scan to a file for later use.

Q.7 Without using nmap, can you fingerprint an OS using Wireshark?

Q.8 How OS fingerprinting attempts made against you can lead to serious damage?

Q.9 Figure out the techniques to evade firewalls deployed in corporate environments 
using nmap.

Q.9 Is it possible to combine two attacking methodologies, ARP spoofing and DNS 
poisoning, in order to achieve bigger and better results?

Q.10 Try brute forcing a service in you lab environment and analyze the traffic 
pattern using your own custom-made dictionary files.

Q.11 Try leaning about brute forcing tools already installed in Kali Linux and figure 
out which tool is more suitable for RDP brute force attacks.



Network Security Analysis

[ 230 ]

Q.12 What other filter expression can be useful while analyzing the malicious  
FTP traffic patterns?

Q.13 Is it possible to force encryption over the FTP session so that the following TCP 
stream won't show the traffic in normal text form?

Q.14 Why is it important to isolate an infected PC that emits unusual traffic from your 
network, and what traffic patterns related to it make it malicious?

Q.15 Visit various online CTF challenge websites and try solving a few of them.  
Do you still find it difficult to understand the challenge, or does it seem a bit  
easier now?



[ 231 ]

Troubleshooting
This chapter will teach you how to configure and use Wireshark to perform network 
troubleshooting. You will also master the art of troubleshooting network issues using 
Wireshark. The following are the topics that we will cover in this chapter:

•	 Using Wireshark to troubleshoot slow Internet issues
•	 Lab up
•	 Troubleshooting network latencies
•	 Lab up
•	 Troubleshooting bottleneck issues
•	 Lab up
•	 Troubleshooting application-based issues
•	 Lab up
•	 Practice questions

The loss of packets during transmissions is one of the most common problems that 
all network administrators deal with in their day-to-day lives. However, thankfully, 
we have various built-in error recovery features in the transmission protocol that 
come to our rescue to deal with the problems. However, it is essential to understand 
how these error recovery features work in order to troubleshoot the problems by just 
looking at the packets flow in the list pane if and when human intelligence is required. 
Troubleshooting latencies or any application-based issues in your network requires 
you to have an understanding of the traffic flow and the way packets interact with 
each other. Before we start getting our hands dirty with a troublesome network, we 
need to understand some basics of the recovery features that would help you diagnose 
and figure out the root of such problems. Consider yourself blessed that you have the 
privilege of using Wireshark—the most popular and well-versed tool for network 
packet analysis—which is an open source tool. This won't state the problems for you, 
but the time required to troubleshoot network-related issues is drastically reduced.



Troubleshooting

[ 232 ]

Now, you might feel like asking the question: "how does it looks like or how  
you can identify such happenings?" Just as every coin has two sides, the network 
communication has two ends: a sender and a receiver. On the sender side, recovery 
features are handled by the Retransmission Timeout (RTO) values, which are a sum 
of Round Trip Time (RTT) and mean of standard deviation. On the receiver side, 
recovery mechanism is handled by keeping a track of SEQ and ACK values that are 
shared between the communicating hosts.

You definitely have heard about flow control features, we discussed the same 
in previous chapters while dissecting TCP-based communications. Flow control 
features are used in order to keep the transmission more reliable by taking help  
of dynamic functionalities such as sliding window and zero window notifications. 
Now that you have the basic understanding of, I want you to understand things in 
detail. Note that we will talk about TCP-based communication most of the time in 
this chapter.

Recovery features
TCP retransmissions and duplicate ACKs are the tactics that are used while recovering 
from a failed packet transmission or an out-of-order packets transmission scenario. 
Commonly, network latencies (the total time it takes for a packet to be sent along with 
the time its ACK is received) are observed, due to which the performance of networks 
are significantly disturbed. When the amount of retransmissions and duplicate ACK 
packets are seen very often in the list pane, most probably, there is a chance that your 
network is facing high latencies; if not, then just sit back and relax. My point is that 
you should be concerned about such activities, and if possible, mix some network 
management techniques with your protocol analysis that can keep you updated all  
the time with what's happening inside

The devices use TCP retransmission in order to send data reliably. Values such as 
RTT and RTO are maintained by the sender of the data in order to facilitate a reliable 
form of communication. The sender initiates the retransmission timer as soon as 
the packet leaves the ACK, and when the same is received, the sender stops the 
retransmission timer. The timer value here determines the timeout value. Now, if the 
sender does not receive the ACK, after a certain amount of time, the sender initializes 
the retransmission of the same packet. If the sender still does not receive any ACK, the 
timeout value will be doubled and the sender will retransmit the same packet again. 
The same cycle is followed until the ACK is received or the sender reaches maximum 
retransmission attempts. The sender, based on the operating system maintains a 
number of retransmission attempts, which are triggered when a certain timeout 
value is reached.



Chapter 8

[ 233 ]

Figure 8.1: TCP duplicate ACK and retransmission

For instance, in the preceding figure, a client is located at 192.168.1.2 and the 
server is located at 192.168.1.1. Here, the client is requesting some resource 
that the server holds, following which the transmission between the two hosts 
starts after the three-way handshake is successfully completed. For every data 
packet received, the client sends a ACK for the same. Now, suppose that for some 
random packet in the stream, the server did not receive the ACK even after the 
timeout value for the data packet expired. The server initiates the retransmission 
of the similar data packet again. The same process is followed unless and until the 
server receives an ACK for every packet, or the server at 192.168.1.1 reaches the 
maximum number of default attempts, five, in a row. Refer to the following figure 
that shows this retransmission process:

Figure 8.2: TCP retransmission



Troubleshooting

[ 234 ]

On the basis of the preceding simplified scenario, I suppose now that you have 
understood the gist of the retransmission process.

Now, we will discuss duplicate ACKs and fast retransmission, which is another 
recovery feature that the clients take care of. In the previous chapter, we discussed 
the SEQ and ACK numbers that are used in order to keep track of TCP-based 
communication. You might also remember how the ACK values were incremented 
using the data payload size, where we added the received packet SEQ value and data 
payload size value and the resulting sum became the ACK value. We sent this value 
with our ACK packet, and we expect to receive the next data packet marked with the 
same SEQ value. Suppose that the server starts sending data packets, and the first data 
packet is marked with a SEQ value of 100 with a data payload size equals 10. Once the 
client receives the ACK packet, it prepares to send to the server with value set to 110 
(remember the formula: SEQ number received + Data payload size = ACK value).

As soon as the server receives the ACK packet with the value 110, it prepares  
for another data packet to be sent with SEQ 110 with a payload size of 10. After 
receiving this, the client will respond with ACK 120. The same process goes on till  
the end of the session. Now, suppose that instead of sending the next packet with 
SEQ set to 10, the server sends a packet with SEQ 130, which is out of order, and  
after receiving this, the client would send a duplicate ACK set to 120 to the server  
to recheck and send the missing packet again from the data stream.



Chapter 8

[ 235 ]

From the preceding scenario, I hope you have understood the process of duplicate 
ACKs and fast retransmission, which you can use while troubleshooting your real-
time network for related anomalies. Before we go ahead and discuss flow control, 
I would like you to see real packets in my network that are related to both cases of 
error recovery that we discussed. Refer to the following Figure 8.3 and Figure 8.4:

Figure 8.3: TCP retransmission packets

In the preceding screenshot, a client located at 192.168.1.103 sends FIN and ACK 
to the server at 216.58.220.36. After this, the client would expect to receive a ACK 
packet in the next place. However, the client does not receive anything back from the 
server. Now, after the RTO time expires, the client starts sending the same packet 
after double the time, and the process of sending TCP retransmission packets after a 
certain period of time goes on until the client receives an ACK packet or reaches the 
maximum number of retransmission attempts. Observe the RTO column and how 
the value starts doubling up until it reaches a maximum limit.

With the next scenario in Figure 8.4, I want you to witness the duplicate ACK packet that 
is being generated because of a malformed packet sent by the server at 216.58.220.46 
to the client at 192.168.1.103. As soon as the client receives it, a duplicate ACK packet 
is sent in response to the malformed packet that is seen out of sequence.



Troubleshooting

[ 236 ]

Observe that the 6027 frame with SEQ = 1920 and Data payload size = 46  
is being sent across from one host to another. Next, in the response frame 6070,  
a malformed packet with a random SEQ value was sent in response. Due to this,  
the host at 192.168.1.103 generates a duplicate ACK packet and sends it to the  
host on the other side with the SEQ and ACK values similar to the frame 6027.  
Now, this time in response, the host at 216.58.220.46 sends a valid ACK frame 
6115 with ACK incremented to 1966 (1920+46), as expected, and then the 
communication goes on.

Figure 8.4: Duplicate ACK

With these real-life examples, I expect that you have understood the behavior of TCP 
error recovery features more precisely.

The flow control mechanism
This is another feature used by the TCP protocol to avoid any data loss during 
the transmission. Using flow control, the sender syncs the transmission rate with 
the receiver's buffer space with a motive to avoid any future data loss. Consider a 
scenario where the recipient has a buffer space of 1,000 bytes available at an instance, 
and the sender side is capable of sending up to 5,000 bytes per frame. Now, using 
this information, both the hosts have to sync their window size to 1,000 bytes only  
to avoid any data loss. Refer to the following figure that shows this feature:



Chapter 8

[ 237 ]

The preceding figure depicts the way both the communicating hosts negotiate the 
window size for transmission purpose. Observe the behavior, beginning from the 
frame with SEQ 1 where Host 2 responds with ACK 2 to specify that the frame  
was successfully received.

Next, HOST 1 tries to increase the transmission rate to two frames and sends them 
with SEQ 2 and 3. Host 2 responds with ACK 4, which denotes that both frames were 
successfully received. Similarly, we succeed in increasing the rate to three frames.

Next, HOST 1 increases the rate to 4 and tries sending packets with SEQ 7, 8, 9, and 
10. This time, HOST 2 responds with ACK 10, which means that Host 2 receiving 
the window size can afford maximum 3 frames at an instance, and the sending side 
should adjust to it.

Next time, when Host 1 transmits, the windows size would be set to 3 frames,  
which the recipient can afford to process on his/her end. The window size is not  
set to a permanent value; it can vary until the whole transmission is completed,  
and the whole process is called the TCP sliding window mechanism and is used  
to avoid data loss during a transmission.

Think about what would happen if the recipient side is left with no buffer space, that 
is, 0 bytes. It can handle at some moment during the transmission. What will the TCP 
do in such case? Will the communication channel drop or the TCP will come up with 
something more reliable.



Troubleshooting

[ 238 ]

Yes, the TCP has another data loss recovery feature called the Zero window 
notification. Here, the recipient side sends a Windows update packet set to 0 bytes 
and asks the sender to halt the transmission of frames. In response, the sending side 
will understand the situation and respond with a Keep Alive packet that is sent at 
a particular duration while waiting for the next Window Update packet from the 
client. Refer to the Figure 8.6 that illustrates the same.

HOST 1 starts communicating after the three-way handshake process has been 
completed. After a few packets get transmitted successfully, the receiving side buffer 
space gets filled up with other resources, so HOST 2 responds with a Zero Window 
packet telling Host 1 to halt sending packets until further notice. Accepting the Host 
2 zero window packet, Host 1 starts transmitting Keep Alive packets in order to 
keep the connection active and waits for further notice. Once Host 1 receives the new 
window size and ACK for the frames that were transmitted, it will start sending the 
data packets again in accordance with the receiver's buffer space.

Figure 8.6: The zero window notification



Chapter 8

[ 239 ]

The technique we discussed here is quite efficient in preventing any data loss that 
might happen during a transmission or due to an overwhelmed sender. The TCP 
hosts a great mechanism to control the transmission process, thus making it more 
reliable for any type of communication.

Troubleshooting slow Internet and  
network latencies
The discussion that we had on delays observed in the list pane can be categorized in 
two categories: the normal/acceptable delays and the unacceptable delays. Yes, you 
heard me right, there are some forms of delay that are acceptable, and you should 
not waste any precious time of yours in troubleshooting any of those cases.

Assign a category to your current scenario on the basis of the test results that you 
have obtained from the client site (try to put sniff packets from the complaining 
client's perspective) into one of the following categories: wire latency, client latency, 
and server latency. Seeing your scenario with the perspective of one of these cases 
will assist you in solving the problem with a more process-oriented approach, hence 
making the task less complex, which will end up getting sorted out in lesser time 
with lesser resources.

Before you start troubleshooting such scenarios, I would highly recommend that 
you change the default list pane view by customizing the existing time column 
(customize the time value to seconds since Previous Displayed Packet),  
which would work as a column to figure out latency issues, that is, it will show  
you the total amount of time between two related packets in a sequence. Refer to  
the following figure to customize the time column.



Troubleshooting

[ 240 ]

To further elaborate the best practices that are followed, I will discuss a step-
down approach, which you can use as part of your checklists. Make sure that you 
understand one thing clearly: tracking an issue can be quite critical on a server side 
because you may see thousands of packets flying in and out per seconds. This can 
be really messy and would only end up in making the whole problem more intense. 
Looking at thousand of packets to figure out the source of slow Internet connection 
doesn't sound feasible. So, the best option would be to filter out things, prioritize 
them, and look at the problem from the client's end first.

Figure 8.7: Customizing the time column

•	 Starting your investigation at the client's end makes it much simpler because 
you won't be dealing with several packets that may not be relevant to your 
scenario. On the other side, if there is even a hairline chance that you won't 
be able to see the packets that are relevant to you, this might make the 
troubleshooting experience a bit challenging.

•	 Apart from all the challenges that you might face at the client's end, the first 
thing you should ask your client is to replicate the problem if possible, or if 
the problem is occurring in a time-based manner, then you should wait at the 
client's end in order to witness and understand the scenario. The ultimate goal 
should be to capture the relevant packets and get a crystal clear understanding 
of the problem that the client is facing from their perspective.



Chapter 8

[ 241 ]

•	 Now, when you have the trace file in hand, you can look at the process where 
the client is trying to connect to the server: the whole process where the client 
issues a DNS query with an objective to attain a server's logical location over 
the Web. If the local DNS cache already holds the IP address of the server, 
then you might not observe any DNS packets; instead, a direct SYN packet 
would be seen in the list pane sent to the server to initiate the independent 
connection. What you need to make sure here is that if the DNS queries are 
seen in the list pane, then the round trip time should be low, as expected 
(approximately less than or equal to 150 ms).

The next would be the three-way handshake packet that you will be observing 
in the list pane. The best option would be to isolate the communicating hosts 
that can help you in eliminating any further communication. You can just 
right-click on the communication and create a filter as illustrated in Figure 8.8

•	 Once you have filtered out the problematic connection between the hosts, 
the next task would be to observe the total time. The time between duration 
when the SYN packet was sent and the corresponding SYN/ACK packet 
was received. This can be compared with the baseline that you already have 
to come up with a variance that could help you in pointing out whether the 
connection is slow or is working fine. Refer to the following screenshot that 
illustrates the same:

Figure 8.8: The time between the SYN and SYN/ACK packets



Troubleshooting

[ 242 ]

•	 As you can see, the time between the SYN and SYN/ACK packets is 
relatively low, and this seems to be a good working connection. This kind 
of connections can be helpful while you are designing a baseline for your 
network. At a later point in time, the same can be used to compare with 
problematic scenarios. Refer to the following screenshot that show DNS  
and TCP packets of the same communication:

Figure 8.9: The ideal baseline trace

•	 The client issues a request to visit the google.ae (frame 686) website, which 
the local server acknowledged in order to first look for the IP address in a 
local cache. Once the local DNS server completes, the search process, the 
client receives DNS responses including Google's IP address, which can be 
used to visit the website (frame 688 and 689).

•	 As soon as this process completes, the client at 192.168.10.196 issues a  
SYN request to one of Google's IP address in order to visit the web page. 
Without any further delay (less than tenth of a second), the server responds 
with SYN/ACK, and the process goes on.

Let's suppose that the total time between the SYN and SYN/ACK packets is high by 
approximately 0.90-1.0 seconds. At first glance, you ignore this an move ahead, and 
you will observe a quick ACK packet sent in response from the client followed by 
a HTTP GET request (in case the client is visiting a website). Next, the ACK packet 
acknowledging your GET request surprisingly takes more than a second to come. 
Now, this points to some serious latency issues. The question is, who will be the one 
you are going to blame—the client or the server? The client did its part by sending the 
SYN packet on time. Then, is it the server who is handling a high load of traffic and 
is quite busy with other applications, because of which you are handling high round 
trip time? The answer is neither the client nor the server. Then why is the round trip 
time high? The probable answer for such cases in my knowledge would be the wire. 
Yes, you heard it right. The wire can also take part in making your network slower 
then expected. So, while troubleshooting slow networks, if you observe high round 
trip times associated with the SYN/ACK and ACK packets, then you can be sure that 
your client and server are not the source of the issue.



Chapter 8

[ 243 ]

What you can do is start examining the devices between the hosts, such as the 
routers, switches, firewalls, proxy servers, and so on. Although the example we 
talked about doesn't give you the exact source of the problem, it definitely gives  
you a clear understanding that both the communicating hosts are not promoting  
any form of latency.

Now, for better understanding, I would like to show you the same in practical terms. 
Refer to the following screenshot that lists out a few packets shared between two 
hosts, starting from a three-way handshake:

Figure 8.10: Wire latency

First, the client located at 192.168.10.196 and the server located at 128.173.97.169 
start communicating. In the beginning, we see that a three-way handshake takes 
place between the client and the server, but did you notice the amount of time it took 
for the SYN/ACK packet to come (more than 0.36 seconds). Look at the frame 39, and 
it is something that you should take care of. Moving on, we saw one more similar 
event after the GET request was issued, where the ACK packet took approximately 0.30 
seconds to come back. The latency observed is not because of the client or the server, as 
we discussed earlier. The latency here is promoted by the devices that lie on the wire. 
The best troubleshooting option in such cases would be to look at the routers, switches, 
or any firewalls that were implemented without wasting time in troubleshooting the 
source and the destination.

Client- and server-side latencies
You might think about the scenarios where you would come across or see latency 
issues that the client/server promotes. Let me explain this to you with some real-life 
examples; first, we will take a look at the latencies promoted by the clients.

A few days ago, I was just visiting some random websites over the Internet to 
look for some research material, and meanwhile, Wireshark was running in the 
background and capturing every packet I was tying to visit. I surfed the Web 
for approximately 3-4 minutes and then closed the browser as well as stopped 
Wireshark from sniffing any packets. After the whole thing, I decided to look  
into the trace file to investigate any client-side latency issues.



Troubleshooting

[ 244 ]

Refer to the following screenshot from my trace file, which shows frequent client-
side latencies that will eventually affect the performance of my network:

Figure 8.11: Client-side latency

As you can see in the frame 9985 and frame 10408, there are GET requests that  
my machine at 192.168.10.196 had issued, and the amount of time it took was  
1 second for the first time and more then 3.5 seconds the next time. I became curious 
and started thinking about why this happened and what can be the most appropriate 
reason for such latencies.

Once I started further investigation, I saw that the three-way handshake process 
happened in a timely manner and there were no signs of latencies. Now, my attention 
went to my machine. Maybe, there is something that is tampering with my network 
connectivity. I looked at the resource allocation window in terms of primary memory 
and CPU utilization. What I saw was that the CPU and memory utilization meter 
were showing high consumption, which led me to enquire more about the number of 
applications running. There were three virtual machines running that I forgot to turn 
off, which were utilizing all the memory. This, in my belief, is one of the strongest 
reasons, because of which I was experiencing latencies on the client side (my machine). 
I hope that, with this practical example, you might have understood how client-side 
latencies can be one of the reasons for low network and Internet performances.

Moving on with this simple example, let's get ourselves introduced with server-side 
latency issues. I followed the same approach of surfing the Web with random websites 
while capturing packets with Wireshark for a couple of minutes and then analyzing 
the cause of any form of latency that can be seen in the list pane. This time, I came 
across an interesting session between my machine and a website. First, I would like 
you to have a look at it. Refer to the following screenshot that illustrates this:

Figure 8.12: Server-side latencies



Chapter 8

[ 245 ]

As you can see, the session between my machine at 192.168.10.96 and the server 
at 198.41.184.93 begins with a smooth three-way handshake without any sign of 
latencies. Next, the client issues a web request, following which the server sends an 
acknowledgement. Uptil here, everything has gone flawlessly, and there were no 
traces of latencies. However, when the server was about to start the data transfer, the 
server stopped for a while, as you can see in the frame 503. The server took around 
0.35 seconds to initiate the data transfer. This clearly illustrates that the server might 
have experienced heavy network traffic, or may be, the server was running several 
applications that were causing high CPU and memory consumption. There can be 
several other reasons as well for the latency that we just witnessed. Observing all of 
it, we can give a conclusion that the server is the reason for the latency; in this case, 
the server was incapable of processing the client's request in a reasonable amount of 
time, which ended up as a minor latency issue.

You learned how the devices over the wire, the client side, and the server side can 
promote high latencies while you surf the Internet or even your internal LAN network 
can be a victim of the same. We talked about delays before the server's SYN/ACK 
packet is received. These delays can happen because of the device in between (over 
the wire) and may be witnessed due to the server's high response time. Let's make 
things more interesting with a small practical example about identifying high HTTP 
response time. This will be useful for you to identify high response time. Follow 
these steps to replicate the same in parallel:

1.	 Open your browser and visit some websites while Wireshark runs in the 
background listening to your packets.

2.	 Once you have visited at least 3-4 websites, you can stop the capture process.
3.	 Now, switch to Wireshark and make some necessary changes. First, disable 

Allow subdissector to reassemble TCP streams. Select any TCP packet in 
the list pane, then right-click on the TCP section in the details pane, and then 
click on the Allow subdissector to reassemble TCP streams option to disable 
it. Look the the following screenshot that illustrates this:

Figure 8.13: Disable the Allow subdissector setting



Troubleshooting

[ 246 ]

4.	 Next, we have to add the http.time delta column to the list pane in order to 
see things more clearly and to easily identify any traces of latencies.

5.	 Select any HTTP packet from the list pane and then expand the HTTP 
protocol section in the details pane. Then, right-click on the Time since 
request parameter and click on the Apply as Column option. Refer to the 
following screenshot that illustrates this:

Figure 8.14: Apply Time since request as a column

6.	 Once this is done, you would be able to see the Time Since Request columns 
just before the info column in the list pane.

7.	 Now, you are left with just one step: to identify the highest response time 
from the web servers that you visited. Simply sort the newly added columns 
in a descending order to the highest response time. Refer to the following 
screenshot that illustrates this:

Figure 8.15: Sorting the http.time delta column



Chapter 8

[ 247 ]

8.	 Once this is sorted, you would be able to see the highest response time at the 
top of the list pane, as shown in the following screenshot:

Figure 8.16: High HTTP response time

9.	 The session at the top of my list pane between my machine and a web  
server that I visited denotes quite a high response time of more than a  
second. See how easy it was to identify the http delays in order to make  
your troubleshooting job easy. I hope it would be easy for you to replicate  
the same.

You can also achieve this in a visual representation, where you can create an IO 
graph to identify high latencies. Refer to the following small illustration using  
which you can replicate the scenario (note that I am using the same trace file that  
we saw earlier in the previous example):

Figure 8.17: Using an IO graph to identify the delays in HTTP response

As you can clearly observe in the graph, the response time for the requests you made 
took more than a second to complete in a total browsing session of approximately  
45 seconds.



Troubleshooting

[ 248 ]

There can be multiple situations where you will witness such traffic patterns; this one 
is definitely because of a web server that makes your web surfing experience bad. 
The reasons behind such a pattern can vary from a server in a heavy traffic load to a 
server hosting several applications, or it can be possible that the server you are trying 
to visit might be consulting some other web server in order to fulfill your request.

Next, let's see an example where DNS queries and their responses are responsible 
for causing your Internet or local networking experience to suffer. As we saw, other 
protocols in conjunction with DNS make the whole networking experience better, 
but at times, the same DNS protocol can cause trouble. Follow the next steps to 
identify the source of problems using DNS response time:

1.	 Open your browser and visit at least 3-4 websites. Wireshark should be 
capturing your web session packets while in the background.

2.	 Stop the capturing process and apply dns as a display filter in your trace  
file in order to see only dns packets.

3.	 Now, select any dns response packet from the list pane and expand  
the corresponding DNS section in the details pane for the same packet.  
Right-click on the Time parameter and click on Apply as Column.  
Refer to the following screenshot to see this:

Figure 8.18: Applying DNS Time parameter as column

4.	 Once you've done this, you will see a time column next to the info column in 
the list pane.



Chapter 8

[ 249 ]

5.	 Our next objective is to sort the column in a descending order to figure out 
the highest DNS response time. Refer to the following screenshot to replicate 
the same:

Figure 8.19: Sorting the DNS time column in a descending order

6.	 Once this is sorted, you would be able to see the session details in the list 
pane with the highest DNS response time that can be used to investigate 
further. If the server belongs to your premises, then you are the only one who 
has to take care of it. Refer to the following screenshot that illustrates this:

Figure 8.20: High DNS response time

7.	 Seems like some of the servers are responding really slow, and this badly 
affects your overall web surfing/networking experience.

8.	 Similarly, you can create an IO graph to see the whole scenario in a graphical 
form, and it would be far easier to visualize and understand the case. Refer to 
this screenshot that illustrates this:

Figure 8.21: DNS high response time depicted with the help of an IO graph



Troubleshooting

[ 250 ]

You can easily observe in the preceding graph that the DNS response time was quite 
high and reached to an approximate of 2.5 seconds, and it is something that should 
be taken care of.

Through the preceding realistic examples, I hope you have understood the approach 
that can give you a kickstart in troubleshooting such scenarios in future corporate 
infrastructures, which you might be asked someday to troubleshoot.

Troubleshooting bottleneck issues
Next, we have a commonly occurring issue in corporate networks. You might have 
already gone through the harsh suffering of troubleshooting them using various 
hardware and software tools. The first thing to do is to understand what these  
issues are and what kind of problems we can we face.

When packets are queued up or there is a delay in the transmission process between 
the host, which is not expected to happen, you might think "why do such delays 
happen?" The answer to this depends on many factors such as when your system of 
the server side is not able to send/receive information with the speed at which it is 
being processed. These kind of issues severely affect the performance of networks by 
slowing the rate at which the TCP/IP packets are transmitted, because of which the 
data between the hosts starts moving back and forth at a comparatively slower rate.

Using my small LAN network, I decided to create an exercise, which you can also 
replicate on your end easily. For the infrastructure, I have a gateway at 192.168.10.1 
and my client at 192.168.10.209. Refer to the following figure that illustrates this:

What you need next is a network traffic generator. Research it a bit and try to use 
anyone that makes you feel comfortable. Lastly, you need a ping utility, which is 
already installed on every known operating system.



Chapter 8

[ 251 ]

So, here's the scenario. I will start a non-top ping from the client to the server. While 
the client is pinging, I will launch the traffic generator application, which will try to 
interrupt the ping process by trying to consume the gateway's resources in order to 
create a bottleneck scenario for the client.

We will first see a normal traffic pattern in the IO graph so that we would work  
as our baseline when we would be required to compare with the bottleneck issue. 
Here is the screenshot for the normal traffic pattern shown in terms of an IO graph:

Figure 8.22: Normal traffic in an IO graph

In the preceding graph, no major deviation can be observed; hence, we can include 
such a traffic pattern while creating a baseline for our network. Just the ICPMP 
packets are sent from the client to the server without much trouble.

Next, I want you to see and observe the difference between the traffic pattern that 
we saw and the one below the IO graph, which was captured for the same network 
infrastructure. However, there was one more application that was involved in 
the replication of the event, which generated unnecessary traffic. This resulted in 
network clogging, which is popularly known as a bottleneck.



Troubleshooting

[ 252 ]

The application I used is the network traffic generator that can be used to deviate 
a normal traffic pattern. This results in a network bottleneck scenario and can even 
result in a denial of service. Refer to the following screenshot for reference:

Figure 8.23: A bottleneck scenario

Bottleneck issues are represented by ups and downs, as shown in the preceding 
graph. The rate at which the throughput drops is the same rate at which it jumps  
up, and this pattern of deviation in normal traffic denotes that there is a bottleneck 
being formed.

When every technique you know about troubleshooting fails, then at the end, you can 
use the network baseline, which can prove worthy while dealing with the slowness 
of the network. As discussed earlier, a network baseline is just crucial information 
that you have collected through various points in your network. The sole purpose 
of the network baseline you have is to compare abnormal traffic with it in order to 
understand the level of deviation.

We already discussed slow DNS and HTTP responses that make up your web 
surfing experiences. If you already have a baseline regarding your network, then 
it would be thousand times easier for you to troubleshoot. You would be able to 
identify the root cause of the situation you are dealing with, and definitely, this will 
save a lot of time for other analysis.



Chapter 8

[ 253 ]

Remember one thing that the baseline created for two different networks can vary 
in vast aspects, so you should not compare them with each another. An interesting 
and creative way of creating a baseline would be to create separate baselines, that 
is, one for the network, one for the hosts in your network (how well they coordinate 
with each other without creating much noise), and one for the applications 
communicating over a network.

While creating baselines, you can also consider each and every site you are working 
with separately. In my opinion, the best approach would be break up each site 
with similar categories. When you are dealing with a WAN, a troubleshooting site 
baseline can prove useful. Several components can be considered while dealing with 
WAN sites, such as data transfer rate, several applications in use, the pattern of the 
broadcast traffic, and various other categories that you may come up with can come 
handy while making a standardized baseline for a particular site.

Troubleshooting slow networks is definitely a piece of art. I would say, you won't 
be able to get its real gist unless you get your hands dirty. With experience, you will 
gradually gain the insight required to solve problems ranging from slow Internet to 
complex infrastructure-related issues

Troubleshooting application-based issues
There can be scenarios where applications running in your network can be one of 
the major sources of issues that clients face. You cannot blame the network every 
time for not working popularly; there can be other reasons as well for the anomalies. 
When troubleshooting any application-based issue, capturing packets from one end 
won't be fruitful enough. You should try to move to analyzers all around and capture 
as many traces of the application's traffic as possible. Capturing from multiple points 
will give you a much closer insight into network-based applications.

As discussed earlier, you can create baselines by following certain different 
parameters. Similarly, for network-based applications, there can be a certain  
defined set of rules, by using which the best baseline for your network can be  
formed, for example, dependencies applications have another coordinating 
application, analyzing the startup and shutdown process, the rate at which the 
application transmits packets, various protocols that coordinate in order to make  
the application work flawlessly, the way an application interacts with the network 
once a new installation is in process, and so on.



Troubleshooting

[ 254 ]

While creating a baseline for application-based performance issues, it won't be 
feasible all the time to capture traffic directly from the complaining hosts because  
it may cause the hosts to suffer high-traffic load and might make it unusable. For 
your trace file, there might be an unusual number of dropped packets that would  
get captured and would make your application baseline less appropriate.

As long as dissectors in Wireshark are able to translate the application-based 
requests and responses in a plain-text format, you are good to go. In the following 
section, I will take two popular application protocols, HTTP and DNS, to illustrate  
a few basic scenarios that you can replicate in order to follow the methodology.

First, we will look at the HTTP application-based anomalies. Remember that you 
should be able to identify the responses from the error-prone application if you are 
aware of the response code. As you know, HTTP is based on the request/response 
model, where a client requests for a certain resource to the server and the server 
responds with the valid resource if available; if not, then with a certain error code, 
which your browser is able to translate.

HTTP error codes are categorized into five sections of errors, where each error is 
based on certain logical parameters. To learn more about error code, visit http://
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html. For illustration purpose,  
I will explain the procedure so that you can figure out the most commonly seen error 
code, which is client errors.

The infrastructure I am going to use is pretty simple, easy, and similar to the one  
that we used earlier. The client is located at 192.168.10.196 and the gateway is 
located at 192.168.10.1. I will try to make a few requests to the gateway and a  
few to any web server located in the wild (note that my intention is just to replicate 
error code that you can see in the list pane of Wireshark, and not to compromise any 
web server.)

At first, we will try to generate some client error code. Follow the next steps to walk 
through this; otherwise, you can just read it once and then replicate the whole scenario:

1.	 Open your browser and visit the default home page of your gateway. 
Hopefully, it will present you with a login screen like the one shown here:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Chapter 8

[ 255 ]

Figure 8.24: The gateway's Login panel

2.	 Open Wireshark, and let it run in the background while capturing all  
your activities.

3.	 Enter an incorrect password in the password field and click on Login.  
This will show you the incorrect login name and password message  
on the screen or something similar.

4.	 Next, visit any random website and click on any link. After the link is 
successfully opened, change the web extension of the web page visible  
in the address bar to anything such as .foo, .abc, and so on. Doing this  
will give you an error on the web page, such as page not found. Just ignore  
it for time being.

5.	 Now, come back to Wireshark and stop the packet capturing process that  
we started earlier.

6.	 You should be able to see a number of packets in the list pane, but our 
concern in this section is to look at error code messages and nothing else.

7.	 Now, click on the display filter box and apply the http.response.code 
> = 400 filter. Then, click on apply. Refer to the following screenshot that 
illustrates this:

Figure 8.25: Display filter



Troubleshooting

[ 256 ]

8.	 Once the filter has been applied, you will be able to see only those packets 
that match the criteria. Refer to the following screenshot that illustrates this:

Figure 8.26: HTTP Response code >= 400

9.	 See, how easily you were able to identify error code from an enormous  
trace file.

10.	 You can also create a button for the same. Once you click on it, you will  
only be able to see relevant packets. You can colorize them for a better 
viewing experience.

11.	 We learnt about Coloring options in the earlier chapter. I want you to learn 
how to create a button for specific display filters this time.

12.	 Do not clear the current filter; just click on the Save button that is next to  
the Apply button in the display filter area.

Figure 8.27: The display filter toolbar

13.	 Once you click on Save, you will be presented with a dialog. To provide  
a name for the button, specify any name of your choice and click on OK.  
Refer to the following screenshot that illustrates this:

Figure 8.28: Creating a button

14.	 Once you click on OK, you will be able to see the button next to the Save 
button in the display filter toolbar area.



Chapter 8

[ 257 ]

15.	 Now, whenever you want, you can create a similar display filter without 
typing it into the display filter box. You just need to click on the button that 
you created recently.

Figure 8.29: The newly added button

To make this more interesting, I would advise you to create a coloring rule for  
the HTTP 404 error. This will definitely help you identify particular error types  
more conveniently.

Next, we will see another application protocol that is commonly used by various 
applications in order to translate a domain name to its IP address. Yes, I am referring 
to DNS. As we know, the DNS protocol runs over a UDP or TCP. There are various 
response code that relate to DNS errors that range from 0 to 21. The dissectors present 
in Wireshark do know about response code. Using this, Wireshark is able to show  
you messages relevant to the error code. To replicate an error, I will visit a website  
that does not exist on the Web; hence, I will receive an error. But my gateway does  
not know about this, so it will try to resolve the IP address associated with that name. 
In return, we will see a DNS response containing an error. The infrastructure is the 
same that we used in the preceding examples. The client is located at 192.168.10.209 
and the gateway is at 192.168.10.1.

You can replicate the scenario step by step with me or do it later once you finish 
reading. Follow these steps to replicate the scenario:

1.	 Open Wireshark, and start capturing. Let it run in the background.
2.	 Open a terminal (Command Prompt) of whichever operating system you  

are using, type nslookup in it, and press Enter.



Troubleshooting

[ 258 ]

3.	 Now, you'll enter the interactive mode of the nslookup tool. If you are not 
aware of the tool, do read about it before you proceed. There are plenty of 
documents available for the tool. Refer to the following screenshot:

Figure 8.30: The NSLOOKUP tool

4.	 To generate DNS error response code, just type any domain name and press 
Enter. Before you specify a domain change the type of query to A by using the 
set type=a command and then give the domain you want.

5.	 First, we can try the same for a domain that exists, such as google.com. Then, 
you can try it for the nonexistent domain. Refer to the Figure 8.31 shown here.

6.	 The preceding screenshot shows the various IP addresses that are associated 
with the google.com domain. The domain already exists. That's why we are 
able to see the reply. What if you try a domain that doesn't exist. Refer to the 
following screenshot that illustrates this:

google.com
google.com


Chapter 8

[ 259 ]

Figure 8.31: The nonexistent domain

7.	 I typed my name in place of the domain name and pressed Enter, and this is 
what I saw because there was no domain with that name. The DNS server 
was not able to resolve an IP address, hence resulting in the reply server 
can't find.

8.	 Now, you can go back to Wireshark and stop the capture process. We will 
now start analyzing error code.

9.	 The best option would be to segregate the DNS error response code from the 
normal frames in the trace file that we have. To achieve this, apply the dns.
flags.rcode == 3 display filter, which means that the shown DNS response 
frame with error code 3 is for nonexistent domains. For more information on 
DNS error code, visit https://tools.ietf.org/html/rfc2929.

10.	 Once you have applied the preceding display filter, you will only see relevant 
packets matching your filter expression.

Figure 8.32: DNS error response

11.	 As you can see in the list pane, only packets that are related to error code 3 
are visible.

12.	 If you want, you can save the filter expression in the form of a button for later 
use following the same approach we used earlier.

Troubleshooting application-based issues depends on how well you are aware of the 
error code. There might be a case that you can witness where you don't have the option 
of installing Wireshark for your assistance. You will be presented with error code for 
troubleshooting purposes. So I recommend that you at least know about the common 
error codes in the most popular application protocols that are normally used.

https://tools.ietf.org/html/rfc2929


Troubleshooting

[ 260 ]

Summary
Troubleshooting is an art that comes with experience, and to become a master in it, 
you are required to practice things practically on your own.

There are various error recovery features that are provided by the TCP protocol  
that help us to recover from loss of packets that might happen commonly in a 
production environment.

TCP retransmission and duplicate ACKs are some of those techniques that are  
used by the TCP protocol in order to make the life of network administrators a  
bit more comfortable.

Slow network is one of those common problems that you have to face on a daily 
basis. Before you start solving these latency issues, you should know the basic 
methodology that you can follow, that is, to categorize your scenario in one of  
the latency categories: a wire, client, or server.

Solving bottleneck issues, such as packets getting queued up inside the sender  
buffer area and causing trouble, is quite important. The best approach in solving  
a bottleneck issue would be to take the help of IO graphs that you learned about  
in the earlier chapter to visualize a situation and get hold over it.

Applications use protocols such as HTTP and DNS. This is very common, but you 
must be aware of error codes these can present, and without using Wireshark, you 
should be able to identify the situation. I do not know every error code, even I can 
not do that. But the most common ones that you might witness.

Creating a baseline is one of the most convenient ways of dealing with issues in  
your network. When you have a trace file containing an optimized traffic pattern, 
then, by comparing the normal pattern with the deviated pattern, you can solve the 
issue in less time with few resources. Collect the network traces for your baseline 
from various locations in your network at least 2-3 times.

Practice questions
Q.1 Create a baseline from different positions of your network regarding various 
common protocols used in communication.

Q.2 Explain the various characteristics that TCP error recovery features have.

Q.3 Which protocols other than DNS and HTTP can be troublesome for you,  
and what approach will you follow in order to troubleshoot them?



Chapter 8

[ 261 ]

Q.4 What do you understood by the term "bottleneck issues", and can they be ignored. 
If yes/no, why?

Q.5 Create a trace file for your own host and at least capture 10,000 packets. Then, 
analyze how many types of errors you are able to see for the HTTP protocols, and 
how many of them can you replicate.

Q.6 Using the baseline that you created earlier, try to match an unusual traffic pattern 
and observe what anomalies you can figure out by the comparison process.

Q.7 For the DNS protocol, replicate an error code other than 3 and capture traffic for 
the same.

Q.8 Prepare a checklist for the latency types we discussed and mention as many 
scenarios as you can think about in each category. Once you've prepared this, try using 
the same in a troubleshooting scenario. Does this speed up your overall process?

Q.9 Try creating coloring rules for error responses for various application protocols 
you want to and analyze what difference does it makes in the troubleshooting issue.





[ 263 ]

Introduction to Wireshark v2
This chapter will introduce you to the amazing features launched with the latest 
version of Wireshark. The following are some of the prominent changes that users 
will become aware of, and all the sample examples in this chapter are being  using 
version 2:

•	 Comparison between Wireshark v2 (QT) and the Legacy framework (GTK)
•	 The intelligent scroll bar
•	 The Translation feature
•	 Graph improvements
•	 Newer TCP streams
•	 USBPcap
•	 Summary
•	 Practice questions

Wireshark has been there with us for approximately two decades now; there weren't 
any major updates that we witnessed during its lifecycle. However, there were minor 
updates introduced to make the application more convenient and robust during 
this long period. But this time, we have a newly branded Wireshark v2 with glazing 
arsenal. Yes, we are really lucky to witness this major update for the most popular 
and amazing tool in the protocol analysis industry.

I am really excited to discuss the different sets of tools introduced with the latest 
release, but, before that, it is necessary that you get acquainted with the background 
of the QT and GTK frameworks. You definitely have to Google  these either now or 
maybe after reading this chapter. However, make sure that you note them.



Introduction to Wireshark v2

[ 264 ]

For your convenience, I will give you a gist and some background of these 
frameworks; the reason why I am emphasizing the difference between the two is that 
the newly developed version 2 of our protocol analyzer is developed using the QT 
framework. QT and GTK are frameworks used for the development of GUI cross-
platform utilities such as Wireshark. In general, from the end user's perspective, the 
difference would be based purely on graphical changes, but performance wise, GTK 
is more economical as compared to QT. For better understanding, these aren't just 
toolkits and frameworks; instead, these are sets of libraries used by developers to 
create better GUIs for end users. Basically, it's reusing the designs already made by 
others. The main advantage of reusing designs is that it allows the newly installed 
program to look more similar to the other already installed programs on your 
machine. For instance, let's see both the new and old version of the application 
parallelly; refer to the following screenshot for this:

Figure 9.1: The GTK and QT frameworks

You must be wondering how you can get your machine installed with the latest 
version of  Wireshark. It's really easy; you just have to visit http://wireshark.org, 
and then go to the download page. There, you will find the latest release. Download 
the one appropriate to your operating system. During installation, there is one 
important question that you will be asked, that is, whether you want to install the 
legacy version along with the newer release or you just want to install the newer 
version (note that only Windows users have this privilege; Mac and Linux users can 
just install the latest version of the application).

http://wireshark.org


Chapter 9

[ 265 ]

There is one more component that you will see being installed on your machine: 
USBpcap. I have dedicated a separate section in this chapter for this particular topic. 
For the sake of basic introduction, USBpcap facilitates users to capture data that moves 
back and forth from your machine's USB port. The tool has been available for Linux 
users for quite a long time, but luckily, Windows users can also utilize this now.

For starters, let's have a look at the main screen , which has a completely different 
feel from the previous version. Refer to the following screenshot to get a look:

Figure 9.2: The main screen of Wireshark v2

I hope you feel the same way I do  about the new, exciting look. Everything in this 
version looks so properly arranged and cleaner. Even a novice user who has no 
experience at all in protocol analysis can get a great head start just because this has 
now become a simple and attractive interface.

Just observe the toolbar area, for instance. In this version, it seems like the developers 
have filtered out the unwanted and less commonly used tools, which eventually makes 
the interface quite comfortable for the eyes. In this new version, we have quick access 
directly to a basic toolset, such as the start and stop capture buttons, the interface 
customization button, a button to save/open/close the current capture file, some 
navigational tools, and the auto scroll and coloring activate/deactivate button.



Introduction to Wireshark v2

[ 266 ]

Just below the toolbar area, we have our good old friend, the Display Filter toolset, 
which is redesigned with great efforts. On the leftmost side of display filter text box, 
you will see a bookmark kind of icon (in blue—top-left corner) that will show you 
the default and manually created filter expressions. Refer to the following screenshot 
that shows an illustration:

Figure 9.3: The Display Filter toolbar

As you can see, all the filters are listed, which you might have created, or are default 
ones. So now, it's a matter of just a click if you want to activate any one of them, 
instead of getting a pop-up window from where you choose and apply the filter, like 
in the older version. This definitely speeds up the process of analyzing and makes 
the life of IT professionals easier.

On the other end of the Display Filter toolbar, we have a few old tools that have 
been remodeled in a fresh look, along with some functionality improvements; refer 
to the following screenshot for an illustration:

Figure 9.4: The Display Filter toolset



Chapter 9

[ 267 ]

To apply any display filter now, you just need to click on the arrow, and the dropdown 
next to it will give you access to frequently used filter expressions (history of last-used 
expressions). Then, you have the Expression button, which will help you access the 
dialog where you can get access to all possible filter expressions categorized on the 
basis of protocols. Next, on the rightmost side of the display filter textbox, you have the 
+ sign; by clicking on this, you can create a filter button. Let me help you in creating 
one for yourself in the newer version to get started.

For example, I want to create a button to see only the ARP packets, so I will type arp 
in the display filter area and click on the + sign at the end of the toolbar. Then, you 
need to specify the name of the button you want:

Figure 9.5: Adding a custom display filter expression button

This will add a physical button next to the + sign. This technique will prove worthy 
and very effective when you have long display filter expressions, which you might 
need often. So, instead of typing the whole expression again, you can just activate 
them with a single click. As a result, you will see something like what is shown in  
the following screenshot. Now, you are just a single click away from applying arp  
as the display filter:

Figure 9.6: The display filter button created

Next, below the display filter toolbar, you can see the recently used files; just  
double-click on any file you want to open.

After the Open file section, we have the capture filter toolbar, and I don't think you 
need any explanation regarding what it is for and how you are going to use it for 
your perusal.

Now comes the major change that you will witness on the main screen, that is, 
the interface's name followed by an interactive graph. The graphs you will see are 
actually live, meaning you will see the fluctuations, that is, the lines going up and 
down. The miniature graph followed by the interface name represents the amount of 
traffic moving back and forth from the interfaces you have. The proper terminology 
for these miniature graphs is sparklines. In the older legacy version, we had the live 
statistics in numerical form.

Now, if you decide to capture traffic from a particular interface, just double-click on 
the graph area, and Wireshark will do the rest for you.



Introduction to Wireshark v2

[ 268 ]

The intelligent scroll bar
This is one of the features launched in the latest release, and you might have already 
noticed some colored sections/lines in the scroll bar area. If not, then go back to any 
of the capture files you have, slowly scroll up and down, and observe the coloring 
pattern in the scroll bar area. Any guesses what difference it would make in the 
analysis process? Let's understand this with an example.

I will use a previously captured file for demonstration purpose, which has HTTP and 
HTTPS packets along with some retransmission and duplicate frames. There is no 
difference that you can figure out at first glance, but as soon as you start scrolling, 
the coloring pattern will be shown in the scroll bar area. This pattern is based on 
the coloring rules that you have in your application. For example, as per the default 
coloring rules, duplicate and retransmission packets are usually seen with a black 
background and a red foreground, and HTTP packets are shown with a green 
background and a black foreground. Now, let's verify this in the application itself. 
Refer to the following figure for the same:

Figure 9.7: The intelligent scroll bar in action

The way packets in the list pane are shown in different colors is similar to the way 
the scroll bar represents the different sections of your list pane.



Chapter 9

[ 269 ]

In the same way that the blue line indicates the selected packet, the black lines 
denote the duplicate ACKs and retransmissions, and the green-colored section 
indicates that at the bottom of the capture file, we have some HTTP packets listed.  
By just observing the coloring pattern in the scroll bar area, we can figure out what 
sort of packets we have ahead, and most importantly, navigating to a certain section 
of packets you are looking for is now much easier and faster.

We already discussed customizing the coloring rules in previous chapters; let's take 
one more example of the same capture file, and this time, I want to customize the 
HTTP packet coloring rule. We will change the green background color to yellow. Let's 
see what difference it would make in the scroll bar area in the following screenshot:

Figure 9.8: Accessing the coloring rules dialog

To access the coloring rules, you need to click on View from the menu bar and then 
choose Coloring Rules at the bottommost corner, which will show you the dialog 
where all coloring rules will be listed. Try changing the HTTP coloring rule to 
yellow. Once this has been done, close the dialog and reopen the capture file in order 
to see the change.



Introduction to Wireshark v2

[ 270 ]

Now, try scrolling the same file, and I hope you will see the difference in the coloring 
pattern in the scroll bar and your list pane too, where all HTTP packets are colored 
with a yellow background. Refer to the following screenshot:

Figure 9.9: The HTTP coloring rule

Now, let's compare what difference it made when we tried scrolling up and down 
in the list pane after the new coloring rule was applied. Refer to the following 
screenshot to go through the illustration:

Figure 9.10 Effect of the HTTP coloring rule can be seen in the scroll bar

A good amount of cleanup has been done from the toolbar area where, for example, 
the coloring rules toolset has been removed, and now you can access it from the 
view menu. The + and – symbols at the bottom of the coloring rules window can 
facilitate you with the configuration of the rules.

Translation
I think this amazing and pretty cool feature is not able to gain limelight, so I want 
you to know that Wireshark offers you to change the language to any other language 
of your choice, for example, Spanish, Japanese, Chinese (Mandarin actually), Polish, 
French, and so on, and this feature has been there their since version 1.99.



Chapter 9

[ 271 ]

Giving the privilege to users to change the default language of the application to 
their native language is all about personalizing user experience while working with 
the application. If users feel more connected and comfortable with the application, 
then they will definitelybecome more productive.

Let's see, with the help of an example, how we can change our system's default 
language to Japanese (launched with version 2.0). Follow the given steps to achieve 
the same:

1.	 Navigate to Wireshark | Preferences (Windows users need to navigate to 
View | Edit | Preferences):

2.	 Now, choose Japanese from the drop-down list at the bottom, and click on OK:



Introduction to Wireshark v2

[ 272 ]

3.	 Now, you probably will see everything in Japanese, as shown in the 
following screenshot:

4.	 To revert it back to System Default, follow the same steps.

The most amazing thing about this is that you can also become part of the change; 
this means that if you want to help Wireshark's team in adding your native language, 
then you can get in touch with them.

From the help menu, you can list  all the keyboard shortcuts, which can be used to 
make things work faster than usual. Even to make graphs, now you have a shortcut 
available.

Graph improvements
This is something that you will be really pleased to know about. Yes, Wireshark 
has made quite significant changes that will make your analytical tasks more 
comfortable. To understand the difference, the best option will be to go through  
an example.



Chapter 9

[ 273 ]

We will try to create an IO graph in order to witness the changes that the new 
version has. I am using a capture file from the previous chapter, which has mixed 
packet types and mostly contains VoIP traffic. The sole purpose of this exercise is to 
see how graphs can be of better assistance in version 2 of Wireshark. Follow these 
steps to create an IO graph in Wireshark version 2.0:

1.	 Capture the normal traffic from your network or open any previously 
captured trace file that you have.

2.	 Click on IO Graph under Statistics. Once you do that, you will be directly 
presented with a graph without any further hassle:

Figure 9.11: The IO graph

3.	 Now, if you want to modify and configure the graph, then you can use 
various configurable options given at the bottom of the dialog.



Introduction to Wireshark v2

[ 274 ]

4.	 For instance, if I want to add any filter to the graph, I can click on the + symbol 
at the bottom and a new line will be shown, as in the following screenshot:

Figure 9.12: Adding a filter to a graph

5.	 Now, I want to see the traffic pattern for the ARP packets along with other 
traffic-related details. So, I would write arp as a filter expression in the 
display filter column and ARP packets in the name column. If you want  
to customize the look and feel too, you are most welcome to do so.

Figure 9.13: The ARP filter added in the IO graph

6.	 As you can see, our newly created filter is in effect, and we can observe the 
frequency of ARP packets appearing in our graph as well.



Chapter 9

[ 275 ]

Using graphs is now much more convenient, as you are no longer required to pass 
any statistical information to the graph. Just choose whichever graph you want, and 
then the default version of the graph will be presented to you without any questions 
asked. Now, if you feel like changing the graph as per your need, then just use the 
toolset given at the end of the graph to custom configure it.

Now, after we have made an IO graph, you will see how clean it looks; there are lots 
of features that have been introduced. Using the default graph, most of the time you 
will be able to figure out the ups and downs in your trace file. The legends are shown 
at the bottom most in a separate section, along with other configurable options like 
changing colors, hiding or enabling a filter, and much more.

Additional features can be listed and explored in the graphs; all you need to do is 
right-click on the graph area. The graph can now be moved along with the x and y 
axis by just clicking and dragging. Adding new arguments to the graph couldn't be 
any easier than this. As you can see, so many new amazing features are waiting for 
you to discover them.

Figure 9.14: The right-click options list



Introduction to Wireshark v2

[ 276 ]

Opening two graphs is now possible; and maybe someday, you will feel like 
comparing the traffic patterns in two trace files that you have. For example,  
I want to compare the normal VoIP traffic pattern and the malicious traffic  
pattern. Then, we can use two graphs to figure out the difference graphically,  
and it's really effective. Refer to the following screenshots:

Figure 9.15: Comparing two graphs at a single instance



Chapter 9

[ 277 ]

Similarly, you can create a flow graph that can be of great assistance while analyzing 
the TCP flow and to know how SYN and ACK coordinate with each other. I would 
highly recommend that you create the flow graph in the newer version of Wireshark.

To switch between the graphs, you have the drop-down list sitting at the bottom-left 
corner of the graph window, which can assist you in doing so, and you are no longer 
required to go the window in the background to switch between graphs.

Another useful feature that can be taken advantage of when you are trying to create 
reports for your client or maybe for your own reference purpose is to export the 
graphs in PDF formats. You might have done this before; if not, then let's do this 
together here. Follow the given steps to do so:

1.	 You need to click on the Save as icon at the bottom-right corner in the graph 
dialog window. Now, choose the location where you want to save the PDFs 
and click on Save.

2.	 Once this has been done, you can export the PDF to anywhere you want to. 
Refer to the following screenshot:

Figure 9.16: Exporting graphs to PDF format



Introduction to Wireshark v2

[ 278 ]

Now, whenever you want to import it into your report, just add it like an image and 
the graph from the PDF you exported will be added to your document. Doing this is 
really this easy:

Figure 9.17: The graph exported as PDF



Chapter 9

[ 279 ]

TCP streams
This is one of the features that you might have used very often so far, and I suppose 
the story will be same for all IT professionals using Wireshark as a utility. The gist of 
the tool definitely will remain the same in the next version, which is going to come 
in the future; however, there are some new things that I would like to emphasize. To 
view the TCP stream window, the process remains the same as usual. Right-click on 
the list pane area and choose Follow by hovering your mouse over it, which will the 
present available different streams. Then, click on TCP Stream options. Refer to the 
following screenshot to see these steps:

Figure 9.18: Follow TCP streams

Following this will present you with a usual-looking stream window similar to  
what we have seen in our previous chapters. However, we definitelyhave some  
new features to discuss, such as the flexibility of moving back and forth between  
the different TCP/UDP streams available, and the find utility that lets you search  
in the stream window for any text.



Introduction to Wireshark v2

[ 280 ]

First, we will see how you can traverse in between the different streams available 
in your trace file. Then, we will try to search some text through the follow streams 
window. Refer to the following Stream option screenshot that can be used to traverse 
between various TCP streams available:

Figure 9.19: Follow the TCP Stream dialog

The stream option labeled (1) at the bottom-right corner of the preceding dialog gives 
you the flexibility to move back and forth between the different streams available. 
You have two choices here: you can specify the number of the stream you want to 
look at or you can traverse up or down by clicking on the up/down arrow followed 
by the textbox. So now, if you are looking for a different stream, you don't have to 
close and reopen the dialog, like we did while working with the earlier version of  
the application. Refer to the following screenshot:

Figure 20: The Stream option



Chapter 9

[ 281 ]

The part labeled (2) gives you the facility to find any ASCII text inside the Follow 
stream dialog, which definitely gives an extra mile advantage for every person 
actively using this beautiful application. Most of the time, when we are using the 
stream dialog, it is for analytical purpose, and with these new features, our job 
becomes more easy and interesting. Refer to the following screenshots for reference 
regarding both the newly introduced options:

Figure 9.21: The Find utility in the Follow TCP stream dialog

For example, if you want to search for the text abc in the current stream, then just 
type the search string in the find textbox and press Enter or click on Find Next.

Figure 9.22: The Find utility in the Follow TCP stream dialog



Introduction to Wireshark v2

[ 282 ]

USBPcap
USBPcap has been there from a long time with Linux and Mac users, but for 
Windows, this is the first time that users will be able to sniff the activity over USB 
interfaces. So, let's quickly walk through this latest feature and try to understand 
how to work with it with the help of an example. Follow the given steps to replicate 
the scenario:

1.	 After the successful installation of Wireshark on your Windows machine,  
it is highly recommended that you restart your machine because USBPcap 
might give you some trouble.

2.	 After your PC has restarted, open Command Prompt and change your 
current directory to the USBpcap installation directory that should be  
located at C:\Program Files\USBPcap\.

3.	 Now, perform a directory listing using the dir command to check whether 
USBPcapCMD.exe is present in the directory. Refer to the following screenshot 
that represents this step:

Figure 9.23: The USBPcap installation directory

4.	 Type USBPcapCMD.exe in the Command Prompt to launch the  
sniffing application.



Chapter 9

[ 283 ]

5.	 As soon as it has been launched successfully, you will be asked to choose  
a root hub over which you want to sniff the traffic and the name of the trace 
file where you want to redirect the output. Refer to following screenshot that 
illustrates this:

6.	 Now, as instructed, the application will initiate the sniffing process over root 
hub 1 and will dump any activity captured over the USB interfaces to the 
abc.pcap file.

7.	 Now, try to copy something from your PC to the USB drive or vice versa. 
You probably won't be able to see any live activity over the Command 
Prompt, but in the background, it is actually running.

8.	 Whenever you want to stop the sniffing process, you can press Ctrl + C.



Introduction to Wireshark v2

[ 284 ]

9.	 Now, it's time to open the abc.pcap file using Wireshark to see what we 
have in the trace file. Refer to the following screenshot that illustrates this:

Figure 9.24: The abc.pcap trace file

As you can see, we have an activity, which got captured; it all looks similar to what 
we saw with network packets. We have all the familiar columns that list out various 
details such as time, source, destination, and so on. So we were able to successfully 
dump the activity over available USB interfaces without any technical hassle and I 
hope you will do some research to get a better understanding about USBPcap.



Chapter 9

[ 285 ]

Summary
The newer version of Wireshark has adopted a new framework that gives us a new 
and totally amazing GUI. The older version was built upon the GTK framework,  
and since now we have the QT framework, from the perspective of a normal user, 
the differences are mostly concerned with its look and feel.

Scrolling is definitely one of the tools that we all have seen in all major applications, 
but hats off to the developers who came up with such a creative idea of showing the 
coloring pattern of your trace file inside the scroll bar while you are trying to look for 
something specific. It does give an extra advantage.

The Translation feature makes Wireshark more international and close to every  
user in terms of personalization. As many Wireshark users might not comfortable 
with the English language, now they have the facility to change the language to  
their native language, which would make the analytical process for a professional 
more effective.

Graphs are one of the features using which differences between normal and 
abnormal conditions can be figured out, and are used very often. Now, creating 
and customizing graphs is easier than ever, and the look and feel has drastically 
improved as well.

The following protocol-specific streams dialog is introduced with some of the new 
features that let you find an ASCII string, and itlets you move easily between the 
streams available too; you don't have to close and reopen the dialog to move to a 
different stream.

USBPcap has been there with us for quite a long time, and most Linux and Mac 
users are probably aware of this fact. The way your NIC card lets you listen over 
the wired/wireless channel is similar to the way the USBpcap option would let you 
listen over the USB ports that you have. This means that now, Wireshark can also 
trace the activities happening over a USB interface.

Practice questions
Q.1 Try to find out the major differences between the GTK and QT frameworks.  
And which one do you think is better?

Q.2 Try out the Translation feature by changing the system default language in 
Wireshark to any other language of your choice.



Introduction to Wireshark v2

[ 286 ]

Q.3 Create a Flow graph using the newer version and the legacy version, and observe 
how many differences you can figure out between the graphs.

Q.4 Open any previous capture file you have, and try to figure out how many TCP 
streams there are in it.

Q.5 Figure out a way to remove the display filter button for the ARP protocol that we 
created earlier in this chapter.

Q.6 Try changing coloring rules for ARP packets, and check whether you can observe 
the difference in the intelligent scroll bar area.

Q.7 After installing the newer version of Wireshark on a Windows machine, try to 
launch USBPcap. Then, copy and paste from your PC to the sub device or vice versa 
(dump all the activities in the test.pcap file).

Q.8 Open the recently captured test.pcap trace file for the USB interface activity 
in Wireshark, and try to figure out what the packets listed in the list pane state. 
Specifically, try to analyze the values shown in the source and destination columns.



[ 287 ]

Index
A
ACK packets  170
Address Resolution Protocol (ARP)

about  4
poisoning  12-14, 194

advantages, Wireshark
cost  16
filters  15
platform independent  15
robustness  15
support  16
user friendly  15

application-based issues
troubleshooting  253-259

association request/response  169

B
Base Service Set Identifier (BSSID)  156
bottleneck issues

troubleshooting  250-253
BPF syntax

identifiers  33
qualifiers  34

brute force attacks
malicious traffic, inspecting  209-216
real-world CTF challenges,  

solving  216-228

C
capture filters

example  35
using, techniques  33, 34
with protocol header values  37

capturing methodologies
about  10
ARP poisoning  12-14
first capture, starting  20-24
hub-based networks  10
passing, through routers  14, 15
switched environment  10, 11

Carrier Sense Multiple Access and Collision 
Avoidance protocol (CSMA/CA)  155

client-side latency issues  244-250
Command Line-fu  80-86
comparison operators  40
control frame

about  163
Acknowledgement (ACK)  163
Clear-to-send (CTS)  163
Request-to-send (RTS)  163

conversations  58-60
cyclic redundancy check (CRC)  166

D
deauthentication packet  178
disassociation packet  178
display filters

about  38-40
retaining, for later use  41, 42

distribution system (DS)  165
Domain Name Service (DNS)

about  9, 92
error code, URL  259
packet, dissecting  92-94
packet, fields  92, 93
query/response, dissecting  94-96
unusual DNS traffic  96, 97



[ 288 ]

Dynamic Host Configuration Protocol 
(DHCP)  145, 146

E
encrypted traffic (SSL/TLS)

decrypting  122-124
endpoints  60-63
Expert Info dialog

about  74-79
Chat section  76
details  78
error section  78
Note section  77
Packet Comments  78
warning messages  77

Extended passive (ESPV) mode  98
Extended Port (EPRT)  100

F
fields, domain name system (DNS) packet

about  92-94
checksum  130
data  130
options  130
urgent pointer  130
window size  130

File Transfer Protocol (FTP)
about  3, 97
communications, dissecting  98
packets, dissecting  100-102
unusual FTP  103

filters
display filters  38

Find dialog
used, for searching for packets  42, 43

flags, TCP
ACK (acknowledgement)  129
CWR (congestion window reduced)  129
FIN (finish)  129
PSH (push)  129
RST (reset)  129
SYN (synchronize)  129
URG (urgent)  129

flow control mechanism  237-239

flow graphs  66, 67
FTP communications

active mode  99, 100
dissecting  98
passive mode  98, 99

FTP packets
dissecting  100

G
Google

reference link  94
graph improvements  272-278

H
half-open scan (SYN)

closed state  191
filtered state  191
open state  191
performing  190, 192

header fields, TCP
acknowledgement number  129
data offset  129
destination port  129
sequence number  129
source port  128

header types, IEEE 802.11 packet structure
control frames  163
data frames  163
management frames  162

HUB  10
hub-based networks  10
hubbing out  11
Hyper Text Transfer Protocol (HTTP)

about  3, 104
request  105-107
response  108
unusual HTTP traffic  109-111
working  105

I
IEEE 802.11

about  154
basic service set (BSS)  155



[ 289 ]

distribution system (DS)  155
extended service set (ESS)  155
independent basic service set (IBSS)  155
packet structure  161
standards  154, 155
station (STA)  155
wireless access point (AP)  155
wireless communications, modes  155

information gathering
about  188, 189
half-open scan (SYN), performing  190-192
OS fingerprinting  192-194
PING sweep, performing  189, 190

Initial Sequence Numbers (ISN)  132
Institute of Electrical and Electronics  

Engineer 802.11. See  IEEE 802.11
Internet Protocol (IP)  9
IO graph

about  64, 65
creating  273-278
working with  63

L
layers, TCP/IP model

about  2
Application Layer  3
Internet layer  4
Link Layer  4
Transport Layer  3

logical operators  40

M
malicious traffic

inspecting  209-216
management frames

about  162
associate response frame  162
association request frame  162
authentication frame  162
beacon frame  162
deauthentication frame  162
disassociation frame  162
probe request frame  162
probe response frame  163
reassociation (request/response) frame  163

maximum segment size (MSS)  130
Message Integrity Check (MIC)  173
MetaGeek

reference link  158
modes, wireless communications

about  155
Ad Hoc mode  156
infrastructure/managed mode  156
master mode  157
monitor mode  157
strength  158-161
wireless interference  158-161

Multiple-Input Multiple-output  
(MIMO)  155

N
Network Interface Card (NIC)  4, 60
network latencies

troubleshooting  239-243
Nmap

reference link  190
Null Function packets  170

O
Orthogonal Frequency Division  

Multiplexing (OFDM)  154
OS fingerprinting

about  192
active fingerprinting  192
passive fingerprinting  192

P
packet analysis, Wireshark used

about  5-7
aspects  6
performing  7

packets
searching, Find dialog used  42, 43
structure, in IEEE 802.11  161-166
traffic colorization  44-48

Pairwise Transient Key (PTK)  174
password-based key derivation function 

(PBKDF2)  183



[ 290 ]

ping sweep attack
performing  189, 190

Point to Point (PPP)  4
port mirroring  10
Pre Shared Key (PSK)  174
processes, protocol analyzer

analyze  9
collect  9
convert  9

Protocol data unit (PDU)  4
Protocol Hierarchy  57, 58

Q
QOS data packet  170
qualifiers

direction  34
proto  34
type  34

R
Radio Frequency Monitor Mode  

(RFMON)  157
Radio Frequency (RF)  158
Read filter  84
Real-time Transport Protocol (RTP)  116
real-world CTF challenges

solving  216, 217
receive sequence counter (RSC)  174
recovery features

application-based issues,  
troubleshooting  253-259

bottleneck issues, troubleshooting  250-253
client-side latency issues  243-250
flow control mechanism  237-239
network latencies, troubleshooting  239-242
server-side latency issues  243-250
slow Internet, troubleshooting  239-242

request-to-send (RTS) frame  166
routers

passing through  14, 15

S
Secure File Transfer Protocol (SFTP)  102
server-side latency issues  243-250

Service Set Identifier (SSID)  156
Session Initiation Protocol (SIP)  116-118
Simple Mail Transfer Protocol (SMTP)

about  3, 112
encrypted traffic (SSL/TLS),  

decrypting  122-124
Session Initiation Protocol (SIP)  116-118
unusual traffic patterns  121
usual, versus unusual SMTP traffic  112-115
Voice Over Internet Protocol  

(VOIP)  116-118
Voice Over Internet Protocol (VOIP)  

traffic, analyzing  118, 119
Simple Network Management Protocol 

(SNMP)  3
slow Internet

troubleshooting  239-243
standards, IEEE 802.11  154, 155
Statistics menu

about  54
Protocol Hierarchy  57, 58
using  54, 56

switched environment  10

T
TCP

about  4, 9, 128
analysis flags, checking in Wireshark  142
communicating  130
flags  128
graceful termination  133, 134
header  128
relative, verses absolute numbers  135-139
RST (reset) packets  134
unusual TCP traffic  140, 141
working  131-133

TCP/IP model
layers  2-4
overview  2

TCP sliding window mechanism  237
TCP stream graphs

about  68
Round-trip time (RTT)  68, 69
Throughput graphs  69
Time-Sequence graph (tcptrace)  70-72



[ 291 ]

TCP streams
about  279-281
following  72-74

Temporal Key Integrity Protocol (TKIP)  172
three-way handshake  128
translation  270-272
Transmission Control Protocol. See  TCP
Trivial File Transfer Protocol  

(TFTP)  146, 147

U
UDP

about  4, 143
Dynamic Host Configuration  

Protocol (DHCP)  145, 146
header  144
Trivial File Transfer Protocol  

(TFTP)  146, 147
unusual traffic  148, 149
working  144, 145

UDP header
about  144
checksum field  144
destination port field  144
packet length field  144
source port field  144

Uniform Resource Locator (URL)  105
unusual FTP  103
USBPcap  282-284
User Datagram Protocol. See  UDP
usual SMTP traffic

versus unusual SMTP traffic  112-115

V
VirusTotal

reference link  214
Voice Over Internet Protocol (VOIP)

about  116-118
packets, resembling for playback  120
traffic, analyzing  118, 119

VOIP traffic
analyzing  118, 119
packets, reassembling for playback  120, 121

W
WEP

about  167, 168
open key  167-169
personal  172-176
shared key  167-172
traffic, decrypting  179-181

Wi-Fi Protected Access (WPA)
about  172
enterprise  177-179
traffic, decrypting  179-181

Wired Equivalent Privacy. See  WEP
Wireshark

about  7, 8
advantages  15
analysis flags, checking  142, 143
packet analysis  5
profiles, creating  48, 49
reference link  7, 15, 24
Statistics menu  54
working  8, 9

Wireshark GUI
about  16
installation process  16-20

Wireshark v2
graph improvements  272
TCP streams  279
translation  270
USBPcap  282

Z
Zero window notification  238


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to the World 
of Packet Analysis 
with Wireshark
	Introduction to Wireshark
	A brief overview of the TCP/IP model
	The layers in the TCP/IP model
	An introduction to packet analysis with Wireshark
	How to do packet analysis
	What is Wireshark?
	How it works

	Capturing methodologies
	Hub-based networks
	The switched environment
	ARP poisoning
	Passing through routers
	Why use Wireshark?
	The Wireshark GUI
	The installation process

	Starting our first capture

	Summary
	Practice questions

	Chapter 2: Filtering Our Way 
in Wireshark
	An introduction to filters
	Capture filters
	Why use capture filters
	How to use capture filters
	An example capture filter
	Capture filters that use protocol header values

	Display filters
	Retaining filters for later use

	Searching for packets using the 
Find dialog
	Colorize traffic

	Create new Wireshark profiles
	Summary
	Practice questions

	Chapter 3: Mastering the Advanced Features of Wireshark
	The Statistics menu
	Using the Statistics menu
	Protocol Hierarchy

	Conversations
	Endpoints
	Working with IO, Flow, and TCP stream graphs
	IO graphs
	Flow graphs
	TCP stream graphs
	Round-trip time graphs
	Throughput graphs
	The Time-sequence graph (tcptrace)

	Follow TCP streams
	Expert Infos
	Command Line-fu
	Summary
	Exercise


	Chapter 4: Inspecting Application 
Layer Protocols
	Domain name system
	Dissecting a DNS packet
	Dissecting DNS query/response
	Unusual DNS traffic

	File transfer protocol
	Dissecting FTP communications
	Passive mode
	Active mode

	Dissecting FTP packets
	Unusual FTP

	Hyper Text Transfer Protocol
	How it works – request/response
	Request
	Response
	Unusual HTTP traffic

	Simple Mail Transfer Protocol
	Usual versus unusual SMTP traffic
	Session Initiation Protocol and Voice Over Internet Protocol
	Analyzing VOIP traffic
	Reassembling packets for playback

	Unusual traffic patterns
	Decrypting encrypted traffic (SSL/TLS)
	Summary
	Practice questions:


	Chapter 5: Analyzing Transport 
Layer Protocols
	The transmission control protocol
	Understanding the TCP header and its 
various flags
	How TCP communicates
	How it works
	Graceful termination
	RST (reset) packets

	Relative verses Absolute numbers
	Unusual TCP traffic
	How to check for different analysis flags 
in Wireshark

	The User Datagram Protocol
	A UDP header
	How it works
	The DHCP
	The TFTP

	Unusual UDP traffic

	Summary
	Practice questions

	Chapter 6: Analyzing Traffic in Thin Air
	Understanding IEEE 802.11
	Various modes in wireless communications
	Wireless interference and strength

	The IEEE 802.11 packet structure
	RTS/CTS


	Usual and unusual WEP – open/shared key communication
	WEP-open key
	The shared key
	WPA-Personal
	WPA-Enterprise

	Decrypting WEP and WPA traffic
	Summary
	Practice questions

	Chapter 7: Network Security Analysis
	Information gathering
	PING sweep
	Half-open scan (SYN)
	OS fingerprinting

	ARP poisoning
	Analyzing brute force attacks
	Inspecting malicious traffic
	Solving real-world CTF challenges

	Summary
	Practice questions


	Chapter 8: Troubleshooting
	Recovery features
	The flow control mechanism
	Troubleshooting slow Internet and 
network latencies
	Client- and server-side latencies
	Troubleshooting bottleneck issues
	Troubleshooting application-based issues

	Summary
	Practice questions

	Chapter 9: Introduction to Wireshark v2
	The intelligent scroll bar
	Translation
	Graph improvements
	TCP streams
	USBPcap
	Summary
	Practice questions

	Index



